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Abstract

The family of concurrent logic programming languages based on Flat-Guarded Horn
Clauses has proven to be a great asset to programmers seeking to quickly construct effi-
cient programs for highly parallel shared-memory machines. If these languages are to be
implemented efficiently for other architectures, however, language-specific compile-time
analysis techniques must be improved. This work describes a technique and implemen-
tation of automatic “mode analysis” (identification of input and output parameters)
for a large subset of FGHC programs, and some possible techniques for the automatic
“sequentialization” (ordering of body goals) of a subset of the fully-moded programs.
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Chapter 1
Introduction

1.1 Prolog

It has been some years now since the idea of “Logic Programming” using “Horn-clause”
logics first came upon the computer-scientific scene. The original work on theorem provers
led quickly to the introduction of Prolog, a language containing key features of imperative
programming and functional programming, but really based upon the idea of “resolution”
in Horn-clause logics. Good accounts of the origins of Prolog were given in a recent issue
of the Communications of the ACM (7, 20).

Prolog semantics are relatively straightforward, although a natural-language description,
as given here, is perhaps less than satisfactory. A Prolog program consists of a number of
“clauses.” Each clause has a “head,” consisting of zero or more “terms,” and a “body,”
which consists of zero or more “body goals.” The body goals are executed by trying to
match them against identically named clause heads with the same number of terms in such
a way that corresponding terms successfully “unify.” A term is composed of “constants”
and “variables” using various structuring features such as lists and vectors. Two terms are
said to unify if variables can be bound to subterms in a consistent way so that the two terms
are equal. If a body goal fails to match any clause head, it is said to “fail,” and execution
“backtracks” searching for a previous choice of bindings which would allow the program to
proceed. A more formal semantics is available in Lloyd [21].

As a consequence of the above definition, a Prolog program may be read in three distinct
ways: as an imperative program, as a functional program with “logical variables,” and as
a “declarative logic program” in which the program is viewed as requesting a binding of
variables to values such that the Boolean disjunct of conjuncts of the body goals is “true.”

1.2 FGHC

It is the declarative reading of Prolog programs which inspires the observation [8] that there
is great potential for parallel execution of logic programs, since execution of body goals can
be though of as subprogram execution which can proceed independently of execution of the
rest of the program. One hindrance to this in Prolog is the potential for “backtracking,”
which requires that program state be unwound in the event of subprogram failure. Other
important hindrances include dependent goals, task scheduling overhead, and the costs of
maintaining logical variables.

The overhead involved in backtracking leads one to wonder whether it would be possible
to simply insist that if a body goal fails, the whole program fails. Indeed, this is the basic
idea behind “committed choice” logic programming languages [26]. The family of committed
choice languages which has received the greatest attention is the “Guarded Horn Clause”



(GHC) languages [29]). The “guarded” refers to the “guard” constructs of the language,
introduced because it is not easy to program without greater control than is provided by
simple unification over which clause is chosen in case of a conflict.

The guard in generalized GHC languages may be an arbitrary construction of the pro-
grammer, but it proves convenient for efficient implementation to limit the programmer to
so-called “flat” guards which are built into the language. This family of languages is known
as “Flat Guarded Horn Clauses,” and is the principal concern of this thesis. The formal
semantics of FGHC for the purposes of this thesis are those of [26].

The FGHC language definition strongly implies fine-grained concurrent execution of
FGHC; once each clause has been “committed to,” its body goals may be executed in-
dependently on separate processors, and probably must be scheduled at runtime to avoid
deadlock. The ability to execute goals in parallel is a useful property for execution of an
FGHC program on a multiprocessor, since programs will run faster in direct proportion
to the number of processors available. Unfortunately, the inability to schedule goals at
compile time, the fact that there are typically many more body goals than processors, and
the expense of scheduling goals at runtime combine to make it very difficult to utilize each
processor efficiently.

1.3 Efficient FGHC Execution

The class of FGHC languages is capable of efficient parallel execution, but there are some
potentially serious problems. Foremost is the idea of low granularity: the only useful com-
putation in an FGHC program is done when selecting an appropriate clause for execution,
when doing arithmetic, and when creating structure within a clanse. These costs of compu-
tation may be swamped by the cost of expanding body goals and binding variables, limiting
the potential efficiency of the language. Worse, each body goal must be assigned to a pro-
cessor, which involves significant work by some sort of “scheduler” process — thus it is
entirely possible for the scheduler to become the limiting factor in execution performance.

This thesis suggests a two-step approach to alleviating these problems, along lines ex-
plored earlier by others including Ueda and Morita [30, 31], Tick and Korsloot [19], and
King and Soper [15, 17, 16). First, the program is statically analyzed to discover where
variables will be bound. This analysis allows traditional compiler optimizations to be ap-
plied to the compilation of FGHC programs, and also provides a framework for a second
stage of analysis, which attempts to find body goals which may be executed sequentially
without affecting the program semantics.

The hope is that eventually one will be able to write programs in a high-level-language
similar to FGHC without regard to their parallel execution properties, and then execute
them efficiently without source changes in uniprocessor, coarse-grained multiprocessor, and
fine-grained multiprocessor environments. The author believes that he has illustrated how
the combination of mode analysis and sequentialization may allow FGHC programs to be
executed more efficiently in all of these environments, greatly increasing the ability of those
unfamiliar with traditional parallel programming techniques to write efficient concurrent
applications.



1.4 Outline of the Thesis

Chapter 1 gives some flavor of the research to those perhaps less sophisticated in the area
of FGHC programming.

Chapter 2 covers “mode analysis” of FGHC programs, which attempts to discover
where in a program variables are bound to values. Emphasis is placed on results of safety
and completeness, and on the empirical results of an experimental implementation of this
analysis.

Chapter 3 covers “sequentialization analysis” of FGHC programs, which, given mode
information, discovers which body goals of a program may safely be executed in a sequential
order determinable at compile time. Several possible approaches are explored, and their
safety, completeness, and efficiency are discussed. Finally, empirical results of an experi-
mental implementation of one of these techniques are given.

Chapter 4 summarizes the thesis, offers conclusions, and suggests future work in the
thesis area. '






Chapter 2

Mode Analysis

Mode information has been shown to be quite useful in the efficient compilation of logic
programming languages. Primarily, mode information facilitates the strength reduction
of unification operators into matches and assignments. There are numerous methods for
automatic derivation of mode information from logic programs, e.g., [9, 10, 3, 22]). In
committed-choice logic programs [25], the logic variable is overloaded to perform synchro-
nization. Mode information can thus be used to optimize code generated for argument
matching. We are particularly interested in mode analysis because it enables us to do static
“sequentialization” analysis [19]. This analysis determines if automatic sequentialization of
bedy goals is safe, i.e., cannot result in deadlock. The potential advantage of such a scheme
is vastly improved efficiency in register allocation and procedure call protocol.

In Prolog and Parlog, though not in FCP or FGHC, the programmer may supply
“argument modes.” Intuitively, an input or output argument mode indicates whether a
data value is required as input or will be produced as output. Automatic mode generation
has the advantage of avoiding programmer error in declaring modes, and can lead (as in
the algorithm presented here) to a much richer set of derived information. For example we
may wish to derive the mode of each variable in the syntactic program, or perhaps modes
of objects that are not explicitly mentioned.

Ueda and Morita [30] outlined a mode analysis technique that showed great elegance
and potential for efficiently deriving rich mode information. Essentially they suggested
propagating a set of mode constraints around a control-flow graph representing the program.
The analysis was restricted to “moded” flat committed-choice logic programs, although,
for reasons explained below, this is not regarded as a major drawback. This work is a
clarification of their method, a description of an algorithm and its implementation, and an
evaluation of the method’s performance. This paper is the first reported implementation of
this kind of mode analysis technique, although we do not use graph propagation. Empirical
results are also presented concerning the mode characteristics of a set of FGHC benchmarks.

This chapter is organized as follows: The path concept is reviewed and the procedure by
which interesting paths are generated is described. The fundamental data representation
used in mode analysis is described. The mode analysis axioms and their incorporation
into an algorithm is described. The moding algorithm’s complexity is discussed, as is its
consistency, completeness, and safety, and the effect of the restriction to moded FGHC.
The relationship to other work is summarized. Empirical measurements characterizing the
performance of the algorithm are presented. Finally, conclusions are summarized and future
research is suggested.



2.1 Path Generation

The first stage of the algorithm generates a finite set of paths whose modes are to be
considered. Ueda and Morita’s notion of “path” is adopted as follows: A path p “derives”
a subterm s within a term ¢ (written p(t) I s) iff for some predicate f and some functors
a,b,... the subterm denoted by descending into ¢ along the sequence {< f,i >,< a,j >
,< bk >,...) (where < f,i > is the i* argument of the functor f) is s. A path thus
corresponds to a descent through the structure of some object being passed as an argument
to a function call. f is referred to as the “principal functor” of p. A program is “moded”
if the modes of all possible paths in the program are consistent, where each path may have
one of two modes [30]:

Definition: If a path has oulput mode, any variable derived by that path may
{but need not) be bound only within the body of the path’s principal functor.
The path will never derive a constant or a variable which is bound in a caller of
the principal functor, m]

Definition: If a path has inpuf mode, any variable derived by that path may
(but need not) be bound only by callers of the path’s principal functor. The
path will never derive a constant or a variable which is bound by the principal
functor itself. o

Only “interesting” paths are generated in the first stage of our algorithm. There are three
classes of interesting paths. The first class consists of paths that directly derive a named
variable in the head, guard, or body of some clause. All such paths can be generated by a
simple sequential scan of all heads, guards, and body goals of the program.

The second class consists of paths which derive a variable v in some clause, where a
proper path through the opposite side of a unification with v derives a variable v’. More
formally, consider a unification operator » = ¢t where v is a variable and ¢ is some term
other than a variable or ground term. Let v’ be a variable appearing in ¢ at path ¢, i.e.,
g(t) F v'. Then if p is a path deriving v (by which condition p is also interesting), then the
concatenated path p- ¢ is also an interesting path. All paths in this second class may be
generated by repeated sequential scanning of all unification goals until no new interesting
paths are discovered. The necessity for repeated scans is illustrated by such clauses as

a(X,Z2):-Y =¢(X), Z=0(Y).

where the interesting path {< 4,2 >,< 5,1 >,< ¢,1 >} given by the first unification body
goal will not be generated until the interesting path {< @,2 >, < b,1 >} in the second unifi-
cation body goal is generated. Such repeated scans should occur infrequently in practice. In
any case not more than a few scans are necessary — no greater number than the syntactic
nesting depth of expressions containing unification operators.

The third class of interesting paths is generated by noting that if a path starting on the
right-hand side of a unification body goal (i.e., a path of the form {<=,2 >}-s} is interesting,
then so is the corresponding path starting on the left-hand side of that unification (i.e.,
{<=,1>}s).



q( {0, Yo, Zo) :- true | Yo =¢ Zo.
g( [X1 | Xs1), 11, 21) == true |
S(XslsxlsLl!GI)a
g(L1, Y1, [ X1 | Vsi]),
Q(Gls Vsl'lzl)'

5(, - L2, Ga) = true | Ly =, [], G2 =2 [I.
S( [Xa I X83], Y3,L3,G3) =X3<Th I

Ga =3 [Xa| Wsa],

3(X53,Y3,L3, W53).
S( [X‘l IXS‘I ]; }':hL‘hG‘!) B X‘l .>_ n '

Ly =4 [Xa| Wsy],

8(X84,Y4, WSq,G.;).

Figure 2.1: Quicksort FGHC Program: Weak Canonical Form

As an example of path generation, consider a Quicksort program! written in FGHC,
shown in Figure 2.1. The program shown is the result of applying some syntactic transfor-
mations to produce a “weak canonical form” required by the subsequent algorithms. The
left-hand side of every unification operator =/2 has been made a variable. No “extra” vari-
ables appear in unification body goals: all variables appearing in a unification body goal
must also appear in some non-unification body position or in the head. All variables are
qualified by the clause number in which they appear, in order to retain scoping informa-
tion for subsequent passes. In addition, each unification operator is labeled with a unique
integer.

In general, all interesting paths of a program are generated in a few sequential passes.
The 39 interesting paths (23 input, 16 output) of Quicksort shown in Table 2.1 are generated
in two passes?. In this example the unification body goals provide four additional interesting
paths during the first pass, and no additional interesting paths during the second pass.

An important question is whether this set of paths represents a minimal and complete
set of paths for the mode analysis. The answer to this may depend upon the use to which
the mode analysis is put — nonetheless, as discussed on pages 14-15 of this thesis, there
is good reason to believe that some fundamentally important paths may not be generated.
However, in the benchmarks examined here the paths generated by the above algorithm
prove to be almost entirely sufficient.

2.2 The Partition Table

The mode information for paths is derived from knowledge of the relationships between
paths. Thus, our algorithm requires a systematic and efficient means of keeping track of
these relationships as analysis proceeds. The computation of path relations is optimized

'This program is used as an example throughout the chapter.
?Note that < .,1 > and < .,2 > are respectively the car and cdr of a list structure.



Table 2.1: Interesting Paths of Quicksort
input output

user builtin user builtin
{< s/4,1>} {<*<’/2,2 >} {< ¢/3,2 >} {<=0,1>)
{< 5/4,2 >} {<'<’/2,1 >} {< 5/4,3 >} {<=1,1>)}
{<4/3,1>} {<'>/2,2>} {< 8/4,4>} {<=2,1>}
{< ¢/3,3>} {<*>'/2,1>} {<5/4,3>,<.,1>}{<=3,1>}
{<q/3,1>,<.,1>}|{<=0,2>} {<5/4,3>,<.,2>}|{<=4,1>}
{<q/3,1>,<.,2>}{<=1,2>} {<8/4,4>,<.,1>}H{<=3,1>,<.,1>}
{<q/3,3> <., 1>}{<=2,2>} {<s/4,4>,<.,2>}|{<=3,1>,<.,2>}
{<4/3,3>,<.,2>}{<=3,2>} {<=4,1>,<.,1>}
{<s/4,1>,<.,1>}{<=4,2>} {<=4,1>,<.,2>}
{<s/4,1>,<.,2>}{<=3,2>,<.,1>}

{<=3,2>,<.,2>}

{<=4,2>,<.,1>}

{<=4,2>,<.,2>}

by partitioning the paths such that all the paths in each partition have the same mode.
First, each path is placed in a unique partition, indicating that its mode is unknown and
that its relationship with the modes of other paths is unknown. There are also two special
partitions which are initially empty: the input and output partitions. Various relationships
between the partitions are then asserted by predicates as we proceed through the analysis.?
In order of decreasing precedence, the predicates are:

o Predicate in(p) asserts that the path p must have input mode. First, if the parti-
tion S containing p is the output partition, the assertion is reported as contradictory
and ignored. If S is the input partition, the assertion is a tautology, and is ignored.
Otherwise, the partition containing p is merged with the input partition, and this
information is propagated across all lower precedence relations between paths previ-
ously asserted. If a contradiction is discovered at any point during propagation, the
assertion is reported as contradictory and ignored. Predicate ouf(p) asserts that the
path p must have cutput mode — this case is analogous to, and identical in precedence
to, the in(p) case.

Predicate same(p,p’) asserts that p and p’ must have the same mode. Let the partitions
S and S’ contain p and p respectively. If § and S’ are identical, the assertion is a
tautology and is ignored. Otherwise, the two partitions are merged, and the result is
propagated across all lower precedence relations previously asserted. If a contradiction
is discovered, an error is reported and the assertion is ignored.

Predicate opposite(p,p') asserts that p and p’ must have inverse modes. Let partitions
S and S’ contain p and p respectively. If both paths are in the same partition, an
error is reported and the assertion is ignored. Otherwise, the relationship between
the partitions is recorded.

3This daes not imply that the logic programming implementation uses an assert builtin!



§1. For some path p in a clause, m(p) = in, if either

1. pleads to a non-variable in the head or body, or
2. p leads to a variable which occurs more than once in the head, or
3. pleads to a variable which also occurs in the guard at path ps and m{ps) = in
§2. Two arguments of a unification body goal have opposite modes, for all possible p, or
more formally: {¥p m(<=,1> p) #m(<=,2 > p)}.

§3. If there are exactly two “occurrences,” we have two possibilities:

1. If both occurrences are in the body, the modes of their paths are inverted.

2. If there is one (or more) occurrence in the head and one in the body, the modes
of their paths are the same.

§4. If there are more than two “occurrences” of a shared variable (i.e., at least two occur-
rences in the body), the situation is even more complex:

1. If the bedy contains more than two occurrences of the shared variable and the
head has no occurrences, then one of the modes is ‘out,’ and the others are ‘in.’®

2. If the head contains one (or more) occurrences of the shared variable (so the
body has two or more occurrences), then the modes are as follows:

(a) If the mode of the head occurrence is ‘in,” the modes of all body occurrences
are ‘in’ as well.

(b) If the mode of the head occurrence is ‘out,” then one of the body occurrences
is ‘out,” and the other body occurrences are ‘in.’

2This means that one of the occurrences is designated as the producer of this variable.

Figure 2.2: Ueda and Morita’s Mode Derivation Axioms

The data structure used to record these relationships is known as the partition table, and the
mode analysis is merely a sequence of partition-table updates. Note that the partition table
may be partially pre-initialized. Sources of such information include user mode declarations
and previous mode analysis of modules related to the module being analyzed.

2.3 Mode Analysis

The second stage in the algorithm is to derive the modes of paths generated by the first
stage. This is accomplished by finding absolute modes for a small number of paths and
then examining relationships between the modes of paths. This mode analysis exploits the
rules outlined by Ueda and Morita. Tick and Korsloot’s [19] formulation of their axioms is
given in Figure 2.2 (in the figure, m(p) denotes the mode of path p). Again the algorithm
repeatedly scans sequentially through the program, this time deriving modes of paths. The
critical insight is that given a variable v, the modes of all paths deriving v must be related



¢ V paths of the form {<=,1 >} for some suffix s (from §2)
assert opposite({<=,1 >}-s,{<=,2 >}-s)

Figure 2.3: Unification Analysis Algorithm

via the mode axioms. The mode analysis algorithm proceeds in four steps:
1. Assert absolute modes for some paths.
2. Assert that all paths on opposite sides of a unification operator have opposite modes.

3. Proceed sequentially through the variables derivable from interesting paths, asserting
all binary relations between paths.

4. Repeatedly consider multiway relations asserted by the clauses.

2.3.1 Syntactic Analysis

During the first step in mode analysis a single syntactic pass is made over the program, not-
ing paths which lead to constants, variables, and guard arguments. All occurrences of each
variable in the module being analyzed which are derivable from each interesting path are
recorded; information which will be used by all succeeding steps of the algorithm. Whether
the variable occurrence was in the head, guard, or body of its clause is also recorded. Con-
stants in interesting path positions are noted and the partition table is updated according
to §1.1 of Figure 2.2. This will generally be a rich source of information about in paths. In
Quicksort, this fixes the modes of paths such as {< g,1 >} as in. The modes of paths lead-
ing to non-unification guard arguments in the partition table are then asserted according
to §1.3 of Figure 2.2. In Quicksort, this fixes the modes of paths such as {<‘>",1 >} as in.

2.3.2 Body Unification Analysis

This step simply asserts that corresponding paths on opposite sides of a body unification goal
have opposite modes. This relationship corresponds to §2 of Figure 2.2, and is implemented
according to the algorithm shown in Figure 2.3. It is generally efficient to assert these
relationships early, since it allows greater propagation of information asserted by later steps.
For example, in Quicksort clause #0 opposite({<=1,1 >},{<=1,2 >}) is asserted.

Note the universal quantifiers in the algorithms of Figures 2.3, 2.4, and 2.5. Our imple-
mentation of these depends on the fact that a finite (and indeed a small) set of paths are
generated for the target program, in contrast to the work described on pages 15-16 of this
thesis.

2.3.3 Binary Analysis

This step derives the modes of paths which have binary relations. These relationships
correspond to §1 and §3 of Figure 2.2. These rules are implemented according to the

10



e Y variables v occurring more than once in a head position
¥ paths p deriving v (from §1.2)
assert in(p)

¢ Y variables v
if v occurs exactly twice in a clause at paths p and p’
(counting all head occurrences as one) then {
if both occurrences are in the body then { (from §3.1)
assert opposite(p,p')
Y suffixes s s.t. p- s is interesting and p’ - s is interesting
assert opposite(p - s,p’ - 5)
} else { (from §3.2)
assert seme(p,p')
Y suffixes s s.t. p-s is interesting and p’ - s is interesting
agsert same(p - s,p’ - 5)

Figure 2.4: Binary Analysis Algorithm

algorithm shown in Figure 2.4. Note that the ordering of operations of this algorithm is
somewhat arbitrary. This particular ordering was chosen both for efficiency and ease of
implementatien, but it is not unlikely that some other order could be faster or simpler.
In particular, each rule is currently applied in turn to all of the applicable objects in the
program. Reversing the nesting order so that all possible rules are applied to each syntactic
object in turn would not affect the correctness of the algorithm and might provide some
speed increase.

For Quicksort clause #0 in the previous step opposite({<=1,1 >},{<=1,2 >}) was as-
serted. same({<=1,1>},{< ¢,2 >}) and same({<=1,2 >},{< q,3 >}) are now asserted.
The  database  thus  automatically  concludes that opposite({< ¢,2 >},
{< q,3 >}), a fact used in subsequent analysis.

2.3.4 Multiway Analysis

Once all the consequences of binary relationships between paths in the program have been
established, if there are still interesting paths in the partition table whose modes are am-
biguous, they may be resolved by applying the multiway rule §4, It would be possible in
principle to do this analysis in the same way as for the previous rules, establishing con-
straints between partitions. However, several factors mitigate against this. First, at this
point in the analysis, it is expected that there will be few partitions to consider in a typical
program, so the efficlency gain of the database-driven approach is relatively unnecessary.
Secondly, the non-binary constraints of the multiway rule make database constraint main-
tenance and propagation much more difficult. Finally, it is difficult to obtain any better
output representation in ultimately ambiguous cases than an enumeration or summary of
possibilities. Thus there is no strong motivation at this point for clever analysis.

11



multiway( V,t)} { — V is set of variables, 1 is partition table
test( generate( V ), 1)

}
generate( V' ) {
R=10 -— R is set of tuples (v,Q): v is variable, @) is set of paths
Yv € V s.t. v occurs > 3 times in a clause
let po...ps be the paths deriving v
¥ suffixes s s.t.
a proper subset Q of {pp - s...pn - s} is interesting
and |Q] > 2
R=RU{(v,Q)}
return( R )

test{ R, t) {
if R =0 then
return( {t} )
select some (v,Q) from R
R = R\ {(», @)}
if Ip € @ s.t. some prefix of pF v in a head position {
T = test{ R', update( ¢, input( Q ))) — T is set of partition tables
vp' € @\ {p}
T=TuU test(R,
update( ¢, output( {p,p'} }, input( @\ {p,p'} }))
} else {
T=10
Vpe@
T =T\ test( R', update( ¢, output{ {p'} ),
input( @\ {r'} ) ))

}
return( T")

Figure 2.5: Multiway Analysis Algorithm

12




Table 2.2: Possible Modes For X

path
{<g,1><.,1>}|{<s2>}]{<q,3>,<.,1>}
1 in in in
2 out in out
3 out out in

Therefore the multiway rule is implemented according to the recursive generate-and-
test algorithm of Figure 2.5. Starting with the partition table output by binary analysis,
the algorithm examines all possible values for each set of mutually constrained paths gen-
erated by occurrences of a variable meeting the conditions of §4 of Figure 2.2. FEach of
these possibilities is tested by applying the multiway algorithm recursively to the remain-
ing constraints, and the resulting collections of partition tables are merged and returned.
Thus, the overall structure of the call graph of the test algorithm is a tree whose leaves are
each either a partition table or a failure indication — the output of the test algorithm is
simply the collection of partition table leaves of the tree. Note that the shape of the tree
is determined only by the output of the iterative generate algorithm: thus, the recursive
test function could easily be made iterative via standard transformations. Note also that
since our implementation of this algorithm is in FGHC, subtrees will naturally be evaluated
concurrently in a parallel implementation of the language.

In Quicksort only clause #1 meets the multiway criteria, where X; occurs once in the
head and twice in the body. The three possibilities to be checked are summarized in Table
2.2. By this point in the analysis, however, we have already derived that {< ¢,1 >,< .,1>}
is inand that {< s,2 >} is in, so we find that {< ¢,3 >, < .,1 >} is in. This example is nice
because it is completely determinate — the multiway rule derives only one set of possible
modes for the program. In general, this may not be the case and several possible final
modings for the program will be emitted.

2.3.5 Complexity

The complexity of the algorithm can best be understood by examining its component pieces.
Everything up to the beginning of binary analysis is fundamentally linear on the length of
the program — a small fixed number of passes are made over the program to derive facts
about it. The binary analysis is also close to linear on the number of variables in the
program meeting the constraints of Figure 2.4. A significant quadratic component derives
from the fact that inner loops of the analysis iterate over a set of suffixes of paths — the
size of this set is approximately linearly proportional to some measure of the “complexity”
of the program.

The multiway analysis is difficult to analyze. I it were performed first, it would be
exponential in the number of variables meeting the constraints of Figure 2.5, but by the
time it is actually performed, most alternatives contradict the known modes, and thus are
not explored further. In practice, the time spent in this analysis seems to be reasonably
short, as seen from the timings on page 21.
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2.3.6 Consistency, Completeness, Safety, Restrictions

Some important practical and theoretical issues are raised by these algorithms. Some of
these issues include the consistency, completeness, and safety of the mode analysis. It is not
difficult to prove that the mode analysis algorithm is consistent, in the sense that if at some
point in the analysis, path p is shown to have mode m, and if some subset of the interesting
paths implies that p does not have mode m, then the algorithm will derive and report this
contradiction. However, this consistency property is less useful than is desired, for several
reasons. The first is quite simple — if the algorithm does report a contradiction, there is no
obvious way to automatically correct it, or even to determine the minimal subset of paths
involved in the contradiction. It becomes entirely the user’s responsibility to correct the
program so that it is consistently moded.

The current implementation will report any contradiction, ignore the contradictory
assertion, and proceed with the derivation. This allows the user to examine the final modes
produced by the analysis and determine which might be incorrect. In our experience, this
is usually sufficient to correct the problem. In the absence of user intervention, this also in
practice allows the modes of most of the remaining paths to be determined. For example,
when using the mode information for sequentialization [19], we may sequentialize all calls
not involving a conflicting path, and then “safely” compile calls involving the conflicting
path.

The second weakness in this form of consistency is more subtle: the non-modedness of
a program may not be detectable if the analysis uses the wrong set of paths! This leads
directly to a reasonable definition of a complete set of paths:

Definition: A set of paths generated for a program is complete iff the existence
of a consistent moding for the set of paths implies that the program is fully-
moded. (We say that a program is “fully-moded” if the modes of all paths are
known, and moded if the modes of some paths are known). D

Thus, the infinite set of all possible paths is a complete set; however, we are interested in
finite complete sets and in particular in a minimal complete set of paths for the program. As
an example of the incompleteness of our path generation algorithm, consider the program

a :- true | b(2).

b(Z) :- true | ¢(Y), d(Y, Z).

¢(X) - true | X =[1).

d(iV | ., W) = true |W =V,

With the path generation as described, the path {< ¢,1>,< .,1 >} will never be consid-
ered. But without noticing that this path is out, it is impossible to discover that the path
{< 4,2 >} is out and thus derive the non-moded call in a/0.

It is difficult to extend path generation in such a way as to obtain a finite complete
set of paths, much less a minimal one. We have expended much thought and effort on this
problem, but are currently unaware of an adequate solution. In fact, it is probable that
there exist programs for which no finite complete set of paths exist.

Note that the path generation algorithm previously described on pages 6-7 is unsafe.
It is also a consequence of the incomplete set of generated paths that even if the program
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p(X) - true | X = a(1)
g(X) - true | p(a(X))

Figure 2.6: Mode Conflict

P(X) —true | X = a(1)
Q(Y) = lrue 1 p(Z), r(zl Y)
r(a(V),W) - true | W=V

Figure 2.7: Mode Conflict Resolved

contains information about the mode of a path, that information may not be derived by
the mode analysis algorithm. Nonetheless, most generated paths in typical programs are
moded by this analysis, and if the program being analyzed is known to be moded, all modes
derived are correct.

One may thus use the mode information derived by the algorithm as advisory informa-
tion; alternatively, one may insist that the input program be moded correctly. If incomplete
mode information is derived, the user may explicitly supply the missing information by in-
spection. This is the approach currently taken in our benchmark analysis. Finally, in some
cases the modes of some paths simply cannot be determined because they depend on the
modes of the query itself. In these cases, the programmer may explicitly supply query
modes to the analyzer by preloading the partition table.

It is important to note that moded FGHC is a strict subset of FGHC, in the sense
that there exist correct and meaningful FGHC programs which are nonetheless not moded.
However Ueda’s assertion in [31] that “Fortunately, most GHC programs written so far are
written, or can be easily rewritten, following these conventions” seems to be correct.

Perhaps the most common moding error in common use is the use of passive unification
in body goals to select elements. Thus, the program of Figure 2.6 is non-moded, since the
mode of {< p,1 >} is clearly out according p/1, and yet that path is being bound in the
body of ¢/1. Fortunately, this problem can be solved quite generally and even automatically,
by transformations of the form shown in Figure 2.7

2.4 Comparison With Other Work

The original mode analysis scheme is due to Ueda and Morita [30], and was later clarified
by them [31]. It is based on the representation of procedure paths and their relationships
as rooted graphs (“rational trees”), and the utilization of unification over rational trees to
combine the mode information obtainable from the various procedures.

The mode analysis rules were simplified to their present form by Korsloot and Tick [19],
who also gave a set of simple inference rules for deriving paths and their modes. However,
no selection algorithm is given for application of the inference rules. That work still deals
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with an infinite set of possible paths, but considers only those paths with a finite known
prefix. As testament to the inherent difficulty of dealing with inference rules, they failed to
consider certain “interesting” paths and thus incompletely moded the Quicksort example!

The algorithm described in this paper is.the logical extension of the previous works to
a finite domain of paths. We represent the relationships of a finite set of paths in such a
way that all mode information directly available about this set of paths in a program may
be efficiently derived.

Ueda and Morita’s scheme is more general than ours, however. In particular, it can
determine the modes of paths which we do not generate during interesting path generation.
Their trees are constructed by placing nodes in all paths descending from the procedure and
its associated body goals. We follow Ueda’s notational conventions, in which procedure and
body goal names are enclosed in square boxes, terms are enclosed in circles with numbered
subterms, and a dot on an edge means mode inversion. Thus, for our quicksort example,
the graphs for ¢/3 and s/4 might look something like those of Figure 2.8.

The rational unification of two graphs proceeds from the assertion that some identically
labeled node in each of the two graphs is in fact the same node. One then traverses the
two graphs, making an identity relationship between corresponding nodes in the graphs;
this may mean that many nodes in one graph correspond to a single node in the other, and
thus the substructure of the graphs is “compressed” in some sense. The unification proceeds
until either both graphs have been completely traversed or until a conflict is found, in which
latter case the unification fails. If we circularly unify the graphs of Figure 2.8, we obtain
a graph something like that of Figure 2.9. Note that this unification fixes the mode of
{< q,1>,<.,1>} as in, whereas it was previously undetermined.

To see the potential advantage of Ueda and Morita's method, consider the example of
page 14 with which we demonstrated the failure of our scheme. The graphs associated with
this are those of Figure 2.10 (where the mode of {< d,1 >,< .,2 >} is fixed in d/2 by the
fact that an anonymous variable in the head must always be input, since it may never be
bound by the body). Note that the graph of Figure 2.11 comprising the unification of the
individual procedure graphs (other than that of a/0) fixes all the modes of all paths of these
procedures. Then, the incorrect mode of {< 4,1 >} in a/0 is easily identified.

One might expect that we could simply adjust the heuristic for interesting path genera-
tion to produce paths like the one we are lacking in this example, and thus mimic Ueda and
Morita’s scheme. However, we do not yet understand how to extend the interesting path
generation while avoiding generating infinite sets of paths. Note that, since the graphs of
Ueda and Morita’s method may be circular, they may denote the mode of infinite sets of
paths, and thus may contain more information than we possibly could store.

Ueda and Morita believe that their scheme will in general completely and consistently
mode any FGHC program. Unfortunately, we know of no proof that this is indeed the case,
though it seems likely that such a proof could be constructed. If so, this scheme could serve
as a workable definition for the moded FGHC language. We believe our algorithm is no
worse in execution time than the scheme of Ueda, and is easier to implement. In fact, our
initial attempts to utilize graphs led us to our current algorithm. Nonetheless, because of
the problems with completeness and safety, we should perhaps revert to Ueda and Morita’s
scheme.
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q([] ,Y,Z) - Y=Z.
q([XIXsl,Y,Z) :-

s(¥s,X,L,G),
q(L,Y,[X|Vs]),
q(G,Vs,Z).

s({ :-sLaG) Ha
L=0,
G=[1.

s([X1Xs],Y,L,G) :

i<y

|

G=[X|Ws],
s8(Xs,Y,L,Ws).

s({X|Xsl,Y,L,G) :
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L=[X|Ws],
s(is,,Y,Ws,G).
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Figure 2.8: Graphs For q and s of qsort Example



@ input mode
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Figure 2.9: Unified Graph For gsort Example

Table 2.3: FGHC Benchmarks: Path Analysis with No Explicit Information

# # paths missing
benchmark | procs | clauses input output | not derived | modes
qsort 3 6 23 (59.0) | 16 (41.0) 0(0.0) 0
msort 4 11 | 40 (52.6) | 32 (42.1) 4(53)| 1
prime 7 12 37 (57.8) | 27 (42.2) 0(0.0) 0
cubes 9 16 | 79 (56.0) | 62 (44.0) 0(00)| o
pascal 11 22 68 (60.2) [ 45 (39.8) 6 ( 5.3) 2
waltz 21 54 | 138(61.1) |88 (38.9)| 28(124)| 7
triangle 42 80 645 (88.4) | 85 (11.6) 0(0.0) 0
average (62.2) (37.1) (3.3)

2.5 Empirical Results

Our experimental implementation of the path generation and mode analysis algorithms
consists of approximately 4,000 lines of code comprising 23 modules totaling about 500
clauses, written in FGHC running under the PDSS system [5]. We examined the moding
and execution characteristics of the analysis of a group of seven FGHC programs listed in
Table 2.3, including one module (msort) from the implementation itself.

Table 2.3 shows the number and percentage of derived (input and output) paths, as
well as the number of paths that could not be derived. The “missing modes” column shows
the number of explicit modes needed to give modes to all paths. The benchmarks averaged
3.3% of non-derivable paths, with some variance. As mentioned on pages 14-15, there are
two approaches which appear viable for reducing the percentage of non-derivable paths.
One method is to generate a richer set of paths to drive the mode analysis. Currently, we
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Table 2.4: Breakdown of Paths by Type: Raw Counts and (Percentages)

user input user builtin

benchmark 1-paths k-paths output assign others | total
gsort 4 (10.3) 6 (15.4) | 7(17.9)| 5(12.8) | 17 (43.6) 39
msort 6 (8.0) 11(14.5)| 11 (14.5) | 12 (15.8) | 36 (47.3) 76
prime 10 (15.6) 5(7.8)113(20.3)| 6(9.3)| 30(46.9) 64
cubes 22 (16.7) | 25(17.7)| 32 (22.7) | 7(5.0)| 55(39.0) | 141
pascal 19 (16.0) | 13 (10.9) | 17 (14.3) | 16 (13.4) | 54 (45.4) | 119
waltz 52 (20.5) | 35(13.8) | 39 (15.4) | 29(11.4) | 99 (39.0) | 254
triangle 155 (21.2) | 449 (61.5) | 44 (6.0) | 37(5.1) | 45 (6.2) | 730
average (15.5) (20.2) (15.9) {10.4) (38.2)

generate only “simple” paths, which are local to each clause. This can be extended to more
elaborate generation, effectively abstract interpretation on a domain of “important” paths.

A second method, illustrated in these measurements, is to have the programmer give
explicit mode declarations to help the analysis. The final column of Table 2.3 gives the
number of explicit path modes needed to permit the derivation of all paths. Note that only
a fraction of the unknown paths are needed to fully constrain those remaining. Waltz has
the largest requirement because its data structure manipulation is far more complex than
that of the other programs. Local path generation does not suffice because deeply nested
subterms are decomposed through chains of procedure invocations. Five declarations for
Waltz state the seven explicit paths needed to uncover all 28 unknown paths:

=~ mode spawn(_, 7, _, -, ).
:— mode fromLStoList1(_, [ ?|-], - -).
i— mode group([ 7}-1, 7, - - - -)-

i~ mode genEdges([ ?|-], -, 7y o -1 - )
= mode gmup(-'r =y =y =y =y =y =y [ed.qe(-’ -1 ?)I- ])

These were easily introduced by hand, although as noted we are actively pursuing a
more complete method of path generation to avoid any need for declarations.

Table 2.4 categorizes the paths by type. User paths are paths defining variables in user-
defined procedures (c.f. =/2 paths, which are less interesting, except for assignment and
for propagating modes within the analysis). User input paths are further split into 1-paths
(top-level formal parameters of procedures) and k-paths for £ > 1. Assignments are =/2
output 1-paths.

By type, user paths constitute the largest portion with 52%. 15.9% are user output
paths, and the user input paths split almost evenly between paths of length one and greater.
The length of the k-paths is highly program dependent, although usually the average length
is close to two. Assignments constitute 10.4% of all paths. Surprisingly, a large percentage
(38%) of the paths are builtin paths needed only for mode propagation during analysis.

Table 2.5 gives the execution times of the analysis on a Sparcstation IT under PDSS.
Unfortunately, this preliminary implementation suffers because the path-table access func-
tions are linear in the number of generated paths. This in turn worsens the performance
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Table 2.5: Execution Time for Analysis: Raw Seconds and (Percentages)

syntactic + mode analysis paths
test path creation| unification binary| multiway| total|paths|per sec
gsort 0.62 (41.9)| 0.11( 7.4)| 0.72 (48.6)| 0.03( 2.0)| 1.48| 39| 264
msort 2.09 (44.8)| 0.27( 5.8)| 2.12(45.5)[ 0.18(3.9)| 4.66| 76| 16.3
prime | 1.39(43.4)| 0.22(6.9)| 1.45(45.3)| 0.14 (44)| 320 64| 200
cubes 5.59 (37.3)| 0.98 ( 6.5)| 5.37(35.8) 3.05(20.3)| 14.99| 141 9.4
pascal 5.06 (39.7)| 0.64 (5.0)| 6.12(48.0)| 0.92(7.2)| 12.74| 119 9.3
waltz 27.23 (40.5)| 2.69 ( 4.0)| 26.79 (39.9)|10.46 (15.6)| 67.17| 254 3.8
triangle| 175.09 (32.1)|19.48 ( 3.6)|290.20 (53.1)| 61.37 (11.2)[546.14| 730 1.3
average {40.0) ( 5.6) (45.2) (9.2)

of most of the algorithms from linear to quadratic. We expect the implementation to be
approximately linear on the number of paths after the re-implementation of our path table
e.g., as a hash table. Furthermore, PDSS is an emulation-based system, and the timings
include the full impact of frequent garbage collections.

However, these measurements do indicate the approximate reletive weight of each phase
of the analysis. We see that the multiway rule, although potentially exponential, is in
practice quite cheap. Almost all of the computation (85%) arises from path generation and
binary mode analysis. Complex programs show significant (11-20%) multiway analysis.
The last column of the table estimates program complexity by the metric of paths analyzed
per second. As explained above, the current performance is quadratic (i.e., paths?/second
is linear in Table 2.5), which in fact confirms that we can linearize the implementation.

2.6 Summary

This chapter describes an implementation of an innovative compile-time path generation and
mode analysis technique for committed-choice languages. We have shown that the analysis
can be implemented efficiently by first generating a small set of “interesting” paths, and
then moding the paths according to the rules suggested by Ueda and Morita. By acting on
multiway relations last, we avoid exponential problems. Most of the computation occurs
in path generation and binary mode analysis. Characteristics of FGHC benchmarks show
that the algorithm behaves efficiently, moding all but 3.3% of interesting paths. We give
the static frequency of path type occurrences, which is useful information for language
implementors.

Unfortunately, we have also seen that our analysis algorithm has serious problems of
consistency, completeness, and safety, which limit its uses. We have seen that these problems
are both difficult and fundamental, and that the circular-unification method of analysis
suggested by Ueda and Morita may provide a solution to these problems.
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Chapter 3
Sequentialization

3.1 Introduction

Consider the case where one has a program written in fully-moded FGHC, and thus knows
the modes of all variable references from mode analysis. As noted in Chapter 1, one may
now perform a number of traditional compiler optimizations on the code which sets and
dereferences these variables.

However, these optimizations are typically not very effective at improving the perfor-
mance of an FGHC program. The major source of overhead in traditional execution of
FGHC programs is the fact that the execution order of body goals is determinable only by
run-time examinatijon of the data dependencies. Thus, a scheduler creates and manages a
large number of extremely fine-grained processes which execute the program. The sched-
uler, process creation, and process suspension/resumption overhead are generally the major
source of inefficiency in traditional FGHC implementations [2)].

Thus, it is desirable to determine the execution order of body goals at compile time to
the extent that this is possible, in order to increase the granularity of execution and reduce
the the above-cited overheads.

The material of this chapter is strongly inspired by the work of King and Soper [17]
on formal conditions for threading general FGHC programs, which was in turn inspired by
work such as that of Tick and Korsloot [19] on sequentializing FGHC programs with mode
analysis.

This chapter is organized as follows: The reasons for sequentializing an FGHC program
are presented. The nature of sequentialization and the role of mode analysis is discussed.
The problem of feedback in sequentialization is examined, and various possible solutions to
this problem are suggested, including local analysis, global analysis, and language restric-
tion. Our sequentijalization algorithm is presented. Our implementation of this algorithm
in a FGHC to C translator is presented and evaluated. Finally, the results of this chapter
are summarized.

3.2 Goals of Sequentialization

We begin consideration of sequentialization of FGHC programs with a formal statement of
the goal to be achieved.

Definition: An FGHC program P has been fully sequentialized when the se-
quence of execution of the body goals B; ; of each clause C; of P may be precisely
fixed at compile time, in such a way that the resulting program P’ will never
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fail on any input bindings for which P could not fail, and will never produce
different output bindings than P would produce on any input bindings. o

One needs to sequentialize only the body goals of individual clauses, because once all the
body goals of each clause have been sequentialized, the execution order of the clauses is
determinable merely by insisting that the body goals within clauses be executed in depth-
first fashion [17].

While it would be nice if every FGHC program, or even every fully-moded FGHC
program, was fully sequentializable as defined above, this is not the case. However, there are
still useful sequentializations possible even in programs which are not fully sequentializable.
This observation leads us to define two different limited forms of sequentialization which
may allow us to exploit sequentialization in a more general way.

Definition: An FGHC program P has been threaded when each body goal B; ;
of each clause C; of P has been assigned to some “thread” tx of C;, and each
thread has been fully sequentialized. O

Thus, each clause of the resulting program P’ consists of some number N, of threads exe-
cuted in parallel, each of whase body goals is executed sequentially. This definition is due
to King and Soper [17}, who also give an algorithm for finding the minimum number of
threads in a feedback-free (see below) FGHC program.

The other possibility is that we do not know that any two body goals in a clause are
precisely sequentializable, but we can divide the body goals up into groups which execute
in a sequential order.

Definition: An FGHC program P has been grouped when each body goal B; ;
of each clause C; of P has been assigned to some “group” g of Cj, and the order
of execution of the groups has been been fully sequentialized. (]

This turns out not to be as useful as threading for efficient execution, since it does not
reduce the number of processes actually required to execute the program, although it may
still be useful in improving scheduler performance.

Various combinations of grouping and threading can occur among the body goals as well.
The combination of grouping and threading leads naturally to a situation in which the body
goals are given a partial order at compile time. The various schemes for sequentialization
of body goals may be characterized by the implicit partial orders they introduce.

3.3 Sequentialization and Mode Analysis

If one is trying to establish a partial order of body goals in an FGHC program, one has a
distinct advantage if the program is fully-moded. In this case the relation being ordered
over may be taken as the producer-consumer relation between body goals which has been
completely fixed by mode analysis. This chapter will consider only this fully-moded case.
King and Soper [17] deal with the more complicated case in which the producer-con-
sumer relation may not be determinable until runtime, and thus sequentialization may only
be approximated at compile time if safety is to be preserved. We note that the results of
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Figure 3.1: Fully-Moded Clause Of Quicksort

B1

Figure 3.2: Dependency Graph Of Quicksort Clause

Chapter 2 indicate that the fully-moded restriction upon the language is not particularly
onerous. We will discover in this chapter that it is much easier to sequentialize a program
in the presence of complete and fixed mode information, an additional important reason to
prefer fully-moded programs.

Offhand, it is difficult to construct a fully-moded FGHC program which is not fully
sequentializable via the simple algorithm of constructing a DAG representing the partial
order imposed by the producer-consumer relation and then topologically sorting it. Consider
the example of Figure 3.1 (clause 2 of the Quicksort example discussed in Chapter 2), where
exclamation marks have been placed before each variable reference which is a producer of
its value in the clause. This convention is similar to that of Janus [13], a language in which
the producer and consumer of data must be explicitly identified. (Note that this convention
is defined relative to the body of the clause, as is necessary for the analysis. This makes
the clause head look somewhat “backward” from the programmer’s point of view.) This
naturally produces a dependency DAG (partial order) between clauses which is illustrated
in Figure 3.2. From the DAG, we immediately discover a full sequentialization of the clause:
body goal B1 must execute first, followed by B3 and then B2. Similar analysis may be
applied to all clauses of the program, obtaining a fully sequential version of Quicksort.



p(T, V) = true |
q(1,18, 5,17),
o(U, WV, 1, W).

q(IW, X, 1Y, Z)} :- true |
X =W,
1Z=Y.

Figure 3.3: Fully-Moded FGHC Program Exhibiting Feedback

3.4 The Feedback Problem

It would seem, then, that any fully-moded FGHC program may be fully sequentialized.
Indeed, this was the conclusion of Korsloot and Tick [19]. However, the recent work of
King and Soper [17] points out the flaw in this analysis; there exist a class of fully-moded
programs whose body-goal dependencies are cyclic, and thus not orderable by a topological
sort, but which nonetheless describe executable FGHC computations.

Adopting the terminology of King and Soper, we refer to this problem as feedback, as
it manifests itself in the program by the feeding of information obtained from the output
of a body call back into that body call itself. This operation makes no sense in traditional
languages. In languages with “logical variables,” the binding of an output variable of a
body call may also implicitly bind an input variable to the call, allowing the call to proceed
by “examining its own output.”

At this point, a concrete example will serve to illustrate the nature of the problem.
Consider the moded FGHC program of Figure 3.3 with query p(_,_). Several interesting
points are raised by this example. The clause body of g/4 consists of a DAG with two
disconnected components. Thus, it should be possible to execute the body goals in either
order. However, the first body goal of p/2 requires the output of the first body goal of g/4
as the input of the second body goal of g/4. For the second body goal of p/2, the reverse
is true! Thus, no static ordering of the clause body of ¢/4 allows the program to avoid
deadlock on the given query, although the program would execute correctly in a concurrent
implementation.

The basic problem in this example is that information from g/4 is fed back into ¢/4 at
runtime, thus forcing concurrent execution. We formally define feedback, for our purposes,
as follows:

Definition: A fully-moded FGHC program contains feedback if, for some clause
body of the program, the producer-consumer dependency graph for variables of
that clause contains a cycle. Q

Note that this definition allows for the possibility of what King and Soper call “indirect
feedback” as well. Consider carefully Figure 3.4. This program clearly still enforces a cyelic
dependency graph on p/2, although no variable occurs twice in the same body goal (i.e.,
there is no “direct feedback”). Clearly, the same sequentialization problem exists.
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p(T, V) = true |
9(@,'R, S,10),
9(1,'Q, R,'T),
g(U, WV, 1,18).

g(!W, X, 1Y, Z) = true |
X=W,
1Z=Y.

Figure 3.4: Indirect Feedback

3.5 DPossible Approaches To Feedback

Since there exist legal fully-moded FGHC programs containing feedback, we must cope
with this situation in some fashion. Three possibilities are detailed below, which represent
various engineering tradeoffs between implementability, sequentializability, and ease of use.

3.5.1 Local Analysis

One possibility is to simply allow for all possible caller feedback patterns in sequentializing
each clause body. Clearly, the program will not fully sequentialize in this fashion, but it
is possible that it may be threaded or grouped to a large enough extent that significant
optimizations may be attained.
One such threading strategy is linear threading — if a portion of the dependency graph
is linear, that portion of the graph may be threaded in the linear order. Thus, the clause
r(1A, D) - true |
rl(A: 'B )1
r?(B ’ !C))
r3(C,!D).

may always be safely sequentialized in the order ry, 7, 73, regardless of the feedback
behavior of the caller of r/2.

The clause r/2 above indicates another threading strategy — a clause’s caller may
exhibit feedback which affects the clause only if the clause has more than one input. In
other words, feedback is a phenomenon which requires at least two inputs. Thus, we can
fully sequentialize r/2 regardless of its body.

One might expect that it is possible, by applying enough observations like those above,
to “mostly” thread most clauses of a fully-moded FGHC program. Unfortunately, this does
not prove to be the case. A quick scan of a number of clauses from fully-moded FGHC
benchmarks reveals very little local threading or grouping information available from these
clauses, as evinced by constructing counterexamples to various proposed threadings and
groupings.

Given the difficulty of formalizing the analysis, and the inferior results possible from this
analysis in any case, local analysis does not currently appear to be a productive technique
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p(T,V) = true |
q1(1,18),
qz(S: 1T),
ql(U:!V):
‘h(l.!U)-

q1(!W, X) - true |
X=W.

q2(1Y, Z) - true |
1Z=Y.

Figure 3.5: Global Feedback Elimination
for the threading of fully-moded FGHC programs.

3.5.2 Global Analysis

One might expect, however, that the situation is similar to that of the mode analysis itself
— given complete global information about a fully-moded FGHC program and its queries,
one could obtain the maximum possible threading of the program as a whole.

Indeed, this does seem to be the case in practice. However, formulating a consistent
system for automatically deriving this information has proven to be quite difficult. It is
conceivable that dataflow analysis [1] could be used, as follows:

Consider a schema in which the basic blocks for dataflow analysis are clauses, and the
block state variables are sets of clause inputs which are “cotemporal” in the sense that they
may all be “supplied at the same time.” To make this notion of cotemporality precise,
consider a clause containing feedback, and consider the inputs to body goals of that clause.

Definition: A set of inputs is cotemporel iff whenever any input in the set is
available, all inputs in the set are available. O

Thus, in our feedback example of Figure 3.3, we initially assume that W and Y are cotem-
poral (available simultaneously in the head of q/4). However, analyzing p/2 reveals that
Y must be available in ¢/4 strictly later than X, so the inputs to ¢/4 are split into two
cotemporal sets. This splits the body goals of ¢/4 into two groups — those dependent on
W, and those dependent on Y. This information might be used to create new clauses ¢
and qp, s0 that the program could be rewritten as in Figure 3.5 and then sequentialized.
While this example gives some insight into global feedback elimination, any actual algorithm
would have to handle a number of special cases more complicated than those just described.
While this is probably the general way in which a human would deal with FGHC programs
exhibiting feedback, this approach appears quite complex to attempt automatically.

In addition to the complexity just described, note that the reason for the strong thread-
edness of practical programs is that feedback does not seem to occur much in real examples
— it is unusuval to write a fully-moded FGHC program exhibiting feedback. We have en-
countered only two situation in our work in which feedback occurred, and only one of them
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is interesting (the other is that some primitives built into an FGH(' system we are using
encourage the use of feedback).

Consider the situation in which one is generating “difference lists” of data, and append-
ing them together. It is natural to append the difference lists in the reverse of the order
in which they are generated, so that the resulting difference list will have its elements in
the right order. If one also has to thread state information through the generators in the
forward direction, one naturally obtains feedback. It is straightforward to code around this
problem by not using difference lists, but at some efficiency penalty.

Given that dealing with feedback through global analysis is difficult, and that feedback
does not often occur in real programs, it seems profitable to consider a third strategy.

3.5.3 Language Restriction

With feedback defined as above, it becomes easy to test for the presence of feedback in
a fully-moded FGHC program. Further, the concept of feedback in fully-moded FGHC
programs is easily explained to FGHC programmers. Thus perhaps the most promising
approach is to simply restrict consideration to the class of feedback-free fully-moded FGHC
programs. This language restriction, as noted above, has the pleasant property that one may
fully sequentialize any feedback-free fully-moded FGHC program! Further, the language
restriction is easily explained to programmers, easily checked by the compiler, and does not
seem to affect many real programs — a language designer’s dream condition!

3.6 Sequentialization Algorithm

Having chosen to restrict attention to feedback-free fully-moded FGHC programs, the next
step is to specify the algorithm for:

1. Detecting feedback in the program,
2. Fully sequentializing the feedback-free program.

Fortunately, both of these goals may be accomplished by a single algorithm: a topological
sort with cycle detection [23] as in Figure 3.6.

This algorithm performs the appropriate topological sort of each clause inline. We say
that a body goal is a “sink™ if all the inputs of that body goal are produced only by

e The head of the clause in which the body goal appears.
e Already-sequentialized body goals of the clause.

Thus, by repeatedly finding sinks in the clause, we eventually topologically sort the entire
clause.

This algorithm has the drawback of O(r?) worst-case running time. An algorithm exists
which is O(n) [24], but it is quite complex to program. Since the complexity is reall only
a function of the number of body goals in a clause, O(n?) complexity is considered accept-
able. The algorithm is easy to understand, and has the advantage that the typical-case
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e ¥ clauses cof P {
let § = {b,...,b,} be the set of body goals of ¢
let T be an initially empty sequence of body goals
while S # 8 {
select a body goal b from S which is a sink WRT T and head ¢
if no such body goal exists, a cycle has been detected: report it
else {
add b to the tail of T
delete & from S

} }

T is the sequentialization of ¢

}

Figure 3.6: Sequentialization Algorithm

performance may be nearly linear: if the body goals are considered in the reverse order of
appearance, the typical FGHC programming style will result in a linear-time sequentializa-
tion of the clause body.

A remaining question is that of the use of the resulting full sequentialization. There
are many possible sources of improved performance for a fully-sequentialized version of an
FGHC program. As discussed in the introduction to this chapter, on a uniprocessor, or
even on a machine with a small number of processors, the largest gains are likely to come
when the traditional work-queue based method of processing body goals [28] is replaced by
the stack-based depth-first procedure call method of traditional imperative and functional
languages [1]. Other uses of sequentialization in compilation include those discussed in
[30, 19, 17), such as elimination of redundant tests, and creation of local (“extra-logical™)
variables.

3.7 Implementation and Evaluation

The algorithm of Figure 3.6 has been implemented in FGHC running under the PDSS
system [5], as part of a system for automatically transforming FGHC programs to sequential
C code. This system, comprising about 1500 lines containing 183 clauses of FGHC code,
accepts FGHC programs in an intermediate form produced by the front-end transformer
of the Monaco shared-memory multiprocessor FGHC system, and produces executable C
code. The Monaco front-end takes care of producing decision graphs and combining clauses
into a single procedure, but leaves clause bodies essentially unaffected. Our sequentializer
accepts Monaco front-end output which has been annotated with the mode information
automatically generated by our mode analyzer, and uses this information to generate C
code of reasonably high quality. Our observation has been that for normal-sized clauses,
the sequentialization time is so small as to be completely swamped by the overhead of code
generation.

Our sequentializer is perhaps best understood in the context of a simple example. When
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the procedure append/3
append([], X,Y) - true | X =Y,
append([A|B], X,Y) :- true | Y = [A|Z), append(B, X, Z).

is transformed by our system into sequential C code and then compiled, we obtain the code
of Appendix A. All in all, our produced code is very good; our inner loop of append/3
compiles to about 39 machine instructions, a respectable number.

Currently, the support code and macros are very simple — for example, there is no
garbage collector, and a machine word per object is wasted on tag information. Nonetheless,
since the system produces reasonably good C code using a fairly modular generator, it will
be easy to remove limitations like these in the future. Self-tail-call and other tail-call
optimization (not possible in this example) is not done in the source program, although
these sorts of optimization may be performed by the very best C compilers. This will be
very difficult to fix, because of the restrictions of the C language.

FGHC procedures processed by our sequentializer may have several output parameters.
It thus would be difficult and expensive in the general case to return all the output param-
eters in the C function result — the parameters would have to be encapsulated in a single
structure to be returned. We chose to implement multiple output parameters by passing
output parameters “by reference,” using C pointer expressions. Unfortunately, the potential
aliasing this introduces inhibits the C compiler from performing some optimizations. By
way of comparison, an older version of the cede generator produced C code which passed
input parameters by reference as well, but the combination of more potential aliasing and
extra dereferences made it significantly slower on our benchmarks.

The execution of the gsort FGHC program of Chapter 2, was measured under various
conditions on several systems. The results are displayed in Table 3.1. All measurements
were made on a 20-processor Sequent Symmetry running DYNIX V3.2.0. PDSS is the
high-quality interpreted FGHC system under which the code described in this thesis runs;
the PDSS system emulates parallel scheduling and execution order on a single processor.
Monaco [11] is a research compiler which produces native code executables capable of utiliz-
ing an arbitrary number of the processors of the Symmetry in a shared-memory multitasking
fashion. The sequential ANSI C code generated by our sequentializer was compiled using
GCC 2.2.2 [27], at optimization level 2 but with no other special optimizations. Strand [12]
and JAM Parlog [6] are other emulator-based compilers for FGHC languages — the bench-
mark was slightly different under these implementations to accommodate minor language
differences. The handcrafted C code was written to be as close as possible to the gsort
benchmark algorithm while retaining a natural C style — in particular, parameters were
passed with appropriate types whenever possible. However, a more traditional array-based
Quicksort [18] would be faster.

The benchmark consisted of generating a list of numbers in forward order, and then
using the Quicksort algorithm to sort these numbers into reverse order. This is a worst-case
input to Quicksort, and leads to an O(n?) expected running time. An inspection of the
data indicates that this time complexity was in fact achieved for all systems tested.

As expected, the interpreted PDSS system was much slower than the other systems
tested, although the performance was quite impressive for an interpreted implementation.
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Table 3.1: Performance of Sequentialized and Parallel gsort

implementation | processors | problem size time
PDSS 1 125 1.4s
250 5.2s
500 20.5s
Monaco 1 500 10.5s
4 125 0.20s
250 0.75s
500 2.9s
8 500 1.5s
sequential C 1 125 0.14s
250 0.58s
500 2.2s
Strand 1 512 10.8s
| JAM Parlog 1 512 13.1s
handcrafted C 1 125 0.10s
250 0.40s
500 1.5

The sequential C code seems to be about four times faster than the parallel code on the
benchmark, which accords quite well with what is known of the internals of the Monaco
system. It is conceivable that the Monaco implementation could be made about twice
as fast by better compiler optimization and more careful runtime tuning. As implied by
the performance of the handcrafted C code, it is likely that the C code could be made
twice as fast by source optimization, especially considering that neither C program contains
the obvious self-tail-call optimization (which would require a slight modification to the
sequentialization algorithm so that it would try to “save a call to self for last”). That the
the automatically generated C code is only about 50 percent slower than the handcrafted
C code shows that a lot can be done with even a simple automatic code generator!

3.8 Comparison With Other Work

Our work is perhaps most comparable with that of Chikiyama, who has constructed a trans-
lator from FGHC to C producing code which is concurrently scheduled on a uniprocessor.
In [4], Chikiyama describes and measures his inner loop for an append/3 benchmark similar
to ours.

As mentioned on page 31, our inner loop of append/3 compiles to about 39 machine
instructions. Four of these machine instructions are involved with setting and restoring the
frame pointer, and may be removed by GCC. Of the remaining 35 instructions, eight of
them are devoted to procedure call and return. This yields an inner loop of approximately
27 instructions, which compares well with the 24 instruction loop of Chikiyama. This is
an especially pleasant result since the eight instructions of the procedure prolog and epilog
constitute the full overhead of scheduling and invocation in the program! It would be
very difficult to achieve this sort of low-overhead scheduling and invocation in a concurrent
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implementation.

This system is superficially similar to the jc compiler [13, 14] which translates Janus to C
code. However, jc uses a traditional concurrent logic programming execution model, which
leads to a number of problems. The C code produced for the append benchmark is rather
opaque, and apparently no faster than the code produced by our system. Furthermore, more
complicated benchmarks may suffer significantly from the extra suspensions and reductions
introduced by the jc compilation scheme.

As presented, our system is only able to sequentialize entire programs. This is a larger
granularity than is desired for most real applications. It should be possible to fully-mode and
sequentialize modules, and then call these modules from concurrent FGHC. To accomplish
this, our translator would insert code in the sequentialized module which would check each
runtime variable dereference to be sure the variable was bound, and suspend otherwise.
(Unfortunately, suspension would be difficult, since one would like to avoid preserving the
entire C stack across suspensions. It would probably be best to use the “thread” support
available in most modern operating systems for this.) A module stub would invoke the
sequentialized module, wait for it to complete, and then awaken any suspended invocations
which were hooked to output variables of the module. This mechanism would typically add
about two extra instructions to each input variable reference of the sequentialized module,
but would allow a mixture of sequentialized modules with concurrently scheduled ones in a
real system.

3.9 Summary

The sequentialization work reported here illustrates the practicality of sequentialization as
an optimization technique for FGHC, given some innocuous language restrictions. We have
discussed what it means to sequentialize a program, taken a look at some fundamental
problems in sequentialization of FGHC programs, and noted alternative analyses. We have
suggested a language restriction which makes complete sequentialization straightforward,
and have given an algorithm which will fully sequentialize a fully-moded feedback-free FGHC
program. Finally, we have discussed our implementation of this algorithm as part of a
translator from FGHC to sequential C, and examined the efficiency gain resulting from this
translation.

Overall, we have seen that sequentialization of FGHC programs is both possible and
beneficial given some language restrictions and appropriate program analysis, and that this
technique is a promising one for FGHC' execution.
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Chapter 4

Conclusions And Future Work

4.1 Conclusions

It is common practice in programming language implementation to apply static analysis to
computer programs at compile time, and to use the information derived from this analysis
in producing optimized compiled ocutput. In our case, the analysis consists of mode analysis,
which describes the dataflow of an FGHC program, and sequentialization, which uses the
mode information to produce compiled code optimized for execution on a uniprocessor.

Our mode analysis algorithm is both easily implementable and fairly efficient, and is
suitable for automatically obtaining the modes of most simple FGHC' programs. However,
its principal defect is that it is unsafe, which is a result of the fact that it is incomplete.
A complete mode analysis algorithm, such as that proposed by Ueda and Morita, would
provide an axiomatic definition of the language “fully-moded FGHC,” a language which is
a strict subset of FGHC, but with about the same expressive power.

Our sequentialization algorithm is a simple topological sort with cycle detection. Nonethe-
less, this algorithm is adequate to sequentialize most fully-moded FGHC programs, and
provides an axiomatic definition of the language “feedback-free fully-moded FGHC,” a lan-
guage which is a strict subset of fully-moded FGHC, but with about the same expressive
power.

This thesis has shown that it is practical to write programs in feedback-free fully-moded
FGHC, and that these programs may be efficiently compiled into high-quality native code
for uniprocessors. This is particularly important in the current environment, in which the
cost /performance ratio of uniprocessor computers is dropping so rapidly that it is often im-
practical to try to exceed the performance of a uniprocessor system with a similarly priced
multiprocessor system; by the time the multiprocessor system is designed and implemented,
the uniprocessor systems in the same price range have far exceeded the maximum theoret-
ical performance of the multiprocessor. This is especially true for medium-grain MIMD
machines, as these tend to make heavy use of off-the-shelf components, and are thus locked
to a lagging point on the price/performance curve of the uniprocessor machines.

One possible way out of this dilemma is to write programs in languages which allow
programming without reference to the number of processors in the underlying architecture,
but languages which nonetheless allow efficient parallel execution on a multiprocessor sys-
tem. In this way, programs can be run on the current cheap, fast uniprocessors, and then
be run without change on parallel machines when the price differential changes or when
high performance is desired regardless of cost. The FGHC family of committed-choice logic
programming languages is of precisely this sort.

However, most past implementations of FGHC have been hampered by very high exe-
cution overheads, which has made FGHC unattractive in comparison with more traditional
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languages for use in uniprocessor environments. Qur work has shown that these over-
heads are not an inherent feature of all FGHC-based languages, and that committed-choice
logic-programming languages are thus a reasonable vehicle for programming in uniprocessor
environments.

We also expect that we will be able to produce sequentialized versions of fully-moded
feedback-free FGHC modules which are callable by more traditional runtime-scheduled
FGHC code. This would allow the granularity of FGHC programs to be increased, while still
retaining the concurrent execution capabilities of the language. Such code might be a very
attractive alternative to fine-grained FGHC and to traditional non-concurrent languages in
coarse-grained parallel processing environments such as that of the Sequent Symmetry.

4.2 Future Work

Much work remains to be done. The whole problem of fully-moding FGHC programs in a
complete and safe way has yet to be solved. The moding proposal of Ueda and Morita should
be directly implemented, in order to understand the practical aspects of their technique.
This implementation is made difficult by the incomplete explanations of their technique in
the literature, but is important enough that it should be attempted nonetheless.

The more general case of sequentialization of incompletely-moded FGHC programs
in the presence of feedback has been thoroughly studied by King and Soper [17]. While
their work shows great promise in solving this more general problem, the inability of the
techniques proposed therein to fully sequentialize many FGHC programs makes it somewhat
difficult to exploit the sequentialization that is obtained. Nonetheless, their analysis is
clearly an important step in improving the performance of existing FGHC code.

The strong connection between fully-moded feedback-free FGHC and strict functional
languages needs to be further explored. It is entirely likely that this restricted form of
FGHC is isomorphic to some some strict functional language, in which case one could
explore both the relationship in compilation techniques between the two languages and the
possibility of source-to-source translation of fully-moded feedback-free FGHC into one of
these languages.

The analysis and compilation of concurrent logic programming languages has come a
long way since the introduction of these languages just a few years ago. This thesis has
attempted to advance the state of this art just a little bit further. In this, the author
believes and hopes he has succeeded.
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Appendix A

C Code Generated For append Benchmark

#include "fghc.h"
extern void proc_append_3( object_t *p_param_O,

object_t *p_param_1, cbject_t **p_param_2 );

void proc_append_3( object_t *p_param_0, object_t *p_param_1,
object_t **p_param_2 ) {

/%
pushl Jebp ; allocate stack frame --
movl }esp,lebp ; gcc can omit
subl $4,)esp
pushl Jedi ; callee saves
pushl Jesi
pushl %ebx

*/
object_t ¥p_var.4;
object_t *p_var_3;
object.t *p_au_tmp_1;
object_t *p_au_tmp_0;
object_t *p_local_4;

/*
movl 8(%ebp),%edx ; param O in edx
mov] 12(%ebp),%ecx ; param 1 in ecx
movl 16(/ebp),’esi ; param 2 in esi
movl (Yedx),%eax ; got param 0 type
cmpl $34,%eax ; nil case (should be 2nd)
je L34
cmpl $48,%eax ; pair case
je L35
jmp L21

*/
switch( p_param_0->type } {
case NIL:

/* clause 1 */
/*
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L34:

movl %ecx, (Yesi) ; save result
*/
(*p_param_2) = p_param_i;
/*
jmp L32 ; and return
*/
return;
abort();
case PAIR:
/*
L35:
movl 4(%edx),%ebx ; car of param 0 in ebx
*/
p.var_4 = p_param_O->value.pair.left; /+ XXX */
p.var_3 = p_param_0->value.pair.right; /* XXX */
/* clause 2 */
/*
leal -4(%ebp),%eax
pushl eax ; address of local 4
pushl %ecx ; param 1
pushl 8(%edx) ; cdr of param 0
call _proc_append_3
addl $12,%esp ; pop args
*/
proc_append_3( p_var_3, p_param_i, (&p_local_4) );
/*
movl -4(%ebp),%edx : local 4 in edx
*/
p-au_tmp_1 = p_local_4;
p-au_tmp_0 = p_var_4;
J*
addl $12,_curheap ; allocate a pair in eax
movl _endheap,’edi H destroying edi
cmpl %edi,_curheap
jb L38
call _abort ; should gc here
L38:
movl _curheap,jeax
movl $48, (%eax) ; type is pair
movl %ebx,4(%eax) ; car is car param 0
movl %edx,8(%eax) ; edr is local 4
movl %eax, (%esi) ; save in param 2
*/
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(*p_param_2) =
/*
jmp L32
*/
return;
abort();
default:
p-label_2:
goto p_label_1;
abort();
}
p-label_1:
[*
L41:
call _abort
x/
abort(); /* suspend */
/*
L32:
leal -16(}ebp),lesp
popl Yebx
popl Yesi
popl %edi
leave
ret
*/
}

make_pair( p_au_tmp_0,p_au_tmp_1 );

; return

; undo frame
; restore regs

; get out
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