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Abstract

This paper addresses the problem of mapping divide-and-conquer programs to
mesh-connected multicomputers with wormhole or store-and-forward routing. We
propose the binomial free as an efficient model of parallel divide-and-conquer compu-
tations. We develop mappings which exploit the regular communication structure
of this paradigm, including both the communication topology and the phases of
message passing over time.

We develop several new performance metrics to evaluate the communication
overhead of a mapped divide-and-conquer computation. These metrics are natural
extensions of the standard contention and dilation metrics used in the literature,
with refinements that take into account the underlying flow control scheme (worm-
hole vs. store and forward).

We present two mappings of the binomial tree divide-and-conquer computation
to the 2-D mesh and evaluate their performance using our new metrics. Qur first
mapping, the Reflecting Mapping has optimal conununication slowdown on a tar-
get machine with wormhole routing, independent of the message volumes. We also
present a second mapping called the Growing Mapping which outperforms the Re-
flecting Mapping for a wide range of message volumes on a target machine with
store and forward routing. We conclude that significant performance gains can be
realized when the mapping of the divide and conquer computation to the 2-D mesh
is sensitive to the flow control scheme of the target architecture.
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1 Introduction

A well-known problem-solving paradigm that occurs in many computations is divide and
conquer. If the subproblems are independent of each other, they may be executed in
parallel, and this makes it a useful paradigm for designing large scale parallel programs.
Cole has even proposed fixed-degree divide and conquer as an algorithmic skeleton [Col89],
and it has been studied by many researchers [AS88,Ble90,MH88,NS87]. Well known ex-
amples include mergesort, finding the max, parallel voting and broadcasting, applying
an associative and commutative operation to a set of data values (such as multiplica-
tion of a sequence of matrices), parallel prefix computations, and many others. In this
paper, we address the problem of implementing degree-two divide and conquer on two-
dimensional meshes. We analyze our implementations using a single unified cost function
that is designed to accurately measure the true performance. This work is a part of
our ongoing effort on mapping parallel computations to distributed memory multipro-
cessors [LRM*90,LRG*91]. One of the goals in our research is to exploit regularity in
the computation—rather than mapping a single task graph, we would like to develop a
(parameterized) mapping function that maps an entire family of graphs.

The task structure of a divide and conquer algorithm is usually viewed as a complete
binary tree (CBT), and it is widely assumed that it can be mapped to multiprocesors
by embedding a CBT in the target topology. However, this is not accurate because of a
number of reasons. First, a binomial tree is a better task graph than the CBT, because
it has better speedup and efficiency [LRG*90]. Second, the traditional approach of graph
embedding (using the conventional dilation and contention metrics [Ros88a,Ul184]) may
not yield the best performance because of a number of pragmatic reasons. For one,
this approach tacitly assumes that all the edges of the guest graph are simultaneously
active. Second, it also ignores message volume (edge weights). Furthermore, many parallel
computations, including divide and conquer, run in a step-by-step manner—there is a
regular pattern in the times at wich messages are sent. Finally, the message volumes also
exhibit considerable regularity. In this paper we develop parallel implementations that
make effective use of all these facts.

We shall first present new cost functions for the mapping problem. They are developed
specifically for phased comutations—parallel programs that run in a step by step manner.
The metrics also address the facts that message volumes may not always be constant, and
that communication technology can strongly affect the performance. We consider four
pragmatic cases—whether the communication volumes are significantly larger or smaller
than the startup overhead, and whether the routing mechanism is wormhole or store-and-
forward. Tor each of these cases we develop a single, unified metric that represents the
slowdown of the program relative to an ideal embedding. Our functions are extensions of
the standard contention and dilation metrics used in the embedding literature.

Second, we study the structure of divide and conquer algorithms, specifically to exploit
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regularity. We will justify why the binomial tree rather than the complete binary tree is
a better task graph for these algorithms. We show that there is both topological, as well
as temporal regularity in these algorithms. In addition, the patterns of message volume
are also regular. This regularity can be described by two parameters n and «, where, n
simply represents the size of the graph, and a denotes the message size in each phase, as a
fraction of the incoming message. Two common patterns, namely uniform communication
(i.e., all messages have the same volume) and logarithmic communication (the message
volume decreases by a factor of 2 at each level), merely correspond to specific values of
a. All relevant information needed for our mapping is completely described by these two
parameters.

We then exploit these properties to implement divide and conquer on 2D mesh con-
nected maxhines, using two different mapping functions. We analyze their performance
using the metrics that we have developed, for the four cases based on routing scheme and
message volumes. For each case, we identify the range of parameters of the divide and
conquer where one implementation is better than the other. The remainder of the paper
[ollows the above outline: Sec. 2 describes the regular structure of divide and conquer
algorithms; Sec. 3 presents our cost [unctions; Sec. 4 presents our mappings and an anal-
ysis of their performance. IFinally, we conclude with a discussion and indication of future
work.

2 Divide and Conquer, and Binomial Trees

The traditional task graph structure for a degree-2 divide and conquer algorithm is a
complete binary tree, C BT (n) of 2* — 1 nodes (1 root and 2(*~!) leayes). We call this
the Type 1 strategy. The parameter a, used in step 2 below, denotes the message size in
each phase, as a [raction of the incoming message. Each node in the tree performs the
following computation:

1. Receive a problem (of size z) from the parent (the host, if the node is the root).

W

Divide the problem into two equal parts, (each of size ax), and send one part to
each child (or, if the node is a leaf, solve the problem locally and skip the next step).

3. Get the results from the children and combine them.

4. Send the results to the parent. (the host, if the node is the root).

Many researchers have reported on parallel divide and conquer by studying the problem
of mapping this graph structure to multiprocessor topologies [Col89,HZ83,MS587,Pet83).
However, this is not efficient since all non-leaf nodes (and hence about half the processes)
are idle between steps 2 and 3. The computation actually proceeds from the root to the



leaves and back up the tree in a level by level manner; so at any time only the nodes in
a given level are active. We call this a phased computation.

As is well known in the folklore and noted by many authors [AS88,Col89}, an obvious
way to improve the performance is to use the “keep half, send half” strategy. We call this
the Type II strategy. The only change is to step 2, which now becomes:

2. Solve the problem locally (if ‘small enough’), or divide the problem into two parts
(each of size az), and spawn a child process {o solve one of them. In parallel, start
solving the other one, by repeating Step 2.

As before, there are two stages—divide (Step 2}, and combine (Step 3). Note that during
the divide stage, each node receives a message from its parent exactly once, but may send
messages multiple times (once to each child process that is spawned). During the combine
stage, the message traffic is in the opposite direction—a node may receive many times,
but sends exactly once. Because we are using divide and conquer as a general paradigm,
some algorithms (such as prefix computations) may employ only one of the stages, while
others (say, sorting) may use both. Nevertheless, the patterns of data flow in the two
stages are identical except for direction. We therefore restrict our analysis to the divide
stage, without any loss of generality. We will also normalize our analysis so that the
volume of the message sent to the root (the initial problem size) is unity.

The parameter o« described above can serve to completely define the communication
volumes that occur in the divide and conquer paradigm (we assume that 0 < a < 1). All
edge weights can be expressed in terms of only @ and the phase, ;. Moreover, « is a natural
parameter from the user’s point of view. The two most common values are & = 1 which
corresponds to uniform traffic (this occurs in leader election, broadcasting a data value,
and the combine stage of an associative-commutative operation), and o = 7, where the
message volume is halved in each phase (this occurs in mergesort, data distribution, etc).
There are also many problems where a different value may occur. A common example
is solving a graph problem by decomposing the graph into two graphs each of half the
number of vertices. Assuming messages passed to children consist of an adjacency matrix
we have a = . Nole that even for a single algorithm, the message volumes may be
different in the divide stage and the combine stage. In multiplying a sequence of n x n
malrices, for example, a is % in the divide mode, and 1 in the combine mode. In such cases,

the mapping that yields better performance for the dominant stage should be chosen.

It will soon be clear that the graph corresponding to the Type Il strategy is a binomial
tree. It has only about half the nodes as the corresponding CBT, but this does not affect
the running time of the algorithm. Hence, if we can map the binomial tree efficiently
on the target machine, we can save about half the processors without any time penalty.
Alternatively, we can obtain a two fold speedup (for large enough input size) by executing
an additional level of the algorithm in parallel (i.e., mapping the nezt larger binomial tree
on the target machine).



I'igure 1: The binomial tree: definition, and example (B,)

Definition 1 The binomial tree B(n) is defined inductively as follows [Vui87] (see Fig. 1):

e B(0) is a single node with no edges.

¢ B(n) consists of two copies of B(n —1) together with an edge connecting their roots,
one of which is designated as the root of B(n).

Because of the recursive definition, the subtree rooted at any node is itsell a binomial
tree. It is easy to see that the root of B{n) has n children, each of which are, in turn, the
roots of B(n —1),B(n —2),...,B(0) (see Fig. 1). We will use the convention that the
children of a node are arranged in decreasing order of size. Thus the i-th child of = is the
root of B(n —%). We adopt a post order labelling of the tree as shown in Fig 1.

Lemma 1 The computation graph of the Type II divide and conquer with n divide
phases is the binomial tree B(n).

Proof: Let C(n) be the, undirected, computation graph of the Type IT divide and
conquer with n divide phases. C(0) and B(0) are both one-node graphs, hence
identical. We establish the Lemma by showing that C(n) and B(n) have equivalent
iterative definitions. By definition C(n) is obtained by taking C(n — 1) and for each
of its nodes creating a new node adjacent to it. We show by induction that B(n) can
be constructed from B{n —1) in the same way. Since B(0) is a single node and B(1)
a single edge, the base case holds. Assume inductively that B(n) can be constructed
by adding a leaf to every node of B(n —1). By definition B(n) consists of two copies
of B{n — 1), with an edge e connecting their roots. Adding a leaf to every node



Figure 2: Binomial tree B(3) as a contraction of the complete binary tree CBT(4)

of B(n) thus amounts to adding a leaf to every node in both copies of B(n —1).
By the inductive assumption this creates two copies of B(n), with their roots still
connected by the edge e, and the resulting graph corresponds to the definition of

B(n+1). ]

From this proof it is clear that B(n) has 2® nodes compared to the 2"*! — 1 nodes of
the complete binary tree CBT(n+1). Fig. 2 shows a contraction of CBT(n+ 1) to B(n)
which compares Types I and Il divide and conquer and illustrates the amount of work
done by each task. Ior any node u in CBT(n + 1), if v is a right child of its parent v,
then u and v are contracted into the same node. The contraction can be performed by
starting at a leal in CBT(n + 1) and- tracing the parent relation towards the root until
a node which is not a right child of its parent (or the root}) is encountered. All nodes in
this path are contracted into one.

In addition to the topological properties of the communication in divide and conquer
algorithms as described above, it is important to accurately determine how it varies over
time. In particular, we would like to specify exactly when a given edge is active, and what
its weight is.

Using the binomial tree B(n) to model the computation, there are a total of n com-
munication phases numbered 1 to n (see Fig. 3). As mentioned, we restrict attention to
the divide stage of the computation. Every node receives a message exactly once. We say
a node is activated after receiving this message, say at phase i. In each of the remaining
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Step 1 Step 2 Step 3

Figure 3: Phases in B(3) showing message volumes on active edges (highlighted)

phases ¢ + 1,1 + 2, ...,n the node will itself activate a new child.

Initially, the root receives a message of size 1 [rom the host, constituting the entire
problem to be solved. In phase 1 the root sends a message of volume « to its first child,
thereby activating it. In phase | < i < n, there are 2°~! active nodes, each sending a
message ol volume o' to a child.

In the next section we develop metrics for estimating the total communication overhead
when such phased computations are mapped to a multiprocessor.

3 New metrics for the mapping problem

The mapping problem typically uses the well known static task graph model of Stone
[Sto77] and Bokhari {Bok87]. The parallel computation is viewed as a weighted graph’,
Ge = (Vo, £g, W). The target machine is a graph G4 = (Vy4, E4), and a mapping, M is
formally specified by the two functions M, and M.,

M, : Vo=V,
M, EC — V;’;
provided that for any e = {1, b) € L, M.(¢) is a path from M, (a) to M, (b). Typically,

one seeks a mapping which minimizes the communication overhead while maintaining a
balanced load.

As mentioned above, we are interested in phased computations which operate as fol-
lows. In the :-th phase, only the nodes in a subset, V;, of ¥ perform a computation,

1n general, nodes are also weighted; if the weights are all equal the computation is said to be uniform.
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and messages are sent only on edges that belong to E; C Er. We assume a loosely syn-
chronous model where the tasks are assumed to synchronize after each phase. We call
this a phased computation graph, and a special case is a uniform phased graph, where
the edge weights are uniform. We have elsewhere presented a language, to describe such
graphs in a parameterized manner [LRM*90], and Lo [Lo92] has described the relation-
ship between these graphs, the static task graph model, Lamport’s processor time graphs
{Lam78], and multiprocessor scheduling of DAGs [Pol88).

For the purposes of this paper, we assume that |Vg| = V4|, and M, is one-to-
one (this was justified in Sec 2). We measure the performance of a mapping by the
communication overhead. In practice, this is a complex function of message volumes (edge
weights), routing schemes and physical properties of the hardware (bandwidth, startup
time, overhead for headers, etc.), and also the time instants at which communication
occurs in the program. Hence, we need to use approximate metrics. We shall now develop
a single cost function, communication slowdown, &, to estimate this communication time
for two common routing strategies—store-and-forward and wormhole, under two common
ranges of message volumes. Our metric is based directly on the classic metrics used in
graph embedding, namely contention and dilation, defined as follows [Ros88a,Ul184].

Definition 2 The dilation, D(e), of an edge ¢ € E¢, is |[M.(e)|, i.e., the length
of path, to which e is mapped. The dilation, D(E¢), of a mapping, M, is given by
D(Ec) = max D(e).

13 Ofs)

Definition 3 The contention, C(!), of a link [ € E,, is |{e € E¢|l € M.(e)}], i.e., the
number of edges in G¢ thal are mapped to paths containing I. The contention, C(E¢),
of a mapping, M, is given by C(M) = max C(!).

A

Dilation reflects the communication overhead caused by messages having to traverse
multiple links, while contention reflects the communication overhead that arises when
two or more messages require the same link. Note that both dilation and contention are
minimized if G¢ is a subgraph of G 4. This gives us a lower bound on the optimal cost of
any mapping. Such a mapping, P, is said to be perfect.

Traditionally, these two metrics have been used to compare multiprocessor networks
by measuring the time taken for the host machine G4 to simulate one step of an algorithm
running on the guest machine G¢. In such analysis, one assumes that edge weights of
G¢ are uniform and that all edges of G¢ are active simultaneously. These assumptions
are reasonable in the context of comparing multiprocessor networks, but not sufficiently
accurate for mapping. Below, we refine the definitions of dilation and contention to more
realistically reflect communication overhead by taking into account (1) the communication
phase behavior of the parallel computation, and (2) non-uniform edge weights. Note that
we define contention slightly differently—in terms of contention between edges in the
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computation graph, rather than links in the architecture. The reason for this will become
clear shortly. All metrics are defined with respect to a specific mapping M. In case of
ambiguity, an additional subscript indicates the mapping. As a guide to the notation, we
will define most terms as either functions of a single edge e (which is active in the :-th
phase), or of all edges in the :-th phase, ;. The value of the function for a whole set of
edges is the maximum of its value over all elements of the set. For example, W(e) is the
weight of a single edge and W (E,) is the weight of the heaviest edge in the i-th phase.

Definition 4 The i-th phase interference set, /(e,?) of an edge e € E;, consists of all
the other edges in E; which also use some link that is used by e, i.e., I(e,7) = {¢' € E; |
e # e A M(e) N M.(¢) # B}. “Path level contention,” as introduced by Chittor and
Enbody [Chi91] is a similar notion, although they do not deal with phased computations.

Definition 5 For an edge e, its weighted dilation, D,(e), is the product of its weight
and the length of the path to which it is mapped, i.e., Dy(e) = W(e) x D(e).

For a mapping, M, the i-th phase weighted dilation is defined as the maximum
weighted dilation of all the edges in that phase: D,(F;) = max Du(€).

For an edge ¢ € E,, its i-th phase weighted contention, Cy(e,?), is the sum of the
weights of edges in its i-th phase interference set, Cu(e,3) = > W(e).

e'el(e,t)
For a mapping, M, its i-th phase weighted contention, C,(E;), is defined as the max-
imum j-th phase weighted contention of the edges in that phase, Cy(E;) = max Cule,1).

A special case arises when the computation is uniform, (i.e., W(e) = 1,Ve € E¢.
Then, Dy(FE;) = max D(e). Also, Cule,i) = |I{e,7)| and C.(E;) = max l{e,2)]. We
indicate these uniform metrics by dropping the subscript w.

We now use Deln 5 to oblain estimates lor the communication slowdown imposed by a
mapping. Lor this, we first estimate the communication time, T(e,z) for an edge, e € E;,
accounting for delays due to the path length and congestion. Then, the communication
time for the i-th phase, T(E,) is the largest time of all edges in the phase (remember that
our model assumes synchronization between the phases) i.e., T(E;) = max T{e,t). The

total communication time for the program, 7(E¢) is the sum over all the phases, i.e.,
T(Ee)=> T(E)=5 max T (e,2). Finally, we normalize this quantity with respect to

the perfect’ma,pping as lollows.

Definition 6 Given a mapping, M, its communication slowdown, §(M) is defined

as the ratio between its total communication cost and the cost of the perfect mapping,

. T (E
ie., S(M)= Ti‘:((Eg))

We will now show how the metrics of Defn 5 can be used to obtain formulae for &
under two routing technologies, namely store and forward routing, and wormhole routing.
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3.1 Store and Forward Routing (Large Message Volume)

Let us first consider a single edge, ¢ € E¢, in isolation. Empirical studies [SB90b] have
indicated that in a multiprocessor with store-and-forward routing, the time taken to send
a message?, e, of volume ¥ (e) from one processor to another over a path of length d
is t(e) = (c+ bW(e))d, where c is a startup cost (overhead of creating and buffering a
message), and 1/b is the bandwidth of the link. Note that startup overhead is incurred
once for each link in the path, since each processor in the path is required to receive the
message entirely, and then forward it. It also well known that ¢ is about three orders of
magnitude larger than 1/b. Indeed, a well known rule of thumb is that the message size
must be about 1k-bytes to offset the startup overhead. Also note that any link {, is busy
with a message for exactly ¢ + bW (e) time units; once the message has passed, the link
can be released. For the present, we assume (this is relaxed later on) that ¢ < bl (e),
i.e., the message volumess are large enough that startup costs can be safely neglected.
Thus, t(e) = bW {e)d. This assumption is relaxed later, when we consider small message
volumes.

Let us now consider what happens when there is contention. In order to estimate the
total communication time, we assume that the message e will meet and be delayed by
every message ¢, in its i-th phase interference set, I(e,7). We further assume that the
delay induced by each €’ is equal to the time that ¢’ needs to occupy a single link.

The first assumption is pessimistic, since there may not necessarily be a conflict merely
because two messages happen to use the same link (the first message may arrive early
enough that by the time the second message arrives, the link may be free). To understand
the justification for the second assumption, it is obviously true if the messages contend
exactly once for a single link. One of them is then delayed by precisely the time that the
other one occupies a link. If two messages contend for a contiguous sequence of links,
then they are sent in a pipelined fashion, one after the other. In this case, the delay
for the first link is just what we have assumed above. For each successive link, the delay
depends on the difference between the message volumes (if the message that is sent first is
no larger than the later one, then there is no further slowdown). Finally, if two messages
contend multiple times in disjoint sections of their paths our assumption is not valid ,
although it is often the case that the first conflict will separate the messages enough that
later contention is unlikely in any but the most pathological cases. Qur assumption thus
yields a reasonable approximation. 7T (e, i) is then given by the sum of two terms, one
accounting for the “natural” time lor e and one for message congestion among the i-th
phase contention set, as follows.

T(e,i) = bW(e)D(e)+ ¥ bW (e)
e'el(eq)
b[Du(e) + Cule, 1)

“We will abuse the notation and consider an edge to be synonymous to the message that it carries.
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Thus, the expected communication time for the i-th phase is as follows (note that the
final expression is an upper bound which we will use as an approximation):

T(E)

max 7 (e, 7)

ecE,

= b]c]éaé%:[@w(e) + Cule,?)]
< bmax Dy(e) + maxCu(e,i)]
= HDu(E;) + CulE;)]

The total communication time for the entire algorithm with & phases (under the mapping
M) is then obtained by summing the communication time over all the phases:

k k
Tm(Ec) = 3 T(Ei) = b [Du(E:) + Cul Ei)]
=1 i=1
To normalize this, recall that under the perfect mapping, the communication time

for any edge, e is just W{e) (since dilation is 1 and there is no contention). Thus,
Tp(L;) = max b (e), and

.
Tp(Ec) = b) W(E)) (1)

=1

Hence the single performance measure for store-and-forward routing is given by the
following.

Remark 1 The slowdown, S(.M), of a mapping, M to a machine with store-and-
forward routing (for large message volumes) is given by

k

Z[Dw(Et) + Cw(E:)]
S(m) = = (2)

> W(E)

In Egn 2, note that the denominator is independent of the mapping, and is an inherent
characteristic of the program. The communication slowdown is thus determined primarily
by the sum (for each phase) of the sum of the i-th phase weighted contention and dilation
of the mapping.

3.2 Wormbole Routing (Large Message Volume)

In wormhole routing, a message consists of a stream of contiguous data (called flits), routed
through the network with minimal buffering. Thus the overhead of each intermediate
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node having to buffer the complete message is avoided, but if a message is blocked due to
conflict for a communication link, it stays in the network (which may in turn, block other
messages) until the link is released. To develop the communication time estimates, let us
again consider a single edge, e € I¢, in isolation. Because of pipelining, the time it takes
to travel from one processor to another over a path of length d is t(e) = c+ b(1¥ (e) + dh),
where, c is the startup cost, 1/ is the bandwidth, and & is the header size (usually, 1 or
2 bytes) [SB90b]. It is known that ¢ >> bdh, so t(e) = ¢ + bW (e). Note that the distance
is no longer relevant; this has been observed by many authors [Bok90,Dun91]. For large
volumes, t(e) = bW (e),

When two messages contend for the same link, one of them is delayed until the other
has been completely transmitted. Once again, we assume that an edge e is delayed by
all edges, ¢’ € I(e,i), and that the delay caused by each €' is equal to its own natural
communication time. As before, there are many factors that affect this value, such as the
specific instant when the messages meet, whether any of the other messages are themselves
blocked, etc., but this is a reasonable approximation. Thus, from Defn 5

T(e,2) = b{W(e) + Cule, 1))

Then we have the following:
T(E) = max T (e, 1)
= B )
brgéaﬁﬂ'([ﬂ (e) + Cule,1)]
< HW(E) + Cul(£)) (3)

and the communication time for the entire paralle program with & phases under the
mapping M is

k

Tm(Ec) =) T(E) = bi[W(Ef) + Cuw( )]

=1 =1

Using Eqn 1, we get,

Remark 2 The slowdown, §( M), of a mapping, M to a machine with wormhole rout-
ing (for large message volumes) is given by

"
S Cul(E)
SM)y=1+=L (4)

> W(E)




In Eqn 4, the denominator is again independent of the mapping. Also note that dilation
does not affect the performance. The slowdown differs from the optimal value by the
phasewise sum of the i-th phase weighted contention (normalized by the communication
time of the perfect mapping).

3.3 Small Message Volumes

In the preceeding development, we assumed that the startup costs of message transmis-
sion was negligible. We shall now consider the other extreme, i.e., when startup costs
dominate. Recall that the “natural” time t(e), for a single edge, is (c + bW (e))d with
store-and-forward routing, and c¢ + bW (e) with wormhole routing. This reduces to cd and
¢, respectively, il ¢ 3> bW (e), and thus, the analysis is identical to the large volume case
with uniform edge weights, W(e) = ¢/b.

For store and forward routing (note that we simply use the uniform metrics, and have
a different constant factor),

k
Tm(Ec) = c) [D(E:) + C(E)))
1=1

and for wormhole routing (the inequality in Eqn 3 now becomes an equality, as the
reader may easily verify),

k
Twm(Ee) =3k + Y C(E))]
i=1
By a reasoning similar to the large volume case, we can show that,
k
Tp(Ec) =03 W(E) =ck (5)
1==]

Hence, we have,

Remark 3 For small message volumes the slowdown, S(M), of a mapping, M to a
machine with store and forward routing is given by

k
§(M) = 7 SD(E) +C(E)] (6)

1=1

For wormhole routing, it is given by

p
S(M) =1 +-,1;ZC(E.)

—
=]
L
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4 Mappings of the Binomial Tree to the 2-D Mesh

We present two mappings of B(n) to the mesh of size 2l5] x 2721 (the mesh is either square
or has an aspect ratio of two). The first mapping uses Definition 3 of B(n) and is called the
Reflecting Mapping. The second mapping uses the definition of B(n) which arises from
Lemma 1 and is called the Growing Mapping. Both mappings have load 1 and expansion
1. In both mappings, adjacent nodes of the binomial tree are mapped to processors in
either the same column or the same row of the mesh. Edges are mapped to the unique
shortest path connecting their endpoints. Thus, the mappings can be completely specified
by the node mapping.

We analyze both mappings with respect to the metrics presented earlier for a spec-
trum of message-passing volumes as represented by the parameter o. We show that the
Reflecting Mapping has optimal slowdown for a target machine with wormhole routing,
for all values of a. However, its performance for store-and-forward routing is poor for
compulations with logarithmically decreasing message volume (a = 1/2). We show that
the Growing Mapping outperforms the Reflecting Mapping for a target machine with
store-and-forward routing and analyze its behavior for a spectrum of values of a.

Note: In the analysis presented in the following sections, the routing parameter b
(bandwidth) is a multiplicative factor in the communication overhead metrics and ulti-
mately cancels out. Thus, for ease of exposition, we assume for the remainder of the
paper that it is unity, b = 1.

4.1 The Reflecting Mapping
Definition 7 The reflecting mapping Mp is defined inductively as follows:(see Fig 4).

¢ B(0), the single node binomial tree is mapped to the single node mesh.

o If n =2k + 1, Mg(B(n)) is constructed by taking two copies of My(B(2k)), and
placing the second copy, reflected about a vertical axis, to the right of the first one.
The roots of the two copies of B(2k) (which must lie on the same row) are then
connected. The root of the new (reflected) copy is the root of B(n).

o Il n = 2k, Mp(B(n)) is constructed by taking two copies of Mp(B(2k — 1)), and
placing the second copy, reflected about a horizontal axis, below the first one. The
roots of the two copies of B(2k — 1) (which must lie on the same column) are then
connected. The root of the reflected copy is the root of B(n).

Because of the successive reflection above and the post-order labeling used for B(n),
the processor label [z, y] to which a node b = b,_; ... b by in the binomial tree is mapped,
is related to the binary reflected gray code. Indeed, because of the alternation in how the
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Figure 4: The reflecting mapping Mg (the square node is the root)

reflection is performed, alternate bits of b determine the z and y co-ordinates respectively,
and it can be shown by induction that the processor label [z,] to which a node b =
bne1...b1bo of B(n) is mapped is given by

[v,y] = Mp(baoq ... bibo) = [gray(... byby), gray(... b3b)]

where gray(...bolp) and gray(...bsb) are the gray codes corresponding to the even
and odd indices, respectively, of the binary number b,_; ... b bo.
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Figure 5: Mapping Mg: relation between D, (Fa), Du(Eop-1) and Dy, (Fyy_2)

To analyze the performance of the reflecting mapping of B(2k) we next establish the
maximum weighted contention C,,(E;) and dilation D,,(E;) for each phase.

Lemma 2 For mapping Mg(B(n)), edges using the same link are never active in the
same phase. Thus, C,(E;) =0 for all phases 1 <7 < n.

Proof: We prove this by induction on n. B(0) has no communication. Assume the
claim holds for 0 <z < n. By definition, B(n} consists of two copies of B(n — 1)
and an edge e connecting the roots of the two copies. Under Mg no two edges from
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separate copies of B(n — 1) share any links, hence by the inductive assumption the
claim holds for all edges in these copies. The edge e is active only in the first phase
and it is the only active edge in that phase. Hence the claim holds for B(n). |

Lemma 3 The maximum weighted dilation for the reflecting mapping in phase 7 is given
by
2l31 — (—1)f71

{

Du(£i) = ( Ja

Proof: We have already argued that weights of all edges in phase 7 is o'. Note that
Du(E;) = D(E;)a’ and that the regularity of the mapping implies that D(E;) repre-
sents the dilation of any edge in phase i. Consider Fig 5 which shows the reflecting
mapping of B(2k) to a 2¥ x 2¥ mesh, with B(2k) rooted at I and its largest subtree
B(2k - 1) rooted at . Note that IF = CIF = D(E,;) and BC = D(Fy,_,), because
the alternate horizontal and vertical reflections give D(Eq) = D(Fqr—y). We also
have AD = 21 — 1 and DE = 1, so that AE = 2*-!, Our intermediate goal is to
show the recurrence

D(Ey) =21 — D(Ep_s) (8)

which, from the above, corresponds to CF = AF — BC. By observation, CF =
BF — BC, so it only remains to show AE = BF. It can be easily shown that
the root of B(2k) is always mapped to the main diagonal of the mesh (top-left to
bottom-right), and the root of B(2k — 1) is on the other diagonal (bottom-left to
top-right). Thus, we have AB = CD and by the symmetry of reflection CD = EF,
so that AB = [F. The last equality, together with an easy geometrical argument,
gives AE = BF, as desired. The solution to the recurrence is found in the appendix
and when multiplied by o' establishes the Lemma for even i. For odd i, we have

already argued that D(Ey_ ) = D(Ey). |

We now state a theorem giving the slowdown of the reflecting mapping for a target
machine with wormhole routing. From equations (4) and (7) it is clear that a mapping
which has no contention in any phase has optimal slowdown, so this result is an easy
corollary of lemma 2.

Theorem 1 The reflecting mapping has optimal slowdown on a target machine with

wormhole routing, for both small and large message volumes and for any value of a,
S(J"IR) =1.

For machines with store-and-forward routing, we will want to compare the performance
of Mp with that ol the growing mapping Mg described in the next section. From equations
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(2) and (6) we note that it suffices to evaluate the total communication time Ty (£¢) =
2 [Du(E:) + Cu(E;)] (as stated before, b = 1) for both mappings to compare their
respective slowdowns. Note that comparison for small message volumes, equation (6),

corresponds to comparison of Tp(E¢) at @ = 1. From lemmata 2 and 3, we get

= % off) — ()8
Titn(Be) = S (Dol E:) + CulE)) = I é 1)

i=1 =1

Ja' + 0]

whose solution for the 3 cases, general a, a = 1 and o = %, is summarized in the
following lemma.

Lemma 4 The total communication time for the reflecting mapping of B(2k) on store-
and-forward machines is given by

(a). I\JR(E[‘) = Cl'?..k -+ Cg(—l)k+1 -+ C3G’2k fOI 0<ea S 1

— 20(14a) — a{l4a) 03!l+a!

where ¢; = 32=a?) ' ©2 = 3(1ta?) 1 OB = [TFa?)a?-7)"

(b) ﬂ;R(Ec) = %2’“ +cy fora=1
where ¢y = —2/3 or ¢y = —4/3 for k odd or even, respectively.

(). Targ(Ec) = ©(2F) for a = %

4.2 The Growing Mapping

For store-and-forward routing and 0 < a < 1, the reflecting mapping is not optimal,
indeed the volume of a message is proportional to its dilation. For this reason, we present
the growing mapping AM¢ for which the volume of a message is inversely proportional to
its dilation.

Definition 8 Recall the definition of B(n) arising from Lemma 1, which creates B(n) by
growing a leaf from each node of a copy of B(n — 1). The map-node function of Mg uses
this definition and is specified inductively below (see figure 6). Edges are mapped to the
unique shortest mesh-path between their endpoints.

s For B(0), B(1), B(2) the map-node function is the same as for Mp.

o If n =2k — 1, non-leaf nodes are mapped as a B(n — 1) and leaf nodes are ’grown’
horizontally from its parent with uniform dilation. Thus each node in the Eastern

(Western) half of B(n — 1) gets its leaf placed in the same row as itself at a distance
2k=2 to the East (West).

15
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Figure 6: The growing mapping Mg (the square node is the root)

o If n = 2k, non-leaf nodes are mapped as a B(n —1) and leaves are 'grown’ vertically
from its parent with uniform dilation. Thus each node in the Northern (Southern)
half of B(n — 1) gets its leafl placed in the same column as itself at a distance 25~2
to the North (South).

In phases 1, 2, 3 and 4 Mg has dilation 1 and no contention. In general, for phase
i > 2, we have the volume of each edge o', the dilation of each edge 231-? and the size
of the conflict set of each edge 21312 — 1, so that D,(Ei) = o/(2/51-?) and C,(E)) =
a*(2121-2 — 1). As an aside we mention that the size of the conflict sets can be halved in
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each phase by growing edges horizontally and vertically for alternating vertices in each
row and column. However, this complicates the description of the mapping considerably
and also results in a non-rectangular image of B(2k + 1).

Since the reflecting mapping is optimal with respect to wormhole routing, we consider
the growing mapping only with respect to store-and-forward, for which we get the total
communication time for B(2k)

e 2% _
Tro(Ec) =3 [Du(E:) + Cu(E)) = a+a® + > [f(2lz171 — 1))
l‘=1 "=3

whose solution for the cases, general a, @ = 1, a = 1 and the special case o = 715, is
summarized in. the following lemma.

Lemma 5 The total communication time for the growing mapping of B(2k) on store-
and-forward machines is given by

(a). Tag(Ee) = e5(20)% + ¢ + cza®* for0 < a <1 but % 715
where ¢ = 52 ,Cﬁ=2—f_{%;l+%_l+1+2&+2a2 , e = T2

(b). Targ(Eo) =281 — 2k —2 fora =1

(¢): Targ(Ec) = 1.25 — (g7 — %) fora =}

(). Tosol(Eo) = O(F) for a = .

Note that the denominators of Ty (E¢) are 0 for a = ?15 and a = 1.

4.3 Comparisons of the two mappings

For machines with wormhole routing the reflecting mapping is optimal (Theorem 1)
whereas the growing mapping clearly has some contention for each phase ¢ > 4. In
the following we compare our two mappings for machines with store-and-forward routing
only. As mentioned previously, it will suffice to compare the total communication volume
for each of the two mappings. We will also calculate the exact slowdown for the common
cases a = 1 and o = 7. We will need the {ollowing easy lemma:

Lemma 6 The total communication time of the perfect mapping of B{(n) is given by

n n . 'f =1
To(Ec)= Y W(E) =3 a' = { et | o
i=1 =1

75— —1 otherwise

Comparisons between the two mappings are summarized in the next theorem.
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Theorem 2 For machines with store-and-forward routing our two mappings have the
following metrics.

e For the large volume case with @ = 1 and also for the small volume case with
arbitrary values of a, the reflecting mapping outperforms the growing mapping by a
factor of 2. For N processors they both have slowdown S(Mg) = S(Mg) = Q(E‘é—ﬁﬁ).

e Yor the large volume case with any 0 < a < 1 there exists k so that the growing
mapping outperforms the reflecting mapping for B(2k).

e For the large volume case with a = 1 the growing mapping has slowdown S(Mg) =
O(1), asymptotically approaching 1.25, whereas the reflecting mapping has slow-
down S(Mg) = ©(2%).

Proof: For a = 1, we see from Lemmata 4.b and 5.b that assymptotically, as k
increases, the reflecting mapping outperforms the growing mapping by a factor of %
From equation (2) we see that the slowdown for the reflecting mapping for uniform
communication and large message volumes is achieved by dividing the result in
Lemma 4.b with the total communication time of the perfect mapping. This latter

value for B(2k) is 2k as given by Lemma 6. Disregarding the additive constant, the
TuglEe) _ o2 4/W

Tp(Ec) — Bk — 3logN:
N = 2% is the number of processors used. From equation (6) we see that this also

establishes the slowdown for small message volumes, for any value of .

where

slowdown for uniform communication is S(Mg) =

The next result follows by comparing lemmata 4.a and 5.a and noting that when
0 < a < 1 we can always find & so that (2a%)* < 2%,

For a = }, the perfect mapping has total communication time T(P) = T2, %

asymptotically approaching 1 (Lemma 6). The slowdown given in the theorem
follows from the bounds given by lemmata 4.c and 5.c. [

5 Related Work

The divide and conquer model has been widely recognized as an effective parallel pro-
gramming paradigm [NS87,Col89]. Recently, an algebraic theory has been developed to
provide a general framework to describe this class of computations and the mapping of

such class of algorithms to hypercube-like architectures has been also discussed by Mou
and Hudak [MHSS].

The “keep half, send half” strategy to improve the efficiency of a divide and conquer
algorithm was observed in [Col89,AS88]. However, the model is not formalized and the
underlying binomial tree structure was not recognized in those work. In {Joh90], a span-
ning binomial tree of a hypercube was used to achieve efficient broadcasting. In [UH84],
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an H-tree embedding was proposed to embed a complete binary tree to a mesh. The
embedding requires a slightly larger mesh.

Graph embedding technique is usually used to emulate a machine of one topology with
another of a different topology [Ros88a,Ull84]. The maximum dilation and congestion
(contention) are used as the two major metrics to measure an embedding. In the context
of mapping a parallel program which is modeled as a static task graph [Sto77,Bok87],
such an approach is usually used to assign tasks to processors [Bok87]. However, as we
have argued in the paper, this approach ignores the temporal aspect of a computation
and the underlying communication technique. For example, it has been well recognized
that in a wormhole-routed or a circuit switching multicomputer network, the distance

effect, compared with the effect of the message collision, is negligible for the message
latency [Sea88,Dal90,B0ok90].

Much work has been done to analytically model a network with different routing
schemes [KI{79,Dal90,Aga90]. However, these models are all based on some assumpstions
on the message distribution and thus not accurate enough for a specific application. The
metrics analysis in this paper complements with these studies and gives important metrics
in developing a mapping onto a network with store-forward or wormhole communication
technology.

6 Conclusion

In this paper we have presented two algorithms for mapping the binomial tree divide
and conquer computation to the 2-D mesh. These mapping algorithms exploit regularity
in the topological cormnmunication structure of the binomial tree as well as regularity in
the communication phases of the divide and conquer binomial tree. In addition, our
mapping algorithms are sensitive lo the topological structure of the 2-D mesh and to
the underlying flow-control scheme supported by the target machine (store-and-forward
routing versus wormhole routing). We have developed a new performance metric called
commaunication slowdown for evaluation of the communication overhead incurred when a
phased computation is mapped to multicomputers.

Our first algorithm, the Reflecting Mapping has optimal communication slowdown on
a target machine with wormhole routing, independent of the message volumes. However,
for store-and-forward routing this mapping exhibits linear growth as a function of the
number of processes with respect to communication overhead for logarithmically decreas-
ing message volumes. The second mapping algorithm, the Growing Mapping, has constant
slowdown (asymptotically approaching 1.25) in this case. The Growing Mapping outper-
forms the Reflecting Mapping for a wide range of message volumes on a target machine
with store and forward routing. The results are summarized in Theorems 1 and 2. This
indicates that the performance of algorithms for mapping parallel computations to paral-
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lel architectures is sensitive to communication topology, communication volume, temporal
communication patterns, and the routing scheme used by the communication hardware
of the parallel machine.

This research was conducted within the context of the OREGAMI project, whose
goal is the design of abstractions and algorithms for mapping parallel computations to
parallel architectures. The OREGAMI software tools include (1) LaRCS, a language for
describing the (regular) spatial and temporal communication structure of the computa-
tion to be mapped, (2) MAPPER, a library of mapping algorithms, and (3) METRICS,
an X-windows based tool for static performance anaylsis of mappings produced by MAP-
PER. Currently under development is a multicomputer simulator for dynamic analysis
of mapped computations. The two mapping algorithms presented here are part of the
"canned mappings” found in the MAPPER library.

The ongoing and future work most closely related to the work presented here includes

e Development and testing of "canned mappings.” The OREGAMI library of canned
mappings includes those we have developed and a selection of mappings from the
graph embedding literature. We are currently evaluating the performance of these
mappings/embeddings in the practical context of specific routing schemes and non-
uniform message volumes. Our goal here is to determine the practical utility of
mapping algorithms based on graph theoretic abstractions of the parallel computa-
tion and the utility of using temporal information to guide the mapping.

o Validation of the performance metrics proposed here through extensive simulation,
and comparision with existing metrics [SB90a,I{S90,Chi91].
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