Performance Evaluation of the
Monaco Compiler and Runtime Kernel

E. Tick and C. Banerjee

CIS-TR-92-21a
April 1993

Abstract

Monaco is a native-code, shared-memory multiprocessor testbed implementation
of flat committed-choice languages such as Flat Guarded Horn Clauses. A reduced
abstract-machine instruction set facilitates decision-graph code generation and tra-
ditiona!l optimizations based on dataflow analysis. We describe the compilation
process and present empirical measurements characterizing performance gains en-
abled by various compilation and runtime kernel construction techniques. Monaco
ran 1.6—4 times faster than comparable parallet systems, yet achieved slightly better
multiprocessor speedups (10.7 on 16 Symmetry processors). Among the compiler
optimizations, common subexpression elimination achieved the largest speedup of

15%.

This report is an extended version of a paper appearing in the International Con-
ference on Logic Programming, Budapest, June 1993.

Printing history: TR-92-21, November 1992,

DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE
UNIVERSITY OF OREGON

1 Imntroduction

High-performance logic programming language implementations require advanced com-
pilation techniques. Specialized hardware may reduce execution times compared to
conventional microprocessors, but the utilily of these optimizations can be low. Com-
piler optimizations have higher utility because the compiler is usually customized for
a particular language family, whereas hardware must be generalized to all languages
of practical interest. After initial forays building logic programming machines (e.g.,
[8, 24, 23]) based on the Warren Abstract Machine (WAM) [2], advanced compilers
were built to better exploit conventional microprocessors [41, 33, 18].

Specifically with respect to the development of committed-choice logic programming
language compilers, a combination of techniques are required to achieve high perfor-
mance on conventional hardware. Compilation can be viewed as a front-end code gen-
erator and a back-end code optimizer. For both sides, abstract machines based on the
WAM, e.g., KL1 [17] and Parlog [5), must be discarded in favor of reduced instruction
sets that allow fine-grain manipulations. For example, Kliger and Shapiro’s decision-
graph method for code generation [19] permits fast clause selection as an alternative
to conventional indexing methods [2]. Data-flow analysis in the back-end facilitates
standard optimizations, such as dereferencing and type-checking elimination, that are
impossible in WAM-like instruction sets.

This paper describes the Monaco compiler and runtime system. The compiler trans-
lates flat committed-choice logic programs into an abstract machine suitable for execu-
tion on shared-memory multiprocessor hosts, targeted to RISC architectures in partic-
ular. Qur current implementation accepts FGHC programs and produces native Intel
80386 code [16] for the Sequent Symmetry {25]. Monaco’s main purpose is to be a
testbed for the advanced optimization techniques such as type inferencing [3], mode
analysis [40], sequentialization [22], and local memory reuse [32}. Furthermore, the
motivation for developing the compiler was to more accurately characterize the parallel
execution behavior of concurrent logic programs by avoiding inefficient emulation, a
problem in former studies [34].

The paper is organized as follows. Section 2 briefly reviews literature in the area
of compilation of concurrent languages. Section 3 outlines the Monaco instruction set
and storage model. The compiler is described in Section 4 and the runtime system
in Section 5. Performance characteristics are presented in Section 6. Conclusions and

future work are given in Section 7.

2 Literature Review

Emulation-based, real parallel, shared-memory implementations of committed-choice
languages include Panda and JAM. Panda [28, 35] implements a subset of Flat Guarded
Horn Clauses (FGHC) [39], sharing the PDSS compiler {4], and utilizing an abstract
machine instruction set similar to WAM [17]. Jim'’s Abstract Machine (JAM) [5] is
a Parlog emulator including support for Or-Parallel execution of deep guards. This
introduces additional overheads for process management, since a process activation
tree must be maintained. We borrowed a great deal from these systems for Monaco’s
runtime system, since our objective was to examine compilation issues. Neither of these
systems uses optimizing compilers.

Strand [10] is also emulation-based and real parallel, although mapped to an in-
termediate distributed-memory model, allowing portability to alternative hosts. The
language is flat Parlog with assignment, similar to fully-moded FGHC [40]. The Strand
compiler is a commercial product, and thus detailed information is scarce. Strand has
a performance advantage when exploiting assignment, but also a potential disadvan-
tage in the overheads incurred when mapping its distributed-memory model onto a
shared-memory host. We reconfirm in Section 6 the performance ordering Strand >
JAM > Panda. We also demonstrate Monaco’s performance relationship to these three
systems.

Further restricted from Strand is Janus [27} where the programmer must declare
a single producer and consumer for a stream. An experimental Janus-to-C compiler
jc has been recently developed for uniprocessors [11]. jc has a main advantage over
Monaco in that the backend C compiler can do much better register allocation on
the host measured in this paper (an 80386-based Symmetry). Like jc, a recent FCP
compiler by Kliger is targeted to uniprocessors [18], although it is emulated at present.
Monaco’s decision-graph compilation method is borrowed from [19] — Monaco extends
this locally with dataflow analysis, whereas [18] extends this globally with abstract
interpretation to derive procedure bodies optimized for different call sites. Over an
extensive set of benchmarks, Kliger reports speedups of 3.2 due to decision graphs over
standard indexing, 1.2 due to his global optimizations, and 5.2 due to 68000 native-code
compilation [18]. These results encourage us that Monaco is balanced in the sense of
putting our effort where the highest payoffs occur.

Finally, we mention RISC-based microprocessor architectures for committed-choice
languages: Carmel [13, 12}, PIM/i [29], PIM/p [20], and UNIRED-II [31]. These imple-
mentations are akin to Monaco, however, they are experiments in specialized hardware,
not compilation technology. For example, the macro-call facility in PIM/p is similar in
purpose to Monaco’s millicode call (Section 4.4), but the hardware implementation is

far more efficient than our interface to ‘C’.

3 Monaco Abstract Machine

Committed-choice languages [30] differ from Prolog in several ways, leading to efficient
abstract machine definitions that differ from the WAM. First, they have a process-based
computation model that does not support backtracking. A computation consists of re-
ducing goals (fine-grain tasks or processes), until no unreduced goals remain, in which
case the computation succeeds. This implies that fast selection of a committing clause
is paramount, as engendered by decision-graph code generation [19]. Second, unifica-
tion is constrained to be either passive or active. Active unification is more costly than
in Prolog because locking is needed to ensure atomic variable binding. Furthermore, to
avoid creating circular structures and potential deadlock during multiple unifications
of shared variables, we need to create a binding protocol. Third, there is a wide gap
in memory-usage efficiency in concurrent and sequential languages. Even parallel Pro-
log can exploit stacks because of the inherently sequential nature of its threads (e.g.,
[21, 14]). In committed-choice languages, without sophisticated compiler analysis (e.g.,
[22]) all goals are potentially concurrent, therefore goal allocation is usually done on a
heap. Also, data structures in logic programs are dynamically created and modified,
requiring heap storage, although in Prolog, backtracking can naturally reclaim portions
of the heap. Overall, the required memory bandwidth of committed-choice languages
is significantly greater than that of sequential logic languages. Fourth, process man-
agement, i.e., enqueueing, suspending, and resuming operations, must be reduced in
frequency and overhead.

The Monaco abstract machine supports seven programmer-visible tagged data types:
integers, immediates (symbolic atoms), reference pointers, logical variables, hooked
variables, list pairs, and vectors. Abstractly, each of the first five simple objects occu-
pies a machine cell consisting of a data field, tag, and lock. As in WAM, a compound
object is represented as a pointer to a group of cells containing the list pair or vector.
On Symmetry, we implement a cell in eight bytes, with a low-order 3-bit tag in the
first word, and the second word currently devoted only to the DYNIX [25] lock. This
scheme is similar to that used in Panda, chosen for its simplicity and extensibility.

A logical variable cell is an uninstantiated location, with the data field pointing to
the cell itself (as in WAM). When a variable becomes instantiated, its type changes
to that of the value that the cell is instantiated with. A hooked variable cell is an
uninstantiated location on which some process(es) are blocked. The data field of the
cell points to a list of suspended processes, as in Panda and JAM. If a hooked cell is

i i common .
front-end intermediate flow b : register
decisi h code alysi subexpression ;
ecision graphs generation analysis elimination allocation

Figure 1: Monaco Compiler Organization (Main Phases Shown)

bound, the processes hooked on the cell must be resumed. Tradeoffs concerning these
design decisions are well documented [2, 5].

The Monaco abstract machine is a load-store architecture to facilitate mapping
to RISC hosts. Other load-store instruction sets for logic programming languages
exist (e.g., [15, 41, 13, 12, 29, 20, 31]) although they have been primarily designed for
specialized hardware. Our instruction set is summarized in Table 1. In the table, Rs,
Rs1, and Rs2 denote source registers, Rd denotes a destination register, N denotes an
integer constant, and F/A is the name of an executable procedure.

A majority of the instructions are lightweight and can easily be translated into small
sequences of instructions on the host. Most predicate and arithmetic instructions fall
into this category. At the other extreme, some instructions are sufficiently complex that
not much can be gained by translating them into native code. These are implemented
by an interface to the runtime system, called a millicode call (see Section 4.4). The
middle ground is covered by the data manipulators and constructors. We currently
implement these in native code, at some expense in code size, to minimize system-call
frequency.

Both active and passive unification are sufficiently complex to warrant implemen-
tation in millicode. Full passive unification in the head or guard is only needed in the
rare case of shared variables, thus we do not review this algorithm here (see Duvvuru
[9]). Active unification commonly occurs in the body, implemented here with the unify
instruction. In a crop of recent languages, the full power of flat committed-choice lan-
guages has been limited, allowing compile-time customization of almost all unification
operations. We are particularly interested in moded FGHC (similar to Strand), and
have built an associated mode analyzer [22]. With derived mode information, we can
compile unifications into cheaper assignments, an optimization we examine in Section
6.2. We discover, however, that without more powerful analysis, the general overloading
of logic variables for synchronization causes inefficiencies even for assignment.

4 Compilation

The Monaco compiler is summarized in Figure 1. The pipeline follows a traditional

80386

Instruction instri Semantics
arithmetic and predicates
iadd(Rs1,Rs2,Rd) K integer arithmetic (isub, idiv, imod, imul)
iand(Rel,Rs2,Rd) 3 bitwise arithmetic (ineg, inot, ior, ixor)
ishl(Rs1,Rs2,Rd) 3 shift left (ishra, ishrl)
ieq(Rsi,Ra2,Rd) 147 integer comparison (ige, igt, ile, ilt, ineq)
isatom(Rs,Rd) 97 type comparison (isbound, ishooked, igint,
islist, isnil, isref, isstruct, isunbound)
eq(Rs1,Rs2,Rd) 5 comparison (neq)
control
br(a,L) 1 Jump to L
br{Cond,Rs,L) 2 if (R, = Cond) then branch to L
switch{Table,Rs) 2 Jump indirect {on tag{R,)) through Table
proceed 6 complete process
execute(F/A) 1 execute process F/A
process management
punify(Rsi,Rs2,Rd) Tt passive unify
unify(Rs1,Rs2) 61 active unify
enqueuna(Rs) 5t push goal on ready queue
push(Rs) 8 push address onto suspension stack
suspend(F/A) 10% suspend process F/A
data constructors
alloc(N,Rd) 6 allocate heap by N cells
ref{Rs,N,Rd) 3 Ri:= R, + N
initvar(Rs) 4 mem(R,) := unbound variable
initlist(Rsl,Rs2,Rd) 5 mem(Ry) := pair(R,;, Ry2); Rq := pair ptr
initstruct(N,Rd) 11 mem(fy) : = vector of size N; Ry : = vec ptr
initgoal (N,F/A,Rd) 12 mem(Rg) := goal record; R4 : = vec ptr
mkunbound (Rd) 9 R4 := ptr to unbound variable
mkconst (C,Rd) 1 R4 := C (constant)
mklist{Rs1,Rs2,Rd) 11 R4 := ptr to pair(R,y, R,2)
mkatruct(N,Rd) 10 R4 := ptr to vector of size N
mkgoal(N,F/A,Rd) 11 R4 := ptr to goal record
data manipulators
move(Rs,Rd) 2 Rs:= R,
deref(Rs,Rd) 5 R; : = dereference of R,
car{Rs ,Rd) 3 R4 := head of R,
cdr(Ra,Rd) 3 R4 := tail of R,
sref(is,N,Rd) 3 R := value of N*® glot in vector R,
sset{Rs,N,Rd) 3 N glot in vector Ry := R,
ssize(Rs,Rd) 11 Ry : = size of vector R,

{ most frequent path, unless otherwise specified.

7 longest path.

1 millicode call and return only.

Table 1: Monaco Abstract Instruction Set (Committed-Choice Subset)

organization, where the input is a source program and the output is an equivalent
program in the abstract machine instruction set. The front-end parses the program
and generates decision graphs with Kliger’s algorithm [19]. Alternatively, “don’t know”
procedures (determinacy testing trees) in languages such as Pandora and Andorra can
be generated [37]. These graphs and trees are fed to a code-generation phase which
produces rudimentary abstract machine code {assuming an infinite register set).

Flow analysis proceeds by decomposing the program into a flow graph of basic
blocks. Type and dereferencing information is propagated through the flow graph
in the subsequent phase. At this point, macro-instructions are resolved, redundant
computations are recognized and eliminated. Deadcode elimination is a minor pass not
show in the figure. Register allocation is performed as the final flow graph optimization.
The output from the register allocator is an abstract machine program instantiated with
abstract register identifiers.

A series of minor phases (not shown) are then required to perform jump-to-jump
short circuiting, dead block removal, branch removal, code flattening, and peephole
optimization (in that order). The final output is ready for assembly. Our current
assembler translates the Monaco program into 80386 assembly code, and invckes the
Symmetry assembler for construction of an object file. The object file can then be
linked to the precompiled runtime system, producing an executable. We leverage the
Symmetry assembler, requiring this somewhat clumsy linkage protocol, because it is
portable (for another host, we target our assembler to the host’s assembly language,
and ignore intricacies of object image formats).

4.1 Front-End: Decision-Graph Generation

Decision graphs have been shown by Kliger [19] to be effective means of rapidly deter-
mining which clause within a procedure can commit. Furthermore, these graphs are
space-linear in the number of clauses. We use Kliger’s algorithm in our front-end: the
specifics are discussed in {37]. For each procedure, a cannonical normalized form is
produced. The graph is then generated, where each node is a test (e.g., X > Y — 3)
and edges are valuations of a test (e.g., yes/no or case values). The leaves of the graph
are clause bodies, where we lump tell operations with the body. The backend will
transform a graph into a sequence of triples suitable for optimization.

The key point here is to compute residuals which are clause sets that satisfly a
guard (ask) test. Satisfaction requires proving implications between clause constraints
and the guard. In general, such proofs are difficult since the domain is unspecified.
Furthermore, since multiple residuals may be needed per graph node, this computation
is critical to front-end efficiency. Qur solution to these concerns is to safely approximate

check(X, C, _, NCs, Cs, L, 80, S1) :-X =10 |
append(NCs, Cs, Ps),
queen(Ps, [1, [CIL]}, S0, 51).
check(X, ¢, D, _, _, _, S0, S1) :-
X=1[Pl.], P-C =:=D |
S0 = S1.
check{ X, €, D, _, -, -, S0, 81) :-
X=1[P|I_], C-P =:=D |
50 = 81,
check(X, ¢, D, NCs, Cs, L, SO, S1) :-
X = [PIPs], P-C =\=D, C-P =\=D, D1 := D+1 |
check({ Ps, C, D1, NCs, Cs, L, SO, Si1).

Figure 2: Normalized Procedure check/8 from queens

the proofs by table lookup.! For example, the constraint X > I implies the constraint
X > J if constant integers J > J, for variable X. A set of these relations has been
found to be quite effective in allowing optimal graph generation. Complex inferences
cannot be made (such as transitivity); however, we have not seen such complexity in
typical programs.

Consider the check/8 procedure in the queens program, listed in Figure 2. We
chose this example to illustrate both the strengths and weaknesses of decision graph
compilation. The first step of processing is to create a normalized canonical form from
the source program. This entails flattening the head, pulling all complex terms out
into guard “ask” unifications. Furthermore, integer type checks are inserted in the
guard for all variables involved in arithmetic expressions, e.g., integer(P) is included
in clauses 3-5. This allows the indexer to choose type checking early in the decision-
graph generation phase, resulting in an efficient graph, shown in Figure 3.

The important points to note in the graph are the indexing choice of switching on
the first argument, and the placement of integer type checks for P, C, and D. Switching
on the first argument is in fact not optimal when considering call forwarding, i.e.,
shorting callers around operations (such as integer checks in this case) that are known
a priori from flow analysis. We would like the integer checks as high in the graph as
possible., One idea is to force the checks up by inserting additional integer guards in
the end-of-recursion case, although that is neither a satisfying nor automatic solution.

Another flaw in the decision graph is that the path to clause two (node 2) requires
three arithmetic inequalities. Ideally, node (1) should commit to clause two. The
problem lies in the power of our inferencing mechanism computing residunals. A clause
is not placed in the residual of a branch test unless a guard in that clause implies the

!The Aquarius Prolog compiler [41] simplifies formulae in a similat manner. Both Monaco and
Aquarius use about 50 rules of comparable complexity.

suwitch(X,
[case([],commit(clause 1))
casa(’.'/2,

ask(integer(P),
yes(ask(integer(C),
yes(ask(D),
yes(ask((C-P =\= D),
yes(ask((P-C =\= D),
yes(commit{(clause 4))
no(go(7}) 1)
7:other(go(6)))),
no{commit(clause 3)),
6:other(
ask((P-C =:= D),
yes(commit(clause 2)), (2)
no(go(8}),
8:other(go(5)))})),
no{(go(B)),
5:other(go{4))}),
no{go(4)},
4:other(go(3)))),
no{go(3)),
3:other(go(2)))),
2:default{go(1))]
1:suspend

Figure 3: Stylized Decision Graph for check/8

test (thus retaining space linearity). Actually, P — C = D doesimply C — P # D, but
we have refrained from adding such inferencing smarts to the compiler. Qur inferences
are purely table driven, and although we could insert many more table entries for such
ad hoc cases, a general prover would be best. A final point: the rather circuitous routes
to suspension are entirely collapsed by dataflow analysis and jump-chain shorting in
subsequent phases of the compilation.

4.2 Code Generation

Code generation translates the decision graphs into intermediate Monaco instructions.
The translation algorithms are straightforward, perhaps naive concerning arithmetic
expressions. Key to code generation is a “one register — one value” invariant that
facilitates all later phases, e.g., a register can be defined only once within a procedure.
Perhaps the trickiest part of code generation is the construction of switch-on-tag state-
ments, which are composed of eight binary switch instructions, each in its own basic
block. This allows us to standardize basic blocks in a binary tree. Body generation
follows the standard style (e.g., [17]) of enqueueing all body goals but the first, which
is executed immediately.

Subsequent dataflow analysis proceeds from the Monaco code, driven by a table
describing each instruction’s operand uses and definitions, as described in the next
section. In retrospect, we found that certain analyses, such as call forwarding [6], is
best done on the decision graph, not the generated code. Although dataflow information
must be derived earlier to do this, it is much easier to rearrange portions of the flow
graph, with no concern for register bindings.

4.3 Flow-Analysis Optimizations

Data-flow analysis is fundamental to most of the compiler optimizations, to the point
where the preliminary code is particularly naive and requires fiow analysis to clean it
up. We took this approach to keep the compiler modular, although it impacts compile
time. The basis for flow analysis is the construction of a flow graph of basic blocks
from the preliminary code. A standard construction algorithm is used [1] with the note
that Monaco instructions such as execute, proceed, and suspend represent control
transfers, and thus terminate blocks.

Note that the program is analyzed locally, i.e., on a procedure-by-procedure basis,
to perform common subexpression elimination (CSE). A flow graph, created for a pro-
cedure, is topologically sorted to ensure that all ancestors of a child block are analyzed
before the child is analyzed. Type information is then collected and propagated from
the root, taking the set intersection (as the least upper bound) of information arriving
to a child node from its ancestors. The information is essentially an association list
matching pseudo-registers and their abstract contents. For example, suppose we know
R3 = car(deref(R1)), and we encounter a Monaco instruction deref R3,R4, then we
derive the new information: R4 <~ deref(car(deref(R1i))). A common association
entry is R6 <- RS, created from the instruction move RS,R6.

Code within the blocks is rewritten on the fly during analysis to share common
subexpressions. The most common case of this is shorting moves, e.g., move R5,R6
followed by isint R6,R7, will rewrite the latter instruction to be isint R5,R7. Later
deadcode elimination is of course required here. Branch conditions are also propagated
throughout the flow graph. We must be careful to distinguish the taken condition from
the not-taken condition. For example, entering some block in the graph, we may know
that integer(deref (car(deref(R1)))) must be true, by consideration of the flow to
that point. This allows branch shorting, e.g., br nz,R8, which branches if R8 is not
zero, can be combined with flow information R8 <- isint(deref{car(deref(R1))))
and the previous branch information, to derive that the branch is always taken, and so
it will be rewritten as an unconditional jump.

Deadcode elimination and register allocation require further flow graph analysis.

Live-range analysis [1] is performed on the graph, producing the information of which
registers are live within each basic block. We chose to collect this information at
block granularity rather than instruction granularity to reduce compile time. Large
clause bodies can have relatively large basic blocks, reducing the effectiveness of this
technique. For this reason we artificially split such blocks at each body goal. In general,
this heuristic is sufficient to retain accuracy, as discussed in Section 6.

If a value is never used, then its live range will be empty. Hence, deadcode elimina-
tion is performed by removing instructions containing values with empty live ranges.
Give the previous analysis, this phase is trivial. Next, we allocate registers locally to
each procedure.? The local allocation method used is based on the liveness of the reg-
isters, and is performed on a basis-block granularity to match live-range analysis. The
most live name (i.e., having the most basic blocks over its life) is allocated first, and
so on. The algorithm is non-backtracking, so lack of an available register for the next
most frequent name requires generation of spill code. The spill is allocated to a vector
local to the procedure.

The goodness of such a naive scheme relies on the accuracy of flow analysis. Al-
locating on a block basis can lead to frequent spill code, although this is alleviated
by splitting the body along individual goals. Still, a goal requiring the evaluation and
loading of many actuals is the most likely to cause spills. Spilling can be reduced by
artificially splitting the blocks into finer grains (in the limit: instructions). Because we
were targeting our initial experiments to an 80386 backend with so few registers avail-
able to the program, it became hopeless to avoid frequent spilling. Instead we generate
memory accesses to a pseudo-register array. This array is small encugh to easily fit in
cache, yet large enough to avoid spilling. This stop-gap measure allows us to refine the
compiler for eventual porting to a host with sufficient registers.

Qur allocator averages 7.3 registers for the 37 benchmark procedures considered
in Section 6. Trivial procedures ranged from 2-7 registers, whereas more complex
procedures ranged from 11-17 registers. Future work includes implementing a global
allocator based on cooperation across procedure call boundaries.

Final phases include shorting of all jump chains, which leads to dead basic blocks
that are removed. The flow graph is then flattened and a peephole optimizer filters the
code stream. Currently the peepholer is limited: its primary function is to attempt
common subexpression elimination (CSE) of spill sequences. This is inherent to the
well-known problem of where to allocate registers: before or after CSE. Since we allocate
before, we cannot eliminate spill code redundancies. The peepholer cannot make much

2Global register allocation in concurrent languages such as FGHC first requires sequentialization of
threads, which we are pursuing[22].

10

headway here, and we plan to explore a split register allocator, as in gcc, to better
solve the problem.

We translate the Monaco code into 80386 Symmetry assembly code in a final assem-
bler module. The 80386 code is reassembled with the Symmetry assembler, producing
an linkable object file. The object is linked directly to the runtime system object,
forming a executable file (customized to this particular source program). This method
is quick and simple — the system object need only be linked, not recompiled. Only
objects are saved — executables are deleted after use. This is sufficient for our use as
an experimental testbed.

4.4 Example

The Monaco code for the quicksort procedure written in FGHC, is shown in Figure
4 (part/4 not shown). The precise semantics of the instruction set are not necessary
to follow the example. Before entry to a procedure, the input arguments are loaded
in to the abstract machine registers numbered from zero. The entry point to this
procedure is labeled qsort/3. Arguments are dereferenced before they are tested (1).
Quicksort dispatches on its first (input) argument in a switch on tag instruction (2). If
unbound, control flows to L1, where the argument is pushed on the suspension stack
and suspension occurs (3-4). If an immediate or vector, control flows to L2 where the
suspension routine is called with no pushed arguments (4), resulting in failure. If nil,
control flows to L3, where the argument is compared to nil and either fails or commits
to the first clause (5-9). If the first argument is a list, the second clause commits at
L4 (10-35). The alloc instruction (10) allocates a 15-cell frame on the heap, since
that many cells are required in the ensuing code. Two goal records are constructed for
the two qsort/3 goals in the body, and are enqueued. A call is made to the part/4
procedure, after setting up its arguments in appropriate registers, exploiting last-call
optimization. We will comment more about how this code is generated in the next
section.

There are several interesting points about how code is generated from the decision
graph. These characteristics are analyzed empirically in Section 6.

¢ Originally binary branches were favored over switches, because we planned Mona-
co for a RISC backend. However, the 80386, based on a condition code register
is not conducive to branching on conditions stored in registers. Therefore we
introduced the switch instruction, assembled into an indirect jump-on-tag table.

¢ Structures are created on the heap by allocating space for the entire clause body,
and then filling it in for each structure (including goal records). For each structure

11

gsort([],Rest,Ans) :- Rest = Ans.
gsort([XIR],Y,T) :- part(R,X,S,L), qsort(S,Y,[XIY1l), gsort(L,Y1,T).

gsort/3: deref r0,r4 % r4 := deref(Argument 1)
switch [L1,14,L3,L2,L2,L1i,L1,L1],r4
t;: push s 0 P ? :o. Pu:h Argument 1. Suspend.
3 suspend qgsort » Suspen
L3: mkconst [1,r3 % Argument 1 is [1?
eq r4,r3,rb
br z,r5,L2 % No, fail.
unify rl,r2 % Yes. Rest = Ans
proceed
L4: alloc 16,16 % Allocate 15 cells on heap.
move rb,r8
initgoal qsort/3,ré % ré -> goal qsort/3
ret r6,5,r3 % r3 :=L
initvar 3
sset r3,1,r6 % 1(x6) := L
ret r5,6,r8 % r8 := Y1
initvar 18
sset r8,2,r6 % 2(x6) := Y1
sset r2,3,r6 % 3(z8) :=T
enqueune 16 % enqueue gsort(L,Y1,T)
ref r5,7,r9
initgoal gsort/3,r9 % r9 -> goal qsort/3
ref r5,12,r2 %r2 :=8
initvar r2
sset r2,1,r9 % 1(x9) := 8
ssat ri,2,r9 % 2(x9) ;= Y
car rd,ri % r1 =X
ref r6,13,ri2
initlist r1,r8,r12 % r12 := [XIY1]
sset ri2,3,r9 % 3(re) := [X1Y1]
enqueue r9 % enqueue gsort(5,Y,[X|Y1])}
cdr r4,r0 %0 :=Rh
execute part/4 % call part{R,X,S,L)

Figure 4: Compiled Quicksort Procedure in Monaco

12

O ~1G0h WD e

argument, a reference is built (with ref) pointing to the heap location where it
will be constructed, and the storage is initialized (e.g., initvar and initgoal).
Then the structure argument position is bound to the reference (with sset).
This implies that variables reside outside of structures, which will ease future
optimizations concerning local memory reuse [32].

The final Monaco code shown in Figure 4 is the result of extensive dataflow
analysis and optimization. With no optimizations the procedure has 43 Monaco
instructions, an increase of 30%. The primary savings in code size, and corre-
spondingly execution time, comes from CSE and tight control.

The compiler was purposely kept as elegant and modular as possible, with a min-
imum number of stages, and therefore less than optimal code is produced. For
example, we chose to do register allocation after CSE. Thus if we have register
spilling, the spill sequences will not be simplified. We also chose to abide by
a code generation policy wherein every pseudo register is defined at most once
per procedure. Given this policy, which facilitates dataflow analysis, we need
to assign different pseudo registers to passed parameters and tail-recursive argu-
ments. Those registers need to be coerced during register allocation. The result
is poor allocation in the basic block containing the tail recursion. Instead of more
dataflow analysis to solve this [26], a patch was added to scan the block in re-
verse, shorting out register-to-register moves. This produces reasonable, but not
excellent, code.

The macro assembler is the penultimate stage in the compilation process. It trans-

lates a Monaco assembly program into an 80386 assembly program, for final translation

by the DYNIX assembler as. Figure 5 gives two examples of macro expansion of Monaco

into 80386 assembly. Instructions unify, punify, enqueus, suspend, and execute are

sufficiently complex to warrant implementation within the runtime system as millicode.

As shown for punify, a millicode call is accomplished by means of an indirect jump

table, with parameters passed as in ‘C’.

5 Monaco Runtime System

In this section we give a brief overview of the runtime kernel to put the subsequent

performance analysis in perspective. For a detailed discussion, see Tick [36].

Concurrent logic languages, due to the nature of the fine-grain tasks, single-assign-

ment variables, and heap-based memory management, require extensive runtime sup-

port. The main objectives of the runtime system are to support fast process man-

13

movl Re*4(REGS),THPO # deref(Rs, Rd)
movl TMPO, THMP2 # TrailPtr := ¢
L{(k): movl TMPO, TMP1

andl $TAG_MASK,TMP1 # while(TAG(t) == REF_TAG)
jnz L(k+1) 2 {
movl TMPO , TMP2 # TrailPtr = t;
movl O(TMPO) ,THPO # t = CELLREF(t);
jmp L(k} #}
L{k+1): movl TMPO,Rd+4 (REGS) # Rd = Result

punity(Rsi, Rs2, Rd)

pushl Rs2*4(REGS) # push Rs2 on stack

pushl Rsi*4(REGS) # push Rsl on stack

pushl $LM_RET # push return addrass

jmp #*PUNIFY_OFF(REGS) # indirect call to punify
LH_RET: addl $8,%esp # readjust stack

movl TMPO,Rd*4 (REGS) # Rd := punify(Rsi,Rs2)

Figure 5: Examples of 80386 Macro Expansion on Symmetry (TMPO, TMP1 and REGS
are machine register aliases)

agement, memory allocation, and runtime system calls, as described in this section.
Like most WAM-based systems (e.g., [21, 28, 5]), the Monaco kernel is based on “task
farming:” a set of worker processes that run as regular DYNIX processes on all the
processors. A worker process corresponds to one Monaco abstract machine processor
and operates in a loop: looking for reducible goals in the pool, finding one and reducing
it, adding the body goals of that clause to the pool, and continuing to look for more
work.

To reduce synchronization, the goal pool is split among the workers — each has
a private goal queue, implemented as a list. Thus we both enqueue and dequeue
goals from the queue head, resulting in pseudo depth-first execution (not pure because
idle workers steal goals from busy worker’s queues). Depth-first evaluation has been
shown to be relatively efficient [28], so we adopted it here. We also adopted the JAM
scheduling strategy of a ring: an idle worker examines the private queues of successive
clockwise neighbors until a goal is found. This scheme is efficient because the idle
worker responsible for finding work, affecting busy workers only when synchronizing on
the quene.® This scheme works effectively and produces reasonable load balancing, as
shown in JAM and here (see Section 6). Our current research emphasis is in an efficient
instruction set and compilation procedure, so we have adopted standard techniques
for process management. Suspension and resumption is done with logical variables

3JAM reduces synchronization by stealing from the tail of the queue. We did not implement this
optimization because we plan to use priority queues exploiting granularity estimations {38} in [uture
versions of Monaco.

14

hooked to suspended goals via suspension slips, as in JAM Parlog [5] and KL1 [17]
implementations.

Most goals allocate heap memory for creating data and body goal structures, We
reduce the frequency of allocation by aggregating all heap requests within a clause
into a single millicode call. The Monaco heap is split into equal-sized slices for each
worker, avoiding synchronization. Each heap is initialized with two range pointers
delimiting the unallocated area. All heap allocations, approximately one per reduction,
manipulate and check these pointers accordingly. The overflow check is sufficiently
frequent that we chose to generate it in native code. This naive heap implementation
is sufficient for our initial evaluation of compilation techniques. The current version of
Monaco does not yet implement garbage collection (and so collection overheads are not
accounted for in the empirical analysis given in Section 6).

6 Performance Evaluation

Preliminary performance evaluation of Monaco has focussed on measuring the unipro-
cessor execution time, speedups in parallel execution, and profiling of program exe-
cution. All three aspects are discussed in this section. For uniprocessor execution,
Monaco is compared with Strand (Buckingham) [10], JAM V1.4 [5], PDSS V2.52.19
[4], Panda (using PDSS V0.8 compiler!} [28], Janus [11}, and SICStus Prolog V2.1. For
multiprocessor execution, comparison is made only with JAM because it is the fastest
of the parallel systems with comparative scheduling. Empirical evaluation was con-
ducted on a Sequent Symmetry S81 system with 16 MHz Intel 80386 microprocessors.
Execution times (in milliseconds) are calculated as the elapsed time between starting
the computation, until all the processors become idle. All measurements presented are
the minimum of several runs.

Table 2 shows uniprocessor (one PE) execution times, normalized to Monaco, for a
benchmark suite (listed in the Appendix). Monaco is compiled with full optimizations,
but without mode analysis (this primarily affects gueens as mentioned below). The
measurements are only an approximate comparison: the systems offer different facilities
(e.g., language capabilities, types of garbage collectors) that make a fair comparison
difficult. For example, PDSS, Janus, and SICStus are sequential systems without any
multiprocessor overheads. Furthermore, the algorithms used, e.g., queens, may not be
optimal for Prolog. In any case, these measurements satisfy us that the Monaco has
slightly better performance than alternative multiprocessor systems.

We still have a far way to improve (10%-500%) to achieve Janus speeds (of course,
we can make this up with a multiprocessor). With respect to Strand, the fastest com-

15

Program Monaco | Strand | JAM | Panda || PDSS | Janus | SICStus
hanoi(14) 1.0 13 | 1.7 | 21 || 21 | 627 | 11
anrev(1000) 1.0 1.8 2.0 3.3 2.9 0.20 1.1
qsort(1000) 1.0 1.9 24 5.2 2.7 0.60 1.8
queens({10) 1.0 0.59 3.2 4.6 4.2 0.91 24
primes(5000) 1.0 3.0 3.7 5.8 3.7 0.48 2.3
pascal(200) 1.0 24 | 23 | 44 26 | 0.42 1.6
geo. mean 1.0 1.6 2.5 4.0 3.0 0.43 1.6

Table 2: Uniprocessor Execution Time Normalized to Monaco on Sequent Symmetry
(Full Optimizations)

petition publicly available, we are running from 40% slower to three times faster. We
believe the 40% gap in queens is due to 1) a non-optimal decision graph, as described
in Section 4.1; 2) our somewhat naive code generation of arithmetic expressions (no
static type inferencing is done); and 3} no exploitation of mode information (to strength
reduce variable-to-variable unifies, which comes naturally in Stand). We discuss op-
timizations in Section 6.2 to reduce (2) and (3), resulting in 20% speedup in queens
which reduces the gap with Strand to —30%.

The multiprocessor execution times of Monaco and JAM are given in Table 3. The
speedups, shown in Table 4, are calculated as the ratio of execution times of the same
multiprocessor system on one PE to multiple PEs. Thus the metric is biased, but still
gives us a first approximation of the utility of exploiting parallelism. Monaco and JAM
use almost identical scheduling algorithms, except that an idle Monaco worker process
will steal work from the front end of a busy worker’s queue, instead of the rear as in
JAM. Thus we are not surprised that speedups are similar. It is not clear why JAM’s
execution time increased from 4 to 8 PEs on gsort, the outlier of the benchmarks. In
general we expected the experiment to be biased to JAM which allocates proportionally
more heap with increasing numbers of PEs. Again, these are preliminary measurements
and we conclude simply that Monaco is successfully exploiting fine-grain parallelism,
even though its streamlined abstract machine achieved gains in absolute performance.

6.1 Execution Profiling

We instrumented the Monaco runtime kernel to measure the performance of the fre-
quently-used millicode procedures: unify, enqueue, and suspend. All the measure-
ments were taken with one worker, using tools built from UNIX profil and prof. Table
5 shows the percentage execution time spent in the user program (Monaco code) and
the runtime kernel. The kernel consists of Monitor (where the worker steals or de-

16

Table 3: Multiprocessor Performance of Monaco (Optimized) and JAM

Program 1PE] 2PE| 4PE| 8PE | 12PE| 16 PE
Monaco {msec)
hanoi 4,364 | 2,339 1,218 722 598 558
nrev 19,153 | 11,740 | 6,136 | 3,394 | 2,503 ; 2,155
gsort 21,4121 12,970 | 6,621 | 3,496 | 2,438} 1,954
queens 43,305 | 30,348 | 12,413} 6,163 | 4,041 | 3,082
primes 12,841 | 7,549 | 3,788 | 1,984 | 1390| 1,117
pascal 8073 | 4981 | 2499 | 1,294 919 724
JAM (msec)
hanoi 7,360 | 3,780 (2,260] 1,620 1,390 1,290
nrev 38,030 | 33,550 | 10,200 | 5,290 | 3,570 | 2,700
gsort 50,900 | 26,300 | 14,120 | 19,150 | 15,220 | 13,170
queens 139,590 | 69,860 | 34,900 | 17,490 11,680 | 8,780
primes 48,120 { 24,930 § 12,520 | 7,300] 6,270 | 5,550
pascal 20,300 | 10,130 | 5,140 | 2,620 1,780 | 1,360
JAM/Monaco
hanoi 1.7 1.6 1.9 2.2 2.3 2.3
nrev 2.0 2.9 1.7 1.6 14 1.3
qsort 2.4 2.0 2.1 5.5 6.2 6.7
queens 3.2 2.3 28 2.8 29 2.8
primes 3.7 3.3 33 3.7 4.5 5.0
pascal 2.3 2.0 2.1 2.0 1.9 1.9
geo. mean 2.5 2.3 2.3 2.7 2.8 2.8

Program |2PE[4PE|8PE|12PE|16PE||2PE|4PE |8PE|12PE | 16 PE
Monaco JAM
hanoi 19 36| 6.0 7.3 78 19| 33| 45 5.3 5.7
nrev 16| 31| 56 7.7 B9 11| 37| 72| 107 141
gsort 1.7 3.2 6.1 8.8 11.0 1.9 3.6 2.7 3.3 3.9
queens 14 3.5 7.0 10.7 14.1 2.0 4.0 8.0 12.0 15.9
primes 1.7 34| 6.5 92| 115]) 19| 38| 66 7.7 8.7
pascal 1.8 3.6 6.9 9.8 12.4 2.0 3.9 7.7 114 14.9
geo. mean | 17| 34| 6.3 88| 10.7] 18| 37| 5.7 7.6 9.3

Table 4: Multiprocessor Speedups on Monaco and JAM

17

Kernel
Goals Unify
Program User | Kernel | Monitor | Run | Enq | Susp | Stub | Rest | Misc
hanoi 47.11 | 52.89 9.10 16.08 | 9.47 | 0.00 | 11.06 | 0.00 | 7.15
nrev 56.24 | 43.76 0.39 0.33] 0.11 | 0.00 | 34.61 | 0.20 | 8.12
gsort 62.36 | 37.64 0.39 028028 | 0.00 | 30,59 | 0.01 | 6.11
gueens 54.48 | 45.52 8.84 1246 | 882§ 0.00 | 7.90 | 0.00 | 7.47
prime 69.74 | 30.26 0.53 0.18§ 0.10 | 0.00 | 24.01 | 0.01 | 5.34
pascal 54.63 | 45.37 2.16 2721 261 | 0.00 | 29.25 | 0.10 | 8.61
arith. mean | 57.43 | 42.57 3.57 534 357 | 0.00 | 2290 | 0.05 | 7.13
geo. mean | 57.00 | 41.94 1.55 1.44] 0.94] 0.00 | 20.05 | 0.00 | 7.04

Table 5: Percentage Execution Times in Kernel and User Program (Fully Optimized,
on One Worker)

queues goals and prepares them for execution), Run (a stub currently needed to call the
Monaco code), Enq (millicode for enqueueing goals), Susp (millicode for suspending
goals), Stub (the fast case of unification), Rest (the general body of unification), and
miscellaneous. Suspension is negligible in these benchmarks, making Susp and Rest
insignificant. Hanoi and queens enqueue a large number of goal records and hence the
time spent in Enq, Monitor, and Run is significant: on average 32.39% compared to
12.48% over all the programs.

The statistics indicate that a more streamlined thread interface will be beneficial
for procedure intensive programs. For example, the Run stub is a patch around some
compilation difficulties, and in theory is not needed. With a RISC backend, we would
avoid loading goal arguments into memory-simulated registers, as we currently do for
the 80386, thus reducing Monitor time. More far-reaching solutions involve increasing
granularity by sequentialization (see next section). A further kernel optimization would
be to pull up the unification Stub (now averaging 22.9%, the most overhead of any
single function) into assembly code.

6.2 Compiler Optimizations

Table 6 shows the performance gains of three optimizations: CSE: dataflow analysis
enabling common subexpression elimination and subsequent deadcode removal, switch:
using branch tables for generating switch nodes with the decision graphs,and X := ¥
the previously described variable-to-variable unification optimization. Each effect is
shown as a speedup relative to the previous compilation. In the case of switches, the
default method uses a chain of binary branches. In the case of unification, the default

18

Program CSE | switch [X:= ¥
hanoi(14) 219 [5.01 0.65
nrev(1000) | 16.06 8.48 —0.50
qsort(1000) | 32.21 16.88 —-0.22
queens(10) | 18.07 12.75 11.66
prime(5000) | 27.51 | 16.61 -0.14
pascal(200) | 21.49 12.40 1.44
geo. mean 15.15 11.11 —

Table 6: Percentage Performance Gain with Dataflow Analysis, Branch Tables, and
Mode Analysis Optimizations

method uses a stub that cannot quickly perform variable-to-variable assignment (for
fear of deadlock in nonmoded programs). The measurements clearly demonstrate the
effectiveness of dataflow analysis, and to a lesser extent, fast branching. Note that
discounting the outlier hanoi, CSE accounts for 22% average gain. The assignment
optimization benefits only queens, the one benchmark that collects multiple solutions in
a difference list, and thus shorts the list frequently with variable-to-variable unification.
The performance gain/loss for the other benchmarks is insignificant, so we do not
calculate a mean.

To experiment with the utility of decision graph code generation, we did not have
an alternative frontend that used WAM-style indexing. Instead, we generated decision
graphs with a naive indexer. The naive indexer simply chose the next available test for
the next node. However, since arithmetic comparisons required that integer types be
checked earlier, even the naive indexer chose integer tests first. The benchmark suite
was sufficiently simple that the naive indexer produced code that was approximately as
fast as the sophisticated indexer., More complex procedures are required to demonstrate
a significant difference, e.g., [18].

Three additional optimizations were consider by hand modification of the compiler-
generated code for queens: optimal register allocation, efficient branching, and efficient
calling. The results are given in Table 7. To experiment with the performance loss
due to register allocation, we hand-allocated the Monaco registers for gueen. Compiler
register allocation averaged eight registers per procedure, ranging from 4-15. Hand
allocation reduced this to 5.6 registers per procedure, ranging from 2-12 (this included
optimistically rearranging instructions to ease allocation). Because these registers are
simulated, global allocation has no beneficial effect. The only advantage we can measure
is the reduction of move instructions, which as seen has little (0.8%) speedup. Hand
allocation of 80386 registers was too intricate to contemplate, even for queens with 803

19

Expériment Time (msec) | % Gain
baseline (standard opts) 38,578

hand register allocation 38,275 0.79
efficient 80386 branching 37,165 2.99
call forwarding 36,136 2.85
total 6.62

Table 7: Additional Optimizations, Measured for Queen(10)

assembly instructions.

The poor match between Monaco's branches and the 80386 was alleviated by a
peephole optimizer in the assembler. The problem with this method is that it squashes
the branch-condition register, erroneous if that register is live. This optimization is
safe for queens, allowing us to measure its impact, a 3% speedup.

Call forwarding is an optimization wherein each tail-recursive caller jumps directly
to the portion of the callee that is relevant, skipping work that is known to be su-
perfluous. We hand coded this for queens, the benchmark program with the most to
gain from the optimization, by modifying the intermediate Monaco program. The 2.8%
speedup we measured can be calibrated with significantly higher reported gains in [6] by
considering that 42% of our execution time is spent in the runtime kernel, not present
in Janus. Thus our results might be normalized upwards to 5%.

As a final experiment, we developed an alternative backend for the Monaco compiler
which translates FGHC into sequential C code. The main advantages are exploiting
the C compiler’s 80386 register allocator, and avoiding fine-grain task management
overheads. The enabling technology for this is mode and sequentialization analysis
[22]. Essentially, fully-moded FGHC programs can be analyzed to determine all path
modes nonambiguously, allowing us to impose an ordering on clause body goals that
can be sequentially executed, safe from internal deadlock (external producers may still
cause suspension). Efficient code can be generated for such programs, illustrated in
Table 8 for the gsort benchmark. The row labeled “sequential C” is generated by our
alternative backend. For instance, the code is 10.5/2.2 = 4.8 times faster than the
standard Monaco compiler. The details of the code generation are given in Massey
and Tick [22], and are slightly biased because 1} 32-bit cells rather than 64-bit cells
(as in Monaco) were used; 2) suspensions due to external sources cannot be handled.
In any case, we are encouraged to further develop this backend so that our standard
multi-threading can coexist with sequentialized threads.

20

Problem | Time Problem | Time
System PEs Size {sec) System PEs Size {sec)
125 1.4
PDSS 1 250 5.2 Strand 1 500 10.8
500 20.5
1 500 10.5
125 0.20
Monaco 4 250 0.75 JAM Parlog 1 500 13.1
500 2.9
8 500 1.5
125 0.14 125 0.10
sequential C 1 250 0.58 handcrafted C 1 250 0.40
500 2.2 500 1.5

Table 8: Performance of Sequentialized and Parallel QuickSort

7 Conclusions

We have presented the Monaco runtime kernel and compiler, a shared-memory imple-
mentation of flat committed-choice languages. In the spirit of Van Roy [41] and Taylor
[33], the key design decision was to move from a WAM-based to a lower level interme-
diate instruction set. This demanded the construction of an optimizing compiler based
on local dataflow analysis. Qur system is unique in that, 1) it translates concurrent
programs onto a parallel execution model; 2) it produces intermediate code targeted for
high-performance on RISC hosts; 3} backend generates native code; 4) mode analysis
allows the conversion of unifications into assignments in fully-moded programs, and 5)
it forms a foundation for global optimizations that can then be accurately measured
within a streamlined system. We have presented empirical measurements characteriz-
ing the execution profile of the system, demonstrating the utility of the optimizations,
and indicating areas for future gains. In summary, Monaco ran at least 1.6 times faster,
yet achieved slightly higher speedups, than comparable parallel systems. Still, it runs
2.4 times slower than jc compilation into sequential ‘C’.

Future work involves tuning the kernel and 80386 backend, building a RISC backend,
and also a ‘C’ backend. The latter two promise significantly better register allocation,
and producing ‘C’ will make the compiler portable. We are starting to integrate global
optimization techniques within Monaco: sequentialization (underway), local reuse anal-
ysis [32], weighted decision graphs [7], and call forwarding [6].

21

Acknowledgements

E. Tick was supported by an NSF Presidential Young Investigator award, with match-
ing funds from Sequent Computer Systems Inc. L. Hansen designed the original Monaco
instruction set. M. Korsloot wrote the indexer of the Monaco compiler. S. Duvvuru
completed the first implementation of the Monaco runtime system. F. Rakoczi imple-
mented the Monaco profiling tocls. The authors thank B. Massey for his kind assistance
in this research.

References

[1] A. Aho, R. Sethi, and J. Ullman. Compilers, Principles, Techniques, and Tools. Addison-
Wesley, Reading MA, 1985.

[2] H. Ait-Kaci. Warren’s Abstract Machine: A Tutorial Reconsiruction. MIT Press, Cam-
bridge, MA, 1991.

[3] M. Bruynooghe, A. Marien, and G. Janssens. The Impact of Abstract Interpretation:
and Experiment in Code Generation. In Inlernational Conference on Logic Programming,
pages 33-47. Lisbon, MIT Press, June 1989.

[4] T. Chikayama, H. Sato, and T. Miyazaki. Overview of the Parallel Inference Machine
Operating System PIMOS. In Internalional Conference on Fifth Generation Compuler
Systems, pages 230-251, Tokyo, November 1988. ICOT.

[6] 3. A. Crammond. The Abstract Machine and Implementation of Parallel Parlog. New
Generalion Compuiing, 10(4):385-422, August 1992.

[6] K. De Bosschere, S. K. Debray, D. Gudeman, and S. Kannan. Call Forwarding: A Sim-
ple Interprocedural Optimization Technique for Dynamically Typed Languages. Dept. of
Computer Science, University of Arizona, December 1992,

[7] S. Debray, S. Kannan, and M. Paithane. Weighted Decision Trees. In Joint International
Conference and Symposium on Logic Pregramming, pages 654-668. Washington D.C., MIT
Press, November 1992.

[8] T.P. Dobry, A. M. Despain, and Y. N. Patt. Performance Studies of a Prolog Machine Ar-
chitecture. In International Symposium on Compuler Architecture, pages 180-190. Boston,
IEEE Computer Society Press, December 1985,

[9] S. Duvvuru. Monaco: A High Performance Implementation of FGHC on Shared-Memory
Multiprocessors. Master’s thesis, University of Oregon, June 1992. Alsc available as
Technical report CIS-TR-92-16.

[10] I. Foster and S. Taylor. Strand: A Practical Parallel Programming Language. In North
American Conference on Logtc Programming, pages 497-512. Cleveland, MIT Press, Oc-
tober 1989.

[11] D.Gudeman, K. De Bosschere, and S. K. Debray. je: An Efficient and Portable Sequential
Implementation of Janus. In Joint International Conference and Symposium on Logic
Programming, pages 399-413. Washington D.C., MIT Press, November 1992,

[12] A. Harsat and R. Ginosar. CARMEL-2: A Second Generation VLSI Architecture for Flat
Concurrent Prolog. New Generation Computing, 7:197-218, 1990.

22

[13] A. Harsat and R. Ginosar. CARMEL-4 The Unify-Spawn Machine for FCP. In Interna-
tioral Conference on Logic Programming, pages 840-854. Paris, MIT Press, June 1991,

f14] M. V. Hermenegildo. An Abstract Machine for Restricted AND-parallel Execution of Logic
Programs. In Iniernational Conference on Logic Programming, number 225 in Lecture
Notes in Computer Science, pages 25-40. Imperial College, Springer- Verlag, July 1936.

[15] B.Holmer, B. Sano, M. Carlton, P. Van Roy, R. Haygood, A. M. Despain W. R. Bush, J. M.
Pendleton, and T. Dobry. Fast Prolog with an Extended General Purpose Architecture.
In International Symposium on Compuler Archilecture, pages 282-291, Seattle, June 1990.
IEEE Computer Society Press.

[16] Intel Corp. Intel 386 DX Microprocessor Programmer’s Reference Manual. Mt. Prospect
IL, 1990.

[17] Y. Kimura and T. Chikayama. An Abstract KL1 Machine and its Instruction Set. In
International Symposium on Logic Programming, pages 468-477. San Francisco, IEEE
Computer Society Press, August 1987.

[18] S. Kliger. Compiling Concurreni Logic Programming Languages. PhD thesis, The Weiz-
mann Institute of Science, Rehovot, Cctober 1992,

[19] S. Kliger and E. Y, Shapiro. From Decision Trees to Decision Graphs. In North American
Conference on Logic Programming, pages 97-116. Austin, MIT Press, October 1990.

[20] K. Kumon, A. Asato, S. Arai, T. Shinogi, A. Hattori, H. Hatazawa, and K. Hirano. Archi-
tecture and Implementation of PIM/p. In Iniernational Conference on Fifth Generation
Computer Systems, pages 414-424, Tokyo, June 1992. ICOT.

[21] E.Lusk, R. Butler, T. Disz, R. Olson, R. Overbeek, R. Stevens, D. H. D. Warren, A. Calder-
wood, P. Szeredi, S. Haridi, P. Brand, M. Carlsson, A. Ciepielewski, and B. Hausman. The
Aurora Or-Parallel Prolog System. In niernational Conference on Fifth Generation Com-
puler Sysiems, pages 819-830, Tokyo, November 1988, {COT.

[22] B. C. Massey and E. Tick. Sequentialization of Parallel Logic Programs with Mode Anal-
ysis. In 4** International Conference on Logic Programming and Automated Reasoning,
St. Petersburg, July 1993. Submitted.

[23] H. Nakashima and K. Nakajima. Hardware Architecture of the Sequential Inference Ma-
chine: PSI-II. In Jnternalional Symposium on Logic Programming, pages 104-113. San
Francisco, IEEE Computer Society Press, August 1987,

[24] R. Nakazaki et al. Design of a High-Speed Prolog Machine (HPM). In International
Symposium on Compuler Archileciure, pages 191-197. Boston, IEEE Computer Society
Press, June 1985.

[25] A. Osterhaug, editor. Guide to Parallel Programming on Sequeni Computer Systems.
Prentice Hall, Englewood Cliffs, NJ, 2nd edition, 1989.

[26] F. Rakoczi, K. Peery, and G. Folkestad. Optimizing the Monaco Compiler. Dept. of
Computer Science, University of Oregon, June 1992. Unpublished.

[27] V. A. Saraswat, K. Kahn, and J. Levy. Janus: A Step Towards Distributed Constraint
Programming. In North American Conference on Logic Programmaing, pages 431-446,
Austin, MIT Press, Qctober 1990.

[28] M. Sato and A. Goto. Evaluation of the KL1 Parallel System on a Shared Memory Multi-
processor. In JFIP Working Conference on Parallel Processing, pages 305-318. Pisa, North
Holland, May 1988.

23

[29] M. Sato, K. Kato, K. Takeda, and T. Ochara. Exploiting Fine Grain Parallelism in Logic
Programming on a Parallel Inference Machine. Technical Report TR-676, ICOT, 1-4-28
Mita, Minato-ku Tokyo 108, Japan, August 1991.

[30] E. Y. Shapiro. The Family of Concurrent Logic Programming Languages. ACM Comput-
ing Surveys, 21(3):413-510, 1989,

[31] K. Shimada, H. Koike, and H. Tanaka. UNIRED-II: The High Performance Inference
Processor for the Parallel Inference Machine PIEG4. In International Conference on Fifth
Generalion Computer Sysiems, pages 715-722, Tokyo, June 1992, ICOT.

[32] R. Sundararajan, A. V. S. Sastry, and E. Tick. Variable Threadedness Analysis for Con-
current Logic Programs. In Joint International Conference and Symposium on Logic Pro-
gramming, pages 493-508. Washington D.C., MIT Press, November 1992.

[33]) A. Taylor. LIPS on a MIPS: Results From a Prolog Compiler for a RISC. In Infernational
Conference on Logic Programmang, pages 174-185. Jerusalem, MIT Press, June 1990,

[34] E. Tick. A Performance Comparison of AND- and OR-Parallel Logic Programming Ar-
chitectures. In Iniernational Conference on Logic Pregramming, pages 452-470. Lisbon,
MIT Press, June 1989.

[35) E. Tick. Parallel Logic Programming. MIT Press, Cambridge MA., 1991.

[36] E. Tick. Monaco: A High-Performance Flat Concurrent Logic Programming System. In
PARLE: Conference on Parallel Archilectures and Languages Europe. Springer Verlag,
June 1993.

[37] E. Tick and M. Korsloot. Determinacy Testing for Nondeterminate Logic Programming
Languages. ACM TOPLAS, 1993. In press. Also available as University of Oregon Tech-
nical Report CIS-TR-93-07.

[38] E. Tick and X. Zhong. A Compile-Time Granularity Analysis Algorithm and its Perfor-
mance Evaluation. New Generation Computing, 11(3-4}, June 1993. Also available as
University of Oregon Technical Report CIS-TR-91-19a.

[39] K. Ueda. Guarded Horn Clauses. In E. Y. Shapiro, editor, Concurrent Prolog: Collected
Papers, volume 1, pages 140-156. MIT Press, Cambridge MA., 1987.

{40) K. Ueda and M. Morita. Moded Flat GHC and Its Message-Oriented Implementation
Technique. New Generalion Computing, 1993. In press.

[41] P. L. Van Roy. Can Logic Programming Ezecule as Fasit as Imperalive Programming?
PhD thesis, University of California at Berkeley, EECS, 1991. Also available as Technical
Report UCB/CSD 90/600.

24

Appendix: Benchmark Source Code Listing (FGHC)

:= module suite,
:- public nrevgo/1, qsortgo/1, hanoigo/1.
:= public queengo/1, primego/1, pascalgo/1i.

nrevgo(N) :-N>0 | gen(N, X), nrev{ X, _).
qsortgo{ N) :- N> 0| gen(N, X), gsoxrt(X, _).
hanoigo{(N) :- H > O | hanoi(N, _).
queengo{ N) :- N > 0 | queen(N, _).
primego(N) :- N> 0 | prime(N, _).
pascalgo(N) :- N > 0 | pascal(N, _).

gen(H, L) :— truve | gen(O, N, L).
i=K>= N | L=0.
i-K< N | Ki :=K+1, L = [KILs], gen(Ki, N, Ls).

nrev{ [0, Y) :~ true | Y = 0.
nrev([AIX], ¥) :- true | nrev(X, T), append(T, [A], Y).

append([J, X, Y)} :- true | Y = X.
append{ [AIB], X, Y) :- true | Y = [A|2Z], append(B, X, 2).

gsort{ X, Y) :- true | gsort(X, Y, 00).

gsort{ [1, Rest, Ans } :~ true |} Rest = Ans.
gsoxrt([XIR], ¥, T) 1= true |}

partition(R, X, S, L),

gsort(S, Y, [XI¥1l),

gsort{ L, Y1, T).

partition([X|Xsl, A, S, L) :- A <X | L = [X]L1],
partition{(Xs ,A,S,L1).

partition([XIXsl, A, S, L) :- A > X | s = [XIs1],
partition{ Xs, 4, S1, L).
partition([J, A, S, L) :- integer(d) | S =0, L = 0.

hanoi(N, X) :- true |
move{ N, left, center, right, Y, 00),
count(Y, X).

move{ O, _, _, -, 01, 02) :- true | O1
move{ N, A, B, C, Di, 04) :- N>0, M :=
move(M, A, C, B, 01, 02 },
02 =[A-B | 03],
move(M, ¢, B, A, 03, D4).

= 02.
N-1 |

connt(L,N) :- true | count{ L,0,N).

count([J, H, N) :- integer(M) | N = M.

count([_|%Xs), M, ¥) :- M1 := M+1 | count(Xs, Mi, ¥).

25

queen({ N, M) :- true |
gen(N, L),
queen(L, (1, OO, 4, O),
count(A, M).
queen([C|Cs], NCs, L, S0, S2) :- true |
check(L, C, 1, HCs, Cs, L, S0, 51),
queen(Cs, [CINCs], L, St, S2).
queen(O, 0, L, so, s1) :~ true | SO = [L|51].
queen(00, [_1_], _, S0, S1) :- true | SO = S1.

check([0, C, D, NCs, Cs, L, SO, S1) :- integer(C), integer(D) |
append{ NCs, Cs, Ps),
queen(Ps, [1, [CIL], SO, S1).
check([PI_], C, D, _, _, -, 80, 51) :- P-C
check([P}_], ¢, D, _, _, _, SO, S1) :~ C-P
check([P|Ps], C, D, NCs, Cs, L, SO, S1) :-
P-C =\=D, C~P =\=D, D1 := D+1 |
check(Ps, C, D1, NCs, Cs, L, S0, S1).

51.
81.

prime(M, N) :- true |
primei(M, Ps),
count(Ps, N).

primel{ Max, Ps)} :- true |
gen(2, Max, Ns),
sift(Ns, Ps).

sitt([PIXs1], 2Zs0) :- true | Zs0 = [PIZs1],
filter(Xs1, P, ¥Ys),
sift(Ys, Zs1).

sift([0, Zs0) :- true | Zs0 = [J.

filter([0, _, ¥Ys) :- true | Ys = [J.
filter{ [X|Xs], P, Y8 } :-= Z := X mod P |
filter(Z, P, X, Xs, Ys).

tilter{ Z, P, X, X81, Y80)} :- Z =\=0 | ¥Ys0 = [X|Ys1],
filter(Xsi1, P, Ys1).

filter{ 0, P, _, %s1, Ys0 } :- true |
filter(Xs1, P, Ys0),

26

pascal(N, Row) :- H>0 |
makeRows{ 1, N, [], Row).

makeRows{ K, N, HalfRow, Row) :- K =:= N, 0Odd := ¥ mod 2 |
f£illout{ 0dd, L[[1,0]|HalfRow], Row).
makeRows{ K, N, HalfRowK, Row) :-
K <N,
K1 := K+1,
0dd := K mod 2 |
makeRow([[1,0]|HalfRowX], Odd, HalfRowK1 },
makeRows{ K1, N, HalfRowKi, Row).

makeRow{ [_], 0, 4)} :- true | A=0.
makeRow{ [X], 1, A) :- true | A=[S], big_plus(S, X, X).
makeRow({ [X1, X21Xs], 0dd, A) :- true |

A=[5lss],

big_plus(S, X1, X2),

makeRow([X21Xs], 0Odd, Ss).

Tillout{ 0, HalfRow, Row) :- true |
rev(HalfRow, [_|Rev]),
append(HalfRow, Rev, Row).
fillout{ 1, HalfRow, Row) :~ true |
rav(HalfRow, Rev),
append{ HalfRow, Rev, Row),

rev(X, Y) :— true | rev(X, [1, Y).

rev([1, Y, Z) :- true | Z=Y.
rev([AlX], ¥, 2) :- true | rev{ X, [AlY], Z).

big_plus(A, X, Y) :- true | bigp(X, Y, 4, 0).

bigp({XIXs], [¥|¥s], A, C) :- Tmpi := X+Y+C |
bigpi(Xs, Ys, A, Tmpd).

bigp{ [J, [YlYel, &, € } :- Tmph :
'bigpi(Up Ys, A, Tmph).

bigp({ [XIXs], [0, A&, ¢) :- TmpA := X+C |
bigp1{ Xs, {1, A, Tmpa).

bisp(D| []l R,O) :_th[A=D.

bigp(00, I, 4, ¢) :- >0 | A=[C].

n

Y+C |

bigpi(Xs, Ys, As, TmpA) :- TmpA >= 100000,
D := TmpA - 100000 |
c=1,
Az = [Dl4a2],
bigp(Xs, Ys, A2, C).
bigpi(Xs, Ys, As, TmpA) :- TmpA < 100000 |
c=20,
As = [TmpAla2],
bigp(X8, Ys, 42, C).

27

Performance Evaluation of the
Monaco Compiler and Runtime Kernel

E. Tick and C. Banerjee

CIS-TR-92-21
November 1992

Abstract

Monaco is a native-code, shared-memory multiprocessor testbed implementa-
tion of flat committed-choice languages such as Flat Guarded Horn Clauses. A
reduced abstract-machine instruction set facilitates decision-graph code generation
and traditional optimizations based on dataflow analysis. An inexpensive system-
call interface is provided to lower the overhead of memory allocation and procedure
invocation. In this paper we describe the compilation process and present empiri-
cal measurements characterizing performance gains enabled by various compilation
and runtime kernel construction techniques.

This paper has been submitted to the International Conference on Logic Program-
ming, Budapest, June 1993.

DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE
UNIVERSITY OF OREGON

1 Introduction

High-performance logic programming langnuage implementations require advanced com-
pilation techniques. Specialized hardware may reduce execution times compared to
conventional microprocessors, but the utility of these optimizations can be low. Com-
piler optimizations have higher utility because the compiler is usually customized for
a particular language family, whereas hardware must be generalized to all languages
of practical interest. After initial forays building logic programming machines (e.g.,
[8, 25, 24]) based on the Warren Abstract Machine (WAM) [2]|, advanced compilers
were built to better exploit conventional microprocessors [39, 34, 17].

Specifically with respect to the development of committed-choice logic programming
language compilers, a combination of techniques are required to achieve high perfor-
mance on conventional hardware. Compilation can be viewed as a front-end code gen-
erator and a back-end code optimizer. For both sides, abstract machines based on the
WAM, e.g., KL1 [16] and Parlog [5], must be discarded in favor of reduced instruction
sets that allow fine-grain manipulations. For example, Kliger and Shapiro’s decision-
graph method for code generation [18] permits fast clause selection as an alternative
to conventional indexing methods [2]. Data-flow analysis in the back-end facilitates
standard optimizations, such as dereferencing and type-checking elimination, that are
impossible in WAM-like instruction sets.

This paper describes the Monaco campiler and runtime system. The compiler trans-
lates flat committed-choice logic programs into an abstract machine suitable for execu-
tion on shared-memory multiprocessor hosts, targeted to RISC architectures in partic-
ular. Qur current implementation accepts FGHC programs and produces native Intel
80386 code [15] for the Sequent Symmetry [26]. Monaco’s main purpose is to be a
testbed for the advanced optimization techniques such as type inferencing [3], mode
analysis [38], sequentialization [23], and local memory reuse [33]. Furthermore, the
motivation for developing the compiler was to more accurately characterize the parallel
execution behavior of concurrent logic programs by avoiding inefficient emulation, a
problem in former studies [35).

The paper is organized as follows. Section 2 briefly reviews literature in the area
of compilation of concurrent languages. Section 3 outlines the Monaco instruction set
and storage model. The compiler is described in Section 4 and the runtime system
in Section 5. Performance characteristics are presented in Section 6. Conclusions and
future work are given in Section 7.

2 Literature Review

Emulation-based, real parallel, shared-memory implementations of committed-choice
languages include Panda and JAM. Panda [29, 36] implements a subset of Flat Guarded
Horn Clauses (FGHC) {37}, sharing the PDSS compiler [4], and utilizing an abstract
machine instruction set similar to WAM [16]). Jim’s Abstract Machine (JAM) [5] is
a Parlog emulator including support for Or-Parallel execution of deep guards. This
introduces additional overheads for process management, since a process activation
tree must be maintained. We borrowed a great deal from these systems for Monaco’s
runtime system, since our objective was to examine compilation issues. Neither of these
systems uses optimizing compilers.

Strand [10] is also emulation-based and real parallel, although mapped to an in-
termediate distributed-memory model, allowing portability to alternative hosts. The
language is flat Parlog with assignment, essentially equivalent to fully-moded FGHC
[38]. The Strand compiler is a commercial product, and thus detailed information is
scarce. Strand has a performance advantage when exploiting assignment, but also a
potential disadvantage in the overheads incurred when mapping its distributed-memory
model onto a shared-memory host. We reconfirm in Section 6 the performance ordering
Strand > JAM > Panda. We also demonstrate Monaco’s performance relationship to
these three systems.

Further restricted from Strand is Janus [28] where the programmer must declare
a single producer and consumer for a stream. An experimental Janus-to-C compiler
jc has been recently developed for uniprocessors [11]. jc has a main advantage over
Monaco in that the backend C compiler can do much better register allocation on
the host measured in this paper (an 80386-based Symmetry). Like jc, a recent FCP
compiler by Kliger is targeted to uniprocessors [17], although it is emulated at present.
Monaco’s decision-graph compilation method is borrowed from [18] — Monaco extends
this locally with dataflow analysis, whereas [17] extends this globally with abstract
interpretation to derive procedure bodies optimized for different call sites. Over an
extensive set of benchmarks, Kliger reports speedups of 3.2 due to decision graphs over
standard indexing, 1.2 due to his global optimizations, and 5.2 due to 68000 native-code
compilation [17]. These results encourage us that Monaco is balanced in the sense of
putting our effort where the highest payoffs occur.

Finally, we mention RISC-based microprocessor architectures for committed-choice
languages: Carmel [12), PIM/i [30], PIM/p [21], and UNIRED-II [32]. These imple-
mentations are akin to Monaco, however, they are experiments in specialized hardware,
not compilation technology. For example, the macro-call facility in PIM/p is similar in
purpose to Monaco’s millicode call (Section 4.4), but the hardware implementation is

far more efficient than our interface to C.

3 Monaco Abstract Machine

Committed-choice languages [31] differ from Prolog in several ways, leading to efficient
abstract machine definitions that differ from the WAM. First, they have a process-based
computation model that does not support backtracking. A computation consists of re-
ducing goals (fine-grain tasks or processes), until no unreduced goals remain, in which
case the computation succeeds. This implies that fast selection of a committing clause
is paramount, as engendered by decision-graph code generation [18]. Second, unifica-
tion is constrained to be either passive or active. Active unificatior is more costly than
in Prolog because locking is needed to ensure atomic varjable binding. Furthermore, to
avoid creating circular structures and potential deadlock during multiple unifications
of shared variables, we need to create a binding protocol. Third, there is a wide gap
in memory-usage efficiency in concurrent and sequential languages. Even parallel Pro-
log can exploit stacks because of the inherently sequential nature of its threads (e.g.,
[22, 13]). In committed-choice languages, without sophisticated compiler analysis (e.g.,
[23]) all goals are potentially concurrent, therefore goal allocation is usually done on a
heap. Also, data structures in logic programs are dynamically created and modified,
requiring heap storage, although in Prolog, backtracking can naturally reclaim portions
of the heap. Overall, the required memory bandwidth of committed-choice languages
is significantly greater than that of sequential logic languages. Fourth, process man-
agement, i.e., enqueueing, suspending, and resuming operations, must be reduced in
frequency and overhead.

The Monaco abstract machine supports seven programmer-visible tagged data types:
integers, immediates (symbolic atoms), reference pointers, logical variables, hooked
variables, list pairs, and vectors. Abstractly, each of the first five simple objects occu-
pies a machine cell consisting of a data field, tag, and lock. As in WAM, a compound
object is represented as a pointer to a group of cells containing the list pair or vector.
On Symmetry, we implement a cell in eight bytes, with a low-order 3-bit tag in the
first word, and the second word currently devoted only to the DYNIX [26] lock. This
scheme is similar to that used in Panda, chosen for its simplicity and extensibility.

A logical variable cell is an uninstantiated location, with the data field pointing to
the cell itself (as in WAM). When a variable becomes instantiated, its type changes
to that of the value that the cell is instantiated with. A hooked variable cell is an
uninstantiated location on which some process(es) are blocked. The data field of the
cell points to a list of suspended processes, as in Panda and JAM. If a hooked cell is

intermediate common .
decgg?cg:—e?g hs code a.nf}:]m:sis ALt e
i generation Y elimination allocation

Figure 1: Monaco Compiler Organization (Main Phases Shown)

bound, the processes hooked on the cell must be resumed. Tradeoffs concerning these
design decisions are well documented [2, 5].

The Monaco abstract machine is a load-store architecture to facilitate mapping to
RISC hosts. Qther load-store instruction sets for logic programming languages exist
(e.g., [14, 39, 12, 30, 21, 32}) although they have been primarily designed for specialized
hardware. Qur instruction set is summarized in Table 1. In the table, Rs, Rs1, and Rs2
denote source registers, Rd denotes a destination register, N denotes an integer constant,
and F/A is the name of an executable procedure.

A majority of the instructions are lightweight and can easily be translated into small
sequences of instructions on the host. Most predicate and arithmetic instructions fall
into this category. At the other extreme, some instructions are sufficiently complex that
not much can be gained by translating them into native code. These are implemented
by an interface to the runtime system, called a millicode call (see Section 4.4). The
middle ground is covered by the data manipulators and constructors. We currently
implement these in native code, at some expense in code size, to minimize system-call
frequency.

Both active and passive unification are sufficiently complex to warrant implemen-
tation in millicode. Full passive unification in the head or guard is only needed in the
rare case of shared variables, thus we do not review this algorithm here (see Duvvuru
[9]). Active unification commonly occurs in the body, implemented here with the unify
instruction. In a crop of recent languages, the full power of flat committed-choice lan-
guages has been limited, allowing compile-time customization of almost all unification
operations. We are particularly interested in moded FGHC (equivalent to Strand), and
have built an associated mode analyzer (23]. With derived mode information, we can
compile unifications into cheaper assignments, an optimization we examine in Section
6.2. We discover, however, that without more powerful analysis, the general overloading

of logic variables for synchronization causes inefficiencies even for assignment.

4 Compilation

The Monaco compiler is summarized in Figure 1. The pipeline follows a traditional

80386

Instruction instr} Semantics
arithmetic and predicates
iadd(Rs1,Rs2,Rd) 3 integer arithmetic (isub, idiv, imod, imul)
iand(Rs1,Rs2,Rd) 3 bitwise arithmetic (ineg, inot, ior, ixor)
ishl(Rs1,Rs2,Rd) 3 shift left (ishra, ishrl)
ieq(Rs1,Rs2,Rd) 147 integer comparison (ige, igt, ile, ilt, ineq)
isatom{Rs,Rd) 97 type comparison (isbound, ishooked, isint,
islist, isnil, isref, isstruct, isunbound)
eq(Rsl,Rs2,Rd)} 5 comparison (neq)
control
br(a,L) 1 jump to L
br(Cond,Rs,L) 2 if (R, = Cond) then branch to L
switch(Table,Rs) 2 jump indirect (on tag(R,)) through Table
proceed 6 complete process
execute(F/4) 1 execlite process F /A
process management
punify(Rs1,Rs2,Rd) Tt passive unify
unify(Rsi,Rs2) 6t active uniy
enqueue(Rs) 5t push goal on ready queue
push(Rs) 8 push address onto suspension stack
suspend(F/A) 10} suspend process F/A
data constructors
alloc(N,Rd) 6 allocate heap by N cells
ref(Rs,N,Rd) 3 Ry:= R, + N
initvar{Rs) 4 mem(R,) := unbound variable
initlist(Rs1,Rs2,Rd) 5 mem(Rg) := pair(R,1, Ry2); Ry 1= pair ptr
initstruct(N,Rd) 11 mem(fy) : = vector of size N; Ry := vec ptr
initgoal(H,F/A,Rd) 12 mem({Ry) : = goal record; Rg := vec ptr
mkunbound (Rd) 9 R4 := ptr to unbound variable
mkconst (C,Rd) 1 R¢:= C (constant)
mklist(Rs1,Rs2,Rd) 11 R4 := ptr to pair(R,1, Rs2)
mkstruct(N,Rd) 10 R;:= ptr to vector of size N
mkgoal{N,F/A,Rd) 11 R4 := ptr to goal record
data manipulators
move(Rs ,Rd) 2 Ri:= R,
deref(Rs,Rd) 5 Ry := derelerence of R,
car(Rs,Rd) 3 R4 := head of R,
cdr{Rs,Rd) 3 Ry := tail of R,
sref(Rs,N,Rd) 3 Rg:= value of N*% slot in vector R,
sset(Rs,N,Rd) 3 N glot in vector Ry := R,
ssize(Rs,Rd) 11 Ry := size of vector R,

{ most frequent path, unless otherwise specified.

? longest path.

1 millicode call and return only.

Table 1: Monaco Abstract Instruction Set (Committed-Choice Subset})

o

organization, where the input is a source program and the output is an equivalent
program in the abstract machine instruction set. The front-end parses the program
and generates decision graphs with Kliger’s algorithm [18]. Alternatively, “don’t know”
procedures (determinacy testing trees) in languages such as Pandora and Andorra can
be generated {20]. These graphs and trees are fed to a code-generation phase which
produces rudimentary abstract machine code (assuming an infinite register set).

Flow analysis proceeds by decomposing the program into a flow graph of basic
blocks. Type and dereferencing information is propagated through the flow graph
in the subsequent phase. At this point, macro-instructions are resolved, redundant
computations are recognized and eliminated. Deadcode elimination is a minor pass not
show in the figure. Register allocation is performed as the final flow graph optimization.
The output from the register allocator is an abstract machine program instantiated with
abstract register identifiers.

A series of minor phases (not shown) are then required to perform jump-to-jump
short circuiting, dead block removal, branch removal, code flattening, and peephole
optimization (in that order). The final output is ready for assembly. Our current
assembler translates the Monaco program into 80386 assembly code, and invokes the
Symmetry assembler for construction of an object file. The object file can then be
linked to the precompiled runtime system, producing an executable. We leverage the
Symmetry assembler, requiring this somewhat clumsy linkage protocol, because it is
portable (for another host, we target our assembler to the host’s assembly language,
and ignore intricacies of object image formats).

4.1 Front-End: Decision-Graph Generation

Decision graphs have been shown by Kliger [18] to be effective means of rapidly deter-
mining which clause within a procedure can commit. Furthermore, these graphs are
space-linear in the number of clauses. We use Kliger's algorithm in our front-end: the
specifics are discussed in [19]. For each procedure, a cannonical normalized form is
produced. The graph is then generated, where each node is a test (e.g., X > Y — 3)
and edges are valuations of a test (e.g., yes/no or case values). The leaves of the graph
are clause bodies, where we lump tell operations with the body. The backend will
transform a graph into a sequence of triples suitable for optimization.

The key point here is to compute residuals which are clause sets that satisfy a
guard {ask) test. Satisfaction requires proving implications between clause constraints
and the guard. In general, such proofs are difficult since the domain is unspecified.
Furthermore, since multiple residuals may be needed per graph node, this computation
is critical to front-end efficiency. Our solution to these concerns is to safely approximate

check(X, ¢, _, NCs, Cs, L, 80, S1) :— X =[] |
append(NCs, Cs, Ps),
queen(Ps, [, [CIL], S0, 51).

check(X, ¢, D, _, _, _, SO, 81) :-
X=[Pi_], P-C=:=D |

50 = S1.

check(X, C, D, _, -, _, S0, 51) :-
X=1[PI_.], G-P =:=D |
S50 = 51.

check(X, C, D, NCs, Cs, L, S0, 51 } :-
X = [PIPs], P-C =\=D, C-P =\=D, D1 := D+1 |
check(Ps, C, D1, NCs, Cs, L, 50, S1).

Figure 2: Normalized Procedure check/8 from queens

the proofs by table lookup. For example, the constraint X > I implies the constraint
X > J if constant integers I > J, for variable X. A set of these relations has been
found to be quite effective in allowing optimal graph generation. Complex inferences
cannot be made (such as transitivity); however, we have not seen such complexity in
typical programs.

Consider the check/8 procedure in the gueens program, listed in Figure 2. We
chose this example to illustrate both the strengths and weaknesses of decision graph
compilation. The first step of processing is to create a normalized canonical form from
the source program. This entails flattening the head, pulling all complex terms out
into guard “ask” unifications. Furthermore, integer type checks are inserted in the
guard for all variables involved in arithmetic expressions, e.g., integer (P} is included
in clauses 3-5. This allows the indexer to choose type checking early in the decision-
graph generation phase, resulting in an efficient graph, shown in Figure 3.

The important points to note in the graph are the indexing choice of switching on
the first argument, and the placement of integer type checks for P, C, and D. Switching
on the first argument is in fact not optimal when considering call forwarding, i.e.,
shorting callers around operations (such as integer checks in this case) that are known
a priori from flow analysis. We would like the integer checks as high in the graph as
possible. One idea is to force the checks up by inserting additional integer guards in
the end-of-recursion case, although that is neither a satisfying nor automatic solution.

Another flaw in the decision graph is that the path to clause two (node 2) requires
three arithmetic inequalities. Ideally, node (1) should commit to clause two. The
problem lies in the power of our inferencing mechanism computing residuals. A clause
is not placed in the residual of a branch test unless a guard in that clause implies the
test (thus retaining space linearity). Actually, P —C = D doesimply C — P # D, but
we have refrained from adding such inferencing smarts to the compiler. Our inferences

switch(X,
[case([],commit(clause 1))

case(’.'/2,
ask{integer(P),
yes(ask(integer(C},
yes(ask(D),
yes(ask((C-P =\= D),
yes(ask((P-C =\= D),
yes(commit(clause 4))
no{(go(7)) (1)
7:other(go(6))))},
no{commit(clause 3)),
6:other(
ask((P-C =:= D),
yes(commit(clause 2)), (2)
no{go(8)),
8:othar{go(5)))))),
no(go(8)),
5:other(go(4)))),
no(go(4)),
4:o0ther(go(3)))),
no(go(3)),
3:other(go(2)))),
2:default(go(1})]
1:suspend

Figure 3: Stylized Decision Graph for check/8

are purely table driven, and although we could insert many more table entries for such
ad hoc cases, a general prover would be best. A final point: the rather circuitous routes
to suspension are entirely collapsed by dataflow analysis and jump-chain shorting in
subsequent phases of the compilation.

4.2 Code Generation

Code generation translates the decision graphs into intermediate Monaco instructions.
The translation algorithms are straightforward, perhaps naive concerning arithmetic
expressions. Key to code generation is a “one register — one value” invariant that
facilitates all later phases, e.g., a register can be defined only once within a procedure.
Perhaps the trickiest part of code generation is the construction of switch-on-tag state-
ments, which are composed of eight binary switch instructions, each in its own basic
block. This allows us to standardize basic blocks in a binary tree. Body generation
follows the standard style (e.g., [16]) of enqueueing all body goals but the first, which
is executed immediately.

Subsequent dataflow analysis proceeds from the Monaco code, driven by a table
describing each instruction’s operand uses and definitions, as described in the next

section. In retrospect, we found that certain analyses, such as call forwarding [6], is
best done on the decision graph, not the generated code. Although dataflow information
must be derived earlier to do this, it is much easier to rearrange portions of the flow
graph, with no concern for register bindings.

4.3 Flow-Analysis Optimizations

Data-flow analysis is fundamental to most of the compiler optimizations, to the point
where the preliminary code is particularly naive and requires flow analysis to clean it
up. We took this approach to keep the compiler modular, although it impacts compile
time. The basis for flow analysis is the construction of a flow graph of basic blocks
from the preliminary code. A standard construction algorithm is used [1] with the note
that Monaco instructions such as execute, proceed, and suspend represent control
transfers, and thus terminate blocks.

Note that the program is analyzed locally, i.e., on a procedure-by-procedure ba-
sis. A flow graph, created for a procedure, is topologically sorted to ensure that all
ancestors of a child block are analyzed before the child is analyzed. Type informa-
tion is then collected and propagated from the root, taking the set intersection (as
the least upper bound) of information arriving to a child node from its ancestors.
The information is essentially an association list matching pseudo-registers and their
abstract contents. For example, suppose we know R3 = car(deref(R1)), and we en-
counter a Monaco instruction deref R3,R4, then we derive the new information: R4
<- deref(car(deref(R1))). A common association entry is R6 <- R5, created from
the instruction move RS,R6.

Code within the blocks is rewritten on the fly during analysis to share common
subexpressions. The most common case of this is shorting moves, e.g., move R5,R6
followed by isint R6,R7, will rewrite the latter instruction to be isint R5,R7. Later
deadcode elimination is of course required here. Branch conditions are also propagated
throughout the flow graph. We must be careful to distinguish the taken condition from
the not-taken condition. For example, entering some block in the graph, we may know
that integer(deref (car(deref(R1)))) must be true, by consideration of the flow to
that point. This allows branch shorting, e.g., br nz,R8, which branches if R8 is not
zero, can be combined with flow information R8 <- isint(deref(car(deref(R1))))
and the previous branch information, to derive that the branch is always taken, and so
it will be rewritten as an unconditional jump.

Deadcode elimination and register allocation require further flow graph analysis.
Live-range analysis [1] is performed on the graph, producing the information of which
registers are live within each basic block. We chose to collect this information at

block granularity rather than instruction granularity to reduce compile time. Large
clause bodies can have relatively large basic blocks, reducing the effectiveness of this
technique. For this reason we artificially split such blocks at each body goal. In general,
this heuristic is sufficient to retain accuracy, as discussed in Section 6.

If a value is never used, then its live range will be empty. Hence, deadcode elimina-
tion is performed by removing instructions containing values with empty live ranges.
Give the previous analysis, this phase is trivial. Next, we allocate registers locally to
each procedure.! The local allocation method used is based on the liveness of the reg-
isters, and is performed on a basis-block granularity to match live-range analysis. The
most live name (i.e., having the most basic blocks over its life) is allocated first, and
so on. The algorithm is non-backtracking, so lack of an available register for the next
most frequent name requires generation of spill code. The spill is allocated to a vector
local to the procedure.

The goodness of such a naive scheme relies on the accuracy of flow analysis. Al-
locating on a block basis can lead to frequent spill code, although this is alleviated
by splitting the body along individual goals. Still, a goal requiring the evaluation and
loading of many actuals is the most likely to cause spills. Spilling can be reduced by
artificially splitting the blocks into finer grains (in the limit: instructions). Because we
were targeting our initial experiments to an 80386 backend with so few registers avail-
able to the program, it became hopeless to avoid frequent spilling. Instead we generate
memory accesses to a pseudo-register array. This array is small enough to easily fit in
cache, yet large enough to avoid spilling. This stop-gap measure allows us to refine the
compiler for eventual porting to a host with sufficient registers.

Our allocator averages 7.3 registers for the 37 benchmark procedures considered
in Section 6. Trivial procedures ranged from 2-7 registers, whereas more complex
procedures ranged from 11-17 registers. Future work includes implementing a global
allocator based on cooperation across procedure call boundaries.

Final phases include shorting of afl jump chains, which leads to dead basic blocks
that are removed. The flow graph is then flattened and a peephole optimizer filters the
code stream. Currently the peepholer is limited: its primary function is to attempt
common subexpression elimination (CSE) of spill sequences. This is inherent to the
well-known problem of where to allocate registers: before or after CSE. Since we allocate
before, we cannot eliminate spill code redundancies. The peepholer cannot make much
headway here, and we plan to explore a split register allocator, as in gcc, to better
solve the problem.

! Global register allocation in concurrent languages such as FGHC first requires sequentialization of
threads, which we are pursuing[23).

10

We translate the Monaco code into 80386 Symmetry assembly code in a final assem-
bler module. The 80386 code is reassembled with the Symmetry assembler, producing
an linkable object file. The object is linked directly to the runtime system object,
forming a executable file (customized to this particular source program). This method
is quick and simple — the system object need only be linked, not recompiled. Only
objects are saved —— executables are deleted after use. This is sufficient for our use as
an experimental testbed.

4.4 Example

The Monaco code for the quicksort procedure written in FGHC, is shown in Figure
4 (part/4 not shown). The precise semantics of the instruction set are not necessary
to follow the example. Before entry to a procedure, the input arguments are loaded
in to the abstract machine registers numbered from zero. The entry point to this
procedure is labeled qsort/3. Arguments are dereferenced before they are tested (1).
Quicksort dispatches on its first (input) argument in a switch on tag instruction (2). If
unbound, control flows to L1, where the argument is pushed on the suspension stack
and suspension occurs (3-4). If an immediate or vector, control flows to L2 where the
suspension routine is called with no pushed arguments (4), resulting in failure. If nil,
control flows to L3, where the argument is compared to nil and either fails or commits
to the first clause (5-9). If the first argument is a list, the second clause commits at
L4 (10-35). The alloc instruction {10) allocates a 15-cell frame on the heap, since
that many cells are required in the ensuing code. Two goal records are constructed for
the two qsort/3 goals in the body, and are enqueued. A call is made to the part/4
procedure, after setting up its arguments in appropriate registers, exploiting last-call
optimization. We will comment more about how this code is generated in the next
section.

There are several interesting points about how code is generated from the decision
graph. These characteristics are analyzed empirically in Section 6.

o Originally binary branches were favored over switches, because we planned Monaco
for a RISC backend. However, the 80386, based on a condition code register is not
conducive to branching on conditions stored in registers. Therefore we introduced
the switch instruction, assembled into an indirect jump-on-tag table.

o Structures are created on the heap by allocating space for the entire clause body,
and then filling it in for each structure (including goal records). For each structure
argument, a reference is built (with ref) pointing to the heap location where it
will be constructed, and the storage is initialized (e.g., initvar and initgoal).

11

gqsort([] ,Rest,Ans) :- true | Rest = Ans.
qsort([XIR],Y,T)

gsort/3:
Li:

L2:
L3:

L4:

deref
switch
push
suspend
mkconst
eq

br
unify
proceed
alloc
move
initgoal
ref
initvar
sset
ref
initvar
sset
sset
enqueue
ref
initgoal
ref
initvar
sset
gset
car

ref
initlist
sset
enguene
cdr
exacute

:- true | part(R,X,S,L), qsort(s,Y,[XI1Y1l), gsoxrt(L,¥Y1,T).

r0,r4

%

r4 := deref(Argument 1)

{L1,L4,L3,L2,L2,L1,0L1,L1] ,z4

r0
gsort/3
1,x3
r4,r3,rb
z,x5h,L2
ri,r2

15,15
5,16
gsort/3,ré
r5,5,r3
3
r3,1,r6
r5,6,r8
r8
r8,2,ré6
rz,3,r6
r6
r5,7,r8
gsort/3,r9
rb,12,r2
r2
r2,1,r9
ri,2,r9
r4,ri
r5,13,r12
ri,r8,ri2
ri1z,3,r9
r9

r4,r0
part/4

% No. Push Argument 1. Suspend.

h
)

A
%

h
h

%
%
%

%
%

%
%
%

%
%

%
%

Suspend
Argument 1 is [17

Ko, fail.
Yes. Rest = Ans

Allocate 15 cells on heap.

r6 -> goal qsort/3
r3 := L

1(r6) := L
8 := Y1

2(r6) := Y1
3(r6) := T
enqueue gqsort(L,Y1,T)

r9 -> goal gsort/3
2 := 3

1(x9) :
2(xr8)
rl := X

r12 := [X1¥1]

3(r9) := [XIY1]

enqueue gsort(S,Y,[XIY1])
r0o := R

call part(R,X,S,L)

Figure 4: Compiled Quicksort Procedure in Monaco

12

O @m~N®Od W=

WwWWwWwWRNNBNNNDRNRNR S 2 b b b = e
WNFR,OOOD~-TOHNd W, OO NN WO

Then the structure argument position is bound to the reference (with sset).
This implies that variables reside outside of structures, which will ease future

optimizations concerning local memory reuse [33].

¢ The final Monaco code shown in Figure 4 is the result of extensive dataflow
analysis and optimization. With no optimizations the procedure has 43 Monaco
instructions, an increase of 30%. The primary savings in code size, and corre-
spondingly execution time, comes from CSE and tight control.

o The compiler was purposely kept as elegant and modular as possible, with a min-
imum number of stages, and therefore less than optimal code is produced. For
example, we chose to do register allocation after CSE. Thus if we have register
spilling, the spill sequences will not be simplified. We also chose to abide by
a code generation policy wherein every pseudo register is defined at most once
per procedure. Given this policy, which facilitates dataflow analysis, we need
to assign different pseudo registers to passed parameters and tail-recursive argu-
ments. Those registers need to be coerced during register allocation. The result
is poor allocation in the basic block containing the tail recursion. Instead of more
dataflow analysis to solve this [27], a patch was added to scan the block in re-
verse, shorting out register-to-register moves. This produces reasonable, but not

excellent, code.

The macro assembler is the penultimate stage in the compilation process. It trans-
lates a Monaco assembly program into an 80386 assembly program, for final translation
by the DYNIX assembler as. Figure 5 gives two examples of macro expansion of Monaco
into 80386 assembly. Instructions unify, punify, enqueue, suspend, and execute are
sufficiently complex to warrant implementation within the runtime system as millicode.
As shown for punify, a millicode call is accomplished by means of an indirect jump
table, with parameters passed as in ‘C’.

5 Monaco Runtime System

In this section we give a briel overview of the runtime kernel to put the subsequent
performance analysis in perspective. For a detailed discussion, see Duvvuru [9].
Concurrent logic languages, due to the nature of the fine-grain tasks, single-assignment
variables, and heap-based memory management, require extensive runtime support.
The main objectives of the runtime system are to support fast process management,
memory allocation, and runtime system calls, as described in this section. Like most
WAM-based systems (e.g., [22, 29, 5]), the Monaco kernel is based on “task farming:”

13

movl Rs*4(REGS),TMPO # deref(Rs, Rd)
movl THMPO,TMP2 # TrailPtr := t
L(k): movl TMPO,THP1
andl $TAG_MASK,THP1 # while(TAG(t) == REF_TAG)
jnz L{k+1) # {
movl TMPO , THP2 # TrailPtr = ¢;
movl 0(TMPO) ,TMPO # t = CELLREF(t);
jmp L(k) #}
L(k+1): movl TMPO,Rd*4 (REGS) # Rd = Result

punify(Rsi, Rs2, Rd)
pushl Rs2*4(REGS) # push Rs2 on stack
pushl Rsi#4(REGS) # push Rsl on atack
pushl $LM_RET # push return address
jmp *PUNIFY_OFF(REGS) # indirect call to punify

LM_RET: addl $8,%esp # readjust stack
movl TMPO,Rd*4(REGS) # Rd := punify(Rsi,Rs2)

Figure 5: Examples of 80386 Macro Expansion on Symmetry (TMPO, TMP1 and REGS
are machine register aliases)

a set of worker processes that run as regular DYNIX processes on all the processors.
A worker process corresponds to one Monaco abstract machine processor and operates
in a loop: looking for reducible goals in the pool, finding one and reducing it, adding
the body goals of that clause to the pool, and continuing to look for more work.

To reduce synchronization, the goal pool is split among the workers — each has
a private goal queue, implemented as a list. Thus we both enqueue and dequeue
goals from the queue head, resulting in pseudo depth-first execution (not pure because
idle workers steal goals from busy worker’s queues). Depth-first evaluation has been
shown to be relatively efficient [29], so we adopted it here. We also adopted the JAM
scheduling strategy of a ring: an idle worker examines the private queues of successive
clockwise neighbors until a goal is found. This scheme is efficient because the idle
worker responsible for finding work, affecting busy workers only when synchronizing on
the queue.? This scheme works effectively and produces reasonable load balancing, as
shown in JAM and here (see Section G). Qur current research emphasis is in an efficient
instruction set and compilation procedure, so we have adopted standard techniques
for process management. Suspension and resumption is done with logical variables
hooked to suspended goals via suspension slips, as in JAM Parlog (5] and KL1 [16]
implementations.

Most goals allocate heap memory for creating data and body goal structures. We

2JAM reduces synchronization by stealing from the tail of the quene. We did not implement this
optimization because we plan to use priority queues exploiting granularity estimations {40] in future

versions of Monaco.

14

Program Monaco | Strand | JAM | Panda || PDSS | Janus
hanoi(14) 1.0 L3 1.7 2.1 2.1 0.27
nrev(1000) 1.0 1.8 2.0 3.3 2.9 0.20
gsort(1000) 1.0 1.9 24 52 2.7 0.60
queens(10) 1.0 0.59 3.2 4.6 4.2 0.91
primes(5000) 1.0 3.0 3.7 5.8 3.7 0.48
pascal(200) 1.0 2.4 2.3 4.4 2.6 | 1.85¢
Eeo. mean 1.0 1.6 2.5 4.0 3.0 0.54

t not optimized due to compiler bug,.

Table 2: Uniprocessor Execution Time Normalized to Monaco on Sequent Symmetry
(Full Optimizations)

reduce the frequency of allocation by aggregating all heap requests within a clause
into a single millicode call. The Monaco heap is split into equal-sized slices for each
worker, avoiding synchronization. Each heap is initialized with two range pointers
delimiting the unallocated area. All heap allocations, approximately one per reduction,
manipulate and check these pointers accordingly. The overflow check is sufficiently
frequent that we chose to generate it in native code. This naive heap implementation
is sufficient for our initial evaluation of compilation techniques. The current version of
Monaco does not yet implement garbage collection (and so collection overheads are not
accounted for in the empirical analysis given in Section G).

6 Performance Evaluation

Preliminary performance evaluation of Monaco has focussed on measuring the unipro-
cessor execution time, speedups in parallel execution, and profiling of program execu-
tion. All three aspects are discussed in this section. For uniprocessor execution, Monaco
is compared with Strand (Buckingham) [10], JAM V1.4 [5], PDSS V2.52.19 [4], Panda
(using PDSS V0.8 compiler!) [29], and Janus [11]. For multiprocessor execution, com-
parison is made only with JAM because it is the fastest of the parallel systems with
comparative scheduling. Empirical evaluation was conducted on a Sequent Symmetry
S81 system with 16 MHz Intel 80386 microprocessors. Execution times (in millisec-
onds) are calculated as the elapsed time between starting the computation, until all
the processors become idle. All measurements presented are the minimum of several
runs.

Table 2 shows uniprocessor (one PE) execution times, normalized to Monaco, for
a benchmark suite (listed in the Appendix). Monaco is compiled with full optimiza-

15

tions, but without mode analysis (this primarily affects queens as mentioned below).
The measurements are only an approximate comparison: the systems offer different
facilities (e.g., language capabilities, types of garbage collectors) that make a fair com-
parison difficult. For example, PDSS and Janus are sequential systems without any
multiprocessor overheads. In any case, these measurements satisfy us that the Monaco
has slightly better performance than alternative multiprocessor systems.

We still have a far way to improve (10%-500%) to achieve Janus speeds (of course,
we can make this up with a multiprocessor). With respect to Strand, the fastest com-
petition publicly available, we are running from 40% slower to three times faster, We
believe the 40% gap in queens is due to 1) a non-optimal decision graph, as described
in Section 4.1; 2) our somewhat naive code generation of arithmetic expressions {no
static type inferencing is done); and 3) no exploitation of mode information (to strength
reduce variable-to-variable unifies, which comes naturally in Stand). We discuss op-
timizations in Section 6.2 to reduce (2) and (3), resulting in 20% speedup in queens
which reduces the gap with Strand to -30%.

The multiprocessor execution times of Monaco and JAM are given in Table 3. The
speedups, shown in Table 4, are calculated as the ratio of execution times of the same
multiprocessor system on one PE to multiple PEs. Thus the metric is biased, but still
gives us a first approximation of the utility of exploiting parallelism. Monaco and JAM
use almost identical scheduling algorithms, except that an idle Monaco worker process
will steal work from the front end of a busy worker’s queue, instead of the rear as in
JAM. Thus we are not surprised that speedups are similar. It is not clear why JAM’s
execution time increased from 4 to 8 PEs on gsort, the outlier of the benchmarks. In
general we expected the experiment to be biased to JAM which allocates proportionally
more heap with increasing numbers of PEs. Again, these are preliminary measurements
and we conclude simply that Monaco is successfully exploiting fine-grain parallelism,
even though its streamlined abstract machine achieved gains in absolute performance.

6.1 Execution Profiling

We instrumented the Monaco runtime kernel to measure the performance of the fre-
quently-used millicode procedures: unify, enqueue, and suspend. All the measure-
ments were taken with one worker, using tools built from UNIX profil and prof. Table
5 shows the percentage execution time spent in the user program (Monaco code) and
the runtime kernel. The kernel consists of Monitor (where the worker steals or de-
queues goals and prepares them for execution), Run (a stub currently needed to call the
Monaco code), Enq (millicode for enqueueing goals), Susp (millicode for suspending
goals), Stub (the fast case of unification), Rest (the general body of unification), and

16

Table 3: Multiprocessor Performance of Monaco (Optimized) and JAM

Program I1PE| 2PE| 4PE| 8PE | 12 PE | 16 PE
Monaco (msec)
hanoi 4,364 | 2,339 1,218 722 598 558
nrev 19,153 ¢ 11,740 | 6,136 | 3,394 | 2,503 | 2,155
gsort 21,412 112970 | 6,621 | 3,496 | 2,438 | 1,954
queens 43,305 | 30,348 | 12,413 { 6,153 | 4,041 | 3,082
primes 12,8411 7,549 3,788¢ 1,984 | 1,390 1,117
pascal 8,973 | 4,981 | 2499} 1,294 919 724
JAM (msec) |
hanoi 7,360 | 3,780 | 2,260{ 1,620 | 1,390 | 1,290
nrev 38,030 | 33,550 | 10,2001 5,200 3,570 | 2,700
gsort 50,900 | 26,300 | 14,120 | 19,150 | 15,220 | 13,170
queens 139,590 | 69,860 | 34,900 | 17,490 | 11,680 | 8,780
primes 48,120 | 24,930 | 12,520 | 7,300 | 6,270 | 5,550
pascal 20,300 | 10,130 | 5,140 | 2,620 | 1,780 | 1,360
JAM/Monaco
hanoi 1.7 1.6 19 2.2 2.3 2.3
nrev 2.0 2.9 1.7 1.6 1.4 1.3
gsort 24 2.0 2.1 5.5 6.2 6.7
queens 3.2 2.3 2.8 2.8 2.9 2.8
primes 3.7 3.3 3.3 3.7 4.5 5.0
pascal 2.3 2.0 2.1 2.0 1.9 1.9
geo. Inean 2.5 2.3 2.3 2.7 2.8 2.8

Program | 2PE[4PE[S8PE|[12PE[16PE[[2PE[4PE |8 PE | 12PE | 16 PE
Monaco JAM
hanoi 1.9 36| 6.0 7.3 781 19| 33| 45 5.3 5.7
nrev 16| 81| 56 7.7 gol| 1| 37| 72| 107| 141
gsort 17| 32| 6.1 g8 mno| 19| 38| 27 3.3 3.9
queens 14} 35| 70| 17| 141| 20| 40| 80| 120] 159
primes 1.7{ 34| 65| 92| 15| 19| 38| 6.6 7.7 8.7
pascal 18] 36| 69| 98{ 124 20{ 39| 77| 114] 149
geo. mean | 17| 34| 63 88{ 107 18] 37[57 7.6 9.3

Table 4: Multiprocessor Speedups on Monaco and JAM

Kernel
Goals Unify
Program User | Kernel | Monitor | Run | Enq | Susp | Stub | Rest | Misc
hanoi 47.11 | 52.89 9.10 16.08 | 9.47 | 0.00 | 11.06 | 0.00 j 7.15
nrev 56.24 | 43.76 0.39 033 0.11 | 0.00 | 34.61 | 0.20 | B8.12
gsort 62.36 [37.64 0.39 0.28 | 0.28 | 0.00 | 30.59 | 0.01 | 6.11
queens 54.48 | 45.52 8.84 1246 | 8.82 | 0.00 | 7.90 | 0.00 | 7.47
prime 69.74 | 30.26 0.53 0.18 | 0.10 | 0.00 | 24.01 | 0.01 | 5.34
pascal 54.63 | 45.37 2.16 272 2.61 | 0.00 | 29.25 | 0.10 | B.61
arith. mean | 57.43 | 42.57 3.57 534 3.57 | 0.00 | 22.90 | 0.05 | 7.13
geo. mean | 57.00 | 41.94 1.55 1.44(0.94 | 0.00 | 20.05 | 0.00 | 7.04

Table 5: Percentage IExecution Times in Kernel and User Program (Fully Optimized,
on One Worker)

miscellaneous. Suspension is negligible in these benchmarks, making Susp and Rest
insignificant. Hanoi and queens enqueue a large number of goal records and hence the
time spent in Enq, Monitor, and Run is significant: on average 32.39% compared to
12.48% over all the programs.

The statistics indicate that a more streamlined thread interface will be beneficial
for procedure intensive programs. For example, the Run stub is a patch around some
compilation difficulties, and in theory is not needed. With a RISC backend, we would
avoid loading goal arguments into memory-simulated registers, as we currently do for
the 80386, thus reducing Monitor time. More far-reaching solutions involve increasing
granularity by sequentialization (see next section). A further kernel optimization would
be to pull up the unification Stub (now averaging 22.9%, the most overhead of any
single function) into assembly code.

6.2 Compiler Optimizations

Table 6 shows the performance gains of three optimizations: CSE: dataflow analysis
enabling common subexpression elimination and subsequent deadcode removal, switch:
using branch tables for generating switch nodes with the decision graphs, and X := Y:
the previously described variable-to-variable unification optimization. Each effect is
shown as a speedup relative to the previous compilation. In the case of switches, the
default method uses a chain of binary branches. In the case of unification, the default
method uses a stub that cannot quickly perform variable-to-variable assignment (for
fear of deadlock in nonmoded programs). The measurements clearly demonstrate the
effectiveness of dataflow analysis, and to a lesser extent, fast branching. Note that

18

Program CSE | switch | X := ¥
hanoi(14) 2.19 5.01 0.65
nrev(1000) | 16.06 8.48 —0.50
gsort(1000) | 32.21 16.88 —0.22
queens(10) | 18.07 12.75 11.66
prime(5000) | 27.51 16.61 —(.14
pascal(200) | 21.49 12.40 1.44
geo. mean | 15.15 11.11 —

Table 6: Percentage Performance Gain with Dataflow Analysis, Branch Tables, and
Mode Analysis Optimizations

Experiment Time (msec) | % Gain
baseline (standard opts) 38,578

hand register allocation 38,275 .79
efficient 80386 branching 37,165 2.99
call forwarding 36,136 2.85
total 6.62

Table 7: Additional Optimizations, Measured for Queen(10)

discounting the outlier hanoi, CSE accounts for 22% average gain. The assignment
optimization benefits only queens, the one benchmark that collects multiple solutions in
a difference list, and thus shorts the list frequently with variable-to-variable unification.
The performance gain/loss for the other benchmarks is insignificant, so we do not
calculate a mean.

To experiment with the utility of decision graph code generation, we did not have
an alternative frontend that used WAM-style indexing. Instead, we generated decision
graphs with a naive indexer. The naive indexer simply chose the next available test for
the next node. However, since arithmetic comparisons required that integer types be
checked earlier, even the naive indexer chose integer tests first. The benchmark suite
was sufficiently simple that the naive indexer produced code that was approximately as
fast as the sophisticated indexer. More complex procedures are required to demonstrate
a significant difference, e.g., [17].

Three additional optimizations were consider by hand modification of the compiler-
generated code for queens: optimal register allocation, efficient branching, and efficient
calling. The results are given in Table 7. To experiment with the performance loss
due to register allocation, we hand-allocated the Monaco registers for queen. Compiler

19

register allocation averaged eight registers per procedure, ranging from 4-15. Hand
allocation reduced this to 5.6 registers per procedure, ranging from 2-12 (this included
optimistically rearranging instructions to ease allocation). Because these registers are
simulated, global allocation has no beneficial effect. The only advantage we can measure
is the reduction of move instructions, which as seen has little (0.8%) speedup. Hand
allocation of 80380 registers was too intricate to contemplate, even for queens with 803
assembly instructions.

The poor match between Monaco’s branches and the 80386 was alleviated by a
peephole optimizer in the assembler. The problem with this method is that it squashes
the branch-condition register, erroncous if that register is live. This optimization is
safe for queens, allowing us to measure its impact, a 3% speedup.

Call forwarding is an optimization wherein each tail-recursive caller jumps directly
to the portion of the callee that is relevant, skipping work that is known to be su-
perfluous. We hand coded this for gueens, the benchmark program with the most to
gain from the optimization, by modilying the intermediate Monaco program. The 2.8%
speedup we measured can be calibrated with significantly higher reported gains in [6] by
considering that 42% of our execution time is spent in the runtime kernel, not present
in Janus. Thus our results might be normalized upwards to 5%.

As a final experiment, we developed an alternative backend for the Monaco compiler
which translates FGHC into sequential C code. The main advantages are exploiting
the C compiler’s 80386 register allocator, and avoiding fine-grain task management
overheads. The enabling technology for this is mode and sequentialization analysis
[23]. Essentially, fully-moded FGHC programs can be analyzed to determine all path
modes nonambiguously, allowing us to impose an ordering on clause body goals that
can be sequentially executed, safe from internal deadlock (external producers may still
cause suspension). Efficient code can be generated for such programs, illustrated in
Table 8 for the gsort benchmark. The row labeled “sequential C” is generated by our
alternative backend. For instance, the code is 10.5/2.2 = 4.8 times faster than the
standard Monaco compiler. The details of the code generation are given in Massey
and Tick [23], and are slightly biased because 1) 32-bit cells rather than 64-bit cells
(as in Monaco) were used; 2) suspensions due to external sources cannot be handled.
In any case, we are encouraged to further develop this backend so that our standard
multi-threading can coexist with sequentialized threads.

20

Problem | Time Problem | Time
System PEs Size (sec) System PEs Size (sec)
125 14
PDSS 11 250 5.2 Strand 1 500 10.8
500 20.56
1 500 10.5
125 0.20
Monaco 4 250 0.75 JAM Parlog 1 500 13.1
500 2.9
8 500 1.5
125 0.14 125 0.10
sequential C 1 250 0.58 handcrafted C 1 250 0.40
500 2.2 500 1.5

Table 8: Performance of Sequentialized and Parallel QuickSort

7 Conclusions

We have presented the Monaco runtime kernel and compiler, a shared-memory imple-
mentation of flat committed-choice languages. In the spirit of Van Roy [39] and Taylor
(34], the key design decision was to move from a WAM-based to a lower level interme-
diate instruction set. This demanded the construction of an optimizing compiler based
on local dataflow analysis. Our system is unique in that, 1) it translates concurrent
programs onto a parallel execution model; 2) it produces intermediate code targeted for
high-performance on RISC hosts; 3) backend generates native code; 4) mode analysis
allows the conversion of unifications into assignments in fully-moded programs, and 5)
it forms a foundation for global optimizations that can then be accurately measured
within a streamlined system. We have presented empirical measurements characteriz-
ing the execution profile of the system, demonstrating the utility of the optimizations,
and indicating areas for future gains.

Future work involves tuning the kernel and 80386 backend, building a RISC backend,
and also a ‘C’ backend. The latter two promise significantly better register allocation,
and producing ‘C’ will make the compiler portable. We are starting to integrate global
optimization techniques within Monaco: sequentialization (underway), local reuse anal-
ysis [33], weighted decision graphs [7], and call forwarding [6].

Acknowledgements

E. Tick was supported by an NSF Presidential Young Investigator award, with matching
funds from Sequent Computer Systems Inc. L. Hansen designed the original Monaco
instruction set. S. Duvvuru completed the first implementation of the Monaco runtime

21

system. F. Rakoczi implemented the profiling tools for Monaco. The authors thank B.

Massey for his kind assistance in this research.

References

[1] A. Aho, R. Sethi, and 1. Ullman. Compilers, Principles, Techniques, and Tools. Addison-

[2]
[3]

Wesley, Reading MA, 1985.

H. Ait-Kaci. Warren’s Abstract Machine: A Tulorial Reconstruction. MIT Press, Cam-
bridge, MA, 1991.

M. Bruynooghe, A. Marien, and G. Janssens, The Impact of Abstract Interpretation:
and Experiment in Code Generation. In Iniernational Conference on Legic Programming,
pages 33-47. Lisbon, MIT Press, June 1989.

[4] T. Chikayama et al. Overview of the Parallel Inference Machine Operating System PIMOS.

In International Conference on Fifth Generation Computer Syslems, pages 230-251, Tokyo,
November 1988. ICOT.

[5) J. A. Crammond. The Abstract Machine and Implementation of Parallel Parlog. New

(6]

(7]

i8]

[9]

[10]

[11]

(12]

(13]

Generation Compuling, August 1992

K. De Bosschere, 5. K. Debray, D. Gudeman, and S. Kannan. Call Forwarding: A Simple
Interprocedural Optimization Technique for Dynamically Typed Languages. In SIGPLAN
Conference on Programming Language Design and Implementaiion, Albuquerque, June
1993. ACM Press. Submitted.

S. Debray, S. Kannan, and M. Paithane. Weighted Decision Trees. In Joint Inierna-
tional Conference and Sympostumn on Logic Programming. Washington D.C., MIT Press,
November 1992.

T. P. Dobry, A. M. Despain, and Y. N. Patt. Performance Studies of a Prolog Machine Ar-
chitecture. In fnternational Symposium on Computer Archilecture, pages 180-190. Boston,
IEEE Computer Society, December 1985.

S. Duvvuru. Monaco: A High Performance Implementation of FGHC on Shared-Memory
Multiprocessors. Master’s thesis, University of Oregon, June 1992. Also available as
Technical report CIS-TR-92-16.

I. Foster and S. Taylor. Strand: A Practical Parallel Programming Language. In North
American Conference on Logic Programming, pages 497-512. Cleveland, MIT Press, Oc-
tober 1989.

D. Gudeman, K. De Bosschere, and S. IX. Debray. je: An Efficient and Portable Sequential
Implementation of Janus. In Jomi International Conference and Symposium on Logic
Programming. Washington D.C., MIT Press, November 1992,

A. Harsat and R. Ginosar. CARMEL-2: A Second Generation VLSI Architecture for Flat
Concurrent Prolog. In futernational Conference on Fifth Generation Computer Sysiems,
pages 962-969, Tokyo, November 1988. ICOT.

M. V. Hermenegildo. An Abstract Machine for Restricted AND-parallel Execution of Logic
Programs. In International Conference on Logic Programming, number 225 in Lecture
Notes in Computer Science, pages 25-40. Imperial College, Springer-Verlag, July 1986.

22

[14] B. Holmer et al. Fast Prolog with an Extended General Purpose Architecture. In Inter-
national Symposium on Computer Architeclure, pages 282-291, Seattle, June 199(. IEEE
Computer Society.

[15] Intel Corp. Intel 386 DX Microprocessor Programmer’s Reference Manual. Mt. Prospect
1L, 1990.

[16) Y. Kimnura and T. Chikayama. An Abstract KL1 Machine and its Instruction Set. In
International Symposium on Logic Programming, pages 468-477. San Francisco, IEEE
Computer Society, August 1987.

[17] S. Kliger. Compiling Concurrent Logic Programming Languages. PhD thesis, The Weiz-
mann Institute of Science, Rehovot, October 1992, Dralft.

[18] S. Kliger and E. Y. Shapiro. From Decision Trees to Decision Graphs. In North American
Conference on Logic Programmang, pages 97-116. Austin, MIT Press, October 1990.

[19] M. Korsloot and E. Tick. Determinacy Testing for Nondeterminate Logic Programming
Languages. ACM Transactions on Programming Lenguages and Syslems. Submitted,
undergoing revision,

[20) M. Korsloot and E. Tick. Compilation Techniques for Nondeterminate Flat Concurrent
Logic Programming Languages. In International Conference on Logic Programming, pages
457-471. Paris, MIT Press, June 1991.

[21]) K. Kumon, A. Asato, S. Arai, T. Shinogi, A. Hattori, H. Hatazawa, and K. Hirano. Archi-
tecture and Implementation of PIM/p. In Infernational Conference on Fifth Generalion
Computer Systems, pages 414-424, Tokyo, June 1992, ICOT.

[22] E. Lusk et al. The Aurora Or-Parallel Prolog System. In [aiernational Conference on
Fifth Generation Compuler Systems, pages 819-830, Tokyo, November 1988, ICOT.

[23] B. C. Massey and E. Tick. Sequentialization of Paralle! Logic Programs with Mode Anal-
ysis. In SIGPLAN Conference on Programming Language Design and Implementation,
Albuquerque, June 1993. ACM Press. Submitted.

[24] H. Nakashima and K. Nakajima. Hardware Architecture of the Sequential Inference Ma-
chine: PSI-II. In Iniernational Symposium on Logic Programming, pages 104-113. San
Francisco, IEEE Computer Society, August 1987.

[25] R. Nakazaki ef al. Design of a High-Speed Prolog Machine (IIPM). In fnternalional
Sympostum on Computer Archifecture, pages 191-197. Boston, IEEE Computer Society,
June 1985.

[26] A. Osterhaug, editor. Guide to Parallel Programming on Sequent Compuier Sysiems.
Prentice Hall, Englewood Cliffs, NJ, 2ud edition, 1989.

[27] F. Rakoczi, K. Peery, and G. Folkestad. Optimizing the Monaco Compiler. Dept. of
Computer Science, University of Oregon, June 1992. Unpublished.

[28] V. A. Saraswat, K. Kahn, and 1. Levy. Janus: A Step Towards Distributed Constraint
Programming. In Nerth American Conference on Logic Programming, pages 4131-446.
Austin, MIT Press, October 1990,

[29] M. Sato and A. Goto. Evaluation of the KL1 Parallel System on a Shared Memory Multi-
processor. In IFIP Working Conference on Parallel Processing, pages 305-318. Pisa, North
Holland, May 1988.

23

[30] M. Sato, K. Kato, K. Takeda, and T. Ochara. Exploiting Fine Grain Parallelism in Logic
Programming on a Parallel Inference Machine. Technical Report TR-676, ICOT, 1-4-28
Mita, Minato-ku Tokyo 108, Japan, August 1991.

[31) E. Y. Shapiro. The Family of Concurrent Logic Programming Languages. ACM Comput-
ing Surveys, 21(3):413-510, September 1989.

[32) K. Shimada, H. Koike, and H. Tanaka. UNIRED-II: The High Performance Inference
Processor for the Parallel Inference Machine PIEG4. In International Conference on Fifth
Generation Compuler Systems, pages 715-722, Tokyo, June 1992, ICOT.

[33) R. Sundararajan, A. V. S. Sastry, and E. Tick. Variable Threadedness Analysis for Con-
current Logic Programs. In Joint futernational Conference and Sympostum on Legic Pro-
gramming. Washington D.C., MIT Press, November 1992.

[34] A. Taylor. LIPS on a MIPS: Results From a Prolog Compiler for a RISC. In International
Conference on Logic Programming, pages 174-185. Jerusalem, MIT Press, June 1990.

[85) E. Tick. A Performance Comparison of AND- and OR-Parallel Logic Programming Ar-
chitectures. In futernational Conference on Logic Programming, pages 452-470. Lisbon,
MIT Press, June 1989,

[36] E. Tick. Parallel Logic Programming. MIT Press, Cambridge MA, 1991,

i37) K. Ueda. Guarded Horn Clauses. In E. Y. Shapiro, editor, Concurrent Prolog: Collected
Papers, volume 1, pages 140-156. MIT Press, Cambridge MA, 1987.

[38] K. Ueda and M. Morita. A New Implementation Technique for Flat GHC. In International
Conference on Logic Programming, pages 3-17. Jerusalem, MIT Press, June 1990.

[39] P. L. Van Roy. Can Logic Programming Ezectue as Fast as Imperative Programming?
PhD thesis, University of California at Berkeley, EECS, 1991. Also available as Technical
Report UCB/CSD 90/600.

[40] X.Zhong, E. Tick, S. Duvvuru, L. Hansen, A. V. S. Sastry, and R. Sundararajan. Towards
an Efficient Compile-Time Granularity Analysis Algorithm. In Infernational Conference
on Fifth Generalion Compuler Systems, pages 809-816, Tokyo, June 1992, ICOT.

Appendix: Benchmark Source Code Listing (FGHC)

:- module suits.
:~ public nrevgo/1, gsortge/1, hanoigo/1, queengo/1, primego/1, pascalgo/1.

nrevgo{ N) :-N>0 | gen{ N, X), nrev(X, _).
gqsortgo(N) ;- H >0 | gen(N, X)}, gsort{ X, _).
hanoigo(¥) :—= N > 0 | hanoi{ N, _).

queengo(N) :— N > 0 | queen(N, _).

primego(N) :- N > 0 | prime(N, _).

pascalgo(N) :~ N > 0 | pascal(N, _).

gen{ N, L) :- true | gen(O, N, L).

L=1].
K1 := K+1, L = [K|Ls], gen(K1, N, Ls).

nrev([J, Y) :- true 1 Y = [].
nrev([AIX), Y)} :- true | nrev(X, T }, append(T, {AJ, ¥).

24

append(1, X, Y) :- true | Y = X.
append([A|B], X, Y) :- true | Y = [AlZ), append(B, X, Z).

gsort{ X, Y) :- true | gsoxrt(X, ¥, [1).

gsort{ [, Rest, Ans) :- true | Rest = Ans.
gqsort([XIR], ¥, T) :- true |

partition{ R, X, S, L),

gsort(S, Y, [X[Y1]),

gsort(L, Y1, T).

partition{ [XIXs], A, S, L) :- A <X | L= [XIL1],
partition(Xs ,A,S,L1).

partition({ [XIXs], A, S, L) :- A >=X | s = [X[s1],
partition(Xs, 4, S1, L).
partition{ [0, 4, S, L) :- integer(A) | S =[], L = [J.
hanoi{ N, X) :- true |
move(N, left, center, right, Y, [J),
count({ Y, X).
move(O, _, _, _, 01, 02) :- true | 01 = 02.
move{ M, A, B, ¢, 01, 04) :- N>0, M := N-1 |

move(M, &4, C, B, 01, 02),
02 = [a-B | 03],
move(M, C, B, A, 03, 04).

count({ L,N) :- true | count(L,0,N).

count{ [J, M, N } :- integer(M) | N = M.
count{ [_!Xs], M, N) :- M1 := M+1 | count(Xs, M1, N).

gqueen{ N, M) :- true |
gen(¥, L),
queen(L, []
count(A, M

, 0, 4, 1),
).
queen{ [C|Cs], NCs, L, S0, 52 } :- true |

check(L, C, 1, NCs, ¢s, L, S0, 51),

queen(Cs, [CINCs], L, S1, §2).
queen{ 0J, {1, L, 50, S1) :- true | 50 = [L|S1].
queen{ {1, [_I1_1, _, S0, 51) :- true | SO = S1.

check({ [1, C, D, NCs, Cs, L, SO, S1) :- integer{ C)}, integer(D) |
append(¥Cs, Cs, Ps),
queen{ Ps, [}, [CcIL], S0, S1).
check([P|_], C, D, _, _, _, S0, 51) :- P-C
check([P|_], ¢, D, _, _, _, SO, S1) :- C-P
check{ [P|IPs], ¢, D, NCs, Cs, L, S0, S1) :-
P-C =\= D, C-P =\=1D, D1 := D+1 |
check(Ps, C, D1, NCs, €3, L, SO, S1).

51,
51.

ton
[=]
ihn

non

prime(M, N) :- true |
primei(M, Ps),
count(Ps, N).

primei(Hax, Ps) :- true
gen(2, Max, Ns),
sift(Ns, Ps).

gift([(PIXs1), Z80) :- true | Zs0 = [PlZs1],
tilter{ Xsi, P, ¥s),
sift(Ys, 2Zs1).

sift([1, Zs0) :- true | Zs0 = [].

filter([0, _, ¥8) :- true | Ys = [].
filter([XIXs], P, Ys) := Z := X mod P |
filter{ Z, P, X, Xs, Ys).

filter{ Z, P, X, Xsi, Ys0) :~ Z =\= 0 | ¥s0 = [X|¥s1],
filter(Xsi1, P, ¥Ysi).

filter(0, P, _, Xsl, YsO) :- true |
filter(Xsi, P, YsO).

pascal(N, Row) :- N>0 |
makeRows(1, N, [], Row).

makeRows{ K, N, HalfRow, Row) :- K =:= N, 0Odd := N med 2 |
fillout(0dd, [[1,0]iHalfRow], Row).
makeRows{ K, N, HalfRowK, Row } :-
K <N,
K1 := K+1,
0dd := K mod 2 |
makeRow{ [[1,0]]HalfRowK], Odd, HalfRowK1l),
makeRows(K1, N, HalfRowKi, Row).

makeRow{ [_], O, A) :- true | A=(].
makeRow([X], 1, A) :- true | A=(S], big_plus(S, X, X).
makeRow([X1, X2|Xs], 0dd, A) :- true |

A=[s|ss],

big_plus(S, X1, X2),

makeRow([X2]|Xs], Ddd, Ss).

fillout(0, HalfRow, Row) :- true |
rev(HalfRow, [_|Rev]),
append(HalfRow, Rev, Row).
fillout(1, HalfRow, Row } :- true |
rev{ HalfRow, Rev),
append{ HalfRow, Rev, Row).

rev(X, Y) :- true | rev{ X,], Y).

rev({3, ¥, Z) :- true | Z=Y.
rev{ (AlIX], Y, 2) :- true | rev(X, [&IY], Z).

big_plus(A, X, Y) :- true | bigp(X, ¥, 4, 0).
bigp([X[Xs), [Y|Y¥s], &4, C) :- TmpA := X+Y+C |
bigpi(Xs, Ys, A, TmpA).

bigp([I, [YiYs), A, C) :- Tmpa := Y+C |
bigpi([, Ys, A, TmpA }.

26

bigp([X1Xsl, [1, 4, C) :~ TmpA := X+C |
bigpi{ Xs, [0, A, Tmpa).

bigp(OO, [0, A, 0) :- true | A=[].

bigp(0, 0O, A, ¢) :- ¢>0 | A=[c].

bigpi{ Xs, Ys, As, TmpA) :~ TmpA >= 100000,
D := Tmpi - 100000 |
c=1,
As = [DlA2],
bigp(Xs, ¥s, 42, C).
bigpi(Xs, Ys, As, TmpA) :- TmpA < 100000 |
c=o0,
As = [TmpAla2],
bigp(Xs, Ys, 42, C).

