Working Within the FGCS National Project
E. Tick

CIS-TR-92-20
October 1992

Abstract

The Japanese Fifth Generation Computer Systems (FGCS) extending from
1982-1992 has been enshrouded in hype since its inception. The national project
made bold promises in the fields of artifical intelligence and computer engineering,
and these goals were amplified by the media and overseas researchers. Now that the
dust is settling, it is time to take a good long look at the project, its accomplish-
ments, and failures. This essay is a personal account of my experiences working
within, and around, the FGCS project at the Institute for New Generation Com-
puter Technology (ICOT) and elsewhere. I focus on the development of hard and
soft technologies, as well as human infrastructure.

This article will appear in the Communications of the ACM, March 1993.

DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE
UNIVERSITY OF QOREGON






“It is not very often that Westerners get to see the Japanese just as they are. The
difficulty we have when we look at Japan — the layers-of-the-onion problem -~ can be
so frustrating that we tend to raise our own screen of assumptions and expectations, or
we content ourselves with images of the Japanese as they would like to be seen. If you
live in Japan, you learn to value moments of clarity — times when you feel as if you'd
walked into a room where someone is talking to himself and doesn’t know you’re there.”
Letter from Japan

P. Smith 71]

1 Introduction

This article summarizes my views of the Fifth Generation Computer Systems (FGCS)
project conducted at [COT over the period of 1982-1992. My participation is somewhat
unique because I was both an ICOT visitor in February 1987 and then a recipient of
the first NSF-ICOT Visitors Program grant, from September 1987-September 1988.
Ior that year I conducted basic research in the laboratory responsible for developing
parallel inference multiprocessors (PIMs). In 1988 I joined the University of Tokyo, in
the Research Center for Advanced Science and Technology (RCAST), with a visiting
chair in Information Science donated by the CSK Corp. Thus over the period of
1987-1989 I had an “insider’s view” of the FGCS Project. Furthermore, for the past
three years, at the University of Oregon, I have continued to collaborate with ICOT
researchers in the PIM groups.

Summaries of the FGCS Project successes and failures by most foreign researchers
tend to categorize the abstract vision (of knowledge engineering and a focus on logic
programming) as a great success and the lack of commercially competitive hardware and
software as the main failure. I would like to place these generalizations in the specific
context of my personal involvement with the project: my own corner of things, and
my assessment of parallel inference machine (PIM) research as a whole. Furthermore,
I would like to comment on more subtle successes and failures that fewer observers had
a chance to evaluate. These results involve the training of a generation of computer
scientists,

This article is organized as follows. In Section 2, I summarize my own research expe-
rience at ICOT. This leads to Section 3, where technology contributions are addressed:
did ICOT take the “correct” road to next generation computer development? In Sec-
tion 4, I switch my view to ICOT’s influences on the development of human resources
within Japan. Much of the analysis and conclusions drawn here are based on discus-
sions with Japanese engineers and managers in both industry and ICOT. Conclusions
are summarized in Section 5.



2 “Stranger in a Strange Land”

I had applied for the NSF-ICOT Visitor’s Program grant with the goal of both ex-
tending my thesis research (evaluating the memory-referencing characteristics of high-
performance implementations of Prolog [78]) as a post-doc, and living in Tokyo. Both
of these goals were equally important, so the NSF-ICOT grant was ideal. Prior to
graduating, I had studied Japanese at Stanford for two years, in addition to making
two short visits to Tokyo. Strangely, rather than being interested in that vision of
rural Japan professed by travel posters and paperbacks, my interest was limited almost
exclusively to Tokyo, the farthest one can be from the “real” Japan, and still be on
Japanese soil. Yet to me, this was the “real” Japan: the vitality of a sensory overload
of sound trucks, a myriad of ever-changing consumer products, ubiquitous vending
machines, electronics supermarkets, and a haywire of subway and rail systems.

It seemed only appropriate that ICOT was located in the midst of all this motion:
downtown Mita in the Minato-ku ward of Tokyo. Located inside the Yamonote-sen, the
railway line encircling the city, Mita has immediate access to all parts of cosmopolitan
Tokyo either by rail, subway, taxi, bicycle, or foot. ICOT members were all “on loan”
from parent companies and institutions, most of which were on the outer belts of the
city, so they had long commutes. I was not so constrained, and found an apartment in
Hiroo, a convenient 30 minute walk to ICOT. Furthermore, Hiroo was only 30 minutes
by foot to Roppongi (nightclub district), and by bike to QOoi Futo, a circuit where local
racers practiced on Sundays.

It was in this environment, not unlike Queens, New York where I grew up, that I
started working in September 1987. My first day, I arrived at Narita airport at about
8 am and took the liberty of grabbing the first available bus to Mita, and then a taxi
to ICOT. I had brought a Macintosh, so I figured I would first dump it ofl at work
and say hello to everyone. Unfortunately, no one at ICOT was expecting my arrival
there. To the contrary, they had informed an NHK film crew of my imminent arrival
at my hotel. The bungle was diplomatically solved by calling the film crew over to
ICOT, having me carry my backpack and Mac back down to the lobby, and staging
an “official” arrival for Japanese TV. We then proceeded up the elevator, TV cameras
glaring, to my desk, so they could record my unpacking of the Mac. The gist of it was
“strange gaijin (in tennis shoes) brings own computer to Fifth Generation Project...”
It was fairly amusing, although it is always disconcerting how naive the media are.
Almost as funny was the next week when a newspaper requested my photo, which I
had taken at a nearby film shop. The next day’s paper displayed that photo, but with
a necktie drawn in. Interesting cultural differences, but moreover an indication of a
time of peaking national limelight for the project.



2.1 Expectations and Goals

My expectations were to continue my research in the direction of parallel logic pro-
gramming languages implementation and performance evaluation. At the point when I
finished my thesis, I had only begun to explore parallel systems, primarily collaborating
with M. Hermenegildo.! In 1987, Hermenegildo was developing the prototype of what
later evolved into &-Prolog, a transparent AND-parallel Prolog® system for shared-
memory multiprocessors [34, 37, 36]. This work introduced me to the world of parallel
processing during a period of great excitement in the logic programming community.
One of the primary triggers of this excitement were the new shared-memory multipro-
cessors from Sequent, Encore and BBN in the mid-1980’s. Many research groups were
developing schemes for exploiting parallelism (e.g., [3, 8, 16, 26, 45, 50, 55, 89]). I think
funding for the FGCS Project motivated many international researchers to continue in
this area. Two particularly promising systems at the time were Aurora OR-parallel
Prolog® [13, 51, 73] and the family of committed-choice languages [70, 69]. Aurora was
being developed at the University of Manchester (later at the University of Bristol),
Argonne National Laboratories (ANL) and the Swedish Institute of Computer Science
(SICS). Committed-choice languages were being developed primarily at the Weizmann
Institute, ICOT, and Imperial College.

Both &-Prolog and Aurora were meant to transparently exploit parallelism within
Prolog programs. &-Prolog was based on the idea of “restricted AND-parallelism” [21]
wherein Prolog goals could be statically analyzed to determine that they shared no data
dependencies, and could thus be executed in parallel. Aurora exploited OR-parallelism
wherein alternative clauses defining a procedure definition could be executed in parallel,
spawning an execution tree of multiple solutions. The committed-choice languages rep-
resented a radical departure from Prolog: backtracking was removed in favor of stream-
AND parallelism, similar to that in Communicating Sequential Processess (CSP) [39).
These approaches were promising because they potentially offered low overhead essen-
tial operations: variable binding, task invocation, and task switching.

It was in this whirlwind of activity that I mapped out my own project for ICOT.
Such planning was a good idea in retrospect. Some other visiting researchers had
failed to plan ahead, and floundered, unable to connect with a group to work with.

"Hermenegildo was at the Microelectronics and Computer Technology Corporation (MCC) at the
time, now at the Technical University of Madrid (UPM).
?Logic programs are composed of procedures defined by Horn clauses of the form: H :- By, Ba, ..., By

for £ > 0. The head H contains the formal paramelers of the procedure corresponding to the clause.
The body goals B; contain actual parameters for procedure invocations made by the parent procedure.
AND parallelism exploits the parallel execution of multiple body goals.

30OR parallelism exploits the parallel execution of alternative clauses defining the same procedure.



Although I should have learned from these experiences, I myself fell into the same
trap at the University of Tokyo a year later. Both institutions had trouble integrating
young visiting researchers into the fray because of both language differences and an
unjustified assumption (in my case) that “visitors” were omniscient experts who didn’t
need mentoring.

My proposed research was to evaluate alternative parallel logic programming lan-
guages, executing on real (namely Sequent and Encore at the time) multiprocessors.
Specifically, M. Sato of Oki was at that time building Panda, a shared-memory imple-
mentation of Flat Guarded Horn Clauses (FGHC)* [82] for the Sequent Balance. An
early (Delta) version of Aurora was also obtained from ANL. My intent was to get a set
of comparative benchmarks running in both FGHC and Prolog, for judging the merits
of the approaches. It would have been a coup to include &-Prolog in the comparisons,
but the enabling compiler technology was still under development [54].

The measurements I wanted were of the type previously collected for Prolog and
&-Prolog: low-level memory behavior, such as frequency of data-type access, and cache
performance. Work progressed on several fronts simultaneously: as Panda and Aurora
were stablizing, a collaborative effort with A. Matsumoto to build a parallel cache sim-
ulator was underway, as was benchmark development. The Panda and Aurora systems
were then adopted and harnessed for the simulator. The simulator was interesting in
its own right: to enable long runs, it was not trace-driven, but rather ran concurrently
with language emulators [31].

The overall goals of this research were to conduct some of the first detailed empiri-
cal evaluations of concurrent and parallel logic programming systems. Little work had
been done in performance evaluation: most logic programmers were furiously creating
systems and simply not analyzing them, or at best measuring the inference rate of list
concatenation. The final word on performance characteristics, such as was later doc-
umented for imperative languages by Hennessy and Patterson [33], was impossible for
logic programming languages because of the lack of an established body of application
programs. Although Prolog had received widespread use and recognition, leading to
industrial-strength applications [84, 5, 72), concurrent languages and parallel variants
had no such history. As a result, my goals were practically oriented: to make an in-
cremental improvement in the benchmarks over the standardized U.C. Berkeley and
Edinburgh benchmarks [22, 88], and to continue to improve the range of our analysis,
into multiprocessor cache performance. This also led to a book [80], written primarily
at the University of Tokyo.

*KL1 is the supersetted FGHC that is supported by the PIM architectures.



2.2 Successes, Failures and Frustrations

During the summer of 1988, A. Ciepielewski of SICS visited ICOT and helped a great
deal with instrumenting Aurora. This required rewriting the lock macros, the Manch-
ester scheduler [12], and other nasty business. By summer’s end, we had produced
running systems evaluating a large benchmark suite, which had been refined over the
months for performance considerations. In August I started writing a paper on our
results [79], finishing off my ICOT visit and moving to Todai. The technical results of
the empirical study were summarized in the Lisbon ICLP [79):

The most important result of this study was a confirmation that indeed (in-
dependent) OR-parallel architectures have better memory performance than
(dependent} AND-parallel architectures. The reasons are that OR-parallel
architectures can exploit an efficient stack-based storage model whereas
dependent AND-parallel architectures must resort to a less efficient heap-
based model. For all-solutions search problems, a further result is that
non-commilted-choice architectures have better memory performance than
commitled-choice architectures. This is because backtracking architectures
can efficiently reclaim storage during all-solutions search, thereby reducing
working-set size. Committed-choice architectures, like functional language
architectures, consume memory at a rapid rate. Incremental GC can alle-
viate some of penalty for this memory appetite, but incremental GC also
incurs its own overheads {62]. Thirdly, for single-solution problems, OR-
parallel architectures cannot ezploit parallelism as efficiently as dependent
AND-parallel architectures can. Although OR-parallel goals may exist, they
are often too fine-grained for the excessive overheads necessary to execute
them in parallel. In this respect, dependent AND-parallel architeciures can
ezecute fine-grain parallelism more efficiently than can OR-parallel archi-
tectures,

There were some objections to these conclusions among those implementing the sys-
tems. The basic criticism was simply that the application domains of the languages
differed, and so comparison was inappropriate. A more far-reaching question, that still
has not been resolved by the FGCS Project, is the utility of an all-solutions search
method as realized by backtracking. ICOT made a radical decision in 1982 to use logic
programming as its base, and then another radical decision to switch to committed-
choice languages a few years later. Although many techniques have been explored to
recapture logical completeness [29], none of them have been entirely successful. This
gap has led other research groups to develop more powerful language families, such



as concurrent constraint languages (CCLs) [66] and languages based on the “Andorra
Principle” [10, 17, 6]. First attempts at both of these families at ICOT are GDCC [77)
and AND-OR-II [74], respectively.

I felt my greatest success at ICOT was collaborating with several engineers, con-
tributing to both my project and others. These included both the members of the
PIM laboratory, as well as ICOT visitors, such as J. Crammond of Imperial College.
The congeniality at ICOT was unsurpassed, not just to foreign visitors, but among
the different company members. Sometimes I thought that it was a bit too congenial,
and that the lack of (externally directed) aggressive competitiveness was detrimental
to the FGCS project overall. As in most Japanese institutions, foreign collaboration
was somewhat carefree because the visitors were not treated as true members of the
team. The main reason for this was lack of reading skills needed to fully participate
in group meetings and prepare working papers. A related problem was a lackadaisical
attitude towards citing the influences of foreign researchers. I attribute this somewhat
to language differences, but primarily to lenient academic standards inherited from a
corporate culture.

An implicit success, I hope, was that my technical analysis helped uncover systems’
problems that were later fixed. During the project, development progressed on the
Aurora schedulers [7, 12, 11], improved Prolog and FGHC compilers, and alternative
systems such as JAM Parlog [18] and MUSE OR-parallel Prolog [2]. In a sense, these
developments were frustrating because they made my small experiment somewhat ob-
solete. The half-life of empirical data of this type is very short: results rarely make it
to journal form before the underlying systems have been “versioned-up.” Furthermore,
I hope the conclusions derived comparing OR-parallel Prolog to stream AND-parallel
FGHC had some influence on the Andorra model [10], developed by D. H. D. Warren
to combine the two.

A limited success was my influence on ICOT researchers in the PIM groups. I think
the empirical slant influenced a number of researchers to devote more care to evaluating
their designs. Still, I don’t think enough emphasis was placed on producing quantita-
tive performance analysis (concurred in [35]). Considering the massive efforts that went
into building the Multi-PSIs and PIMs, few publications analyzing the key performance
factors were generated (see [63]). I blame the three-period FGCS schedule for this. In
1988, the groups were struggling to complete the Multi-PSI-V2 demonstration. Yet the
design of the PIM machines were largely underway, and little if any Multi-PSI experi-
ence collected after 1988 affected PIM. Still, the sophistication of PIM instrumentation
and experimentation (e.g., Toshiba’s PIM/k cache monitors and Fujitsu’s ParaGraph
[1]) have improved over the final period, even if the newer application benchmarks [63]



have not yet been exercised on the PIMs.

One impediment to my research was lack of compiler technology. This was preva-
lent throughout the systems: compile-time analysis was not yet on par with that of
imperative languages, thus lessening the importance of what we were measuring. Re-
cent work in logic program compilation (e.g., [76, 86, 32, 90]) indicate that significant
speedups can be attained with advanced optimization methods. A related frustration
during my stay in Japan was something as simple as lack of floating point arithmetic in
parallel logic language implementations. Even SICStus Prolog had such an inefficient
implementation of floating point numbers as to make it unusable. I accidentally discov-
ered this when attempting to implement a new quadrature algorithm for the N-Body
problem, developed by K. Makino at the University of Tokyo. I had just joined the
school after leaving ICOT, and was eager to find that “killer application” which would
link number crunching with irregular computation that logic programs are so good at.
I had read a paper by Makino [52] describing a method for successively refining space
into oct-trees, and exploiting this to approximate long-distance force interactions. I
walked over to his office, surprising him one day, got the particulars of how to generate
test galaxies, and hacked up the program in Prolog. For a long period afterwards 1
could not get the program to perform more than a few iterations before the heap over-
flowed. Tracing the problem it became apparent that all unique floating point results
were interned! This was disappointing primarily because it was a lost opportunity for
cross-disciplinary research within the University, which I sorely wanted. Furthermore,
it indicated the early-prototype state of parallel logic programming at the time, since
none of the systems could tackle applications driving the U.S. markets [15).5

2.3 20/20 Hindsight

My belief going into the ICOT visit was that transparently parallelizing sequential
languages was best, e.g., in some gross sense, let’s exploit parallelism in Prolog as in
Fortran. I still believe this approach to be very useful, especially for users who cannot
be bothered with concurrency. However, during my stay I discovered the additional
value of expressing concurrent algorithms directly, and became an advocate of concur-
rent languages. My own intellectual development included above all learning how to
write concurrent programs (and I am still learning how to make them execute in par-
allel!). I continue to believe that concurrent languages are great, but I realized, after

5Tt should be stressed that there are no exceptional technical problems preventing logic programming
systems from having first-class floating point, e.g., Quintus Prolog implements the IEEE standard.
Recently, SICStus Prolog floating point has been repaired, benefiting Anrora and &-Prolog, both based
on it. The PIM systems also support floating point.



all the effort developing those benchmarks, that although concurrent languages often
facilitate elegant means to implement algorithms [26, 69, 80], the languages per se were
rarely used to model concurrent systems. The mainstream concurrent langnages do not
support temporal constraints, thereby making certain types of modeling no easier than
non-logical languages. Furthermore, it was still quite messy to express collections and
connections of nondeterminate streams in these languages (recent languages have been
designed to assuage this problem, e.g., A’'UM [91], Janus [67], and PCN [25)).

My greatest technical criticism of my own research was that it was limited in scope,
both in systems (Aurora vs. Panda) and benchmark programs. If the languages had
been standardized years earlier, especially among the committed-choice logic program-
ming language community, we could have collected much more significant benchmarks.
Alternatively, if I had the fruits of ICOT applications development conducted during
the third period of the FGCS project [63], I would also have been in a stronger position.
Advanced compilers are still, to this day, not available.

On the personal side, collaboration was not always smooth, but that made our
successes more of an accomplishment. There were more than a few arguments during
the years, as to alternative methods of implementing one feature or the other, or bu-
reaucratic culture shock. An amusing example of the latter was that to bypass MITI
software release restrictions, we would publish the source listing of the software in a
technical report, e.g., [81). My aggressiveness was not immediately understood for what
it was (I like to think it is healthy competitiveness) until people got to know me better
over the years. As in any organization, the Japanese were no different in that software
developers become possessive and protective of their systems. When I made a branch
modification of those systems, and bugs appeared, the first question was: did I cause
this bug, or did I inherit it? Software systems were not as successfully partitioned
among engineers as was hardware, usually resulting in a single guru associated with
each system. This necessitated some rewriting of similar systems over the years.

ICOT researchers worked well together, especially considering the number of compa-
nies they hailed from. There were some communication difficulties among the research
laboratories. My own stated problems with compilers and applications resulted in part
from differing laboratory agendas: the hardware group needed help in these areas,
whereas the languages group was working in other areas, e.g., or-parallel search, con-
straints, meta-programming, partial evaluation, and artificial intelligence [29]. Again,
this was a conflict of advanced technology vs. basic research that depleted both.

I don’t think that ICOT researchers were on average more efficient than those in
other institutions. Recall that the end of 1987 brought an avalanche upon U.S.-Japan
relations: the Qctober Crash, yen appreciation, and “Super 301" (U.S. trade legisla-



tion) left people in a surly mood. Japan bashing began, with foreign media attention
on Japanese long working hours, among other things. We didn’t work any longer at
ICOT than, say, at Quintus or IBM Yorktown Heights (hey, the last trains left around
midnight). Long hours don’t necessarily translate into insights or efficiency, anywhere.
If anything, Tokyo was isolated in some sense, leading to a feeling of remoteness among
the research community. For example, in the U.S., universities and industry tend to
interact well informally, for instance through university-sponsored seminars. Tokyo
shares a great diversity of computer industry and universities, but none of that infor-
mal get-togetherness. On the other hand, ICOT did have an advantage commanding
member manufacturers’ resources (namely large groups of engineers) to construct large
software (e.g., PIMOS) and hardware (PIM) systems. Such cooperation was quite
astounding.

In retrospect, with regard to my own participation, I would have done a few things
differently. Primarily, I would have memorized my kanji every day! It was and is
simply no fun at all, but Martin Nilsson of the University of Tokyo, now at SICS,
demonstrated that it can be done. This would have allowed my increased participation
in weekly ICOT meetings, and later at Todai.

3 Technology and the FGCS Project

Hirata et al. [38] and Taki [75] wrote excellent articles summarizing the design criteria
and implementation decisions made at the software and firmware levels of the PIM.
My own research was most closely tied to this laboratory at ICOT, so I will limit
my comments to this research. Since all PIMs are organized as loosely connected
shared-memory clusters (except PIM/m), each design problem requires both local and
distributed solutions. Furthermore, static analysis (by the compiler) must be balanced
with runtime analysis. The main components of their design include:

¢ memory management: concurrent logic programs have a high memory bandwidth
requirement because of their single assignment property and lack of backtracking.
ICOT has developed an integrated solution for garbage collection at three levels
within the PIMs. Locally, incremental collection is performed with approximative
reference counting. Specifically, Chikayama’s Multiple Reference Bit (MRB) is
incorporated in each data word [14]. Distributed data is reclaimed across clus-
ters via their export tables. Finally, if local memory expires, a parallel stop &
copy garbage collector is invoked in the cluster [41]. The effort in designing and
evaluating alternative garbage collection methods is one of the most extensive
of all ICOT projects (e.g., [62, 42, 30, 57]), primarily because the prablem was



recognized several years ago. However, compilation techniques, such as statically
determining instances of local reuse [28, 23], were not explored. The tradeoffs
between static analysis time vs. runtime overhead are still open questions for

such techniques.

scheduling: concurrent logic languages have inherently fine-grain process struc-
tures. The advantage is exploitable parallelism, but the disadvantage is the po-
tential of a thrashing scheduler. The PIMs rely on explicit inter-cluster scheduling
using goal pragma {an attribute telling where the goal should be executed), and
implicit (automatic) load balancing within a cluster. Furthermore, goals can be
assigned priorities, which steer load balancing in a nonstrict manner. Although
functional mechanisms have been completed at ICOT, extensive evaluation has
not yet been conducted. Higher-level programming paradigms, such as motifs
[27], have not been designed to alleviate the complexity of user development and
modification of pragma.

meta-control: pure concurrent logic languages have semantics that allow program
failure as a possible execution result. This has long been recognized as a problem
because user process failure could migrate up to the operating system in a naive
implementation. ICOT developed protected tasks called shoen [40], similar to
work by 1. Foster [24]. Functional mechanisms for shoen management have been
implemented at ICOT over the past four years [58, 64, 65], although empirical
measurements of the operating system running applications programs have not
yet been analyzed. Intra-cluster mechanisms include termination and deadlock
detection [43], and resource caching; inter-cluster mechanisms include weighted
throw counts. Without further empirical data, it is difficult to judge the effec-
tiveness of the mechanisms for reducing runtime overheads. Furthermore, it is
not clear how this research should be viewed: as fine-grain control over concur-
rent logic programs, or as a full-blown operating system. The latter view would

certainly run into commercial problems.

unification: unification is peculiar to logic programs, and somewhat controversial,
in the general computing community, in its utility. Concurrent logic programs
reduce general two-way unification into askand tell unifications, which correspond
more directly to importation and exportation of bindings in imperative concurrent
languages. Still, logical variables cause two serious problems.

First, variables are overloaded to perform synchronization. This is both the
beauty and horror of concurrent logic languages. The programmer’s model is sim-
plified by implicit synchronization on variables, i.e., if a required input variable

10



arrives with no binding, the task suspends. Furthermore, if at any time that vari-
able receives a binding (anywhere in the machine), the suspended task is resumed.
Implementing this adds significant overhead to the binding time, primarily be-
cause mutual exclusion is required during binding, and suspension/resumption
management.

Second, in a distributed environment, optimizing data locality over a set of uni-
fications of arbitrary data structures is an impossibly difficult problem. Message
passing mechanisms defining import/export tables and protocols were developed
[40], but little empirical analysis has been published.

Compilation techniques to determine runtime characteristics of logical variables,
such as “hookedness” and modes [83], and exploit them to speedup bindings,
minimize suspensions, and minimize memory consumption, have not yet been
implemented in the current PIM compilers.

The ICOT research schedule began with the development of the personal inference
machines (PSI-LILIII), followed by mockup PIMs (Multi-PSI-V1/2, the latter built of
PSI-IIs), and finally the various PIMs: PIM/p (Fujitsu) [46], PIM/m (Mitsubishi) [59],
PIM/i (Oki) [68], PIM/c (Hitachi) [56], and PIM/k (Toshiba) [4]. A great deal of credit
must go to ICOT’s central management of these efforts, based on a virtual machine
instruction set called PSL used to describe a virtual PIM (VPIM) running on a Sequent
Symmetry [75]. VPIM was shared (with slight modifications) by most of the member
organizations, making design verification feasible. These designs are summarized in
Taki [75]. Highly parallel execution of dynamic and non-uniform (but explicitly rot
data-parallel) applications is cited as the target of the project. The major design
decisions were made for MIMD execution, of a fine-grain concurrent logic programming
base language, on a scalable distributed-memory multiprocessor, The PIMs were also
designed around a cluster organization. I recall visiting MCC (where research on virtual
shared-memory multiprocessors was being conducted) in spring 1987 and giving a talk
describing the organization, and fielding questions about why the design was not more
innovative? My reply was that if ICOT could get the organization to work efficiently,
that would be sufficiently innovative. I still think the design is plausible; a vote of
confidence came later from DASH {48}, with a similar organization. But the two-level
hierarchy presents an irregular model to mapping and load balancing algorithms that
has not yet been conclusively solved by ICOT.

Interestingly, one of MCC’s prime directives was to design long-term future systems
that were far beyond the planning window of its member companies, Thus for instance
advanced human interfaces (including virtual reality) and D. Lenat’s common-sense
knowledge base CYC [47] were tackled. The FGCS project had a fixed duration whereas

11



MCC did not, and as ICOT wound down, through the second and third periods, the
goals became shorter-term, in an effort to demonstrate working systems to MITI to
continue funding. Similarly, the more futuristic projects within MCC were terminated
at the first shortage of funds (e.g., the entire parallel processing program, including the
virtual shared-memory efforts, which now look so promising). M. Hermenegildo states
that, in hindsight, this has proved to be one of MCC’s primary weaknesses: that it is
privately funded and thus has slowly drifted to very short-term research.

ICOT succeeded in technology transfer to its member companies, even if the final
systems were not ideal. In some overlapping areas of interest, MCC may have produced
concepts and systems that were on par or superior to those of ICOT, but MCC had
a more difficult time transferring the technology to the shareholders. ICOT’s success
was due to the dedication of many engineers, the investment in a single, integrated
computational paradigm, and careful management from conception to execution to
transfer. Personnel was transferred as well, ensuring that the technology would not be
dead on arrival. The companies contributed resources, towards hardware and software
construction, that are quite large by U.S. standards. The formula: top-down concept
management cooperating with strong bottom-up construction, is discussed further in
the next section.

In my own view, the future of this research area lies in the design and compilation of
compositional languages, such as PCN, that attempt to bring logic programming more
in-line with mainstream practices. Specific problems that need to be solved (many of
these issues are currently active research topics):

¢ How to reuse memory automatically at low cost? How to retain data locality
within distributed implementations?

o How to finesse, with static analysis, many overheads of symbolic parallel process-
ing, such as dereferencing, synchronization, and communication?

e How to efficiently schedule tasks with a combination of static analysis, profiling
information and motifs?

e Programming paradigms and compilation techniques for bilingual or composi-
tional programming languages. Efficiently partitioning the control and data struc-
tures of a problem into two languages can be difficult.

¢ Find “killer applications” that combine the power of symbolic manipulation and
supercomputer number crunching, to demonstrate the utility of logic program-

ming languages.

12



¢ Gain experience with large benchmark suites, which requires standardizing some
of these languages.

3.1 Commercial Success and Competitiveness

In this section I will address the validity or commercialization of the processing tech-
nologies developed by ICOT, specifically the idea of building a special-purpose mul-
tiprocessor to execute a fine-grain concurrent language. This seems to be the main
concern of the media, and perhaps the key point upon which ICOT is being evalu-
ated. One could criticize ICOT for attempting to naively leapfrog “fourth generation”
RISC-based microprocessor technologies, which continue yearly to grow in performance.
Ten years ago, Japanese companies did not have experience developing microproces-
sor architectures, much less second-generation (superscalar) RISC designs, nor MIMD
multiprocessor designs. Building the various PIM machines gave some of the hardware
manufacturers limited experience in microprocessor design, although presumably this
experience could have been had with a more conventional target.

It should be emphasized that the key goal of the FGCS project was to develop
computers for “dynamic and non-uniform large problems” {75]. This is distinctly dif-
ferent from the goal of supercomputing research in the U.S., developing computers
for large data-parallel (regular) problems [15]. The result is different design decisions:
for example, massively parallel SIMD computers cannot be effectively used to execute
non-uniform applications, although some have tried [61]. Neither Japan nor the U.S.
misevaluated future goals, but they each saw a part of it, neglecting the other part.

However, I do not disagree with the criticism that a more conventional target could
have produced successful commercial technologies and influenced human infrastructure
(see Section 4). The selection of the FGCS goals were certainly influenced by the
individuals in charge, primarily K. Fuchi and K. Furukawa, who had a grand vision
of logic programming integrating all aspects of high-performance symbolic problem
solving. Human infrastructure development was influenced by these same architects.
In some sense the two are connected: engineers were given less freedom to choose the
direction of overall research, the top-down technologies being managed from above.
This is in sharp contrast to U.S. research groups, which are closer to creative anarchy.

In any case, I believe some unique experience was attained in the FGCS Project:
that of fabricating tagged, symbolic, parallel architectures. This endeavor covers the
same ground as the more bottom-up approach to massively parallel computation, taken
by conventional multiprocessor vendors. The overall problem of exploiting massively
parallel symbolic computation can be seen from two vantage points. ICOT took the high
road, first laying out a foundation of a family of symbolic, concurrent languages, and

13



then attempting to implement them, and building layers of applications around them.
U.S. vendors tock the low road, first building massively parallel hardware, and then
attempting to implement imperative languages, either through parallel library inter-
faces, through sophisticated compilation, or by language modification. In no instance,
to my knowledge, have vendors developed massively parallel software for solving sym-
bolic problems, as has been emphasized throughout the FGCS project. My strongest
criticism of the FGCS project, however, was a lack of sufficient concern for compiler
technology, something adamantly stressed in the U.S. for the past decade.

It is not surprising that the operating systems community are now developing light-
weight threads, what I consider a bottom-up effort. Furthermore, languages such as
object-oriented Smalltalk [19] and tuple-based Linda [53] form the cores of recent dis-
tributed processing efforts, these kernels developing top-down, similar to the ICOT ap-
proach with logic programming. A performance gap currently remains between these
top-down and bottom-up approaches. To bridge this gap, significant work needs to be
done in compilation, and further hardware design refinement is needed. I think the lat-
ter requirement is easier for the Japanese manufacturers than the former. I have always
been impressed by the responsivenessof hardware development both in the universities
and industry. It may be the case that compiler technology has made little progress
in the FGCS project because the emphasis was placed elsewhere, on languages and
applications. A more subtle reason is the inherent complexity of managing high-level
language compilation and hardware development simultaneously. These languages have
large semantic gaps that need to be covered, with concurrency adding to the analysis
problem.

Let’s consider what the situation will be if/when the performance gap between these
approaches can be bridged. The key question is then who will be in the better position?
The top-down approach (taken by ICOT) has advantage of programming and appli-
cation experience in concurrent and symbolic, high-level languages. The bottom-up
approach (predominantly taken by U.S. vendors) has the advantage of using imper-
ative languages that evolved slowly, thus retaining market share. There is no clear
answer to this question, but for the sake of illustration, let me rephrase it in terms of
two specific technologies: wormhole-routed distributed networks [20] and concurrent
constraint languages [44, 85].

I believe both these technologies required significant intellectual efforts to conceptu-
alize, design, implement, and apply in real systems. The former represents a bottom-up
technology and the latter a top-down technology. Bottom-up technologies are easier
to introduce into designs, e.g., PIM/m [59] incorporates wormhole routing (and can
execute GDCC, a constraint language [77]), whereas the Intel machines {49] (and other

14



experimental supercomputers at this level, such as the CM/5 [60] and iWARP [9]) do
not yet have implementations of constraint languages, or in fact any vendor-offered
languages other than C or Fortran. Perhaps GDCC can be ported to general-purpose
multiprocessors, but that is not the issue. Where GDCC came from, and where it is
going, can only be determined from the foundation of the research expertise gained in
its development. This is of course true about routing technologies, but again, bottom-
up technologies are more easily imported and adapted. They are also more easily sold
because they translate more directly to peak FLOPS, although this can be a grave mis-
statement of application performance, especially in the domain of nonscientific codes.

In 1991, the U.S. Congress passed the High Performance Computing and Commu-
nications (HPCC) initiative [15] stating several “grand challenges,” such as climate
modeling. These goals were indicative of the research interests and activities already
underway in U.S. universities and national laboratories. Furthermore, these challenges
echoed current government funding in supercomputer research, such as DARPA’s 28%
stake in Touchstone development costs [49]. Conspicuously, none of the challenges
involved symbolic computation. Equally conspicuous was the lack of numerical compu-
tation in the FGCS project goals (the overlapping supercomputing project® was more
tuned to this goal). Yet again, reasoning that if and when the bottom-up and top-down
approaches coincide, one can imagine that these “traditional” number-crunching appli-
cations will also run efficiently on the resulting architectures, or that the symbolic and
numeric engines will become so inexpensive that they will coexist in hybrid systems.
It is perhaps more revealing that software applications to solve both climate modeling
and genome mapping are being led by language paradigms with logic programming
roots, namely PCN [25] and Lucy [92].

4 A New Generation

The following is a compendium of ICOT’s major influences in developing its human
capital. During the FGCS’92 conference in Tokyo, I had the opportunity to conduct
extensive interviews with hardware engineers participating in the FGCS Project, filling
me in on all that had transpired since I had left. All those interviewed were active
throughout the length of the project, and thus had a complete perspective. Because
they worked primarily in the area of computer architecture, their combined views form
one in-depth analysis of ICOT, rather than broad-based analyses.

8 «High-Speed Computing Systems for Scientific and Technological Uses,” 1981-1989.



4.1 Increased Communication

ICOT infrastructure was unique for Japanese research organizations in the early 1980’s
in that it supplied researchers with various communication channels that normally did
not exist in the corporate culture. In the following, I will surnmarize the forms of
communication.

Company-to-company interaction was engendered by the cooperative efforts of engi-
neers centrally headquartered at ICOT. All previous national projects were distributed
among manufacturers. It is perhaps due to the general Japanese culture of consensus
making that made the central location successful.

The introduction of electronic mail increased international as well as local infor-
mation flow. This trend was generally occurring throughout Japanese organizations
coinciding with, not engendered by, the FGCS project. The creation of electronic
networks falls under the auspices of the Ministry of Communication. Because this dele-
gation is separate from education and industry, network infrastructure has been slow to
develop in Japan. Even the most advanced universities only developed high-bandwidth
networks within the past five years.

Company-to-university interaction was engendered by the Working Groups (WGs)
associated with the FGCS project. The WGs were started from the inception of ICOT,
with the intent of fostering university and company communication. Initially there were
1-5 groups in the first period of the project, growing to 15 groups in the second period,
and about 10 in the third period. Participating universities included Tokyo, Kyushu,
Kobe, Kyoto, Keio, and the Tokyo Institute of Technology. As an example, the PIM
WG, one of the oldest, meets monthly. My experience, from presenting talks at the
PIM WG in 1988 and 1992, was an overly structured format and limited participation.
Most participation is from universities in Tokyo (for economic reasons), but student
participation is extremely limited, e.g., one or two Todai students might attend. In
this respect, I doubt that the WGs were efficient in strengthing ties between industry
and universities, for instance compared to the weekly Computer Systems Laboratory
seminars held at Stanford University. Yet others disagree with this conclusion, pointing
out that cooperation among U.S. universities is limited and among U.S. companies,
almost nonexistent.

Interaction between research communities in Japan and abroad was engendered by
the high value placed on the publication and presentation of research results. ICOT
researchers and international researchers exchanged visits frequently. The exposure
gained by young researchers was exceptional, even for Western organizations.

16



4.2 Post-Graduate Education

ICOT served as a substitute for OJT (“on-the-job training”), and in doing so, graduated
a generation of engineer/managers educated in advanced areas of computer science and
better able to manage their own groups in the future. The latter point applies to
both the engineering management as well as political management, learned by a close
relationship with MITIL.

An argument can be made that separation of industry and higher education is ben-
eficial to Japan, for instance it delivers engineers to industry ready to be trained in
specific company technologies. My personal experience in Japan indicated that this
argument is weak. The lack of popularity of graduate studies weakens Japan’s abil-
ity to do computer science, and therefore to produce advanced long-term technologies.
The issue is not so much of where advanced academic skills are learned, but that the
infrastructure needed to successfully learn includes high communication bandwidth of
all forms, and an open forum to discuss the latest research ideas. An indirect result
of ICOT was to teach fresh university graduates (mainly with B.S. degrees) how to
properly conduct research and construct hardware and software systems. Furthermore,
experience of presenting papers at conferences gave the individuals much needed prac-
tice at social interaction with the international community.

Few ICOT researchers entered service with PhDs. Over the life of the project, about
ten PhDs were granted for FGCS-related research (e.g., [91, 82]). This side-effect was
unusual for national projects, indicating ICOT’s emphasis on basic research, as well
as more practical considerations of personal advancement: a large percentage of those
completing PhDs became university professors.

My stay at ICOT, and the University of Tokyo, as well as various visits to industry,
indicated that ICOT’s infrastructure was carefully planned to bring about these re-
sults. Detail was paid to basic things, like the ICOT library which was quite extensive.
More than any other workplace I have experienced, communication between engineers,
unprotected by offices or cubicals, was extensive. Finding an expert for consultation

was as simple as crossing the room.

4.3 Company Cultures

I believe that ICOT coincided with greater forces within Japan causing a movement
away from the culture of lifetime employment. However, the revolution was certainly
felt within the FGCS Project. A. Goto of NTT estimates that over 5% of all ICOT
participants changed their affiliations after their tenure ended. Examples include moves
from industry and the national laboratories to academia (both as professors and as
researchers), and moves between companies. The former constituted the major group.

17



In general the most highly-productive researchers made the moves. ICOT may
have implicitly influenced the individuals by empowering them to conduct world-class
research programs. Once successful, they reevaluated their opportunity costs, which
were not being adequately met by their employers. These costs involved both salary, as
well as intellectual freedom. The explosion came as a surprise to the companies, which
it should not have, given the highly technical nature of computer science. Certain
companies took direct action to deal with it, such as SONY forming the Computer
Science Laboratory (CSL), a small Western-style research lab in Tokyo. NEC took
indirect action by forming a research laboratory in New Jersey.

In addition, the universities gained a significant number of professors “generated”
at ICOT. K. Nakajima of Mitsubishi estimates this at about five directly from ICOT,
and six from the ICOT-related groups within industry. Perhaps this was an accidental
side-effect of the decade, but it certainly was not seen in the previous national projects.

An opposite effect, to the previous “explosion,” was the cross-fertilization of com-
pany cultures. ICOT played a role of matchmaker to manufacturers, resulting in tech-
nology transfers, however indirect or inadvertent, over the ten years. Here I review two
main transfers: engineering management techniques and multiprocessor technologies.

Large systems development, such as the PIM development efforts, required schedul-
ing. Nakajima pointed out that ICOT would pool the scheduling techniques from the
member companies without bias. This resulted in more efficient scheduling and project
completion. Even if the companies themselves did not adopt the hybrid methodologies,
the individuals involved certainly learned.

ICOT was a mixture of manufacturers and their engineers, and the experience of
introducing these groups was beneficial to all. The engineers are exposed to how things
are done in other companies. K. Kumon of Fujitsu stressed that PIM/p [46]) and PIM/m
[59] could not both be built by both Fujitsu and Mitsubishi — each manufacturer had its
own technology expertise, and thus the designs evolved. Designers from both companies
learned, first hand, alternatives that were not (yet) feasible in their own environments.

5 Conclusions

Considering technology, I conclude that the top-down, vertically integrated approach
in the FGCS project failed to achieve a revolution, but was a precursor to evolutionary
advances in the marketplace. The Japanese supercomputing project involved vector
processor technology that was well understood compared to symbolic computation.
Thus the projects cannot be compared on that basis. Furthermore, comparisons to U.S.
research efforts, which are driven by strong national laboratories and universities in the

18



direction of “traditional” scientific computation, is also inappropriate. Perhaps further
comparison of the FGCS and HPCC projects would be appropriate, but a subject of
another paper. U.S. research and development concerning symbolic processing in Lisp
and Smalitalk might be the most valid benchmark, if comparisons are desired. The rise
and fall of the Lisp machine market, over this decade, does not place the U.S. in a more
successful light. Refinement, rather than abandonment, of the concepts developed in
the FGCS project may well serve the Japanese manufacturers in the upcoming decade.

Considering human capital, I think all the influences cited in this article are natural
results of “market forces.” The action of these influences on young ICOT researchers
were by and large positive. Increased communication between engineers, managers,
professors, students, and government bureaucrats leads to more rapid progress in de-
veloping basic research ideas into successful commercial products.

The question remains as to whether a National Project of this magnitude is nec-
essary to create these human networks each generation, or if this first network will
propagate itself without help from another project. An optimistic view has the net-
works weakening with age, but remaining in place. Thus in the future, it may not
require such a grand-scale project to strengthen ties. For example, current ICOT grad-
uates, understanding the importance of free and flexible discussion of results at national
conferences, will increase the participation of the researchers in their care, thus enabling
the next generation to form their own friendships and working relationships.

However, few ICOT people believe this scenario. Some believe that most ICOT
researchers implicitly understand the importance of ICOT’s contributions in this area,
but not erplicitly. Without explicit self-awareness, this meta-knowledge may be lost
without another national project, or an equivalent, to reinforce the lessons. The current
generation of engineers, without an experience similar to [COT, will be at a disadvan-
tage to the ICOT generation. Communication will be strictly limited to technical
conferences, where information flow is restricted. In this sense, ICOT did not create
a revolution because it did not fundamentally change the manufacturers. The human
networks will not be seli-generating from the bottom-up, by the few seedling managers
trained at ICOT. Although a manager’s own bias may be consistent with ICOT"s flex-
ible style of research and management, the higher one gets in the company hierarchy,
the less managers tend to share this sentiment.

Either another project, or a radical restructuring of the diametric cultures of ed-
ucation and industry, will be required to propagate the advances made in the FGCS
project. The Japanese, certainly amenable to hedging their bets, have already started
upon both avenues. A “sixth generation” project involving massive parallelism, neural
networks, and optical technologies is already underway. However, the research is dis-

19



tributed among many institutions, potentially lessening its impact. Furthermore, the
Ministry of Education is currently making plans to approximately double funding for
basic research in the universities [87].

On a more personal note, I highly respect the contribution made by the FGCS
project in the academic development of the field of symbolic processing, notably imple-
mentation and theory in logic programming, constraint and concurrent languages, and
deductive and object-oriented databases. In my specific area of parallel logic program-
ming languages, architectures, and implementations, [COT made major contributions,
but perhaps the mixed schedule of advanced technology transfer and basic research was
ill-advised.

This basic research also led to a strong set of successful applications, in fields as
diverse as theorem proving and biological computation. In a wider scope, the project
was a success in terms of the research it engendered in similar international projects,
such as ALVEY, ECRC, ESPRIT, INRIA, and MCC. These organizations learned from
each other and their academic competitiveness in basic research pushed them to achieve
a broader range of successes. In this sense, the computer science community is very
much indebted to the “fifth generation” effort.

Sometime during my stay in Tokyo, I was invited by some U.S. Congressmen to a
breakfast meeting at a plush Roppongi hotel one Sunday morning. It was so early, [
had to attend directly from Saturday night socializing, leaving me somewhat weakened.
However, I was clearheaded enough to listen to the voices around the table stating what
was wrong with the electronics/computer trade imbalance. I was perhaps the only
attendee who was not a salesman or a politician, and certainly the only one who wasn’t
quite groking that Big American Breakfast sitting in front of me. When it was my turn
to speak, I couldn’t think of much to say: the issues were as large as billions in chip
dumping and unfair markets, not collaborative research efforts. Well, collaboration is
of long-term importance, I thought. The same as the basic research itself.

Acknowledgements

The author is now supported by an NSF Presidential Young Investigator award, with
matching funds from Sequent Computer Systems Inc. My stay at ICOT was generously
supported by Y. T. Chien and A. DeAngelis of the National Science Foundation. I would
like to thank the numerous people who graciously aided me in writing this article.

20



References

[1} S. Aikawa, M. Kamiko, H. Kubo, F. Matsuzawa, and T. Chikayama. ParaGraph:
A Graphical Tuning Tool for Multiprocessor Systems. In International Conference
on Fifth Generation Computer Systems, pages 286-293, Tokyo, June 1992. ICOT.

[2] K. A. M. Ali and R. Karlsson. The Muse Or-Parallel Prolog Model and its Per-
formance. In North American Conference on Logic Programming, pages 757-776.
Austin, MIT Press, October 1990.

[3] H. Alshawi and D. B. Moran. The Delphi Model and Some Preliminary Experi-
ments. In International Conference and Symposium on Logic Programming, pages
1578-1589. University of Washington, MIT Press, August 1988.

[4] 5. Asano, S. Isobe, and H. Sakai. The Unique Features of PIM/k: A Parallel
Inference Machine with Hierarchical Cache System. Technical Report TR-767,
ICOT, 1-4-28 Mita, Minato-Ku Tokyo 108, Japan, April 1992,

[5] Association for Logic Programming. Applications of Prolog International Confer-
ence and Exhibition. London, April 1992.

[6] R. Bahgat and S. Gregory. Pandora: Non-deterministic Parallel Logic Program-
ming. In International Conference on Logic Programming, pages 471-486. Lisbon,
MIT Press, June 1939.

[7] A. Beaumont, S. Muthu Raman, P. Szeredi, and D. H. D. Warren. Flexible
Scheduling of Or-Parallelism in Aurora: The Bristol Scheduler. In PARLFES!:
Conference on Parallel Architectures and Languages FEurope, pages 403-420.
Springer Verlag, June 1991.

[8] P. Biswas, S-C. Su, and D. Y. Y. Yun. A Scalable Abstract Machine Model
to Support Limited-OR (LOR)/Restricted-AND Parallelism in Logic Programs.
In International Conference and Symposium on Logic Programming, pages 1160-
1179, University of Washington, MIT Press, August 1988.

[9] S. Borkar, R. Cohn, G. Cox, S. Gleason, T. Gross, H. T. Kung, M. Lam, B. Moore,
C. Peterson, J. Pieper, L. Rankin, P. S. Tseng, J. Sutton, J. Urbanski, and J. Webb.
iWARP: An Integrated Solution to High-Speed Parallel Computing. In Inierna-
tional Supercompuling Conference, pages 330-339, Orlando, November 1988. IEEE
Computer Society.

21



[10] P. Brand, S. Haridi, and D.H.D. Warren. Andorra Prolog—The Language and
Application in Distributed Simulation. New Generation Computing, 7(2-3):109-
125, 1989.

[11] R. Butler, T. Disz, E. L. Lusk, R. Olson, R. A. Overbeek, and R. Stevens. Schedul-
ing OR-Parallelism: an Argonne Perspective. In International Conference and
Symposium on Logic Programming, pages 1565-1577. University of Washington,
MIT Press, August 1988.

[12] A. Calderwood and P. Szeredi. Scheduling Or-Parallelism in Aurora. In Interna-
tional Conference on Logic Programming, pages 419-435. Lisbon, MIT Press, June
1989,

[13) M. Carlsson. Design and Implementation of an OR-Parallel Prolog Engine. PhD
thesis, Royal Institute of Technology, SICS Dissertation Series 02, March 1990.

[14] T. Chikayama and Y. Kimura. Multiple Reference Management in Flat GHC.
In International Conference on Logic Programming, pages 276-293. University of
Melbourne, MIT Press, May 1987.

[15] Committee on Physical, Mathematical, and Engineering Sciences. Grand Chal-
lenges: High Performance Computing and Communication. NSF, 1800 G Street,
N.W., Washington D.C., 1991.

[16] J. S. Conery. Binding Environments for Parallel Logic Programs in Non-
shared Memory Multiprocessors. International Journal of Parallel Programming,
17(2):125-152, April 1988.

[17] V. S. Costa, D. H. D. Warren, and R. Yang. The Andorra-I Engine: A Parallel
Implementation of the Basic Andorra Model. In International Conference on Logic
Programming, pages 825-839. Paris, MIT Press, June 1991.

[18] J. A. Crammond. The Abstract Machine and Implementation of Parallel Parlog,.
New Generation Computing, August 1992,

[19] W. J. Dally. A Universal Parallel Computer Architecture. In International Con-
ference on Fifth Generation Computer Systems, pages 746-758, Tokyo, June 1992.
ICOT.

(20} W. ]. Dally and C. Seitz. Deadlock-Free Message Routing in Multiprocessor Inter-
connection Networks. IEEE Transactions on Computers, C-36(5):547-553, May
1987.

22



[21] D. DeGroot. Restricted AND-Parallelism. In International Conference on Fifth
Generation Computer Systems, pages 471-478, Tokyo, November 1984, ICOT.

[22] T. P. Dobry. A High Performance Architecture for Prolog. Kluwer Academic
Publishers, Norwell MA, 1988.

[23] S. Duvvuru, R. Sundararajan, E. Tick, A. V. S. Sastry, L. Hansen, and X. Zhong.
A Compile-Time Memory-Reuse Scheme for Concurrent Logic Programs. In Inter-
national Workshop on Memory Management, pages 264-276, St. Malo, September
1992. ACM Press.

[24] I. Foster. Logic Operating Systems: Design Issues. In International Conference
on Logic Programming, pages 910-926. University of Melbourne, MIT Press, May
1987.

[25] I. Foster, R. Olson, and S. Tuecke. Productive Parallel Programming: The PCN
Approach. Scientific Programming, 1(1}), 1992.

[26] 1. Foster and S. Taylor. Strand: New Concepts in Parallel Programming. Prentice
Hall, Englewood Cliffs, NJ, 1989.

[27] I. Foster and S. Taylor. A Compiler Approach to Scalable Concurrent Program
Design. Technical Report MCS-P306-0492, Argonne National Laboratory, 1992.

[28] L Foster and W. Winsborough. Copy Avoidance through Compile-Time Analysis
and Local Reuse. In International Symposium on Logic Programming, pages 455—
469. San Diego, MIT Press, November 1991.

[29] K. Furukawa. Summary of Basic Research Activities of the FGCS Project. In
International Conference on Fifth Generation Computer Systems, pages 20-32,
Tokyo, June 1992. ICOT.

[30] A. Goto, Y. Kimura, T. Nakagawa, and T. Chikayama. Lazy Reference Count-
ing: An Incremental Garbage Collection Method for Parallel Inference Machines.
In International Conference and Symposium on Logic Programming, pages 1241~
1256. University of Washington, MIT Press, August 1988.

[31} A. Goto, A. Matsumoto, and E. Tick. Design and Performance of a Coherent
Cache for Parallel Logic Programming Architectures. In International Symposium
on Computer Architeciure, pages 25-33. Jerusalem, IEEE Computer Society, May
1989.

23



[32] D. Gudeman, K. De Bosschere, and S. K. Debray. jc: An Efficient and Portable
Sequential Implementation of Janus. In Joint International Conference and Sym-
posium on Logic Programming. Washington D.C., MIT Press, November 1992.

{33] J. L. Hennessy and D. A. Patterson. Computer Architecture A Quantitative Ap-
proach. Morgan Kaufmann Publishers Inc., 1990.

{34] M. V. Hermenegildo. An Abstract Machine for Restricted AND-parallel Execution
of Logic Programs. In International Conference on Logic Programming, number
225in Lecture Notes in Computer Science, pages 25-40. Imperial College, Springer-
Verlag, July 1986.

[35] M. V. Hermenegildo. Research on Parallel Logic Language Implementation and
Architecture at ICOT. In The Research Ezchange Report: Intermediate Stage
(1985 to 1988), pages 157-174. ICOT, Tokyo, 1992.

[36) M. V. Hermenegildo and K. Greene. &-Prolog and its Performance: Exploiting
Independent And-Parallelism. In International Conference on Logic Programming,
pages 253-268. Jerusalem, MIT Press, June 1990.

[37] M. V. Hermenegildo and E. Tick. Memory Performance of AND-Parallel Prolog on
Shared-Memory Architectures. In International Conference on Parallel Processing,
Penn State, August 1988.

[38] K. Hirata, R. Yamamoto, A. Imai, H. Kawai, K. Hirano, T. Takagi, K. Taki,
A. Nakase, and K. Rokusawa. Parallel and Distributed Implementation of Con-
current Logic Programming Language KL1. In International Conference on Fifih
Generation Computer Sysiems, pages 436—459, Tokyo, June 1992. ICOT.

[39] C. A. R. Hoare. Communicating Sequential Processes. Communications of the
ACM, 21(8):666-677, August 1978.

[40] N. Ichiyoshi, K. Rokusawa, K. Nakajima, and Y. Inamura. A New External Ref-
erence Management and Distributed Unification for KL1. In International Con-

ference on Fifth Generation Computer Systems, pages 904-913, Tokyo, November
1988, ICOT.

[41] A. Imai and E. Tick. Evaluation of Parallel Copying Garbage Collection on a
Shared-Memory Multiprocessor. IEEFE Transactions on Parallel and Distribuied
Computing, 1992. in press.

24



[42] Y. Inamura, N. Ichiyoshi, K. Rokusawa, and K. Nakajima. Optimization Tech-
niques Using the MRB and Their Evaluation on the Multi-PSI/V2. In North Amer-
ican Conference on Logic Programming, pages 907-921. Cleveland, MIT Press,
October 1989.

[43] Y.Inamura and S. Onishi. A Detection Algorithm of Perpetual Suspension in KL1.
In International Conference on Logic Programming, pages 18-30. Jerusalem, MIT
Press, June 1990.

[44]) J. Jaffar and J.-L. Lassez. Constraint Logic Programming. In SIGPLAN Sympo-
sium on Principles of Programming Languages, Munich, 1987. ACM Press.

[45] L. Kale. Parallel Execution of Logic Programs: the REDUCE-OR Process Model.
In International Conference on Logic Programming, pages 616-632. University of
Melbourne, MIT Press, May 1987.

[46] K. Kumon, A. Asato, S. Arai, T. Shinogi, A. Hattori, H. Hatazawa, and K. Hirano.
Architecture and Implementation of PIM/p. In International Conference on Fifth
Generation Computer Systems, pages 414-424, Tokyo, June 1992. ICOT.

[47] D. B. Lenat, M. Prakash, and M. Shepherd. CYC: Using Common Sense Knowl-
edge to Overcome Brittleness and Knowledge Acquisition Bottlenecks. Al Maga-
zine, Winter 1985.

[48] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J. Hennessy. The
Directory-Based Cache Coherence Protocol for the DASH Multiprocessor. In In-
ternational Symposium on Computer Architecture, pages 148-159, Seattle, IEEE
Computer Society, May 1990.

[49] S. L. Lillevik. The Touchstone 30 Gigaflop DELTA Prototype. In International
Conference on Supercomputing, pages 671-677. IEEE Computer Society, 1991.

[50] Y. J. Lin and V. Kumar. AND-Parallel Execution of Logic Programs on a Shared
Memory Multiprocessor: A Summary of Results. In International Conference and
Symposium on Logic Programming, pages 1123-1141. University of Washington,
MIT Press, August 1988.

[61] E. Lusk, R. Butler, T. Disz, R. Olson, R. Overbeek, R. Stevens, D. H. D. Warren,
A. Calderwood, P. Szeredi, S. Haridi, P. Brand, M. Carlsson, A. Ciepielewski, and
B. Hausman. The Aurora Or-Parallel Prolog System. In International Conference
on Fifth Generation Computer Systems, pages 819-830, Tokyo, November 1988.
ICOT.

25



[52] §. Makino. On an O(NlogN) Algorithm for the Gravitational N-Body Simulation
and its Vectorization. In Proceedings of the First Appi Workshop on Supercom-
puting, pages 153-168, Tokyo, 1987. Institute of Supercomputing Research. ISR
Technical Report 87-03.

[53] Network Linda Creates Supercomputers with Links. MIPS World, 1(3). December
1991.

[54] K. Muthukumar and M. Hermenegildo. Determination of Variable Dependence
Information Through Abstract Interpretation. In North American Conference on
Logic Programming, pages 166-188. Cleveland, MIT Press, October 1989.

[65] L. Naish. Parallelizing NU-Prolog. In International Conference and Symposium
on Logic Programming, pages 1546-1564. University of Washington, MIT Press,
August 1988.

{56] T. Nakagawa, N. Ido, T. Tarui, M. Asaie, and M. Sugie. Hardware Implemen-
tation of Dynamic Load Balancing in the Parallel Inference Machine PIM/c. In
International Conference on Fifth Generation Computer Systems, pages 723-730,
Tokyo, June 1992. ICOT.

[57] K. Nakajima. Piling GC: Efficient Garbage Collection for AI Languages. In IFIP
Working Conference on Parallel Processing, pages 201-204. Pisa, North Holland,
May 1988.

[58] K. Nakajima. Distributed Implementation of KL1 on the Multi-PSI. In Imple-
mentation of Distribuled Prolog. John Wiley & Sons, Ltd., Sussex England, 1992.

[59] H. Nakashima, K. Nakajima, S. Kondo, Y. Takeda, Y. Inamura, S. Onishi, and
K. Masuda. Architecture and Implementation of PIM/m. In International Con-

ference on Fifth Generation Computer Systems, pages 425-435, Tokyo, June 1992,
ICOT.

[60] PR Newswire. Thinking Machines Corporation Announces CM-5 Supercomputer.
October 29, 1991.

[61] M. Nilsson and H. Tanaka. Massively Parallel Implementation of Flat GHC on the
Connection Machine. In International Conference on Fifth Generation Compuler
Systems, pages 1031-1040. Tokyo, ICOT, November 1988.

(62] K. Nishida, Y. Kimura, A. Matsumoto, and A. Goto. Evaluation of MRB Garbage
Collection on Parallel Logic Programming Architectures. In International Confer-
ence on Logic Programming, pages 83-95. Jerusalem, MIT Press, June 1990.

26



[63] K. Nitta, K. Taki, and N. Ichiyoshi. Experimental Parallel Inference Software. In
International Conference on Fifth Generation Computer Systems, pages 166-190,
Tokyo, June 1992, ICOT.

[64] K. Rokusawa and N. Ichiyoshi. A Scheme for State Change in a Distributed
Environment Using Weighted Throw Counting. In Interational Parallel Processing
Symposium, pages 640-645, Beverly Hills, March 1992. IEEE Computer Society.

[65] K. Rokusawa, N. Ichiyoshi, T. Chikayama, and H. Nakashima. An Efficient Termi-
nation Detection and Abortion Algorithm for Distributed Processing Systems. In
International Conference on Parallel Processing, pages 18-22, Penn State, August
1988,

[66) V. A. Saraswat. Concurrent Constraint Programming. MIT Press, Cambridge
MA, 1990,

[67] V. A. Saraswat, K. Kahn, and J. Levy. Janus: A Step Towards Distributed
Constraint Programming. In North American Conference on Logic Programming,
pages 431-446. Austin, MIT Press, October 1990.

[68] M. Sato, K. Kato, K. Takeda, and T. Oohara. Exploiting Fine Grain Parallelism
in Logic Programming on a Parallel Inference Machine. Technical Report TR-676,
ICOT, 1-4-28 Mita, Minato-ku Tokyo 108, Japan, August 1991.

[69] E. Y. Shapiro, editor. Concurrent Prolog: Collected Papers, volume 1,2. MIT
Press, Cambridge MA, 1987,

[70] E. Y. Shapiro. The Family of Concurrent Logic Programming Languages. ACM
Computing Surveys, 21(3):413-510, September 1989.

[71) P. Smith. Letter from Japan. The New Yorker, pages 89-99. April 13, 1992,
[72] L. Sterling, editor. The Practice of Prolog. MIT Press, Cambridge MA, 1990.

[73] P. Szeredi. Performance Analysis of the Aurora Or-Parallel Prolog System. In
North American Conference on Logic Programming, pages 713-732. Cleveland,
MIT Press, October 1989.

(74] A. Takeuchi, K. Takahashi, and H. Shimizu. A Description Language with
AND/OR Parallelism for Concurrent Systems and its Stream-Based Realization.
Technical Report 229, ICOT, 1-4-28 Mita, Minato-ku Tokyo 108, Japan, February
1987.

27



[75] K. Taki. Parallel Inference Machine PIM. In International Conference on Fifth
Generation Computer Systems, pages 50-72, Tokyo, June 1992. ICOT.

[76] A. Taylor. LIPS on a MIPS: Results From a Prolog Compiler for a RISC. In
International Conference on Logic Programming, pages 174-185. Jerusalem, MIT
Press, June 1990.

[77] S. Terasaki, D. J. Hawley, H. Sawada, K. Satoh, S. Menju, T. Kawagishi,
N. Iwayama, and A. Aiba. Parallel Constraint Logic Programming Language
GDCC and its Parallel Constraint Solvers. In International Conference on Fifth
Generation Computer Systems, pages 330-346, Tokyo, June 1992. ICOT.

[78] E. Tick. Memory Performance of Prolog Architectures. Kluwer Academic Pub-
lishers, Norwell MA, 1987.

(79] E. Tick. A Performance Comparison of AND- and OR-Parallel Logic Programming
Architectures. In International Conference on Logic Programming, pages 452-470.
Lisbon, MIT Press, June 1989.

[80] E. Tick. Parallel Logic Programming. MIT Press, Cambridge MA, 1991.

[81] E. Tick and K. Susaki. TOESP: A Prolog Benchmark. Technical Memo TM-451,
ICOT, 1-4-28 Mita, Minato-ku Tokyo 108, Japan, January 1988.

[82] K. Ueda. Guarded Horn Clauses. PhD thesis, University of Tokyo, March 1986.

[83] K. Ueda and M. Morita. A New Implementation Technique for Flat GHC. In In-
ternational Conference on Logic Programming, pages 3-17. Jerusalem, MIT Press,
June 1990.

[84] M. Van Caneghem and D. H. D). Warren, editors. Logic Programming and Iis
Applications. Ablex, 1986.

[85] P. Van Hentenryck. Constraint Satisfaction in Logic Programming. MIT Press,
Cambridge MA, 1989.

{86] P. L. Van Roy and A. M. Despain. High-Performace Logic Programming with
the Aquarius Prolog Compiler. IEEE Computer Magazine, pages 54-68, January
1992.

[87] K. Wada. Institute of Information Sciences and Electronics, Tsukuba University,

personal communication, June 1992.

28



[88] D. H. D. Warren. Applied Logic — Its Use and Implementation as a Programming
Tool. PhD thesis, University of Edinburgh, 1977. Also available as SRI Technical
Note 290.

[89] M. J. Wise. Prolog Multiprocessors. Prentice Hall, Englewood Cliffs, NJ, 1987.

[90) K. Yanoo. An Optimizing Compiler for a Parallel Inference Language. In
H. Tanaka, editor, Annual Report of the Research on Parallel Inference Engine,
pages 71-94. University of Tokyo, April 1992. (in Japanese).

[91] K. Yoshida. A’UM: A Stream-Based Concurrent Object-Oriented Programming
Language. PhD thesis, Keio University, March 1950.

[92] K. Yoshida, C. Smith, T. Kazic, G. Michaels, R. Taylor, D. Zawada, R. Hagstrom,
and R. Overbeek, Toward a Human Genome Encyclopedia. In International
Conference on Fifth Generation Computer Systems, pages 307-320, Tokyo, June
1992, ICOT.

29



