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ABSTRACT

In this paper I propose research in using scenarios to evaluate design
changes in deficiency-driven design. I describe a method of deficiency-
driven design and show how scenarios can be used in that design method. 1
state a question of evaluation in terms of scenarios and examine some plan-
ning techniques that are useful in addressing that question.

Relevant planning techniques include analysis of event dependencies,
abstraction, localization and decision-theoretic planning. I describe work by
several researchers in these areas and discuss issues that arise in applying
that work to design evaluation. In particular I look at the problem of eval-
uating changes in terms of their generality and interactions with previous
changes.




1. INTRODUCTION

To see what scenarios are and how we would use them in design evaluation, let's suppose
that we are designing the security facilities for a computer system. We can describe some
of our design goals in terms of sequences of events that might or might not happen. I will
refer to such sequences of events as "scenarios”.

For instance, in one scenario a user named Abigail is added to the list of users, logs in,
creates a file and changes it. We want users to be able to access their own files in our
artifact, so we will call this a "good scenario.” We hope that our design allows all good
scenarios. On the other hand, another scenario shows how a user might guess someone
else's password. We don't want users to be able to do this so we will call this a "bad
scenario”. We hope that our design prohibits all bad scenarios.

By describing designs in terms of whether or not they allow good and bad scenarios we
have begun to use scenarios in design evaluation. I propose research that would extend
this intuitive beginning and address open issues in the use of scenarios in design
evaluation.

In this paper I focus on how results from planning research can be applied to design

evaluation. Thus I do not compare different methods of design but instead look at how one
particular design method can incorporate different planning techniques. Furthermore I limit
my discussion of planning techniques to those that most readily apply to design evaluation.

I begin by defining scenarios and design evaluation. Next I look at planning techniques
that relate to design evaluation, and finally I discuss issues that arise in applying those
techniques to design evaluation.

In Section 2 I describe a representation for designs and design constraints. I define
scenarios and briefly compare my proposed research to other work with scenarios. Next I
describe a process of deficiency-driven design which uses scenarios as deficiencies.
Finally I state the problem of design evaluation in terms of consequences of design
changes: enabling and disabling scenarios and nonfunctional changes.

In Section 3 I relate the consequences of design changes to planning problems and describe
some results of planning research that can be applied to design evaluation. These results
are analysis of event dependencies, event abstraction hierarchies and expected utility of
plans.

I identify issues in applying planning results to design evaluation in Section 4. The major
issues are agents in the environment, adaptability, regression, likelihood and utility values,
multiple perspectives and artifact costs vs. design costs.

In Section 5 I propose research on the question of evaluation posed at the end of Section 2.
In particular I will investigate the use of abstraction and dependency analysis to address the
issues of adaptability and regression in design evaluation. As part of this research I will
create a program to evaluate design changes in the domain of computer security. For that
reason, examples in this paper will be in the domain of computer security but they are
meant to illustrate planning and design concepts rather than computer security concepts.



2, SCENARIOS IN DESIGN EVALUATION

To understand how scenarios can be used in design evaluation we must first define
scenarios and see how they relate to design. We must also define the design process so that
we can understand the role that evaluation plays in that process.

In the following subsections I'll give
definitions and examples of designs, design

constraints and scenarios, and then will Operator Set
describe the process of deficiency-driven Add User (user)
design. I'll conclude this section by stating the

question of evaluation in terms of enabling and Create (user, file)
disabling scenarios and in terms of relative

evaluation of scenarios. Login (usen
2.1 Designs Read (user, file)
For purposes of this paper, the product of the Read PF(user)
design process is a description of the -
functionality of the artifact. I follow Anderson Write (user, file)
& Fickas [1989] in representing that

functionality as a set of planning operators. Guess Pa:ss:gd (user,

Figure 2.1 shows an example of a design. The
design represents an artifact that allows agents
to add user entries to password files, log in to
the system, use programs to read and write files and so on.

Figure 2.1: A design.

In addition to describing the functionality of the artifact, the design in Figure 2.1 also
describes functionality available in the artifact's environment. Environmental operators
such as "guess password" are important because they allow the computer to reason about
what agents in the environment can do and how they will interact with the artifact.

When the designer changes the design of the artifact by adding or deleting operators she
changes the scenarios that occur with that design. To evaluate those changes she needs
some statement of what scenarios are good or bad. The next two sections address this
issue.

2.2 Constraints

Where a design (or artifact description) is the output of the design process, constraints are
the input. The client who requests a design can tell the designer what he or she wants by
stating constraints on the artifact. In deficiency-driven design with scenarios the client can
state constraints in terms of desired or prohibited states [Anderson and Fickas 1989].

For example, in describing a computer system the client might prohibit states where one
user has access to another user's files. The client might also want users to access their own
files, so states where users can get to their own files are desired states. The client simply
states these as constraints; the designer must determine how the design will satisfy the
constraints. In deciding how best to satisfy the various constraints on the design, the
designer can use scenarios to see how the current design relates to constraints.



2.3 Scenarios

I define a scenario as a sequence of events. Figure 2.2 shows an example of a scenario,
where each box represents an event. An event is an action of some agent. Thus in figure
2.2, the first event is the action of adding Abigail's entry to the password file.

‘We can think of scenarios that show achievement
of prohibited states, one type of constraint
violation, as bad scenarios. Likewise, scenarios

that show achievement of desired states are good O
scenarios. The designer attempts to satisfy as Add User (Abigail)
many constraints as possible by disabling bad O
scenarios and enabling good ones. T I
Login {Abigail)
In my research, scenarios are stated formally; other O
research deals with informal scenarios, where an Create (Abigall, File1)
event is a natural-language description of some
action or state change. For instance, Wexelblat Q
[1987] describes scenarios as "a flexible, informal | wite (Abigail, File1) |

medium for carrying on a high-level conversation O
between groups of designers and users."

Although informal scenarios are useful in human N
communication when, as Wexelblat says,
"customers and designers do not speak the same
language," they are not useful in human-computer
communication because most computer programs have no way of reasoning about natural-
language descriptions of events.

Figure 2.2: A "good" scenarlo.

Since computers can't reason about informal scenarios, some researchers use formal
scenarios so that the computer can assist a human designer or user in analyzing a design or
specification. Benner and Johnson [1989] describe how formal scenarios can be used in
specification and Kaufman [et al, 1989] describes a rule-based system that helps a user
analyze a specification in terms of scenarios that could happen given some initial state.
SXL [Lee and Sluizer 1991] is another system that helps a user find out what scenarios are
possible in some design.

To date, most work in scenarios has focussed on using scenarios to help a human designer
understand a design. Anderson and Fickas [1989] and Fickas Helm [1991], however,
have shown how a computer program can use scenarios to help construct a design. The
research I propose builds on their work and in particular deals with some issues in scenario
evaluation and design evaluation which they don't address.

Now that I've defined constraints, designs and scenarios, I'll discuss the design process
and design evaluation.

2.4 The Design Process: Deficiency-Driven Design

Suppose that a design allows a bad scenario. That scenario is a deficiency in the design
because it shows a violation of a constraint. If the designer discovers such a deficiency she
will change the design in hopes of eliminating the deficiency.

The designer changes the design by adding or deleting operators from the operator set that
represents the functionality of the design. Such changes will have effects on the design that
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Figure 2.3: Deflclency-cirlven design using scenarios.

can be stated in terms of scenarios. For example, if the designer deletes the log in operator
from the design of a computer system then all scenarios where users log in to the system
will be impossible.

Deficiency-driven design is a design method wherein a designer executes (or simulates)
behavior of an artifact and thereby finds problems (deficiencies) in the design. Kant [1985]
describes the basic principles of the method and Kant and Steier [1985] describe its use in
algorithm design.

Deficiencies drive the design because they not only show a problem that needs fixing but
often suggest a soludon. In that sense, deficiencies provide constructive criticism. As a
deficiency, a scenario is constructive criticism because it indicates possible changes to the
design. Given a bad scenario, the designer can delete any operator that the scenario
requires and thus disable the scenario and eliminate the deficiency. Evaluation of the



various changes is still necessary but the scenario helps reduce the number of changes to
consider.

Figure 2.3 shows the basic steps in deficiency-driven design. They are to find deficiencies
and eliminate them.

The designer first finds a set of deficiencies. The deficiencies will be scenarios— either
bad scenarios to disable, or good scenarios to enable. The design might have many known
deficiencies in which case the designer simply selects a set for the current focus, or the
design might have no known deficiencies so that finding a deficiency entails analysis to
discover deficiencies.

The designer next eliminates one or more deficiencies. This step can be further broken
down into three steps—generating fixes, evaluating fixes and selecting a fix.

First, the designer generates fixes— design changes intended to eliminate one or more
deficiencies. Since the generator could produce numerous fixes, including many
superfluous ones, the generator must be constrained.

Such constraints could be in terms of evaluation techniques applied in the generator.
However, the evaluation issues I discuss in this paper arise regardless of whether they are
applied in the generator or in a separate evaluator.

Second, the designer evaluates each alternative in terms of which scenarios it enables or
disables and in terms of the significance of those scenarios. This paper discusses issues
that arise in this step of the design process. In the next section I will look at this step in

detail.

Third, the designer selects a fix based on the evaluation and applies it. In most design
problems making the decision requires subjective judgment and so requires input from a
human user.

The designer has now produced a new design and can repeat the process to further improve
the design.

Each step of this design process requires information and techniques. I plan to focus on
the evaluation step so I will now examine it in more detail.

2.5 The Question of Evaluation

Suppose a design has the deficiencies shown in Figure 2.4. The first deficiency is a
scenario where one user guesses another user's password. In the second deficiency a user
writes down his password and loses it. Another user finds the password. In the third
deficiency a user cannot access her files.



guess password using | cracker finds password | user accesses files
dictionary

Figure 2.4: Three deficiencies, The first and second scenarios are deficiencies if enabled,
the third scenarie is a deficlency if disabled.

Suppose also that the designer (either human or automated) proposes three changes to the
design as shown in Figure 2.5. The first alternative is to assign random passwords to the
system users; the second is to let users choose their own but have the system check them,
and the third is to require a dynamic signature check as part of the log-in procedure.

random passwords checked user-chosen dynamic signatures
passwords

Figure 2.5: Three ways to change the design.

The designer can evaluate design changes by determining whether or not they eliminate
given deficiencies. In this example, the designer can determine whether each of the
changes in Figure 2.5 enables or disables the scenarios shown in Figure 2.4,

The first alternative, assigning random passwords, disables the guess password scenario
because it is difficult to guess random passwords. Assigning random passwords enables
the lost password scenario because users are more likely to have trouble remembering
random strings of characters and are more likely to write them down. For similar reasons,
the first alternative can prevent access to files because a user is likely to forget a random
password and not be able to log in.

The second alternative, checking user-chosen passwords, also disables the guess password
scenario, but does not enable the lost password or the forgotten password scenarios.

Finally, the third alternative, the dynamic signature check, disables the guess password
scenarios but does not enable the second and third deficiencies. In fact, users are more
likely to forget a user-chosen password than they are to "forget" their signature. However,
this alternative requires expensive hardware that the other two choices do not.
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Figure 2.6 summarizes the evaluation example outlined in the preceding paragraphs. In
this example, the random password change causes deficiencies that the other two
alternatives do not, and the dynamic signature equipment is much more expensive. While a
human designer would rely on additional information, this evaluation distinguishes
between the choices and provides useful evaluation information by relating design changes
to scenarios and thus to constraints.

Generalizing this example, we see two questions for evaluation using scenarios: Which
scenarios are enabled or disabled by a design change? Which scenarios are more expensive
or more likely? The second question arises because the designer might not be able to
eliminate all deficiencies and so will want to leave enabled the scenarios which do the least
harm or are the least likely, and will want to leave disabled the scenarios which do least
benefit or are least likely.

I propose research that addresses the following question:



What information and methods are necessary for a program to evaluate design changes in
terms of what scenarios they enable or disable, and in terms of the cost, benefit and
likelihood of scenarios?

As a first step to answering this question I've looked at the literature of related fields.
Since deficiencies are scenarios or sequences of events I've studied the planning literature
and have found useful results. I'll now describe why the planning literature is relevant and
what it has to offer in answering my design evaluation question.

3. USEFUL RESULTS FROM PLANNING

I concluded the previous section by stating the question of
evaluation in terms of enabling and disabling scenarios and

in terms of nonfunctional changes. In this secdonI'lllock § = = ;

at what planning research offers to address that question. 'Add User w/ Random

A typical problem in planning is to find a plan that achieves

a specified goal. An initial state and a set of actions or

operators are also given. Operators are defined in terms of
arguments, preconditions and effects. The complete plan i Password (Basil)

a sequence of operators where every operator has all of its

preconditions satisfied and the final state meets the : :
requirements stated in the goal.
Since a scenario is a sequence of events, it can be :
considered a plan. The designer can represent the scenario
formally as a sequence of operators and can reason about
whether various changes to the plan will disable a complete
plan or enable an incomplete one.

In the following sections I will state the questions of
enabling and disabling scenarios as problems in adaptive
planning and counterplanning and the problem of
nonfunctional changes as a problem in plan evaluation and

see how planners deal with these problems. T'll Figure 3.1: Breaking a plan.
describe three important concepts that planners use: event dependencies, abstraction and
expected utility of plans.

3.1 Fixing and Breaking Plans

A design change eliminates a deficiency if it enables a good scenario or disables a bad one.
Plan repair in planning research deals with enabling plans, and counterplanning deals with
disabling plans, so we can look for useful techniques for enabling and disabling scenarios
in those areas of planning research.

As an example of counterplanning consider the plan shown in Figure 3.1. One way to
make this plan fail is by realizing that the cracker’s guess password action requires an
easy-to-guess password. By changing the add user operator so that it adds random
passwords, the planner can prevent the guess password operator from succeeding and can
thereby break the plan. A designer can use similar techniques to disable a scenario.
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Figure 3.2: Event dependencies.

As an example of plan repair, consider how the cracker might repair this plan. Rather than
using a dictionary to guess the password, the cracker might find a way of guessing the
password that works for random passwords. For example, the cracker might encrypt all
strings less than eight characters long and compare them to the entries in the password file.
The cracker is repairing the plan or adapting it to new circumstances. A designer can use
similar techniques to enable a scenario.

In this section I'll look at some planners that use counterplanning and plan repair and see
how they use event dependencies and abstraction hierarchies.

Analysis of Event Dependencies

An event depends on some condition if the condition is one of its preconditions. I will
refer to it as a requirer of that condition (or a consumer if it makes the required condition
no longer true). The event that makes a condition true is a producer of that condition.
Figure 3.2 illustrates a producer and a consumer.

A planner can enable a plan by adding a producer that makes some necessary condition
true, or it can disable a plan by adding a consumer (i.e., a deleter). Similarly, it can disable



a plan by deleting a producer or by adding a consumer of some necessary condition (see
Figure 3.3).

Whether or not a new event fixes or breaks a plan depends on whether it produces or
consumes necessary conditions in the plan. Therefore if a planner can effectively reason
about producer/consumer relationships and event dependencies it can evaluate a plan
change as a functional fix. Use of event abstraction hierarchies helps planners reason about
event dependencies and thus helps them evaluate plan changes.

Enable a Plan Disable a Plan
Add a producer. Add a consumer.
Delete a consumer. Delete a producer.

Enable the precondition of a producer.| Enable the precondition of a

consumer.
Disable the precondition of a Disable the precondition of a
consumer. producer.

Figure 3.3: Enabling and disabling plans.
Event Dependencies in PLEXUS

PLEXUS [Alterman 1988] is a planner that adapts plans to new situations. It represents
some dependencies as reason links and uses them to repair plans. Reason links enable
PLEXUS to determine what steps of the plan will be affected by failing steps and thereby
to determine what changes to the plan will enable it.

Figure 3.4 shows some reason links in a plan that shows Abigail gaining access to Basil's
secret information. Suppose that the log in step fails, so that Abigail is unable to log in.
Since a reason link connects the Log In step to the Get PF Entry step, that step will also
fail.

Get User Choose Encrypt Get Compare
Log In Info from Info-Derived Candidate Encrypted Candidate
PF Candidate Password & Password
reason reason reason reason
reason reason
outcome recondition
access to PF

Figure 3.4: Some reason links in a PLEXUS-style plan.

Given a failing step such as this one, PLEXUS has two alternatives: find an alternative plan
to establish the failing step's outcome, or find an alternative to the step that relies on the

10



failing step's outcome. In other words, it can look for alternatives to steps on either end of
the reason link, as shown in Figure 3.5.

Look for an ... look for an

P altenative tothis  **°" - alternative to this = Gett od
9910 | step that produces step that doesn't P"C’Vp -
the same require the failed | " aSSwWor
e -.Q”"e'" outcome.
» LY
-
L3
. L
falled L - . reason
outcome ~ . precondition
access to PF

Figure 3.5: How reason links guide plan repair.

In this example, PLEXUS can find an alternative to Log In or an alternative to Get
Encrypted Password. As an alternative to logging in and reading the password file,
Abigail could try to get access to the file by anonymous FTP. Instead of using password
file information Abigail could use other sources of information to generate and test
passwords. In the section on abstraction I will describe how PLEXUS uses abstraction to
find these alternatives.

Event Dependencies in POLITICS

POLITICS [Carbonell 1981], like PLEXUS, addresses issues in fixing plans. Where
PLEXUS adapts plans to a new situation, POLITICS reasons about how to overcome
active obstruction by another agent. Furthermore, POLITICS also takes the role of the
obstructor and tries to break another agent's plans. Obstructing and overcoming
obstructions to plans is what Carbonell calls counterplanning.

POLITICS must use event dependencies in its counterplanning strategies. For example,
suppose that POLITICS (or a similar hypothetical program) were given the problem of
guessing passwords as stated earlier. Using counterplanning techniques, POLITICS
would find ways for Basil to obstruct Abigail's plans to access Basil's secret information.
One way of doing so is to block some necessary precondition of Abigail's actions.
Preconditions determine an action's dependencies, so POLITICS is thus reasoning about
event dependencies.

Abstraction in Planning

Event dependency analysis is one technique that planners use to fix and break plans.
Another technique is abstraction. In this section I describe four programs that reason about
abstraction. Since they use abstraction they all have some way of ignoring details but their
purpose in doing so, the information that they abstract away and their method of abstraction
differ from one program to the next.
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Abstraction in PLEXUS

PLEXUS [Alterman 1987] uses event abstraction hierarchies to adapt plans to situation
differences. As described earlier, it uses event dependencies to determine what parts of a
plan must change and then uses abstraction to find alternatives to those parts of the plan.

To continue the earlier PLEXUS example, once the planner realizes that it must change
either the Log In step or the Get Encrypted Password step, it uses abstraction to find
alternatives to those steps. Figure 3.6 shows part of an abstraction hierarchy similar to the
ones that PLEXUS uses.

If PLEXUS decides to adapt the Log In step uses abstraction to find another step that
produces the same desired outcome, i.e., access to PF (i.e., access to the password file).
There are many possible abstractions for each plan step, so PLEXUS relies on the
purpose link to help it select the right abstraction. In this case the purpose is to get
access to the password file, so PLEXUS abstracts to Get Access to Password File and
can then specialize to Anonymous FTP of Password File. It must then check to see if

the preconditions of this step hold. If they do not, PLEXUS must search for additional
alternatives.

Test
Candidate
Password

purpose

ba
Get Access
o PF Encrypt Get Systam
and Reasponse
Compare
purpose
sa isa
stap1
Anonymous Encrypt Get Compare
Log In FTP of PF Candidate Encrypted Candidate
Password & Password

Figure 3.6: Parts of a PLEXUS-style abstraction hierarchy.

PLEXUS could also choose to modify later steps in the plan so that the failed step is
unnecessary. It uses the reason links to determine what plan steps those are and then it
abstracts on those steps.

Since the Log In step failed in this example, the access to PF precondition of Get

Encrypted Password doesn't hold. Therefore, PLEXUS abstracts along the purpose
link until it reaches a point where that precondition is abstracted away. It then tries to find a
specialization where the preconditions do hold in the new situation. In this case, it
abstracts to Test Candidate Password where PF access is not necessary and specializes
to Get System Response which does not require access to the password file.
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Abstraction in OPIE

OPIE [Anderson and Farley 1988, 1990] is another planner that uses event abstraction
hierarchies. Given a set of operators, OPIE builds an object hierarchy and an event
hierarchy which it uses during planning. To build the operator hierarchy, OPIE compares
the precondition, add and delete lists of operators. Every pair of operators that share a
common literal will have a commeon ancestor in the operator hierarchy.

During planning OPIE uses two basic constraints: there must be no unproduced conditions
and there must be no abstract operators in the finished plan. In order to avoid an
unproduced condition, OPIE adds an operator to the plan that will produce the condition. It
always adds the most abstract operator possible. By selecting events in this way, OPIE
avoids making unnecessary comrnitrnents that might have to be retracted later. In order to
avoid violating its other constraint— no abstract operators in the finished plan— OPIE
specializes operators as it acquires information that constrains the specialization.

The abstraction hierarchy determines what specializations are possible for a given abstract
operator. In a sense, the abstract event stands in for all possible alternatives that enable the
current plan. Thus abstraction allows the planner to analyze the number and kind of
alternatives available for a given plan slot.

In many ways OPIE's use of abstraction is similar to that of PLEXUS. Both reason about
abstract operators, producer/consumer links (called reason links in PLEXUS) and
decomposing plans into steps.

There are also important differences between the two. Unlike PLEXUS, OPIE generates
abstraction hierarchies. As an adaptive planner, PLEXUS reasons about what changes are
necessary and uses an existing hierarchy but has no technique for automatically
constructing the abstraction hierarchy.

Another difference is that OPIE has no previous concrete plan to reuse, so it does not use
abstraction during the planning process as PLEXUS does. Once an operator is added into
a plan, OPIE will only specialize it. OPIE begins with an abstract operator and specializes
it as more constraints become apparent whereas PLEXUS begins with a concrete operator
and then abstracts and specializes as necessary to cope with situation differences.

Abstraction in ALPINE

Knoblock's approach [Knoblock 1990] to abstraction differs from Anderson's in that it
deletes literals from states as well as from operators. Knoblock calls this reduced-model
abstraction. Knoblock's system ALPINE analyzes a domain in terms of operator
dependencies and automatically partitions literals and operators into abstraction levels.
Literals at the highest abstraction level can not be changed by literals at any lower level.
Knoblock calls this property of abstraction hierarchies ordered monotonicity.

Ordered monotonicity is useful in hierarchical planning because it allows the planner
(which is called PRODIGY/ALPINE) to constrain its search. If there is no solutionto a
problem at a given abstraction level then there is no reason to continue the refinement
because no operators at lower levels will be able to establish the goal. Instead the planner
backtracks to a higher level and selects a different abstract plan to refine.

ALPINE creates the abstraction hierarchy by analyzing interactions between literals. It first

states constraints on which levels each literal can occupy. All effects of an operator must
be at the same level and they must be at the same level or at a higher level than the
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preconditions of that operator. ALPINE represents these constraints in a graph where each
node is a literal and a directed arc represents the constraint on levels.

Next, ALPINE reduces the graph to a directed-acyclic graph (DAG) where the nodes of the
DAG are the strongly-connected components of the original constraint graph. It
topologically sorts the nodes of the DAG to find a partial ordering and then heuristically
adds further constraints to totally order the nodes, which become the abstraction levels of
the hierarchy.

Because ALPINE is used with reduced-model abstraction, the planner ignores all literals at
abstraction levels below the current level, both in operators and in state descriptions.This
distinguishes it from planners that use relaxed-model abstraction, where the planner ignores
less critical preconditions at higher abstraction levels but never ignores literals in state
descriptions. ABSTRIPS [Sacerdoti 1974] was one of the first planners to use relaxed-
model abstraction which is basically a means of ordering goals [Lansky 1992]. Knoblock
shows how reduced-model abstraction avoids the relaxed-model problem of inconsistent
states.

Both ALPINE and OPIE analyze a domain and build an abstraction hierarchy. Although
ALPINE can produce an abstraction hierarchy for a domain, some domains lead to trivial
(one-level) hierarchies. ALPINE can also build problem-specific hierarchies that are more
likely to produce useful hierarchies.

ALPINE and OPIE are designed for two different styles of problem solving. ALPINE
produces abstractions of the entire problem space intended for length-first problem solving
where a problem is solved completely at one level before the problem solver descends to
the next lower level. OPIE is designed for use in least-commitment problem solving where
operators are specialized as constraints become apparent. OPIE might specialize one
operator completely while other operators remain abstract, but ALPINE will not.

There are similarities, however, because like OPIE, ALPINE deletes literals from operators
as it moves up the hierarchy. A problem solver like PRODIGY/ALPINE could avoid
commitment between operators that are indistinguishable at a given level, but this capability
was not implemented in the problem solver described in Knoblock's thesis.

Localization

Localization [Lansky 1987, 1992] uses knowledge of a domain's structure to facilitate a
divide-and-conquer approach to planning. The planner uses information about the structure
of the domain to reason about interactions between subplans. If the domain is properly
structured there will be few interactions between subplans and the complexity of the
problem will be reduced.

Lansky [1992] compares localization to abstraction and concludes that localization is a more
general principle. She argues that relaxed model abstraction is a way of ordering the
selection of subgoals. Localization provides the means to reduce search by ordering
subgoals, but it provides additional search-reduction techniques as well.

Localization reduces search by reducing the size of plans— the planner constructs smaller
regional plans which are less complex than global plans— and by reducing the branching
factor at each node in the search tree— the planner considers only operations in the current
region, which is a subset of the entire domain.
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Lansky's research on GEMPLAN and COLLAGE focuses on how planners can use a
localized domain during planning. Her planners use a more general form of constraint
satisfaction than other planners such as OPIE. Since Lansky shows that localization
subsumes abstraction, it offers a wider set of possibilities.

However, Lansky compares localization to relaxed-model abstraction and doesn't relate it
to the taxonomic abstraction used for OPIE's least-commitment strategy. GEMPLAN can
represent decomposition requirements but doesn't represent specialization requirements as
OPIE does, so use of specialization is one difference between the two planners. However,
adding a specialization constraint to GEMPLAN would be relatively easy so a more
important distinction is OPIE's ability to automatically form abstraction hierarchies and
otherwise analyze a domain.

3.2 Evaluating Plans

We consider a change a plan change a plan repair if it allows an agent to achieve a goal by
exccuting the changed plan. Thus goal achievement is an important form of plan
evaluation. However, a planner cannot rely on goal achievement only. As Hanks [1990]
poigts out, "one could imagine being able to satisfy one's goals, but at an unacceptably
high cost.”

To illustrate the difference between plans that all achieve the same goal, consider the four
plans in Figure 3.7 that Abigail might use to get access to Basil's files.

Abigail tries to log in by giving an arbitrary string as the
Plan A password for Basil's user ID.

Abigail tries to log in as Basil 10,000 times, each time
Plan B giving a different string as the password. )

Abigail tells the system administrator that she will pay
Plan C $10,000 for access to Basil's files.

Abigail encrypts each entry in a large dictionary and
Plan D compares the encrypted word with Basil's encrypted

password.

Figure 3.7 Abigail's four plans.

Plan A is almost certain to fail and thus is very unreliable. Plan B, while more reliable,
requires a prohibitive amount of time. Plan C is very expensive, perhaps prohibitively, for
Abigail in monetary costs. Plan D is more reliable than Plan A (if Basil is a typical user,
Plan D's chances of success are quite good), takes less time than Plan B and is less
expensive than Plan C.

If we evaluate these plans only in terms of goal achievement (with access the only goal)
they are equivalent. However, they are not equivalent when evaluated with respect to other
criteria such as monetary cost and time. One possible way around this problem is to add
additional goals, €.g. for saving money, but then we still must deal with the problems of
conflicting goals and partial satisfaction of goals.

Instead of evaluating only in terms of goal achievement or adding secondary goals the
planner can apply the concept of expected utility. Recently planning researchers have
applied expected utility and other decision theory concepts to planning. Some planners
reason about expected utility explicitly and in quantitative terms. Others (especially earlier
planning researchers) reason about it implicitly or in qualitative terms.
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Before looking at how different planners reason about the expected utility of plans, I give
the definition of expected utility (as stated by Haddawy and Hanks [1990]):

EU(A) =3 P(slA,Sg)U(s)

In this formula, A is an action (or a plan), Sg is a given initial state, P(sIA,Sp) is the
probability that A will lead from Sy to state s, and U(s) is the utility of state s.

If a planner has numeric values for the probability and utility it can easily calculate the
expected utility. However, obtaining numeric values is difficult and sometimes impossible.
Some researchers have focused on methods for calculating the numeric values and some
have taken a more qualitative and/or implicit approach to expected utility.

We can reason qualitatively about the expected utility of Abigail's four plans in the
following way: Plan A has a low value of P(slA,Sp), Plans B and C have low values of
U(s) (although that depends on how the agent values time and money, of course), and Plan
D has fairly high values for both P(slA,Sg) and U(s).

By generalizing the preceding qualitative example, we see two ways to simplify calculation
of expected utility. We can assume that both have the same probability of succeeding, and
look for the plan that lead to a state with the highest utility value. Or, we can assume that
we want to achieve a certain state (a goal) and look for the plan that is most likely to
succeed.

In the following subsections I show how different planners use expected utility of plans,
either implicitly, qualitatively or quantitatively.

Implicit Expected Utility

CHEF [Hammond 1989] uses two kinds of evaluation: evaluation of retrieved plans and
evaluation of plan changes. To evaluate retrieved plans it uses a value hierarchy. The
value hierarchy allows CHEF to compare the utility of various states. Rather than giving
numeric utility values, it uses the relative positions of states in the value hierarchy to
determine the relative utilities of the states. Thus it could use its goal hierarchy to decide
whether to spend a lot of money as in Plan C or try to use Plan D. CHEF could not use its
goal hierarchy to decide whether the systems administrator could be bribed (Plan C)
because it reasons about only one agent.

In evaluating plan repair, CHEF uses various domain-dependent and domain-independent
heuristics. For example, it prefers plans with fewer steps to plans with more steps, all else
being equal. Thus if each log-in attempt were a step in a plan it would prefer Plan C
(bribing the system administrator) over Plan B (trying to log in with 10,000 different
passwords).

Although CHEF considers the fact that some plans will fail, it assumes that a given plan
will always succeed or always fail. Thus it simplifies the expected utility by assuming that
P(slA,Sp) will always be Q0 or 1.

POLITICS [Carbonell 1981] reasons about utility of goals and about the relative likelihood

of success for any plan to reach a goal. Unlike CHEF, which reasons about goals of a
single agent, POLITICS reasons about the goals of multiple agents.
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In the counterplanning model, one agent uses its knowledge of the relative importance
(utility) of another agent's goals in order to influence that other agent's behavior. An agent
also considers the importance of its own counterplanning goals to decide if the cost of a
counterplan outweighs the benefit. Given Plan C, POLITICS would use its representation
of relative goal values to determine whether Plan C would succeed, and if so, whether it
would be acceptable to Abigail.

Like Carbonell, Wilensky [1983] describes the use of expected utility without actually
mentioning the term or calculating numerical probabilities. Wilensky does talk about
assigning numerical values to goals, but only discusses likelihood in general terms.
Wilensky also discusses partial satisfaction of goals.

Hanks

Unlike earlier researchers in planning, Hanks looks at how numerical values for expected
utility can be used in planning. He addressed probability of success for plans in his
temporal projection work [Hanks 1990] and more recent work addresses utility models
[Haddawy and Hanks 1990].

In particular, Haddawy and Hanks investigate the relationship of symbolic goals and
numeric utility models and how to combine them. They state the i importance of symbolic
goals in planning and state how to create utility functions such that ’ choosing the plan that
maximizes the probability of goal achievement maximizes goal utility.”

Wellman

Wellman [1990] addresses the problem of tradeoff formulation. Tradeoff formulation
involves reducing a problem to a choice among a small set of plans where the decision
cannot be resolved by qualitative means. Wellman's system, SUDO-PLANNER uses
qualitative probabilistic and preference information to find that small set of plans among the
many plans possible in a combinatorially large set of plans. It compares plans and rejects
those that can be ruled out by qualitative evaluation. Thus SUDQ-PLANNER addresses
the problem of qualitative evaluation of plans.

Wellman advocates the use of qualitative probabilistic networks because of the difficulty in
constructing decision models. He argues that qualitative models are more robust and
modular than quantitative models because they are not based on precise relationships that
might change from one situation to the next. Instead they capture relevant causal
information that does not vary.

forgotten
password

random
password

guessed
password

Figure 3.8: A qualitative probabilistic network (QPN).
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As an example in the security domain, it would be difficult to construct a probabilistic
model to calculate the probability that a user would forget his or her password. However,
one can represent the causal link between random passwords and forgetting a password in
a qualitative net as shown in Figure 3.8. In QPNs such as Figure 3.8, rectangular nodes
represent decisions; the agent can determine their value. Ovals represent values that are not
directly influenced by the agent and hexagonal nodes (v nodes) are utility or value nodes.
Thus the overall goal is to increase the value of the v nodes.

The net in Figure 3.8 shows that users are more likely to forget random passwords and
crackers are less likely to guess random passwords. This information is modular in the
sense that it can be used in many different situations; a quantitative version of this same net
would be valid only for a certain user in a certain situation.

Wellman defines a probabilistic base for QPNs and the transformations performed on them.
The interpretation for the node from random password to forgotten password is that,
all else being equal, a random password makes forgetting the password more likely. The
‘all else being equal’ condition is important because it allows the qualitative comparison to
be stated in simpler terms.

random

password +

Figure 3.9: A reduced QPN.

Wellman describes how a qualitative probabilistic network such as the one shown in Figure
3.8 can be simplified by a set of transformations. For instance, sequential arcs such as the
ones from random password to forgotten password and from forgotten password
to v can be reduced by a transformation that replaces the arcs and the node with the product
of the signs. Thus the top two arcs in Figure 3.8 can be reduced to the single negative arc
in Figure 3.9 and the bottom two in Figure 3.8 can be reduced to the single positive arc in
Figure 3.9.

In Wellman's terms, the situation in Figure 3.9 is a tradeoff because the decision cannot be
qualitatively resolved. In other words, it is impossible to say whether it is better to have
random passwords based only on the information in the QPN. Wellman's system is
designed to analyze a situation and find the tradeoffs involved.

3.3 Contributions from Planning

I've described the following results from planning research:

Techniques for analyzing event dependencies allow a planner to determine how adding and
deleting events will change a plan. All planners use some analysis of dependencies but
repair and counterplanning results are especially useful for deciding whether a change will
Tepair or break a plan.

Event abstraction hierarchies are important in planning, especially in adaptive planning and
least-commitment planning. Some programs, such as OPIE and ALPINE, generate their
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own hierarchies and others rely on previously generated hierarchies. Localization is a more
general concept that subsumes abstraction and can be used to make a set of plans
consistent.

Expected utility is a decision theory concept that has recently been applied to planning. It
helps the designer compare plans based on their likelihood of success and their cost or
benefit. Planning researchers have ways of reasoning about the likelihood and utility of
plans. Some planners reason about expected utility implicitly and others explicitly, and
some use numeric values and others use qualitative values.

So far I have only discussed how these techniques are used in planning problems.
Although they can also be used in design evaluation with scenarios, some issues arise in
design applications that do not arise in planning. In the next section I will discuss issues in
using these techniques for design evaluation with scenarios.

4. APPLICATION TO DESIGN EVALUATION

In this part of the paper I will discuss how the planning results described in Section 3 can
be applied to design. Since a planner changes only the plan but the designer changes the
operator set, planners do not address all the issues that designers do. In this section I
discuss some issues that emerge in using planning techniques in design evaluation.

4.1 Enabling and Disabling Scenarios in Design

When a designer eliminates a deficiency she is essentially fixing or breaking a plan and so
can use plan analysis techniques to decide the best design change. To do so, she must map
plan changes to design changes.

Figure 4.1 shows how plan changes map to design changes. If deleting an operator breaks
a plan, then the designer can eliminate the corresponding deficiency by deleting the operator
from the operator set and thus forcing its deletion from the plan. Similarly, if adding an
operator fixes a plan then adding the operator to the operator set will eliminate the
deficiency.

However, things are not always so simple. For example, suppose that Abigail finds out
Basil's password because Basil told it to her. The designer cannot simply eliminate the
operator tell password because it would be extremely difficult to prevent Basil from
telling his password to anyone. Contrast that change with a change that prevents the
system from displaying passwords on the screen. In the second case we are changing the
functionality of the artifact, which is under the control of the designer. Eliminating the
operator display password is a reasonable design change whereas eliminating tell
password simply makes the model of the environment inaccurate. This example
illustrates the problem of representing and reasoning about agents in the environment.

Agents in the Environment

As shown in the previous example, sometimes an operator cannot be eliminated from the
operator set because the operator represents a feature of the artifact environment that is
difficult or impossible to change. Deleting the operator would thus make the model of the
environment inaccurate, rather than actually eliminating the deficiency. The designer
cannot assume that agents will not use some functionality in the environment.

Anderson and Fickas [1989] describe a system that prevents the designer from making
changes that make the model of the environment inaccurate by using two operator sets, one
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POLITICS uses a model of agent goals in planning and counterplanning. Although
constructing a detailed model of a person's goals is impossible, a simplified model of goal
(such as the ones that POLITICS has for countries) is still useful. For instance, some
computer security systems rely on the fact that people don't want to have privileges
revoked, pay fines, spend time in jail, and so on.

POLITICS has a model of agent goals but it is basically a planning system and does not
have the ability to decide how to change an operator set. A design evaluation program that
addresses the problem of agents in the environment would need to be able to change
operators in a way that appropriately influences agents' choices. Rather than deleting
operators from the environment, or assuming that agents will use a certain operator in the
artifact, the program would use a model of agent goals to change operators in a way that
satisfies design constraints.

The designer can attempt to make changes that influence agents' choices but must realize
that some agents will attempt to circumvent those changes. The designer must consider
ways in which agents will adapt their plans in order to meet their goals. The next section
describes the issue of adaptability and its ramifications in design evaluation.

Adaptability

Suppose that Abigail logs in to a system using her own log-in ID and then accesses the
password file to get information that helps her guess Basil's password. One way of
disabling this scenario, and thereby eliminating a deficiency, is to invalidate Abigail's log-
in ID. However, the problem remains that other users could perform the same sequence,
and Abigail could use other sources of information to guess Basil's password. In other
words, the bad scenario can be adapted to design changes meant to disable it and thus
become a new deficiency.

Given such a problem, the designer should make design changes as comprehensive as
possible. Determining which changes are more comprehensive is the issue of adaptability.
A designer should change the design so that bad scenarios are difficult or impossible and
should also change the design so that good scenarios are robust.

Thus, when comparing two design changes, one criteria is how comprehensive the change
is. The designer can use abstraction to evaluate changes in this way. Rather than break a
concrete bad scenario, which might be easily adapted to become a new deficiency, the
designer can look for changes that break an abstract one. Such a change would also break
many adaptations of the original plan.

Figure 4.2 shows three scenarios where Abigail uses information from the password file to
guess Basil's password. There are various design changes which will break one of these
scenarios without breaking another.

For instance, changing the password selection action from user selection to random
selection will disable the guess password action that uses a dictionary to find out the user's
password. However, it still allows other ways of using the password file information to
guess a password. The cracker can encrypt every password up to a certain length and
compare the encrypted passwords to the password file ones. Abstraction hierarchies such
as the one that OPIE uses allow a designer both to find a more abstract version of the
scenario and to find a change that breaks that more abstract scenario.
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Operator Set
| Add User (user) |

I Login (user) |

Guess Password (userd,
user2)

guess password using
password file

3 |

guess guess random guess checked
name-derived password password
password

Preconditions: usert knows
information from the PF
Effects: user1 knows user2's

password

Figure 4.2: Disabling an abstract operator (by deleting the Read PF
operator) disables all scenarios which use specialization of that
abstract operator.

OPIE's taxonomic abstraction works well for addressing this issue. We can also consider
how one might apply other abstraction techniques to this problem. For instance, one could
imagine applying a form of relaxed-model abstraction by claiming that disabling a more
critical precondition is a better fix for a bad plan than disabling another precondition. The
problem with using criticality to address adaptability is that it might tell the designer
something about how hard a precondition is to establish but it tells nothing about which
alternate operators an agent might use.

Although OPIE's abstraction hierarchy appears promising, some issues in applying it to
this new problem remain open. OPIE abstracts operators in storing macros but does not
have the means of analyzing abstraction in the way required to address the issue of
adaptability. It has no way of selecting among alternative abstractions and the research
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results for OPIE do not include analysis of which scenarios will actually be disabled or
enabled and which is the best abstraction to use.

Similarly, PLEXUS uses techniques for reasoning about which abstractions and
specializations will enable a plan but it is concerned with only a single plan, not a set of
scenarios, and it is concerned only with enabling plans, not disabling them. The designer
can use abstraction, as used in PLEXUS and OPIE, to deal with the question of
adaptability but new techniques will have to be developed because design problems are
concerned with more than one scenario and with disabling plans as well as enabling them.

The designer anticipates and avoids future problems by looking at more abstract scenarios
and then choosing the most comprehensive fix possible. She must also avoid past
problems by ensuring that design changes don't undo early changes and cause old
problems to reappear. This is the issue of regression.

Regression

For instance, suppose that the designer wants to eliminate a bad scenario and so changes
the passwords in a system from user-chosen ones to random ones. A new deficiency
arises wherein a user forgets his password and cannot access files so the designer must
change the design again. One possible change would be to change the passwords to user-
selected passwords, which are easier to remember. However, the designer would simply
be undoing her earlier change. In this short example the regression is obvious but in a
complete design the problem of determining whether a change undoes an earlier one is a
difficult one.

By recording the design derivation the designer can avoid regression but doing so
efficiently is difficult. Reason maintenance systems (RMS) [McDermott 1991} provide
one way of determining the effects of a change in terms of previously discovered
dependencies. When analyzing a deficiency, the designer can record the dependencies of
that deficiency by using the reason maintenance system. When the designer is
contemplating a design change later in the design, she can query the RMS to see if the
proposed change enables known deficiencies.

An RMS could help with the problem of regression but as Lansky [1992] points out it
requires expensive updating with each change. She notes that localization provides a less
expensive, albeit heuristic, approach to representing "what effects what." Although
localization offers a promising general approach to this problem, it does not include
automated domain analysis as ALPINE does.

Automatic partitioning like ALPINE's is useful for the type of analysis required for
determining the effect of operator changes on scenarios. Using an abstraction hierarchy
like ALPINE's is another way that the designer could reason about which scenarios a
design change might affect.

Suppose that an operator decides to delete an operator at level n in the hierarchy. There is
no way that that operator could affect plans whose goals are at lower levels in the hierarchy
because lower-level goals do not depend on higher-level operators. Furthermore, there is
no way that adding an operator to a higher level could enable lower-level plans for the same
reason. While it is fairly easy to tell if deleting an operator will disable a plan, it is more
difficult to tell whether adding one will enable it so the abstraction hierarchy would be
useful for the problem of regression.
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The designer would not want to use exactly the same approach as ALPINE, however.
Rather than creating a hierarchy she would use the DAG because it will indicate that a plan
is independent of an operator change in more cases than the hierarchy would, as illustrated
in Figure 4.3. In this figure, the DAG shows that plans in A are independent of changes to
B and vice versa, whereas either of the possibie hierarchies shows only one of these

properties.

& ©® ¢
® &

Figure 4.3: Independence of A and B relative to each other Is shown In the DAG but not the
hierarchies.

ALPINE provides useful techniques for the problem of regression but localization provides
a more comprehensive framework and offers additional possibilities for partitioning
operator sets. However, ALPINE relies on problem-specific abstraction hierarchies when
domain hierarchies are trivial which is not an option in design. The design problem is
essentially to create the domain (in ALPINE's terms) so it is not possible to reason about
hierarchies only in terms of a single planning problem.

Knoblock describes the use of abstraction hierarchies in planning and proves properties of
the hierarchies that are useful for planning hierarchies. In a design problem, instead of
knowing the effects of adding an operator to a plan, the designer must know the effects of
adding an operator to a level of the hierarchy. I have argued informally in this paper that
the abstraction hierarchy will provide useful information about the effects of adding and
deleting operators but further analysis and proofs must be done before hierarchies like
ALPINE's can be used in scenario-based design evaluation.,

4.2 Evaluating Scenarios in Design

It is important to know what prohibited and desired states are accessible in a design, but it
is also important to know how easily those states can be reached. A scenario shows that a
certain state can be reached but to know the significance of that scenario and a design
change that enables or disables it we must determine the expected utility of that scenario.

Consider again Abigail's four plans for getting access to Basil's files, as shown in Figure
4.4. From Abigail's perspective, the expected utility of Plan D is highest. Thus, from the
designer’s point of view, a design change which eliminates Plan D but not Plan C is better
than a design change that eliminates Plan C but not Plan D.
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Abigail tries to log in by giving an arbitrary string as the
Plan A password for Basil's user ID.

Abigail tries to log in as Basil 10,000 times, each time
Plan B giving a different string as the password.

Abigail tells the system administrator that she will pay
Plan C $10,000 for access to Basil's files.

Abigail encrypts each entry in a large dictionary and
Plan D compares the encrypted word with Basil's encrypted

password.

Figure 4.4 Ablgall's four plans (again).

Thus we can see that the expected utility of plans is important in evaluating design changes,
but there are some issues in applying expected utility of plans to design that don't arise in
other applications of the concept.

Likelihood and Utility Values

Suppose a designer is contemplating the question of whether to allow users to choose their
own passwords or be assigned random passwords by the system. On the one hand, user-
chosen passwords are easier to guess, but on the other hand random passwords are
difficult to remember.

Given such a choice, the designer must determine which of two scenarios is more
important: the scenario where Abigail guesses Basil's user-chosen password, or the
scenario where Basil forgets his random password and so cannot log in. Knowing the
expected utility of the plans can help the designer choose between the alternatives, but it is
often difficult to calculate absolute expected utilities. In general, the designer faces the
problem of determining likelihood and utility values.

If the designer is comparing similar scenarios, qualitative or relative probabilities and
utilities are easier to determine and might provide sufficient information for the decision. In
planning problems this is often the case because the choice is not between two completely
different plans but between two different steps of similar plans. However, in design
problems, a designer might need to compare two scenarios that have few, if any, steps in
common,

Furthermore, because of the subjective judgment required in design (and often in planning
as well) we cannot expected an automated system to fully evaluate the alternatives, but we
do expect it to provide as much information to the human designer as possible. Because of
the difficulty of assigning numeric probability and utility values much of the evaluation
must be based on qualitative reasoning about expected utility.

Multiple Perspectives: Who Gets the Check?

In discussing Abigail's four plans I noted that the designer would like to minimize the
expected utility of Abigail's cracking plans. In other words, what's bad for Abigail's
cracking plans is (usually) good for the system and thus for the system designer.

However, things are not always that simple. Suppose that the designer must choose
between two design changes where one change makes things easier for the system
administrator and another makes things easier for users. The designer must consider the
utility of the system from the perspective of the various users and stakeholders in the
system, and must somehow resolve the conflicts that arise.
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Robinson [1990] has studied conflict detection and resolution and applied decision-
theoretic and negotiation techniques to the problem. While I do not propose to extend his
work, I do note the importance of multiple perspectives and of evaluating design changes in
a way that facilitates interaction with a system that resolves conflicts.

Many planning systems work from the perspective of a single agent and thus do not
represent the information that Robinson's system requires. It is not sufficient for a
designer to calculate the expected utility of a plan, she must calculate the expected utility of
the plan from the perspective of each important agent or stakeholder and then resolve
conflicts with the help of a system like Robinson's.

Artifact Costs vs. Plan Costs

When a planner calculates the expected utility of a plan it can analyze the utility of the plan
in terms of the cost in expended resources of the actions, and in terms of the benefits of
reaching the goal. For instance, in gaining access to Basil's files Abigail can compute the
time and money spent and compare it to whatever benefit she gets from access to secret
information.

Now consider the changes that a designer might make to prevent users from accessing
others' files without permission. Part of the utility of such a change accrues from changes
in plan utility, i.e., some high-cost plans are disabled and some high-utility plans are still
enabled. However, changes in the cost of the artifact affect the utility of the design change
even if they don't affect the utility of the scenarios involved.

For instance, suppose that the designer decides to install a machine to check dynamic
signatures before allowing users access to files. Such a change disables some illegitimate
access scenarios and leaves most legitimate access scenarios enabled. The expected utility
of these plans might look good compared to another design change, such as assigning
random passwords to users. However, the designer must also take into account the high
cost of the hardware that the system requires to test dynamic signatures.

Generally, in evaluating design changes the designer must reconcile changes in expected
utility of plans and in costs and utility of the artifact itself.

5. RESEARCH PROPOSAL

I plan to focus on the issues of adaptability and regression. In order to apply the planning
techniques described in this paper to these issues I will need to extend the work on
abstraction and dependency analysis.

In particular I will analyze the use of dependency-DAGs (similar to ALPINE's abstraction
hierarchies) in reasoning about regression. I will state as heuristics or prove properties of
dependency DAGs that allow the designer to determine which scenarios might be enabled
or disabled by a given design change.

I will also analyze the use of abstraction hierarchies, such as the ones that OPIE generates,
in terms of using them to address the issue of adaptability. Rather than using them only to
enable plans I will consider how they can be used to disable them, and rather than
reasoning about a single plan I will consider how they can be used to reason about sets of
plans.

Using techniques developed in my research together with those described in this paper I
will create a program to evaluate design changes as described in Section 2.5. T will

26



evaluate the techniques by comparing the program’s work to that of human designers by
using the program to rationalize existing designs.

Although the research results will be domain-independent, evaluation by rationalization will
require the program to work in a domain so that its evaluations can be compared with a
person's evaluation. I plan to use the domain of computer security.

An advantage to using the domain of computer security is that it is a "real” domain.
Computer security is a research domain in its own right and the question of how to design
the best security system for a particular set of circumstances is still an open one. There are
many examples of security design (or lack thereof) available and virtually every computer
installation requires some sort of security analysis so rational reconstruction is a viable
approach to evaluation.

6. SUMMARY

One way to help a designer evaluate design changes is to show her the consequences of
design changes in terms of scenarios. A computer program can indicate which scenarios
are enabled or disabled and whether the change violates or helps satisfy a constraint.
Furthermore, a computer program can also help a designer decide which scenarios are more
important by helping the designer determine the expected utility of scenarios.

I've discussed how planning and plan transformation relates to design and stated some
planning results that apply to design evaluation with scenarios. These results are:
Analysis of Event Dependencies
Event Abstraction Hierarchies
Expected Utility of Plans

After discussing relevant work in planning I examined issues that arise in applying
planning results to design. These issues are:

Agents in the Environment
Adaptability

Regression

Relative Evaluation

Multiple Perspectives
Artifact Costs vs. Plan Costs

I plan to focus on the issues of adaptability and regression and will explore the use of

dependency analysis and abstraction to evaluate design changes in terms of their generality
and their interaction with earlier design changes.
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