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Abstract

The Monaco system is an attempt bridge the gap between state-of-the-art com-
pilation and implementation of ftat committed-choice logic programming languages
like Flat Guarded Horn Clauses (FGHG). The Monaco system is unique in several
respects. The abstract machine was designed in an attempt to steer away from
traditional WAM-inspired abstract machine designs. The Monaco compiler utilizes
newer compilation techniques such as decision graphs, as well as the more tradi-
tional optimizations such as dataflow analysis, to produce efficient code. We have
completed a native-code implementation of Monaco on the Sequent Symmetry, a
commercially available shared-memory multiprocessor. This report describes the
design and evaluation of the Monaco system on the Symmetry, and compares it
with other systems in the literature.
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1 Introduction

Within the past few years parallel computing has moved from the research laboratory
into the computing centers and even into personal workstations. While new and efficient
parallel architectures have continually emerged, the techniques used to program these
new machines have not changed much from those used on sequential computers. Due
to the lack of clean abstraction in traditional languages for specifying parallelism, the
programmer is left with the task of harnessing the power of parallelism with little
support from the programming language. Due to the lack of standards, programs are
written using idiosyncratic thread libraries, making the programs not portable to a
different or new architecture. Adding to the complexity of writing parallel programs,
debugging them for correctness and performance is much harder than it is for sequential
programs. Developing and debugging parallel programs will be greatly facilitated if the
complexity of managing parallelism is kept hidden from the programmer. Sequential
logic languages such as Prolog, which have clean declarative semantics, have been
extended in several ways to fulfill the need for a good parallel programming language.

Removing the responsibility for managing parallelism only moves the responsibility
on to the programming language. Parallel logic programming languages need optimiz-
ing compilers and efficient implementation to deliver high performance. Monaco is an
effort at high performance implementation of Flat Guarded Horn Clauses (FGHC), a
committed-choice logic programming language, on shared-memory multiprocessor sys-
tems.

Shared-memory multiprocessor machines are generally more efficient and easier
to program than message-passing machines. However, with the current technology,
message-passing architectures are be used to build scalable high performance comput-
ers. Hybrid architectures consisting of a network of shared-memory computers, present
a good compromise between scalability and efficiency. Communication within a node
is through shared-memory. Scalability is achieved by using an interconnection net-
work. Building efficient systems on shared-memory is still a key to realizing the totally
scalable parallelism. Our research contribution is in the efficient imblementation of a
parallel programming language on shared-memory multiprocessor architecture.

1.1 Committed-Choice Logic Programming

The success of Prolog as a sequential programming languages is due to the convenience
of unification and backtracking. Full or two-way unification allows queries to be specified
in both ways, i.e., find the solution for a problem; or, given a solution, find the inputs
that describe the problem. Backtracking allows all the solutions to be found. Concur-



rent logic languages have sacrificed backtracking in favor of improved performance. The
absence of backtracking suggests a name for this class of languages, committed-choice
languages. The sacrifice of backtracking may be justified because most real problems
require one solution; and if necessary, the search for all solutions can be simulated in
programs that need to find all the solutions. Thus the expressive power of the language
is not weakened.

A committed-choice logic program is a set of guarded Iorn clauses of the form:
“H:=Gi1,...,Gm | B1,...,By” where m > 0 and n > 0. H is the clause head, G;
is a guard goal, and B; is a body goal. The commit operator |’ divides the clause
into a passive part (the guard) and active part (the body). When the guard is empty,
the commit operator is omitted. “Flat” committed-choice languages have a further
restriction that guard goals are simple builtin functions, such as =, <, >, #.

We say that a goal g commits to a clause i, if g successfully matches with the head
of clause 7 (i.e., without causing any bindings to the variables of the goal) and the
guards of clause ¢ succeed without binding any goal variable. When a goal can commit
to more than one clause in a procedure, it commits to one of them non-deterministically
(the others candidates are thrown away). Structures appearing in the head and guard
of a clause cause suspension of execution if the corresponding argument of the goal is
not sufficiently instantiated. For example, in order for a goal foo(X) to commit to the
clause “foo(X) :~ X = [AIB] | bar(4,B),” the argument X of the goal must already
be bound to a list structure, whose head (car) and tail (cdr) may be any term, even
unbound variables.

A suspended invocation may be resumed later when the variable associated with
the suspended invocation becomes sufficiently instantiated. A program successfully
terminates when, starting from an initial user query (a conjunct of atoms), after some
number of reduction steps, no goals remain to be executed, nor are suspended.

1.2 Literature Review

In this section we briefly discuss some implementations of committed-choice logic pro-
gramming languages. The family of committed-choice languages is quite closely knit,
with few practical differences in expressive power. However, some languages provide
features which make particular programming tasks, such as systems programming or
meta-programming, easier.

Pandal28] is an emulator-based parallel implementation of KL1 on shared-memory
multiprocessors. KL1 [36] is an extension of FGHC, including some powerful meta-
logical features and support for writing systems software. KL1-B is the abstract ma-
chine instruction set for specifying the execution of KL1 programs. Panda introduced



independent scheduling queues with depth-first scheduling, and on-demand load bal-
ancing schemes. An evaluation of the Panda implementation and design choices is
presented by Sato{27].

JAM Parlog is a highly efficient emulator implementation of Jim’s Abstract Machine
for Parlog [7]. It includes support for Or-Parallel execution and deep guards. This
introduces additional overheads for process management, since a process activation
tree must be maintained for deep guards. JAM uses specialized data areas to store
different types of data structures, in addition to the heap. For example, the process
stack is used to store fixed size goal records, and the argument stack area is used to store
process arguments and environments. All other dynamically created data structures are
stored in the heap area. The JAM Parlog system implements private process queues
which are also made accessible to other processors. Load balancing is achieved by
allowing idle processors to steal work from busy processors. Different local scheduling
schemes allow the private queue to function either in a LIFQ or FIFQ fashion. JAM
Parlog also implemented a form of tail recursion optimization, by executing the “last”
body goal directly, instead of creating a process for it. A timeslicing scheme is also
introduced to prevent a single goal from monopelizing a processor, when a LIFO local
queue management scheme is used,

Strand[11] is a distributed-memory implementation of Flat Parlog, with assign-
ment. The assignment operator :=/2 can be used by the programmer whenever it is
known that one of the terms in an unification will be a variable. The simplifications
in the supported language allow an efficient implementation. Other optimizations in-
clude simplified data structures to implement suspension, based on the observation that
most goals suspend on only one variable at a time, and better compilation of process
definitions.

Concurrent constraint languages are generalizations of concurrent logic program-
ming, primarily in that unification becomes general constraint matching. One of the
first CCL implementations is Janus, a committed-choice language [26]. Janus has the
restriction that a stream can have one and only one producer and consumer. These
channels allow implementation optimizations that are normally very difficult to do for
standard committed-choice languages, such as local memory reuse. An experimental
Janus compiler jc has been recently developed [14] based on decision-graph code gen-
eration, as is our Monaco compiler. Unlike Monaco, jc produces sequential C code,
which is then compiled.



1.3 The Monaco Project

The Monaco project consists of: 1) design of an abstract machine; 2) construction of
an optimizing compiler; 3) implementation of a multiprocessor run-time system; and 4)
performance evaluation. The Monaco compiler development was effectively decoupled
from all implementation detail, when the design of the abstract machine was finalized.
A schematic diagram showing the flow of a FGHC source program through the various
parts of the compiler is shown in Figure 1. Like the optimizing compilers for other
languages, compilation is a multi-phase process with optimizations performed at each
phase. It is beyond the scope of this thesis to describe the workings of the compiler.
The Monaco compiler is described in a forthcoming paper [34].

The main contributions of this thesis are: We have successfully completed a na-
tive code implementation of a flat committed-choice logic programming language on
a shared-memory multiprocessor. We have introduced the concept of millicode proce-
dures to implement complex instructions in the run-time system. The viability of the
instruction set for compiling flat committed-choice logic programs is demonstrated. The
working of our optimizing compiler is experimentally verified. The preliminary perfor-
mance benchmarking indicates that Monaco compares well with some of the well-known
and efficient implementations.

This thesis presents the design of the Monaco abstract machine, implementation
of the run-time system on Sequent Symmetry and performance evaluation. Section 2
describes our design of the Monaco abstract machine. Section 3 describes the abstract
machine implementation on the Sequent Symmetry. Section 4 describes the design
and implementation highlights of the Monaco run-time kernel. Section 5 contains the
results of a performance analysis, and comparison with similar systems discussed in
the literature. In Section 6, we look back on our effort to identify the lessons we had
learned, the major accomplishments, and suggest directions for future work.
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2 The Monaco Abstract Machine

In this section we describe the Monaco abstract machine. Several abstract machines and
instruction sets have been proposed for implementing parallel logic languages. Most
of these are extensions of the basic Warren Abstract Machine [39] for process-based
execution, e.g., JAM Parlog [7], Aurora (3], and Panda [28].

The Warren Abstract Machine (WAM) was designed to efficiently implement the
backtracking and stack-oriented execution of sequential Prolog. One main contribution
of WAM to Prolog implementation is the way unification is compiled. The emphasis
on compiling unification is evident from the fact that a large percentage of WAM in-
structions are for specialized unification. Prolog supports two-way unification and spe-
cialization of unification is justified since Prolog programs spend considerable amount
of time performing unification [9). There are several successful implementations of the
WAM in software using byte-code emulators, e.g., [25, 2]. Compiling Prolog programs
to native-code has been attempted. Taylor presents results from a Prolog compiler for
a RISC architecture in {31].

Committed-choice languages [29] differ from Prolog in many ways. Firstly, they have
a process-based computation model that does not support backtracking. A computation
consists of reducing goals, referred to as processes, until no unreduced goals remain, in
which case the computation is said to succeed.

Secondly, unification is somewhat less complex, since only one-way unification is
permitted in head matching and generalized two-way unification is permitted in the
body. Also, there is a wide gap in efficiency of memory usage in sequential and parallel
execution. In parallel execution. All memory is allocated on the heap and since there
is no dynamic reclamation of memory as in sequential Prolog execution, the parallel
programs consume large amounts of memory. Programs also pay a penalty in execution
time for process management,.

Since it’s definition in 1983, the WAM has influenced the design of almost every
abstract machine designed for logic languages. To our knowledge, there have been
few successful efforts (e.g., Kursawe [22]) at exploring the design space without strong
leanings towards the WAM. KL1-B, JAM, and Aurora are all examples of abstract
machines designed by extending the WAM instruction set to support parallel execution.

At a very high level, all abstract machines are similar in the sense that they provide
a clean abstraction of real program execution by making it easy to specify control
flow and data manipulation. They may differ in the power of the abstract machine
instructions or the ease with which the abstract machine may be mapped to a real
machine. We have decided to try a fresh and simplified approach to abstract machine
design. Our motivations for designing the Monaco abstract machine are summarized



below:

New compiling technologies

Compilation technology for logic programs has advanced since the design of the
WAM. Although the WAM is clever at compiling unification, newer compila-
tion techniques, such as decision graphs proposed by Kliger[20], greatly improve
clause indexing in comparison to WAM. Debray’s recent work [8] on weighted
decision trees, global dataflow analyses such as Ueda’s mode analysis [37] for
committed-choice languages, Korsloot and Tick’s thread sequentialization deter-
minacy testing algorithms [21], and Zhong’s granularity analysis algorithm [40]
also have altered the design space for abstract machines. The productive inter-
action between compiler technology and instruction sets has been demonstrated
by compilers for RISC architectures. The Monaco compiler incorporates some
of the new compilation techniques and some traditional optimizations [1]. It is
necessary to reevaluate and rethink many of the WAM-inspired strategies in the
context of new compiler technology. This thesis presents an evaluation of such
compiler technology.

New processors and architectures

The state of the art in processor design and computer architecture has advanced
dramatically in the last ten years. We have witnessed a revolution brought on
by the pipelined RISC processors. This trend has continued into superscalar and
superpipelined processors [16]. Though not much has changed in the basic design
of shared-memory multiprocessor architectures, we have seen that better cache
protocols and advances in memory technology have removed some performance
bottlenecks. Our goal was to design an instruction set that maps readily to a
target machine for native-code implementations. We followed the RISC design
approach: design a simple and orthogonal instruction set such that the most fre-
quently executed instructions are implemented directly in the machine. Reducing
the semantic content of abstract machine instructions leaves few heavy-weight in-
structions such as unification and process management.

Evaluation of the run-time system

Smart compilation of unification contributes to reducing the execution time in
Prolog [9]. In addition to unification, process and memory management constitute
a major chunk of the execution time for parallel implementations. Qur goal is
to measure the effects compiled unification, design of the run-time system, and

native-code compilation on the performance of committed choice languages like



FGHC. Analysis of the time spent in various parts of the run-time system and
in the user program, will help future redesign and optimize the heavily-used
components. In this thesis we present preliminary measurements obtained from
a first implementation.

Cleaner abstraction of the execution model

We want to design an instruction set that presents a clean abstraction of the exe-
cution model. The details of implementation and possible runtime optimizations
are kept hidden from the programmer. This facilitates writing and debugging
programs.

2.1 The Abstract Machine

An abstract machine is similar to a “real” computer architecture. An abstract machine
definition consists of specifying an execution model, the visible machine state and
registers, a set of supported data types, and an instruction set to operate on data. We
treat the following topics separately in the following sections, by first describing the
notion of a variable in committed choice logic programming.

2.2 Variables and Single Assignment Property

A wvariable in concurrent logic languages' has the single-assignment property, i.e., it
can receive a value at most once. A writer is a process that tries to bind a value to a
variable, A reader is a process that accesses a variable to read the stored value. The
first writer to a variable can assign a value to the variable. The following writers to an
instantiated variable succeed writing, only il the value they wish to write can be unified
with the value already stored in the variable cell. Readers of the value of a variable
will suspend on the variable, if it was not instantiated. When the variable does get
instantiated, the writer must resume all the readers suspended on the variable. Shared
variables together with the single assignment property provide elegant synchronization
mechanisms. Foster [12], Shapiro [29], and Tick [33] present popular programming
paradigms in concurrent logic languages.

2.3 The Execution Mechanism

A good description of the operational semantics of concurrent logic programs is given
by Shapiro [29]. We present an informal description of computation in a flat concurrent

! More precisely, flat committed-choice languages witl atomic variable-terin unification and non-
atomic term-term unification.



p(X) :- true I x=[al¥l, p(Y). (1)
a(X) :- X=[alY] | gq{¥) (2)
q(X) :- x=[blY] | q(¥) (3)

7= p(X), q(X).
Figure 2: A Sample FGHC Program and Query

language such as FGHC. To illustrate the execution mechanism, consider the example
in Figure 2. Assuming that the goals p(X) and q(X) were entered at the query, they
are put in a goal pool. Each goal in the pool can be reduced in parallel. Goal reduction
consists of matching the goal arguments with the head of a clause and then evaluating
the guard tests. In the above example, p(X) may be reduced with clause (1) and q(X)
may reduce with either clause (2) or (3). Performing head matching and executing the
guard tests is called a clause try. When a clause try is successful, the clause commits
and new processes for the body goals of the committed clause are added to the goal
pool. If goal q(X) was tried with clause (2) or (3) before goal p(X) was executed, the
guard test in either clause cannot proceed since X is still unbound and q{X) will suspend
on X. When p(X) is executed it assigns the value [a]Y] to X, adds goal p(Y) to the goal
pool and resumes q which suspended on X. Computation proceeds in this fashion until
all the goals are reduced. If no goal can be reduced because all are suspended waiting
for variables to be instantiated, it is is a deadlocked computation. A failed computation
is one in which a process cannot be reduced with the head of any of the clauses in the
procedure for the goal.

When head matching or a guard test cannot proceed due to an unbound variable,
the variable is pushed onto a suspension stack. If at some point during the evaluation
of a procedure, there are no more clauses left to try, the suspension stack is checked.
If empty, it means that all guards have failed, hence the goal and consequently the
computation should fail. If the suspension stack is not empty then the goal is suspended

on all unbound variables found on the suspension stack.

2.4 The Data Types

The Monaco abstract machine supports seven programmer-visible tagged data types.
The tag scheme of Monaco is similar to that employed in the original WAM design. The
tag of a simple object (integers, symbols) is stored along with the object whereas the
tag of a compound object (vectors, pairs) is stored in a pointer to the object rather than
the object itself. This representation is efficient, since the type checking of an object
may be done before the pointer to the object is dereferenced to access the object. For
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| Value | Tag |

Monaco Datum to———— +—- + +
| Lock | Unused |

- -— + +

Integer Type I Integer | F1x |
Immediate Type | Number | IMM |
- + +

Reference Type | Ptr to Monaco datum | REF |
R -— -+

o + -+

Variable Type I Self Ptr | VAR |
b ——— + +

Hooked Type | Ptr to Suspension List | HOOK|

Figure 3: Simple Monaco Data Types

further discussion of tag schemes and run-time type checking see Steenkiste [30].

We suggest a layout of Monaco datum (illustrated in the top of Figure 3), as it is
not expected to be different from one host machine to another. The suggested layout
should suffice for any processor that supports 32-bit data and atomic access to a byte
or word which is word-aligned. Each tagged datum occupies two 32-bit words. The
first word contains the tag and value of the datum; the tag occupies the least significant
three bits of the word and the rest of the word is used to store the value. Each datum
is potentially shared and in a parallel implementation, races to instantiate a shared
variable are possible. To remove unpredictable races, each cell is protected with a lock.
The most significant byte of the second word is used to store the lock. Conceptually
a bit is sufficient to implement a lock, but general-purpose processors do not support
atomic bit access. The least significant three bytes in the second word are currently
unused, Many of the issues in layout design are inter-dependent and we suggest that
the following description be first read in its entirety.

Due to the number of supported data types, three bits are used to encode the tag.
The tag is stored in the three least significant bits of of the first word. This is true even
for the pointer data type #REF. (See the definitions of Monaco data types later in this
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section). This restricts ail Monaco data to be stored on an 8-byte boundary. Note that
the Monaco datum, excluding the lock, will fit into one 32-bit word or four bytes. The
8-byte alignment would cause the second word to be wasted, if we did not use it for
storing the lock. Storing the lock along with the datum is expected to improve cache
performance because the lock variable for a datum is fetched into cache along with the
datum. If the lock were not stored together with the datum, a datum would occupy
one full word leading to more economical usage of the cache, and the locks could be
stored in a table of locks. Since we need to quickly index into the table, a reference
to the table must always be kept in a register; which cannot always be guaranteed.
With our scheme, when a datum is fetched into the cache, the lock is also fetched and
subsequent lock access is inexpensive. The alternative scheme may cause a cache miss
while accessing the lock.

Three bits are needed to store the tag. The tag storage in the least significant bits
of the datum makes the tag stripping operation inexpensive. We suggest that the tag
code of 000 be assigned to #REF tag. No cost is involved in creating the #REF type
datum, and since this type is used extensively, the tag scheme should work efficiently.
In the following pages, we describe how each data type is laid out in memory. The
second word in the datum which contains the lock, is not shown in the Figure 3.

Integer

An integer (#FIX) type datum lolds a fixed-precision integer quantity. Equal
integer values always have identical representations. The integer is stored in the

2's complement form.

Immediate

An immediate (#IMM) type datum represents an atom (a textual symbol); or
miscellaneous constants such as the nil constant [J and vector and goal record
headers, etc.

Variable

A variable (#VAR) cell is an uninstantiated location. When a variable becomes
instantiated, its type changes to that of the value that the cell is instantiated
with. The value part of a variable cell is set to point to itself.

Hooked

A hooked cell (#HOOK) cell is an uninstantiated location on which some pro-
cesses are blocked. When a hooked cell is instantiated during unification, the
processes hooked on the cell will be unblocked. The value part of the hooked cell
points to a list of processes suspended on the cell.

11



0
[ IPAIR | +==>| head [
tm———— | ===== R + | + +
I (I tail I

Figure 4: The Pair Data Type
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Figure 5: The Vector Data Type

Reference

A reference (#REF) contains a pointer to a tagged word.
Pair

A datum of type pair (#PAIR) points to a list cell (see Figure 4. List cells are
represented by two consecutive data items. A list pointer points to the first item,
denoted as the “head” of the list cell. The second item is denoted as the “tail” of
the list cell. The terms “car” and “cdr” are sometimes used, to refer to the head
and tail of a list cell, respectively. The list cell has no header.

Vector

A vector (#VEC) type datum holds a pointer to a vector of arity one or more
(see Figure 5). A vector of arity n consists of space for n consecutive data items
numbered 1-n. Slot zero of the structure contains the vector header (an immedi-
ate) in which n, the arity of the vector is encoded. The Type field distinguishes

the particular use of a vector. Vectors can be used to represent both general
structures and goal records.
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2.5 The Machine Organization

The Monaco abstract machine is a general-purpose register-based architecture in which
the only memory operations are loads and stores. We leave the size of the register set
unspecified as it does not restrict the power of the abstract machine. A reasonable
number of registers would be 16-32. Although we could have a larger register set, with
a subset of them mapped to the target processor’s registers, the strategy may not be
efficient because all the processor registers would have to be saved on a context switch
i.e., call to any of the run-time kernel routines such as suspend, at a significant cost.

2.6 The Instruction Set

While other low-level instruction sets for Prolog and it’s derivatives exist (e.g., the
BAM [17, 38] and CARMEL-2 [15]) they have been designed for hardware implemen-
tation. Our interest is in an instruction set which readily maps onto a conventional
microprocessor architecture. We use our abstract machine as the target architecture
for our compiler, and provide a simple translator from the abstract machine language
to the host processor’s assembly language.

Our goal was to obtain an orthogonal and low-level instruction set to serve was the
target language for our optimizing compiler. The instruction set can be divided into
the following categories: data constructors, data manipulators, predicates, arithmetic,
control transfer, process management, and unification.

In terms of the weight or semantic content, the instructions may be categorized into
three main categories. A majority of the instructions are lightweight and can easily be
translated into small sequences of instructions on a host machine. Most predicate and
arithmetic instructions fall into this category. At the other extreme, some instructions
are sufficiently complex that not much may be gained by translating them into native
code. Unification and process-management instructions are examples of this variety.
The middle ground is covered by the data manipulators and constructors. Whether
to implement this type of instructions as native code or procedure calls is left as an
implementation detail. Each group of instructions is described separately below, All
instructions are summarized in Appendix A.

In the following discussion, Rs, Rs1, and Rs2 denote source registers, while Rd
denotes a destination register. n denotes an integer constant. <const> denotes any
constant in the source language, i.e., immediates and fixed point numbers. Size is
used to specify the size of a vector frame. Proc/Arity is a pointer to an executable
procedure. The word millicode will be used to describe functions or instructions that
are implemented in the run-time kernel, the user program will have to perform a kernel
call in order to use the millicode procedure.

13



mkeconst (<const>, Rd) Rd := <const>

mklist (Rsi, Rs2, Rd) Rd := #PAIR ptr to new list cell
mkstruct (Size, Rd) Rd := #VEC ptr to new struct

mkgoal (Size, Proc, Rd) Rd := #VEC ptr to new goal record for Proc
mkvar (Rd) Rd := #REF ptr to new #VAR cell

alloc (n,Rd) Rd := #REF ptr to n heap cells

ref (Rs, n, Rd) Rd := #REF ptr to (Rs +n)" heap cell
initlist (Rsl, Rs2, Rd) Rd := #PAIR ptr to list cell
initstruct (8ize, Rd) Rd := #VEC ptr to a struct

initgoal (Size, Proc, Rd) || Rd := #VEC ptr to goal record for Proc
initvar (Rd) Rd := #REF ptr to a #VAR cell

Table 1: Data Constructors

2.7 Data Constructors

Data constructors provide a means to create data structures and values in an imple-
mentation independent fashion. These instructions are listed in Table 1. We do not
provide constructors for all data types defined in the abstract machine. The mklist,
mkstruct, mkgoal and mkvar instructions construct a new list cell, a new structure
frame, and a new goal record, on the heap, respectively. The mk class of instructions
are sufficient for constructing all the data types.

Each of the mk#* instructions invoke the heap memory allocator. If heap data struc-
tures are created frequently in a program, the overhead of calling the heap allocator
can be considerable. It may be economical to reserve the heap space required by a
program segment in a single call, if possible. We extended the set of data constructors
with the following instructions, in order to encourage such a style of compilation.

The alloc(n,Rd) instruction reserves n cells on the heap. This instruction is in-
tended to reduce the number of calls to the memory allocator. The number of cells
required by a program segment can be determined at compile time and allocated in
a single call. This is similar to the notion of creating a call frame for the local vari-
ables of a called function in procedural language implementations. The ref(Rs, n,
Rd) instruction is used to index into a block of heap memory reserved in an alloc
instruction.

The initlist, initstruct, initgoal and initvar instructions construct data
structures in heap space which is already allocated, to which a reference pointer is
available in Rd. The init class of instructions not only avoid having to allocate new

14



deref (Rs, Rd) Rd := deref(Rs)
move (Rs, Rd) Rd := Rs

sset (Rsl, n, Rs2) || Slot n of Rs2 := Rsl
sref (Rs, n, Rd) Rd := Slot n of Rs

ssize (Rs, Rd) Rd := Size of struct in Rd
car (Rs, Rd) Rd := car{(Rs)
cdr (Rs, Rd) Rd := cdr(Rs)
setcar (Rs, Rd) car(Rd) := Rs
setcdr (Rs, Rd) car(Rd) := Rs

Table 2: Data Manipulators

memory and checking for heap overflow, but also will drive more sophisticated structure
reuse schemes. See the discussion on memory reuse in Section 6.

2.8 Data Manipulators

Data manipulators access and update data structures. In general, the type of the data
structure being updated is encoded in the pointer to the structure, and hence type
checking can be done. However, range checking is not performed in general. See Table
2

The setcar and setcdr instructions are currently not emitted by the compiler.
They are intended to facilitate reuse of list cells when the structure reuse analysis
phase in the compiler is implemented.

2.9 Predicates

A predicate leaves a truth value in its destination register; the truth value is a tagged
integer, with FIX#1 representing true and FIX#0 representing false. Type predicates
and general predicates are shown in Table 3; type predicates are used to check the tags
of tagged words. Integer predicates are shown in Table 4; if an integer predicate is
passed a non-integer, it raises an exception.

2.10 Integer Arithmetic and Bit Operations

Integer operations take tagged integers as arguments and produce tagged integers as
results. Non-integer operands will cause an exception. In the case of arithmetic oper-

ations, an overflow will cause an exception. Integer operations are shown in Table 5.
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isnil (Rs, Rd) Re == [J] ? Rd = True : Rd := False

isint (Rs, Rd) tagof(Rs) == #FIX ? Rd := True : Rd := False
isref (Rs, Rd) tagof(Rs) == #REF 7 Rd := True : Rd := False
isunbound (Rs, Rd) || tagof(Rs) == #VAR ? Rd := True : Rd := False
ishooked (Rs, Rd) tagof(Rs) == #HOOK 7 Rd := True : Rd := False
islist (Rs, Rd) tagof(Rs) == #PAIR ? Rd := True : Rd := False
isstruct (Rs, Rd) tagof(Rs) == #VEC 7 Rd := True : Rd := False
isimm (Rs, Rd ) tagof(Rs) == #IMM ? Rd := True : Rd := False
eq (Rs1l, Rs2, Rd) Rsl == Rd2 ? Rd := True : Rd := False

neq (Rsl, Rs2, Rd) || Rsl == Rd2 ? Rd := False : Rd := True

Table 3:

Type Predicates and General Predicates

ieq (Rs1i, Rs2, Rd)

Rs1

Rs2 7

Rd :

True : Rd := False

ineq (Rs1, Rs2, Rd) || Rs1

R

g2 7

Rd :

Falsa : BRd := True

ilt (Rsi, Rs2, Rd) Rs1 < Rs

27 R4 = True : Rd = False

ile (Rs1, Rs2, Rd) Rsl <= Rs2 7

Rd

= True : Rd = False

igt (Rsl, Rs2, Rd) Rsl > Rs

27 Rd = True : Rd = False

ige (Rs1, Rs2, Rd) Rsl >= Rs2 7

Rd

= True : Rd = False

Instruction punify(Rst,Rs2,Rd) will return the result of passive unification as a

Table 4: Integer Predicates

2.12 Unification Instructions

2.11 Control Transfer Instructions
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For the control transfer instructions, the destination of transfer is specified by a sym-
bolic identifier Label to denote a program point. See Table 6.

Two types of unification operations are required: ActiveUnify to perform two-way
unification of arbitrary structures; and PassiveUnify to perform one-way unification
in a clause try. Active and passive unification are complex operations and will nearly
always be implemented as millicode calls. See Table 7 for the format of unification
instructions.




iadd (Rs1, Rs2, Rd) Rd = Rsl + Rs2
isub (Rs1l, Rs2, Rd) || Rd = Rsl - Rs2
imul (Rsl, Rs2, Rd) || Rd = Rsl * Rs2
idiv (Rsl, Rs2, Rd) || Rd = Rsl / Rs?2
imod (Rs1, Rs2, Rd) | Rd = Rsi ¥ Rs2
ineg (Rs, Rd) Rd = - Rsl

iand (Rs1, Rs2, Rd) || Rd = Rsl AND Rs2
ior (Rs1, Rs2, Rd) Rd = Rs1 DR Rs2
ixor (Rsl, Rs2, Rd) || Rd = Rs1 XOR Rs2
inot (Rs, Rd) Rd = NOT Rs

Table 5: Integer Arithmetic and Bit Operations

jump (Label) unconditional branch to Label

br (=, Rs, Label) branch to Label if Rs ==

br (nz, Rs, Label) || branch to Label if Rs != 0

br (p, Rs, Label) [/ branch to Label if Rs > 0

br (n, Rs, Label) branch to Label if Rs < 0O

Table 6: Control Transfer

unify (Rs1, Rs2) | active unify Rs1 with Rs2

punify (Rs1, Rs2, Rd) " passive unify Rsl with Rs2

Table 7: Unification Instructions




tagged integer code in Rd. The result PUNIFY_SUCCESS indicates that the unification was
successful. PUNIFY_FAILURE indicates that the arguments could not be passively unified.
PUNIFY_SUSPEND indicates that the result of unification could not be determined since
some variable(s) were not sufficiently instantiated. The unbound variables are pushed
onto the suspension stack.

The ActiveUnify instruction aunify(Rs1,Rs2) does not have an explicit return
value. If it fails then the entire computation is in error, an exception is raised, and the
system is halted. Whenever aunify returns to the caller, it indicates that the active
unification was successful.

We have avoided introducing customized unification instructions for the following
reasons. Most calls to unify are to assign a value to a freshly allocated variable. If the
compiler knows the data type of objects being unified, a specialized unify instruction
can be more efficient than a call to general unification. But usually the compiler can
know more: it can be derived statically that simple assignment suffices for an unifica-
tion since one of the objects is guaranteed to be unbound. If the variable was created
within the body of the goal, no other process has a reference to the variable, and it can
be simply assigned to. The interesting situations arise when the variable is not created
within the body of the clause. In properly moded FGHC programs {37), which consti-
tute a majority of legal FGHC programs, there is a single writer to a variable. Mode
analysis (23] can be done at compile time to identify the writer. The assign(Rs1,Rs2)
will be generated instead of an unify instruction in such a case. The assign(Rsi,
Rs2) instruction dereferences Rs1, and writes Rs2 into the dereferenced location. Syn-
chronization and some tag checking are required to perform this operation correctly, in
case some process is concurrently suspending on the same variable. However, since the
location is guaranteed to be unbound, the complexity of the assign is less than that
of the unify(Rsi, Rs2) instruction. The assign instruction will be used wherever
possible, defaulting to general unify in the remaining cases.

The punify instruction performs passive unification and is only emitted when two
head arguments of a clause are the same. Few clauses in real programs use shared head
variables.

2.13 Process Management

The enqueue(Rs) instruction adds a goal, a pointer to which exists in Rs, to the ready-
goal pool. The proceed instruction is used to signal the run-time system that a process
has terminated. The suspend(Proc, N) instruction suspends a procedure Proc of arity
N on all unbound variables placed on suspension stack. The push(Rs) instruction is
used to place reference-type pointers to an unbound variable on the suspension stack.
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enqueue (Rs) enqueus goal pointed to by Rd

proceead terminate calling process

suspend (Proc, N) || suspend Proc of arity N

execute (Proc, N) || call Proc/H

push (Rs) put Rs on suspension stack

Table 8: Process Management Instructions

See Table 8 for a list of process management instructions.

2.14 A Quick Example: Quicksort

Quicksort is a version of the standard quicksort algorithm in FGHC. It sorts a list of
integers, by partitioning the list of integers about a pivot element into two lists S and
L containing numbers smaller and larger tlian the pivot element. The lists S and L are
sorted independently and their sorted outputs are concatenated to form the completely
sorted list. We do not present the partition procedure here. The Quicksort program
and the code generated for it, by the Monaco compiler, is shown in Figure G.

Before entry to a procedure Proc/N, the N arguments are loaded in to the abstract
machine registers numbered 0 through N-1. The entry point to the compiled procedure
is labeled qsort/3. All arguments are dereferenced before they are tested. Quicksort
requires that the first argument is bound. If it is not bound, the first argument is
pushed onto the suspension stack and the process suspends. If the first argument is
bound to [3, then the first clause commits and Rest is unified with Ans. The goal
returns to the run-time system by executing proceed to indicate successful reduction.

If the first argument is not [1, it is expected to be a list. The tag of the dereferenced
first argument is then checked to see that it has a #PAIR tag. If it did not have this tag,
the suspend instruction is executed with no variables placed on the suspension stack,
which causes failure.

If the first argument has a #PAIR tag, the second clause commits. The alloc
instruction is used to allocate a 15-cell frame on the heap, since that many cells are
required in the ensuing code. Two goal records are constructed for the two gsort/3
goals in the body, and are enqueued. A call is made to the partition/4 procedure,
after setting up its arguments in appropriate registers.

The call to one of the body goals in a clause is done with the execute instruction.
This avoids the construction of a goal record and the subsequent overhead of process
management for that goal. In case of Quicksort, the last call is made to partition/4,
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gsort{[],Rest, Ans) :-

gsort([XIR],Y,T)

gsort/3:

L1010:

L1003;

L1005:

deref
isbound
br

push

suspend

isnil
br
unify
proceed

islist
br

alloc
move
initgoal
ref
initvar
sset

ref
initvar
gset
sset
enquene
raf
initgoal
ref
initvar
sset
sset

car

rei
initlist
sset
engqueus
cdr
move
mova
move
move

true | Rest

Ans.

1= true | partition(R,X,S,L),
qsort(s,Y,[XI1Y11),
gqsort(L,¥1,T).

rd r4

r4d r3

nz r3 L1003
r0

gsort/3

4 10
z 0 L1005
ri r2

r4 0

z r0 L1010
16 r0

r0 r6

4 qsort/3 r6
0 6 15

rb5

r5 1 r6

r0 7 3

r3

r3 2 ré6

r2 3 6

x6

r0 8 r2

4 gsort/3 r2
0 14 7
7

r7 1 12

ri 2 r2

r4 6

r0 15 18
ré r3 8
r8 3 r2

r2

T4 18

8 r0

6 rl

r7 r2

r5 r3

execute partition/4

%
%
%
%

4
4

A
%
%
%
%
%

%
%

%
%
%

%
4

%
h

A
A
Y
%
%
%
%
%
%

r4 := deref(Argument 1)

Bound (Argument 1)

Yes.

No. Push Argument i. Suspend.

Suspend
Argument 1 is [] ?

No. Go to Clause 2.
Yes. Rest = Ans

Type(Argument 1) is #PAIR 7
Ho. Failure!
Allocata 15 cells on heap.

ré -> goal gsort/3

5 := L
1(r6) := L
r3 := Y1
2(r6) := Y1
3(r6) := T

enqueus gsort(L,Y1,T)

r2 -> goal qsort/3

r7 := §
1(r2) := §
2(r2) := Y

ré := X

8 := [Xlv1]
3(x2) := [XIY1]

enqueue gqsort(S,¥,[X|Y1])

r8 := R
r0 := R
rl1 := X
r2 := §
r3 =L

call paritition(R,X,5,L)

Figure 6: Compiled Quicksort Procedure in Monaco
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which is the producer of data structures needed by the two qsort/3 goals. This op-
timization on the last call, sometimes known as “tail recursion optimization,” allows
control to remain in the user program without frequently returning to the run-time ker-
nel. If the compiler can analyze the producer-consumer relationships, and choose the
right body goal for last call, this optimization can be used to keep the producers run-
ning ahead of consumers, thereby reducing the frequency of suspension. The Monaco
compiler presently chooses the first body goal, occurring in textual order. Note that if
none of the called procedures suspend, the last-call optimization could lead to a long
thread of procedure invocations, without returning to the run-time system. We show
how this can be harmful, and how it is avoided, in the next section.
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Programmable Registers

%eax Yebx Y%ecx %edx
Yesi Yedi

%esp Jebp

Table 9: The intel 386 Register Set

3 The Realization of Monaco Abstract Machine

In this section we describe how the Monaco abstract machine is realized on the intel 386
processor and implemented on the Sequent Symmetry shared-memory multiprocessor.
We will briefly describe the intel 386 processor, the Sequent Symmetry, and how the
abstract machine is mapped onto the host machine. We also describe an optimizing
macro assembler that translates abstract machine instructions into short sequences of
intel 386 assembly language instructions.

3.1 The intel 386

The intel 386 processor is an advanced CISC microprocessor designed for multi-tasking.
It supports both 32-bit data and addresses, a segmented memory model and virtual
memory management support. The complexity of memory and protection schemes is
hidden from user programs by not allowing them to operate on the segment and control
registers. See Table 9 for a list of programmable registers. Note that several intel 386
instructions have implicit operands for e.g., %iesp is an implicit operand to the push
instruction and is expected to always point to the top of the program stack. This rules
out the general availability of the %esp register for holding any other information. The
mul and div instructions are also examples of instructions with implicit operands. See
the section on Application Programming in [18] for a detailed description of the intel
386 instruction set.

Of the eight programmable registers, we decided not to use %,esp and %ebp since they
are used by the C procedure calling mechanisms. This leaves only six registers which
are available to Monaco. The available registers are so few that most compilers are not
effective in keeping frequently-used variables in registers. The reader who is familiar
with large register files available on RISC architectures would find this situation rather
suffocating! Obviously, the few available registers must be used with economy. One of
the important steps in an implementation is to decide how the registers will be used to
realize the Monaco abstract machine.
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GLBL | %iesi | pointer to globals array

SSTK | /edi | pointer to suspension stack

REGS | Yiedi | pointer to rootable register set

TMPO | %eax | scratch register 1

TMP1 | lecx | scratch register 2

TMP2 | %ebx | scratch register 3

Table 10: The Register Map

3.2 The Sequent Symmetry

The Sequent Symmetry is a shared-memory multiprocessor system. The S81 configura-
tion consists of up to 20 intel 386 processors operating on a shared bus. All the memory
is shared and accessible to all processors vie the shared bus. A possible bottleneck to
performance and scalability is the restricted bandwidth of the shared bus. Reducing
bus traffic is a key to achieving good performance. A 128 KB instruction and data
cache is used to exploit memory reference locality thus reducing the bus traflic. The
cache coherency protocol employed is copyback with a write invalidate policy. Multiple
read-only copies of a memory location are allowed to exist in different processor caches;
the writing processor becomes the owner of the cache block to which the address be-
longs. A snoopy cache coherence protocol is used to invalidate all other cached copies
of the memory location.

Sequent Symmetry runs the Dynix 3.1 operating system which is derived [rom the
4.2 BSD version of Unix. The operating system support for microtasking is sufficient
for large-grain parallelism; but {or the {ine-grained parallelism prevalent in a process-
based parallel logic programming language, it is more sensible to manage the parallelism
without the process-creation system calls of Dynix, such as fork and mfork [24].

3.3 Mapping the Abstract Machine

Implementing an abstract machine is directed mainly by the available resources on
the host machine. Apportioning the physical resources in such a way as to obtain a
clean and efficient implementation is a process of stepwise refinement. In the following
sections we describe the data structures required by the abstract machine and to some
of which, quick access is needed. These data structures or references to them must
be loaded in to the registers of the host machine before a process is executed. The
tentative register mapping is given in Table 10.
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This particular register mapping was obtained after noting that the most frequently-
used data structure is the abstract machine register set, in which all computations take
place. The heap top pointer and heap limit are held in the globals array. Due to the
heavy memory allocation, the globals array is frequently accessed. Also used heavily,
though not to the same extent as the earlier two, are the per processor suspension
stacks. Three registers REGS, GLBL, SSTK are set up with the base addresses of the
register set, globals array, and the suspension stack, respectively. Three registers are
reserved to hold temporary results when the abstract machine instructions are macro
expanded into sequences of host machine instructions. This mapping appears to be
intuitive, it should be clear that it is not the only possible register map. Perhaps more
detailed performance studies in future will lead to a better register mapping.

3.4 The Register Set

The Monaco abstract machine operates with some fixed number of registers. These are
stored in the registers array for each processor. Arguments to a procedure are loaded
into these registers before the procedure is entered. A pointer to the base of this array
is kept in the physical register REGS for efficient access.

3.5 The Millicode Table

Some of the abstract machine instructions are sufficiently complex to require imple-
mentation in millicode (e.g., suspend, enqueue). Since the addresses of millicode pro-
cedures are not known at compile time, a millicode call is accomplished by means of
an indirect jmp instruction. A table of entry addresses for all millicode procedures is
needed for dynamic linking. The run-time system initializes the millicode table with
the addresses of all millicode procedures. A millicode call is accomplished by pushing
the return address and parameters in the usual stack-parameter passing style of C, and
then executing an indirect jmp to the start address of the millicode. The millicode table
is appended at the end of the registers array, because that makes the millicode table
accessible via the REGS physical register. The millicode call mechanism is illustrated
with the example of punify in Figure 9, described later in this section.

3.6 The Suspension Stack

The suspension stack is a data structure where unbound variables that potentially
suspend execution are placed. The abstract machine instruction push places pointers
to uninstantiated variables on the suspension stack. A suspension stack is allocated for
each worker. A pointer to the suspension stack structure is set up in the SSTK physical
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# template for move(Rs,Rd)
movl Rs*4(REGS),TMPO
movl TMPO,Rd+*4 (REGS)

Figure 7: Macro Expansion of move(Rs, Rd)
register.

3.7 The Timer

The compiler performs “last call optimization,” i.e., the call to the first procedure is
converted to an execute(Name/Arity) instruction. This instruction jumps directly to
the target procedure assuming that the registers are set up correctly with the arguments
in preparation for the last call. This optimization saves the overhead of creating and
queuning a goal record for one of the body goals.

The savings can be substantial since the kernel is entered fewer times. However, this
could lead to infinite loops in uniprocessor execution and sometimes wasteful computa-
tion in multiprocessor execution; with producers running ahead of consumers and using
up memory. In order to reduce wasteful computation, a countdown timer is initialized
with a suitable constant; it is decremented and checked at each execute instruction
to see if it has reduced to zero. If this counter ever becomes zero, then the execute
instruction will make a goal record for the procedure, enqueue the goal, and return to
the kernel. This will prevent any processor from being monopolized by a single process.
The execute instruction will be as expensive as an enqueue instruction in the event
of the timer reducing to zero. This is fairly rare, dependent on the initial value of the
countdown timer.

The timer decrement is performed once at the end of a procedure, and is relatively
inexpensive. Due to the shortage of registers, we do not dedicate a register to hold the
timer. The Timer is appended to the Millicode table.

3.8 Macro Expansions

The assembler program on Unix, as, is used to assemble the intel 386 code into exe-
cutable machine code. The expansion of the abstract machine instructions into assem-
bly language instructions is simple. Due to lack of space, we will only present a few
macro expansions to give a feel for the expansion style. All constants and expressions
are evaluated by the assembler.

The macro expansion for move(Rs, Rd) instruction is shown in Figure 7. The
move instruction needs two assembly instructions, since memory-memory moves are not
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# template for deref(Rs,Rd)

movl Rs*4(REGS), TMPO
movl THMPO, THP2 # TrailPtr := t
L{k):
movl TMPO,THP1
andl $TAG_MASK,THPi{ # while(TAG(t) == REF_TAG)
jnz L(k+1) # {
movl THPO,THP2 # TrailPtr = t;
movl 0(TMPO) ,THPO # t = CELLREF(t);
jmp L(k) # }
L{k+1):
movl TMPO ,Rd*4(REGS} # Rd = Result
Figure 8: Macro Expansion for deref (Rs,Rd)
# template for punify(Rsi,Rs2,Rd)
pushl  Rs2#4(REGS) # push Rs2 on stack
pushl  Rs1*4(REGS) # push Rsl on stack
pushl  $LM_RETURN # push return address
jmp *PUNIFY_OFF(REGS) # indirect call to punify
LM_RETURN:
addl $8,%esp # readjust stack

movl TMPO,Rd*4 (REGS) # Rd := punify(Rsi,Rs2)

Figure 9: Macro Expansion for Millicode call to punify

permitted. Often register Rs is already in TMPO as the result of a previous operation, and
the first move from registers kept in memory into TMPO may be avoided by a peeplole
optimizer.

The macro expansion for the deref(Rs,Rd) instruction is shown in Figure 8. The
deref instruction is one of the most complex expanded instructions. The accompanying
comments give the pseudo-code for the dereference operation. For clarity we do not
show how the #HOOK type datum, which points to a suspended goal, is handled.

The macro expansion for punify(Rs1,Rs2,Rd) instruction is shown in Figure 9.
The millicode call method is illustrated here. The source operands Rs1, Rs2, and the
return address are pushed on the C stack. The result is returned in TMPO, which is then
stored in register Rd.

Other schemes where arguments and/or return address are placed in registers will
be efficient, but there simply are not many registers to go around. The stack-based
millicode call style will be used until a better method is devised.
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# Naive expansion of mkconst mart mkconst

# 5

# N := 10%8 + FIX_TAG
movl $10, THPO

ghll $3,TMPO movl $N¥,Rd*4(REGS)
orl $FIX_TAG,THPO

movl TMPO,Rd*4 (REGS)

Figure 10: Macro Expansion for mkconst(10,Rd)

# car(R4,R1)

movl  4*&4(REGS),TMPO
movl —PAIR_TAG(TMPO),TMPO
movl TMPO,1*4(REGS)

# move (R1i,R3)
#* movl  1+4(REGS),TMPO # Not emittaed!
movl  TMPO,3*4{REGS)

Figure 11: The Memory Fetch Optimization

3.9 The Macro Assembler

The macro assembler is the penultimate stage in the compilation process. It takes as
input the *.mon file produced by the compiler and produces a *.s for input to the
Unix assembler program as. The macro assembler is also used to perform a final level
of peephole optimizations at the assembler instruction level. Much of the translation
is table driven and can be easily retargeted for a different host processor. We describe
the important peephole optimizations in the macro assembler.

Tagged constants

The compiler often emits instructions like mkconst(foo,Rd) or mkconst (10,Rd).
A tagged representation of the constant is to be placed in register Rd. Figure 10
shows the naive and smart ways in which a tagged integer constant 10 is produced.
In the smart version, the constant N is evaluated by the assembler itsell and three

instructions are saved.

The Memory Fetch optimization

Often the source register operand of an abstract instruction is already in one of
the scratch registers of the host machine, and need not be fetched again from the
abstract machine’s registers which may be in main memory. Consider the Figure
11 in which a car instruction is followed by a move instruction. The contents of
the R1 register are already available in TMPO and hence R1 need not be fetched
again from memory.
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Unoptimized Optimized

ieq R1, R2, R3 br neq, R1, R2, L1000
br z, R3, L1000
#ieq R1, R2, R3 #br neq, R1, R2, L1000
movl $FIX_TRUE, 3*4 (REGS) movl 1*4(REGS),TMPO
movl 1*4(REGS) ,TMPO cmpl TMPO, 2%4(REGS)
cmpl TMPO, 24 (REGS) jne L1000
je L100
movl $FIX_FALSE, 3*4(REGS)

L100:
#br z, R3, L1000
cmpl $FIX_FALSE,3+4(REGS)
je L1000

Figure 12: Unoptimized and Optimized Branching

Branch optimization or boolean evaluation for control

Boolean constants are given #FIX number representations in Monaco. See the
description of predicate instructions in Section 2. Boolean predicates set the
contents of the destination with the result of the test. This result is used by
a following conditional branch instruction to transfer control. If the boolean
constants are evaluated for setting a true or false condition code, and the result
of the test is not used for effect, it is safe to not store the result of the predicate
in the destination register.

Based on this idea, we allow the macro assembler to merge a predicate test and
the following conditional branch into one single instruction as shown in Figure
12. The generated 386 code for the unoptimized and optimized versions is also
shown. Note that the optimized code has five less instructions and makes fewer
memory references. We are considering a possible improvement on this scheme
by saving condition-code register of the 386 processor, whenever the result of the
boolean test is required subsequently in the code.
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4 The Monaco Run-Time System

Most procedural programming languages require little run-time support. A set of run-
time libraries containing callable library functions are dynamically linked at load time
or statically linked with the user program at compile time. Recent implementations of
compiled object-oriented languages such as C+4 provide run-time support for garbage
collection. Concurrent logic languages, due to the nature of the process-oriented heap-
based execution model, require extensive run-time support. We outline the main ob-

jectives of a run-time system below:

Process management

Computation in concurrent logic languages proceeds by selecting a goal for execu-
tion from a pool of ready-to-run goals. A goal reduction is carried out by executing
the goal as a light-weight process (sometimes called a thread). A Monaco process
may be thought of as a goal in execution. The process performs the clause try
operations and if a clause commits, spawns child processes to represent the body
goals of the clause. A goal does not always execute to completion. Often a goal
will try to read the contents of an uninstantiated shared variable and will sus-
pend. It is the responsibility of the goal that instantiates the variable to wake
all the goals suspended on the variable and add them to the goal pool. Efficient
light-weight process management is essential for high performance.

Heap management

Almost all processes need to allocate new heap memory in order to create data
structures. Often the heap fills up and a garbage collection is needed to reclaim
unused memory by collecting all the live heap data starting from a set of roots. All
heap memory that is not reachable from any of the roots is collected as garbage.

We did not implement garbage collection in this version of Monaco,

Performance evaluation

As discussed in Section 2, one of our main motivations in designing Monaco
is to evaluate the effectiveness of our new abstract machine instruction set. The
Monaco system on Sequent Symmetry is probably the first native-code implemen-
tation of FGHC on a commercial shared-memory multiprocessor. It is interesting
to measure how much performance gain is achieved by native-code implementa-
tion compared with emulator-based implementations of similar languages, namely
JAM Parlog and Panda. The run-time system needs to be instrumented for col-
lecting statistics on execution times, heap usage, instruction usage counts, etc.
This is discussed further in Section G.
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User interface and input/output

A programming environment in which source programs can be compiled, executed
and debugged is required. Programs that require input/output need a mechanism
to communicate with the external world.

All the previous design considerations have been addressed in the design of Monaco
kernel, which is presented in this section.

4.1 The Monaco Kernel

The Monaco Kernel is a set of worker processes that run as regular Unix processes
on all the processors. A worker process corresponds to one Monaco abstract machine
processor. The number of processors can be specified when the system is invoked. We
distinguish one of the host machine’s processors as a master processor. This processor
runs the user process which provides a simple user interface. The user process allows
queries to be entered and the resulting bindings and statistics output. The master
processor is also responsible for detecting termination of the computation and to initiate
garbage collection {not yet implemented). We have also incorporated a small debugger
in the run-time system which makes low-level debugging of parallel Monaco programs
somewhat less painful. It can be used to set break points and inspect the abstract
machine registers. The function of master and worker processes are shown in Figures
13 and 14, respectively.

4.2 Process Management

A worker process is normally in a Huni-Work loop. It looks for work in the the goal
pool, reduces it, adds the body goals of the clause to the goal pool, and looks for
more work. The goal pool is implemented as a queue. The choice of queue discipline
is an important factor in performance and will be discussed later in this section. If
there was one central queue, access to it must be protected with a lock mechanism to
prevent races. This would be a major performance bottleneck, effectively serializing
the frequent operations of adding and removing goals from the goal queue. Thus we
provide each processor with a private queue.

Goal queues are implemented with the #PAIR data type; the car part points to a goal
record and the cdr part contains a pointer to the next list cell. Goals can be added to
the queue at either end; but removed only from the front; There are two ways in which
a process may be added to a run queue; at the front or at the rear of the queue. Adding
new a new process at the front of the queue favors a depth-first search for the solution.

Since processes are only removed from the front, the more recently added goals are
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Figure 13: The Master Process

picked for execution before the goals enqueued earlier. Adding a goal at the rear of a
queue favors a breadth-first search for the solution. Since committed-choice language
programs find at most one solution, it is probably better to use depth-first style of
search for the solution; but the choice of an enqueue policy appears to affect different
benchmarks programs to varying degrees. Overall, the depth-first policy appeared to
perform better. The same results were obtained by Sato [27].

Since each processor maintains a private queue, it enqueues all the new child goals
that it creates, to the local queue. When a processor’s goal queue becomes empty
it needs to steal some work from a busy processor. We have adopted a work-search
algorithm in which the idle processor peeks at the run queues of other processors in a
circular fashion, starting with the right neighbor; stopping when the left neighbor has
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been looked at. If work is found in any of the queues, the search is abandoned and
the stolen goal starts executing immediately. This scheme is efficient because the idle
processor is responsible for finding work, without involving the busy processors. This
scheme works effectively and produces good load balancing from the speedups observed
in multiprocessor execution. This method has one drawback in our implementation;
since a goal queue is potentially accessed by multiple processors, access to the private
goal queues also needs to be protected with a lock for each. Even when a processor
needs to remove work from it’s private queue, the lock has to be obtained. However,
most of the lock operations will not block when all the processors are busy.
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4.3 Suspension and Resumption

Recall from the discussion on the execution model in Section 2, that a goal (which
manifests itself as a process) may suspend when it tries to read an unbound variable. It
is then added to the suspension list for that variable. Since the variable is potentially
shared, there may be other processes concurrently suspending on the variable, thus
creating a potential race. The suspend instruction is executed when all the clauses
have been tried and none had committed. If the suspension stack is empty, then the
clause try has failed and the computation is halted. However, if there are one or more
variables on the suspension stack, the goal will suspend on all the variables placed on
the suspension stack. Note that if any of the variables on the suspension stack got
instantiated meanwhile, the suspend will abort and the goal would be placed on the
goal queue. It is also possible that a goal suspends on more than one variable at the
same time, i.e., resides on multiple suspension lists. The same technique is used in
JAM Parlog [7] and KL1 [19] implementations.

When a variable that has goals suspended on it is instantiated, it is the responsibility
of the instantiating process (the writer) to wake all the goals suspended on the varjable,
placing them on a goal queue. Since a goal may suspend on more than one variable
simultaneously, care should be taken to see that the goal does not resume more than
once. This is achieved by redirecting all the references to the suspended goal via a
suspension slip. Figure 15 depicts the situation when goal p/2 is suspended on two
variables X and Y. Goal q/3 is suspended only on X. Since p/2 is in two suspension lists,
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the suspension hanger for p in both the lists point to the suspension slip for p. The
suspension slip for p contains a pointer to the goal p/2.

If Y is instantiated both p/2 and q/3 are resumed. Since p/2 is suspended on X
as well, a null value is placed in the suspension slip for p/2 to indicate to a process
instantiating X that p/2 has already been resumed.

4.4 Goal Record Reuse

When a goal suspends, the environment for the goal, i.e., its arguments are placed
in a goal record and the goal record is enqueued. Oftentimes, due to the last call
optimization, the process that executes a suspend instruction, and the process that
was last dispatched by the run-time kernel are different. The kernel still probably has
a reference to the goal record of the ancestor process, which can be reused for the
suspending process, if the suspending process has an equal or smaller arity. If the arity
of the suspending process is greater, goal record reuse is not possible. A free list of goal
records for deferred reuse is possible, but has not been implemented.

4.5 Heap Management

Fast heap allocation improves the execution time of any program. The heap is initialized
at start up with the heaptop pointer pointing to the first available heap cell and the
heaplimit is set the maximum heap address. In each call to the memory allocator,
the heaptop pointer is appropriately incremented and checked with the heaplimit for
overflow. Since this operation occurs with great frequency, the heaptop and heaplimit
are kept in the globals data structure, a reference to which is always available in the
GLBL register.

Maintaining a single heap shared by all processors serializes the execution since the
access to the heaptop pointer is then protected by a lock. We have split the heap into
equal-sized slices for each processor. The split heap is effective because each processor
can allocate memory on the heap in parallel, without lock synchronization. This is
evidenced by the speedups achieved in multiprocessor execution. The technique of
split heap was also implemented by Crammond in JAM Parlog {5].

Since each heap is privately managed, no synchronizing lock operations are required
around heap allocation. So this operation is fairly inexpensive and we were able to
expand it into fast native-code, thus avoiding function call overhead.

4.6 Millicode Procedures

Table 11 contains a list of the procedures implemented in millicode. These opera-
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unify (Rs1,Rs2) active unify

punify (Rsi,Rs2,Rd) passive unify

enqueue (Rs) enqueus goal

suspend (Proc, Arity) | suspend goal

execute (Proc, Arity) | call Proc/Arity

Table 11: Millicode Procedures

tions are quite complex, requiring a lot of synchronization and are better implemented
efficiently in a high-level language such as C. Millicode procedures are dynamically
linked to Monaco procedures via the millicode table. The millicode calling sequence is
illustrated in Section 3.

4.7 Unification

Since our objective is to obtain high performance with simple abstract machine instruc-
tions, there is a single unify instruction that performs active unification and a punify
instruction that performs passive unification. The unification algorithms use derefer-
ence operation to follow a chain of #REF pointers until a non-#REF type object is reached.
We shall first present the dereference algorithm later followed by the Active Unify and
PassiveUnify algorithms.

The data type word will be used in the algorithms to denote that the qualified
object is expected to be a valid Monaco datum,

4.8 Dereference

The pseudo-code for the dereference operation is shown in Figure 16. The input p is a
tagged Monaco datum. CELLREF(x) is the contents of the heap cell at location x.

All variables are potentially shared. If a chain of #REF pointers to a variable X is
dereferenced, the dereference loop will terminate on encountering a non-#REF tag. If a
#VAR or #HOOK tag was encountered, then X was not bound at the time the dereference
terminated, but it may have been instantiated to some other data type, later. Il the
dereference operation terminated on encountering a value for e.g., #PAIR, the result of
the dereference operation will always be the same, if the same chain of pointers was
ever dereferenced again. In other words the dereference operation we have defined
here does not guarantee the data type of the returned datum, if it was not bound to
a value. For this reason we refer to the definition of dereference in Figure 16 as a soft

dereference. To illustrate the problem consider the following scenario: variable X is
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word SoftDereference(word p) {
while (TAG(p) == #REF)
p := CELLREF{(p));
return p;

}

Figure 16: The Soft Dereference Operation

word HardDereference(word p) {
ObtainLock{p);
while (TRUE) do {

if (TAG(CELLREF(p)) == #REF) {

ReleaseLock(p);
p := CELLREF(p);
}

else { /* a non—#REF type datum */
it ((TAG{CELLREF(p)) <> #VAR) and
(TAG(CELLREF(p)) <> #HOOX)) {
ReleaselLock(p);
return CELLREF(p);
}

alse
return CELLREF(p);
¥

}
}

Figure 17: The Hard Dereference Operation

shared between two goals p(X) and q(X). Goal p(X) dereferences X and the result is
a #VAR type datum. But goal q(X) may subsequently bind a value to X changing the
type of X to some tag in the set (#FIX,#IMM,#VEC,#PAIR), or it may suspend on X
changing the tag to #HOOK. It is unsafe for p(X) to assume that X is still of type #VAR.

It is necessary to define a dereference operation that is stronger than soft deref-
erence: the type of the returned datum must be guaranteed to hold. The extra cer-
tainty is obtained by locking the dereferenced object so that it cannot be changed alter
the dereference operation terminates. This operation is termed hard dereference, the
pseundo-code given in Figure 17.

The hard dereference operation is always passed a #REF type datum. The object
pointed to by #REF pointer is locked prior to checking the object’s data type. One can
visualize this as walking a chain of pointers, always locking the link just ahead before
reading its contents. Since the lock of the object is obtained before the data type is
checked, no other goal may change the data type of the locked object. If the result
~ of dereference is a #VAR or #HOOK, the lock is retained and the dereference operation
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returns to the caller. It is the responsibility of the caller to release the lock, after
performing all the desired actions on the locked object. If the result of the dereference
was any other data type, the lock is relinquished within the hard dereference operation,
before returning to the caller.

The hard dereference operation can be expensive if long #REF pointer chains are
dereferenced, because locking is required for every link in the chain. Excessive locking
also retards the parallelism in programs. We have used the hard dereference operation
only when it is absolutely necessary. There is also empirical evidence to show that the
length of most #REF pointer chains is zero or one [32].

The actual soft dereference and hard dereference operations implemented in Monaco
are almost identical to those presented here, with minor differences in handling #H00X-
type datum.

4,9 Variable Instantiation

Any Monaco variable is potentially shared between multiple goals and needs to be
locked during binding. Many types of race conditions are possible as discussed below:

Multiple writers to a variable

Assume that a variable X is shared between two goals p{(X) and q(X), and both
the goals can instantiate X. To preserve the single-assignment property, all writers
are required to check that the cell being written to is not instantiated. In order
to prevent the two goals from instantiating X to two different values, write access
to X must be serialized. This is accomplished by making all potential writers of
X obtain the lock for X before X can be changed. This resolves races between
multiple writers to a shared variable. This type of race does not occur very often
since most FGHC programs are written so that a variable does not have multiple
writers or producers. FGHC programs that do not have muitiple producers for
any variable are properly moded.

Suspending on a variable

Assume that a variable X is shared between two goals p(X) and q(X). One of them,
say p{(X), tried to read X. Variable X was unbound and hence p(X) prepares to
suspend on X, i.e., add itself to the suspension list for X. Goal q(X) meanwhile,
instantiates X. Goal q(X) will resume any goals that are suspended on X. If we
do not have some form of synchronization, then p(X) may never resume. A race
condition also occurs when two processes are simultaneously suspending on the
same variable. To prevent possible inconsistencies in the suspension-list data
structure, suspend operations also must synchronize.
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Instantiate(word X, word NewVal)
{

ObtainLock(X).

01ldvVal := X.

X := NewVal

ReleaseLock{(X).

if (0ldV¥al is bound)
unify(NewVal,0ldVal)
else
if (goals suspended on X)
wake goals on suspension list

Figure 18: Variable Instantiation Algorithm

Waking up a goal

Recall that a goal may suspend on multiple variables at the same time. Assume
that a goal p(X,Y,2) suspends on all the three variables X, ¥, and Z. If any of the
variables gets a value, then p(X,Y,Z) needs to be resumed by the instantiator
of the variable. Since the suspended goal is on multiple suspension lists, poten-
tially several instantiators are racing to wake p(X). It is necessary to prevent the
situation wherein a suspended goal is resumed more than once.

The algorithm used for instantiating a variable is shown in Figure 18. The instan-
tiation algorithm was first described in [5]. Instantiate(X,NewVal) assigns the value
NewVal to X. Oldval is the old value in X, if X was bound. This algorithm minimizes
the time a heap cell is locked. If X was already bound, then NewVal is assigned to X, but
it is verified that 01dVal and NewVal are unifiable. Normally, X is not already bound
and the unify(NewVal,01dVal) operation is not executed. Since synchronization is
enforced by synchronizing the section of code where the old value of X is changed, races
between multiple writers are eliminated.

4,10 Active Unification (ActiveUnify)

The ActiveUnify routine is invoked as aunify(a,b) where a and b are tagged Monaco
objects. Both a and b are first dereferenced. The tags are checked to see if a and b are
already instantiated. If both a and b are instantiated and a and b are simple types,
i.e., #FIX or #IMM, a simple equality check determines if they are unifiable. If they are
of #PAIR or #VEC type, then sub-structures must be recursively unifiable. If only one of
a or b is unbound, the Instantiate algorithm described above, will be used. If both a

and b are unbound, the unification is completed by making one of the variables point to
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the other, i.e., one is converted to a #REF type pointer. We have adopted the following
conventions to prevent circular reference chains from building up. They are based on
address comparison which is possible on a shared-memory host.

1. ActiveUnify (#VAR,#VAR)

When two variables are unified, the variable stored in the higher address is made
to point to the variable stored at a lower address on the heap.

2. ActiveUnify(#HOOK,#HOOK)

When two hooked cells are unified, the cell stored in the higher address is made
to point to the hooked cell stored at a lower address and the suspension lists are
concatenated.

3. ActiveUnify(#HODK,#VAR) or ActiveUnify (#VAR,#HOOK)

When a hooked cell is to be unified with a variable cell, the variable cell is always
made to point to the hooked cell.

The algorithms are presented in C syntax. The implementation details are omitted
for clarity. The top level of ActiveUnify is shown in Figure 19. The case where a #FIX
datum is unified with a datum of undetermined type is shown in Figure 20. The case
where a datum of type #PAIR, #IMM or #VEC is unified with a datum of unknown type
is similar. Figure 21 contains the algorithm used when #VAR is unified with a datum of
undetermined type. The algorithm for unifying with the #H00X type datum is omitted
as it is similar to the algorithm for #VAR, but with some extra complexity introduced
for handling suspension lists.

On entry to ActiveUnify(a,b) (see Figure 19), a is soft dereferenced and the
tag of a is checked to perform a type dispatch. If a is already instantiated, one of
the specialized unification routines is called. If the tag of a is unbound, the hard
dereference operation is performed to check if it is still unbound (see the description of
hard dereference earlier in this section). The result of the hard dereference is reliable
and is used to complete the top-level type dispatch. Note that hard dereference is
an expensive operation because it involves locking. We use it only when absolutely
necessary.

Figure 20 shows the unification algorithm when a is #FIX and b is not yet deter-
mined. TFirst, b is dereferenced. If b is instantiated and is of type #FIX, a simple
equality test determines the success of unification. If b is instantiated but to a different
type, the unification fails. If b is unbound, the tag of b could have changed meanwhile,
and hence b is locked and the tag of b is checked again. If b has been set to reference
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int ActivelUnify(word a,word b)
{

word tmp;
a = dereference(a);

switch (TAG(a)) {
case FIX_TAG :
return active_unify_fixnum(a,b);

case PAIR_TAG :
return active_unify_pair{a,b);

case IMM_TAG :
return active_pnify_imm(a,b);

case VECTOR_TAG :
return active_unify_vector(a,b);

case VAR_TAG
case HOODK_TAG :

a = HardDereference{VALUE(a));

switch (TAG(a)) {
case IHM_TAG :

return active_unify_imm{a,b);
case FIX_TAG :

return active_unify_fixnum(a,b);
case VEC_TAG :

return active_unify_vector(a,b);
case PAIR_TAG :

return active_unify_pair(a,b);
case VAR_TAG :

return active_unify_var(a,b);
case HOOK_TAG :

return active_unify_hook{a,b);
default :

return AUNIFY_FAILURE;
}

case REF_TAG :
return ActivelUnify(a,b);

default :
return AUNIFY_FAILURE;
}
}

Figure 19: The Top Level of ActiveUnify
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int active_unify fixnum(word a, word b)

{

word

Tag newTagODIb;

oldb;

b = dereference(b);
switch (TAG(b)) {

case

case
case
cage

case
case

case REF_TAG :
default :

)

FIX_TAG :

IMM_TAG
VEC_TAG

PAIR_TAG :

VAR_TAG
HOOK_TAG

if (a == b)

return AUNIFY_SUCCESS;

else

return AUNIFY_FAILURE;

return AUNIFY_FAILURE;

: b = VALUE(b);

DbtainLock(b);

newtTag0fb = TAG(CELLREF(b));

if (newTagOfb !'= REF_TAG) {
01dValOfb = CELLREF(b);
Assign(b,a);

else {
ReleaseLock(b);
return ActiveUnify(a,b);

}

switch (newTagDfb) {
case VAR_TAG : ReleaseLock(b);
return AUNIFY_SUCCESS;

case HDDK_TAG: WakeGoals(oldValOfb);
ReleaseLock(b):
return AUNIFY_SUCCESS;

case FIX_TAG : ReleaseLock(b);
if (a == oldb}
return AUNIFY_SUCCESS
else
Teturn AUNIFY_FAILURE;
case IMM_TAG
case PAIR_TAG :
case VEC_TAG : ReleaseLock(b);
return AUNIFY_FAILURE;

default : ReleaseLock(b);
return AUNIFY_FAILURE;
}
return ActiveUnify(a,h);
return AUNIFY_FAILURE;

Figure 20: Algorithm for ActiveUnify(#FIX,?)
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some other datum, the unification is retried. Otherwise, b is instantiated in the manner
described in the Instantiate(X,NewVal) algorithm.

Figure 21 shows the unification algorithm, when the type of a is #VAR and a is locked.
Input b is soft dereferenced and its tag is checked. The interesting case occurs when b
is of type #VAR. Note that there would be a potential deadlock situation if we try to
lock b immediately on discovering that it is #VAR. The deadlock occurs if two processes
are concurrently performing ActiveUnify(a,b) and ActiveUnify(b,a). One process
locks a and is waiting to lock b. The other process locks b and is waiting to acquire the
lock for a. The deadlock is avoided by requiring that higher addresses point to lower
address. Since locking is done after the address comparison, deadlock is avoided. If
b changed to #REF, i.e., set to reference some other variable meanwhile, the locks on
both a and b are released and the unification is tried again. If b is of type #HOOK, a
is required to reference b by our convention. In other cases where b is instantiated to
some value, the value contained in b is copied into a.

4.11 Passive Unification (PassiveUnify)

The PassiveUnify routine is invoked as punify(a,b) where a and b are tagged ob-
jects. The algorithm for passive unification is given in Figure 22. Both a and b are
dereferenced. If both a and b are dereferenced to the same value, the passive unifica-
tion succeeds immediately. Otherwise, the tags of a and b are checked to see if either
of them is unbound, i.e., #VAR or #HOOK. If either of a and b, or both a and b are
unbound variables, then the unbound variable(s) are pushed on the suspension stack.
Since the passive unification could not be completed due to unbound variables, the
result PUNIFY_SUSPEND is returned.

After performing the above mentioned checks, the only other alternative is that
both a and b are bound, and they cannot be simple type, i.e., #FIX or #IMM, because
that would have been detected in the equality check performed at the beginning. A tag
equality check js then made to see that both and a and b are of the same type. The
passive unification is then completed by recursively performing passive unification on
the head and tail in case of #PAIR. In case of #VEC the arities of a and b are checked
for equality. If the arity check succeeds passive unification is performed on the corre-
sponding vector slots of a and b. On success punify(a,b) returns PUNIFY_SUCCESS.
The result PUNIFY_FAILURE is returned on failure.

4.12 Tuning the Algorithms

The algorithms were initially tuned by avoiding function calls inside the unify routine,

keeping loop indices in registers, and programming “early” evaluation of simple con-
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int active_unify_var(word a, word b)

a = VALUE(a); /* a is a pointer to Locked #VAR cell =/
b = dereference(b);

switch (TAG(b)}) {

case VAR_TAG

nun

b = VALUE(®); /* Unify(VAR,VAR?) */
it (a > b)) { /* Address0f(a) > AddressDf(b) =/
Assign(a,b); /* a REFs b */
ReleaseLock(a);
return AUNIFY_SUCCESS;
}
else if (a < b) { /* b needs to REF a  */
ObtainLock(b);{ /* Peek at TAG again */
switch (TAG(CELLREF(Db}))
case REF_TAG : if ((CELLREF(b)) == a) { /* b REFs a */
ReleaseLock(a); ReleaseLock(b):
return AUNIFY_SUCCESS;
}
else { /* b REFs 7 #*/
ReleaseLock(a); ReleaseLock(b):
return do_unify(a,b);
case VAR_TAG : Assign(b,a); /* b still VAR */
Releaselock(a); ReleaseLock(b);
return AUNIFY_SUCCESS;
cagse HOOK_TAG: Assign(a,b); /* b is HDOK. a REFs b */
Releaselock(b); ReleaselLock{a);
return AUNIFY_SUCCESS;
case IMM_TAG :
case FIX_TAG :
case VEC_TAG : /* b is #*not* unbound */
case PAIR_TAG : Assign(a,CELLREF(b))
Releaselock(a); ReleaseLock(b);
return AUNIFY_SUCCESS;
}
}
else {
ReleaselLock{a);
return AUNIFY_SUCCESS;
}

case FIX_TAG

case IMM_TAG

case VEC_TAG :

case PAIR_TAG : Assign(a,b); /* b is *not* unbound =/
ReleaseLock(a);
return AUNIFY_SUCCESS;

case HOOK_TAG : Assign(a,VALUE(b)); /+* b is #HOOK. a REFs b #*/
Releaselock(a};
return AUNIFY_SUCCESS;

default : return AUNIFY_FAILURE;
} )

Figure 21: Algorithm for ActiveUnify(VAR,?)
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int PassiveUnify(word a, word b)

{
a = dereference(a):
b = dereference(b):
if (a == b)

return PUNIFY_SUCCESS;
TagDf_a = TAG(a); TagDf_b = TAG(b);

if (TagDf_a == #HOOK) or (TagDf_.a == #VAR)
PushOnSuspensionStack(a);

it (Tagﬂf_b == #HOOK) or (Tagﬂf_b == #VAR)
PushOnSuspensionStack(b);

If (SuspensionStackPtr > 0)
return PUNIFY_SUSPEND;

if (Tag0f_a != TagOf_b)
return PUNIFY_FAILURE;

switch (TagDf_a) {
case FIX_TAG
case IMM_TAG : return PUNIFY_FAILURE;

case PAIR_TAG : car = do_punify(CAR(a),CAR(Db));
it (car <> PUNIFY_SUCCESS)
return car;
cdr = punify(CDR(a),CDR(b));
return cdr;

VECTORLENGTH(a);
VECTORLENGTH(b) ;

case VEC_TAG : LengthODf_a
LengthOf_b

if (LengthOf_a != LengthOf_b)
return PUNIFY_FAILURE;

for (i=1; i <= LengthOf_a; i++) {
slot = punify(VECTDRREF(a,i),
VECTORREF(b,i)};
if (slot '= PUNIFY_SUCCESS)
return slot;
}
return PUNIFY_SUCCESS;

default return PUNIFY_FAILURE;

Figure 22: The Passive Unification Algorithm



ditions by which the result of unification can be decided quickly, whenever possible.
Also, locks are never acquired unnecessarily and never held for a long period, as this
reduces parallelism. The active unification algorithm needed approximately 700 lines
and the passive unification algorithm needed approximately 80 lines of C source code.

The ActiveUnify algorithm is quite complex and is hard to optimize. Through
proper instrumentation, the most frequently-used paths through the unify algorithm
can be identified. These critical sections of code will need performance tuning or
implementation in native code.

Our intuition is that ActiveUnify will have only a few heavily-used sections for
performing unifications; for example in the limited number of benchmarks we had
studied, ActiveUnify(#VAR,#PAIR) is the the most frequently used call pattern to
ActiveUnify. Collecting statistics of call patterns is one of the ob jectives of perfor-
mance evaluation, described in the next section.

We conjectured that PassiveUnify is most likely to be called to check equality
of two integers or atoms. Note that the equality check, immediately after the first
dereference in PassiveUnify algorithm, performs can complete the passive unification
quickly.



5 Performance Evaluation

Preliminary performance evaluation of Monaco has focussed on measuring the unipro-
cessor execution time, speedups in parallel execution, and profiling of program exe-
cution. All three aspects are discussed in this section. For uniprocessor execution,
Monaco is compared with JAM [7] and PDSS {19]. For multiprocessor execution, com-
parison is made only with JAM. The initial evaluation indicates that our instruction
set is a viable alternative to the traditional WAM-style instruction sets used in these
systems.

5.1 Evaluation

Monaco is specialized for parallel execution of FGHC programs. It is implemented
in native code, with the exception of process management and unification which are
implemented in millicode. For a description of the millicode mechanism, see Section 4.

JAM Parlog is a highly efficient emulator implementation of Jim’s Abstract Ma-
chine for Parlog [7]. It includes support for deep guards. This introduces additional
overheads for process management, since a process activation tree must be maintained
for deep guards. JAM uses specialized unify instructions. The Parlog compiler also
uses explicit mode declarations to generate efficient code. A parallel garbage collector
is implemented in JAM.

PDSS is an emulator of KL1-B instruction set for FGHC [19]. It has specialized
unify instructions, and uses the MRB incremental garbage collection scheme to dynam-
ically reclaim memory [4].

We have chosen four small benchmarks for measuring the performance: hanoi, nrev,
gsort, and queens. The benchmarks exhibit varying degrees of parallelisin. The hanoi
program solves the Towers of Hanoi problem. nrev is the naive reverse program. gsort
is the Quicksort program with a presorted input. g¢sort(r) is the same as gsort, but
with the input in reverse sorted order. We have observed some interesting differences
in the behaviors of Monaco, JAM, and PDSS depending on whether the input list is in
sorted or reverse sorted order. queens solves the n-queens problem. These benchmark
programs for evaluating parallel logic programming systems may be found in [33].

All the benchmarks have been executed on the same configuration, a Sequent Sym-
metry S81 system with 16 MHz Intel 386 microprocessors. The execution time is the
elapsed time between starting the computation, until all the processors become idle.
All times are in milliseconds.
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Program | Monaco(ms) | JAM(ms) | J/M | PDSS(ms) | P/M
hanoi 331 455 | 1.4 580 [ 1.8
nrev 37,360 38,465 | 1.0 55,580 | 1.5
gsort 9,106 13,085 | 1.4 15,200 | 1.7
qsort(r) 9,268 16490 | 1.8 20,000 | 2.2
queens 53,596 140,400 | 2.8 179,060 | 3.3

Table 12: Uniprocessor Performance of Monaco Compared to JAM and PDSS

5.2 Uniprocessor Performance

Table 12 shows the uniprocessor performance of each benchmark on Monaco, JAM, and
PDSS. The J/M column shows the ratio of the execution time on JAM to the execution
time on Monaco. The P/M column shows the ratio of execution times on PDSS and
Monaco.

The uniprocessor execution times on Monaco are often better than that on either
JAM or PDSS, and never worse. In the case of queens it is 2.6 times faster than JAM
and 3.3 times faster than PDSS. The execution times on JAM may have been affected
by the overhead of garbage collection. The heap size in JAM Parlog V1.4 is a function
of the number of processors. For uniprocessor execution, the heap size is small and
causes frequent garbage collection for memory intensive programs [G).

The gsort and gsort(r) illustrate the superiority of the decision graph algorithmn
used in Monaco compiler for clause indexing. The execution times for both gsort and
gsort(r) are nearly the same on Monaco. It is desirable that a program’s execution time
be independent of the ordering of elements in input list, if the size of the input is the
same. The execution time for gsort(r)is more than the time for gsort, for both JAM
and PDSS. We conjecture that this difference is due to the ordering of the clauses in
the partition/f procedure which partitions the input list into two sub lists, containing
elements smaller and larger than the pivot element. Clause indexing in JAM and PDSS
appears to be more expensive than in Monaco.

5.3 Multiprocessor Performance

The multiprocessor execution times are given in Table 13. The ratio between Monaco
and JAM parallel execution times is given in Table 14. The speedups are shown in Table
15. The speedup is calculated as the ratio of uniprocessor and multiprocessor execution
speed. This metric is not accurate, since the the overhead of support of paralielism
stifles uniprocessor execution speed, resulting in slightly exaggerated speedups. So
the speedup is not an absolute measure but it is a good indicator of multiprocessor
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Program | 1PE| 2PE] 4PL| 8PE | 12 PE | 16 PE

Monaco({ms)
hanoi 331 170 94 54 41 41
nrev 37,360 | 20,782 | 10,456 | 5,367 | 3,671 | 2,845
gsort 9,100 | 5,034 2,596 | 1,334 906 704

gsort(r) 9,236 | 5,175 | 2,675 | 1,382 952 740
queens 53,596 | 49,562 | 15,919 | 7,569 | 4,899 | 3,689

JAM(ms)

hanoi 455 185 105 35 30 32
nrev 38,210 | 34,970 | 9,985 | 4,880 [ 2,800 | 2,320
gsort 13,065 | 6,756 | 6,385 | 4,530 | 4,683 | 2,633

gsort(r) 16,110 { 7,800 | 3,620 | 1990 | 1,770 | 1,448
queens 140,100 { 69,810 { 35,190 | 17,470 | 11,730 | 5,823

Table 13: Multiprocessor Performance of Monaco and JAM

Program | 2PE |4 PE | 8 PE | 12 PE | 16 PE
JAM /Monaco

hanoi 1.1 1.1 0.7 0.7 0.8

nrev 1.7 1.0 0.9 0.8 0.8

gsort, 1.3 2.5 3.4 5.2 3.8

gsort(r) 1.5 14 1.4 19 2.0

queens 1.4 2.2 2.3 2.4 1.6

Table 14: Multiprocessor Execution: Monaco Compared to JAM

Program | 2PE [4 PE | 8 PE | 12 PE | 16 PE
Monaco
hanoi 1.9 3.5 6.1 8.1 8.1
nrev 1.8 3.6 6.9 10.2 13.1
qsort 1.8 3.5 6.8 10.0 12.9
qsort(r) 1.8 3.5 6.7 0.7 12.5
queens 1.1 3.4 7.1 10.9 14.5
JAM
hanoi 2.3 3.8 13.0 15.2 15.2
nrev 1.1 3.8 7.8 13.1 16.5
qsort 1.9 2.0 2.8 28 4.9
gsort(r) 2.1 4.5 8.1 9.1 13.1
queens 2.0 4.0 8.1 12.0 24.1

Table 15: Multiprocessor Speedups on Monaco and JAM
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Figure 23: Multiprocessor Execution: Speedups on Monaco

utilization.

Note from Table 14, that the speedups on Monaco are usually better than that of
JAM, but sometimes worse. We conjecture that the difference is due to the locality
of memory references and better cache utilization in JAM, which was also reported by
Tick and Crammond in [35]. JAM uses 32-bit data resulting in better cache utilization.
JAM uses an argument stack where the arguments to a procedure are placed. The stack
is often compacted leading to more efficient use of memory. The goal records are of a
fixed size. Both Monaco and JAM used almost identical scheduling algorithms, except
that an idle Monaco worker process will steal work from the front end of a busy worker’s
queue, instead of the rear end, as in JAM. Furthermore, the measurements on JAM had
a high variance. We report the average over several runs of a benchmark. The variance
was as high as 800% in some cases. We assume this was due to garbage collection.

The speedups obtained on Monaco are shown graphically in Figure 23. The hanoi
program does not have a lot of parallelism. The speedup for hanot increases until the
number of processors reaches 12, and then tapers off. The nrev, gsort and queens are
highly parallel and good speedups are achieved even when the number of processors
is increased to 16. Note that the performance of all the three benchmarks improves
smoothly with addition of processors. This indicates that our design and choice of the
scheduling algorithm produces good load balancing. It also shows that there are no
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Figure 24: The Execution Times in Kernel and User Program

bottlenecks in the system. Programs that have a high degree of inherent parallelism,
parallelize well on the Monaco system.

JAM also showed good speedup in multiprocessor execution for all the benchmark
programs. Some of the JAM measurements showed superlinear speedups. This phe-
nomenon is partly due to the fact that speedup calculation was based on the uniproces-
sar execution time of a parallel system and not on the execution time of the best sequen-
tial system. Since programs written for parallel execution may not execute as efliciently
as programs written especially for uniprocessor execution, the observed speedups for
JAM, as well as Monaco may be slightly exaggerated. More importantly, JAM allocated
a smaller heap in uniprocessor execution, resulting in greater frequency of garbage col-
lection, and inflated uniprocessor execution times[G]. The above two factors are mainly
responsible for the superlinear speedups observed with JAM.

The different behavior of gsort and gsort(r} which was observed in uniprocessor ex-
ecution manifested itsell more adversely, in multiprocessor execution. Monaco achieved

consistently better speedups, the best performance being, over five times faster than
JAM with 12 processors.

5.4 The Execution Profile

We instrumented the Monaco kernel to measure the performance of the frequently-used
millicode procedures, namely unify, enqueue, and suspend. All the measurements
were made with uniprocessor execution. The profiled programs are gsort, hanoi, and
gueens. The overhead of profiling was as high as 20% for gsort. The inputs to bench-
marks were chosen so that profile data is collected over a reasonably long period of
execution. Figure 24 shows the time spent in the run-time system and in the program.
The total execution time is the sum of times spent in the user program and the run-time
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Figure 25: The User Program Execution Profile

Program | %Time | No. Calls | Avg Time(ps) per Call
hanoi 32 32,768 53
qsort 50 132,866 41
queens 25 10,897 60

Table 16: The Performance of Unification

kernel, it is shown along the X-axis. The time spent in the Monaco kernel is a small
percentage of the total execution time.

The time spent in the user program includes the time for setting up the arguments
in the abstract machine registers and executing the user program. The user program
execution time can be split up into the following four major components: in the mil-
licode procedures for unify, enqueue, and suspend, and in the rest of the procedure
body.

Figure 25 shows the time spent in the user program, split into the times spent in
each of the above four activities. A negligible amount of time was spent in suspend, for
these benchmarks. The hanoi and queens benchmarks enqueue a large number of goal
records and hence the time spent in the millicode procedure enqueue is significant. The
time spent in the unify millicode procedure varied for each program. This indicates
that optimizing unification will improve performance of programs to varying degrees.
A major percentage of the user program execution is spent in the procedure body, and
this percentage may improve further, when the millicode procedures are optimized.

The unification performance in hanoi, gsort, and queens was analyzed, as presented
in Table 16. The %Time column shows the time spent performing unification as a
percentage of the total execution time. The No. Calls column shows the number
of calls to the unify procedure. The last column shows the average time per call in
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Monaco | JAM | PDSS
Abstract machine instructions 627 ? 498
Size of object/bytecode file 13,320 | 3,437 | 1,664

Table 17: Static Characteristics of Code in Monaco, JAM and PDSS

microseconds.

The three programs we analyzed, predominantly manipulate lists. In the gsort
program, over 98% of the calls unify a #PAIR type datum with a #REF type datum in
the partition/f procedure. The hanoi and gqueens programs spend a relatively smaller
percentage of time performing unification, though the average cost of an unification
call is higher in both programs. The queens program spent the smallest percentage of
its execution time performing unification. A larger percentage is spent in performing
the complicated guard tests. This indicates that specializing unification will not make
queens execution much faster.

These measurements were made with a system that was largely untuned. With
tuning, the average cost of unification is expected to reduce considerably. We have not
yet implemented the assign instruction. When it is implemented, it may replace some
of the calls to unify.

5.5 Analysis of Generated Code

The Monaco compiler generates a *.mon file containing Monaco abstract machine in-
structions. The Monaco assembler generates intel 386 assembly language instructions
from the *.mon file, producing a *.s file. The *.s file is then assembled using the
standard Unix assembler as, producing a *.o file. The Monaco runtime system is then
statically linked with the *.o file. The Monaco runtime system is approximately 74KB
in size before linking with our current set of benchmarks. After linking, the size of the
Monaco executable file is approximately 84 KB.

We used Parallel Parlog V1.4 for our JAM benchmarks. The JAM compiler gen-
erates an object file containing bytecodes for the JAM instruction set. JAM does not
generate a file containing readable abstract machine instructions. The JAM runtime
system is approximately 70 KB in size.

We used PDSS-KL1 V2.52.19 for our measurements. The KL1 compiler generates
two files, a *.asm file containing KL1-B abstract machine instructions, and a *.sav
containing the bytecodes for abstract machine instructions. The PDSS system itsell is
384 KB in size. A large part of the code size is support for MRB garbage collection.

Table 17 compares the code sizes produced by the three systems. Note the almost
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four-fold increase in the object file size, as a result of native-code compilation.



6 Conclusions and Future Work

We have completed the first implementation of the Monaco abstract machine on Se-
quent Symmetry. We have performed preliminary performance benchmarking and the
results indicate that our instruction set and native-code implementation result in good
uniprocessor performance when compared to JAM and PDSS. We have also measured
the multiprocessor performance and found that programs which have a good amount
of parallelism achieve near-linear speedups. We have compared the multiprocessor ex-
ecution times on Monaco with the times on JAM and find that the performance is
comparable and sometimes better.

6.1 What Did We Learn?

We learned that it is worthwhile to re-explore the design space for instruction sets
in concurrent logic programming. We have demonstrated that the Monaco abstract
machine, although unconventional, is a viable design. The performance is comparable
to that of traditional designs.

The simplicity of the abstract machine instructions reduced the implementation
time. The abstract machine currently has 58 instructions of which enly five instructions
are sufficiently complex to be implemented in millicode. The rest were easily translated
into short assembly instruction sequences. The system was developed and debugged in
a short period mainly because of the simple and orthogonal abstract machine design.
Compiling to native-code was not as hard as it first appeared to be. Since we do not
have specialized unification instructions, the writing and debugging of the compiler was
simplified to some extent. The complexity of the compiler was largely in implementing
optimizations such as decision graph, code generation, and data flow analysis.

We also learned that the intel 386 processor is far from an ideal target for the
Monaco abstract machine. The intel 386 has too few general-purpose registers. None
of the abstract machine registers could be mapped to the host processor’s registers.
We could only map references to some critical run-time system data structures onto
the host processor’s registers. The shortage of registers was also acutely felt when we
attempted to pass arguments to millicode procedures through registers. We did not see
scope for many interesting peephole optimizations on the generated native code.

6.2 Future Work

Tune the Run-Time System

Note that the results we have obtained thus far are achieved after performing

simple performance tuning, such as reducing the number of millicode calls. We
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have demonstrated that the performance and speedup of Monaco are comparable
to JAM, in the first attempt. We believe that with further tuning, the Monaco
system can be improved significantly. We have profiled the system to measure the
frequencies and the time taken to perform critical activities such as unification,
suspension and resumption. We plan to use the gathered statistics to guide our
efforts towards optimizations with maximum pay-off. ActiveUnify and PassiveU-
nify algorithms are presently largely unoptimized and are immediate targets for
optimization efforts.

Improve the Compiler

Presently the compiler performs some traditional optimizations such as common
subexpression elimination, register allocation, etc. As we discussed in Section 2,
the compiler can detect where assignment suffices for unification. But the mode
analysis [23] required for this optimization has not yet been incorporated in the

compiler.

Other Scheduling Strategies

We have used a simple queuing organization for goal queue management. The
queuing discipline favors depth-first search and achieves good performance for
our limited number of benchmarks. We need to experiment with other queue
management schemes by applying results from mode analysis to keep producers
executing ahead of consumers. This will reduce the frequency of suspension,

which is an expensive operation.

A RISC Implementation

Any of the newer pipelined RISC architectures would make a better target for
our abstract machine. The large register files of RISC architectures would allow
some of the abstract machine registers to be kept in the target processor’s regis-
ters. Calling millicode procedures would be less expensive because arguments and
return address could be passed through registers. We plan to port the Monaco
system to a RISC multiprocessor architecture.

Specialize Unification

We do not rule out the possibility of having specialized unify instructions in the
future, in order to measure how much difference they make in execution efficiency.

Memory Reuse

Better locality in memory references can be obtained by memory reuse schemes.
Limited reuse of goal records has been implemented in Monaco (see Section 4).
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We plan to experiment with free lists for full reuse of goal records. It is possi-
ble that the run-time overhead may offset any improvements in execution time.
General reuse of heap data structures is difficult for concurrent logic languages.
A reference-counting approach can be tried, since there is space available in the
Monaco datum to incorporate a reference count. However, compile-time detection
of garbage cells is more attractive because the price of detecting garbage cells is
paid only once, at compile time. Constructing efficient algorithms for compile-
time garbage collection has received attention lately and some of the benefits
have been demonstrated[13, 10]. We hope to implement memory reuse in the
near future.
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A  Semantics of Monaco Abstract Machine

The semantics of the Monaco Abstract Machine instruction set is defined in this Ap-
pendix.

A.1 Data Constructors

Data constructors provide a means to create data structures and values in an imple-
mentation independent fashion. We do not provide constructors for all data types that
the abstract machine knows.

mkconst (<const>, Rd)

An appropriately tagged literal is placed in Rd. <const> is any valid constant in
the source language.

mkiist (Rsi1, Rs2, Rd4)

Rei is the head of the new cell, and Rs2 is the tail. A list cell is created on the
heap, and a tagged pointer to the newly created cell is placed in Rd.

mkstruct (Size, Rd)

Size is the size of the vector, which must be a positive integer. A vector of size

Size is created on the heap and a pointer to the newly created vector is placed
in Rd.

mkgoal (Size, Proc, Rd)

Constructs a goal record with Size slots. Size must be a positive integer. Proc
is a procedure name. The first slot is filled with a pointer to the procedure Proc.
A pointer to the goal record is placed in Rd.

mkvar (Rd)

Creates a variable cell on the heap and places a #REF pointer to it in the Rd
register.

alloc (n, Rd)

Allocates n cells on heap. Sets contents of Rd to hold a #REF pointer to first cell
of the newly allocated block.

ref (Rs, n, Rd)

Register Rs contains a #REF pointer to a reserved block of n cells on the heap,
obtained through a prior alloc instruction. The offset n is added to this heap

57



address, and the contents of Rd is set to contain a #REF pointer to this new
address.

initvar (Rd)

Similar to the mkvar instruction, except that Rd already contains a #REF pointer
to a free cell on the heap. The heap cell is initialized with a self pointer and #VAR
tag. The tag of Rd is not changed.

initlist (Rs1, Rs2, Rd)

Similar to the mklist instruction, except that Rd already contains a #REF pointer
to a free cons cell on the heap. The tag of Rd is changed to #PAIR. Contents of
registers Rs1 and Rs2 are copied into the head and tail positions.

initstruct (Sizs, Rd)

Similar to the mkstruct instruction, except that Rd already contains a #REF
pointer to a frame on the heap. The header word of the vector {rame is set to
indicate that it represents a structure. The tag of Rd is changed to #VEC. The size
of the vector is set to Size.

initgoal (Size, Rd)

Similar to the mkgoal instruction, except that Rd already contains a #REF pointer
to a free vector frame on the heap. The header word of the vector frame is set to
indicate that it represents a goal record. The tag of Rd is changed to #VEC. The
size of the vector is set to Size.

A.2 Data Manipulators

Data manipulators access and update data structures. In general, the type of the data
structure being updated is encoded in the pointer to the structure, and hence type
checking can be done. However, range checking is not performed in general.

deref (Rs, Rd)

Soft dereference the contents of Rs and place the result in Rd. We use the term
soft to indicate that deref will not lock the result, and if the result is an unbound
its tag may change after deref is performed.

move (Rs, Rd)

Copy register Rs into register Rd.
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sset (Rs, n, Rd)

Register Rd must be a pointer to a vector. The n** slot of the vector is set to the
contents of register Rs. If Rd is not a vector pointer, then an exception is raised.
The value of n is assumed to be within range for the particular vector.

sref (Rs, n, Rd)

Register Rs must be a pointer to a vector. The n** slot of the vector is fetched
and put into register Rd. If Rs is not a vector pointer, then an exception is raised.
The value of n is assumed to be within range for the particular vector.

ssize (Rs, Rd)

Register Rs must be a pointer to a vector. The arity of the vector is returned as
a tagged integer in register Rd.

car (Rs, Rd)

Register Rs must be a pointer to a list cell. The head of the list cell is {fetched and

put into register Rd. If Rd is not a pointer to a list cell, an exception is raised.

cdr (Rsz, Rd)
Register Rs must be a pointer to a list cell. The tail of the list cell is fetched and

put into register Rd. If Rd is not a pointer to a list cell, an exception is raised.

The following instructions are currently not emitfed by the compiler. They are
intended to facilitate resue of list cells when the structure-reuse analysis is implemented
in the compiler.

setcar (Rs, Rd)

Register Rd must be a pointer to a list cell. The head of the list cell is replaced
by the value of register Rs. If Rd is not a pointer to a list cell, an exception is
raised.

setcdr (Rs, Rd)

Register Rd must be a pointer to a list cell. The tail of the list cell is replaced by
the value of register Rs. If Rd is not a pointer to a list cell, an exception is raised.

A.3 Predicates

A predicate leaves a truth value in its destination register; the truth value is a tagged
integer, with FIX#1 representing true and FIX#0 representing false. Type predicates
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isint (Rs, Rd) tagof( Rs ) == #FIX 7 Rd := True : Rd := False

isref (Rs, Rd) tagof( Rs ) == #REF 7 Rd := True : Rd := False

isunbound (Rs, Rd) || tagof( Rs ) == #VAR 7 Rd := True : Rd := False

ishooked (Rs, Rd) tagof( Rs ) == #HOOK ? Rd := True : Rd := False
islist (Rs, Rd) tagof( Rs ) == #PAIR 7 Rd := True : Rd := False
isnil (Rs, Rd) Rs == [] ? Rd := True : Rd := False

isstruct (Rs, Rd) | tagof( Rs ) == #VEC ? Rd := True : Rd := False

isimm (Rs, Rd) tagof( Rs ) == #IMM ? Rd := True : Rd := False

eq (Rs1, Rs2, Rd) Rsl == Rd2 7 Rd := True : Rd := False

neq (Rsl, Rs2, Rd) || Rsl == Rd2 ? Rd := False : Rd := True

Table 18: Type Predicates and General Predicates

and general predicates are shown in Table 18. Type predicates are used to check the

tags of tagged words. Integer predicates are shown in Table 19; if an integer predicate

is passed a non-integer, it raises an exception.

Table 19: Integer Predicates

ieq (Rsi, Rs2, Rd) Rsl == Rs2 7 Rd := True : Rd := False
ineq (Rs1, Rs2, Rd) || Rst == Rs2 ? Rd := False : Rd := True
ilt (Rs1, Rs2, Rd) Rsi < Rs2 ? Rd := True : Rd := False
ile (Rs1, Rs2, Rd) Rsl <= Rs2 7 Rd := True : Rd := False
igt (Rs1l, Rs2, Rd) Rsl > Rs2 ? Rd := True : Rd := False
ige (Rst, Rs2, Rd) Rsl >= Rs2 7 Rd := True : Rd := False

A.4 Integer Arithmetic and Bit Operations

Integer operations take tagged integers as arguments and produce tagged integers as

results. Non-integer operands will cause an exception. The integer operations are

shown in Table 20,

A.5 Control Transfer

For the control transfer instructions, the destination of transfer is specified by a sym-
bolic identifier Label to denote a program point.
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Table 20: Integer QOperations

iadd (Rs1, Rs2, Rd) Rd := Rsl + Rs2
isub (Rs1, Rs2, Rd) || Rd := Rsl - Rs2
imul (Rs1, Rs2, Rd) |[ Rd := Rsi * Rs2
idiv (Rs1, Rs2, Rd) || Rd := Rs1 / Rs2
imod (Rsi, Rs2, Rd) || Rd := Rsl MOD Rs2
ineg (Rs, Rd) Rd := - Rst

iand (Rs1, Rs2, Rd) i Rd := Rsl AND Rs2
ior (Rsl, Rs2, Rd) Rd := Rs1 OR Rs2
ixor (Rsi, Rs2, Rd) || Rd := Rsi XDR Rs2
inot (Rs, Rd) Rd := NOT Rs

jump (Label)

Branch unconditionally to the destination Label.

br (z, Rs, Label)

If Rs is zero, then branch to the destination Label. If Rs is not zero, the next

instruction is executed. If Rs is not an integer, an exception is raised.

br (nz, Rs, Label)

If Rs is not equal to zero, then branch to the destination Label. If Rs is equal

to zero, the next instruction is executed. If Rs is not an integer, an exception is

raised.

br (p, Rs, Label)

If Rs is greater than zero, then branch to the destination Label. If Rs is not
greater than zero, the next instruction is executed. If Rs is not an integer, an

exception is raised.

br (n, Rs, Label)

If Rs is less than zero, then branch to the destination Label. If Rs is not less

than zero, the next instruction is executed. If Rs is not an integer, an exception

is raised,

A.6 Unification Instructions

unify (Rsi, Rs2)
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Perform active unification on the data items passed in the source registers, Rs1
and Rs2. Instruction unify will return to the caller only if the active unification
was successful. A failure in unification indicates a failed computation and the
system is halted.

punify (Rsi, Rs2, Rd)

Perform passive unification on the structures in the source registers, and place
the status code of the unification into the destination register.

The tagged integer PUNIFY_SUCCESS is returned in Rd if the passive unification
succeeded. If the passive unification fails due to mismatch, then tagged integer
PUNIFY_FAILURE is returned in Rd. In case of uninstantiated variables that cause
suspension, the offending variable(s) is(are) pushed on the suspension stack and
tagged integer PUNIFY_SUSPEND is returned in Rd.

A.7 Process Management

enquaua (Rs)

Rs must be a pointer to a vector structure that represents a goal record. It is
not verified that the vector actually represents a goal record. The goal record is
put onto the run queue. After the enqueus instruction has executed, the value
of the source register is to be treated as undefined; under no circumstances may
the user code manipulate a goal record after it is enqueued.

proceed

The proceed instruction terminates the current process.

push (Rs)

Push the contents of register Rs onto the suspension stack. The implementation
of the stack is left undefined in this document.

execute (Proc, N)

Transfers control unconditionally to the entry point of a procedure Proc which
has arity N. The suspension stack is cleared before the first instruction of the
target procedure is executed.

suspend {(Proc, N)

Checks the suspension stack. If the stack is not empty, then suspend the procedure
Proc of arity N, on all variables on the suspension stack. If the suspension stack
is empty, the computation is a failure, and the system is halted.
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