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CHAPTERI1

BIAS AND THE CANDIDATE ELIMINATION ALGORITHM

Machine learning is an important area in artificial intelligence. It is a
broad field, covering discovery, speed-up learning, and inductive learning.
We will consider only one paradigm of learning, inductive learning, which is
concept learning from a series of pre-classified examples. It is the goal of the
learner to be able to classify any instance within the domain as positive or
negative instances of the concept. The learning occurs by means of induction,
because the concept is learned by examining the concrete examples, rather
than some more abstract knowledge.

In our paradigm, the learner will be given a series of pre-classified
examples, or training instances, in the domain of the concept to be learned.
Each example will be described in terms of a pre-determined set of attributes.
That is, the instances are described by a set of features, each with a set of
acceptable values; the method of describing these instances remains
invariant. No knowledge of the domain, outside from the examples given,
will be available for use by the learning program. Therefore the method used
must rely solely on the similarities between instances to learn the target
concept, and is therefore called a similarity-based method.

There are several significant similarity-based methods in existence

today. Among these are the decision-tree family of algorithms, founded by J.
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Ross Quinlan [8]; the star methodology, by Ryszard Michalski[4]; the family of

neural net learning algorithms, which began with perceptron of
F. Rosenblatt [9]; and the candidate elimination algorithm, as developed by
Tom Mitchell [5]. Each differs in its approach. The decision-tree algorithms
use statistical methods to create a tree which is traversed in order to classify
an instance. The star methodology creates a description of the target concept
by grouping positive instances of the concept into increasingly large
groupings. The perceptron is particular type of neural net that can learn any
linearly separable concept. The candidate elimination algorithm eliminates
competing hypotheses from a set of plausible hypotheses called a version
space.

We will only examine the candidate elimination algorithm in our
discussion of bias. The major advantage the candidate elimination algorithm
has over the other similarity based method is that it explicitly handles bias,
and so it facilitates a study of bias by allowing the bias to be manipulated. The
candidate elimination algorithm is also unlike several other well-known
similarity-based methods because it learns incrementally, i.e., one instance at
a time. This makes it possible to make claims about the goal concept before
all the training instances have been processed. Furthermore, it is appealing
from a theoretical standpoint because of its use of version spaces, a concept

linked to bias which shall be defined later.

Generalization and Bias

It becomes evident from studying similarity-based learning methods

that the power to learn effectively comes from the ability to generalize [6].

That is, the goal of the learning system is to come up with a reasonable
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representation of the concept, which is an accurate generalization of the given
training instances, i.e., the generalization does not contradict any information
known about the target concept. What is meant by reasonable may change
from situation to situation, but typically a reasonable representation must be
cheap to store and cheap to match against training instances. It is not
satisfactory to merely record the training instances, but rather some sort of
conclusion, or generalization, must be drawn from these instances.

Bias is what allows a similarity-based learning method to generalize
effectively. Simply put, bias is any sort of method for choosing one
generalization over another. Though at first it may seem desirable to
consider all possible generalizations, closer examination reveals that this is
often computationally intractable. We can reformulate the concept learning
problem as the search for a partitioning of the learning domain that satisfies
certain properties. Let D be the domain that the training examples will be
drawn from, let T be the set of training instances considered. Assume that T
is a subset of D, which is certainly true in any normal learning situation.
Define U to be D - T, which corresponds to the set of unseen instances. The
goal of learning can be restated as finding a partitioning of D that partitions D
into two partitions, P and N, such that all positive instances are contained
within P and all negative instances are contained within N. Define a
hypothesis H to be any partitioning of D into two partitions, Py and Ny. Note
that since T is a subset of D, H also partitions T into a partition of positive
instances and a partition of negative instances (though either partition may
be empty). Let C be the hypothesis that partitions D correctly, i.e., Pc is exactly
the set of positive instances within D and N¢ is exactly the set of negative

instances within D.
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H is said to be consistent with respect to T (or simply consistent) when
H partitions T just as C partitions T. More formally, H is consistent w.r.t T iff
(PynT)=(Pc nT)and NgnT)=(N¢c nT). Every consistent hypothesis
is indistinguishable from C by examination of T. It follows from the
definition of consistency that all consistent hypotheses must partition T in
exactly the same way. However, there are no constraints on how to partition
U, since nothing is known about the classification of any of the instances
contained in U. Therefore, there exists a consistent hypothesis H for every
partitioning of U into Py and Ny. Each instance in U can be placed either
into Py or Ny. Therefore there are 2' U/ possible partitionings, which results
in 2'Y! consistent hypotheses w.r.t T. The impact of this result is
strengthened by the realization that the cardinality of many learning domains
is infinite, and compounded by the fact that a single generalization
(partitioning) may be expressed in several ways.

Let us consider a simple domain. Our task will be to learn the class of
“tasty mushrooms” from the domain of mushrooms. We will use a highly
simplified description of mushrooms, describing each in terms of weight (in
grams) and color. Note that weight is a numerically valued atiribute, and that
color is a nominally valued attribute. That is, weight is expressed by a
number, which implies a total ordering of the possible values of weight,
whereas color is expressed in terms of a name, and in this case there is no
ordering defined over the possible values!. Let us make the simplifying
assumptions that weight is given in multiples of 0.1 and ranges from 4.0 g to
8.0 g, and color is one of the set {red, green, blue, yellow, purple, orange,

brown, gray, white, black}. It is easy to see that there are 40 possible values for

10Of course, an ordering could be established in terms of the color spectrum, but we will
assume no ordering is defined in our example.
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weight, 10 possible values for colors, and 400 unique descriptions of
mushrooms. This gives a candidate set of 2400, which is on the order of
magnitude of 10120, many times the number of atomic particles in the
universe. Clearly, this makes the size of the unbiased candidate set
intractable. Considering that the description scheme of mushrooms given
above is not particularly complete, it becomes obvious that bias is necessary to
make the size of the candidate set tractable for most realistic learning
domains.

As stated earlier, bias is any method of choosing certain generalizations
over another. Nonetheless, two sorts of biases predominate in the existing
literature [6] [8] [10]: preference biases and restricted hypothesis space biases. A
preference bias is an ordering over the set of consistent hypotheses. This
ordering may be total or partial. A learning program with a preference bias
would consider only certain generalizations by choosing only the highest
ordered generalizations. A restricted hypothesis space bias limits the
generalizations to be considered before learning takes place. A typical method
of creating a restricted hypothesis space is by choosing a concept description
language that is itself biased. That is, if it is not possible to represent certain
subsets from the domain with the given concept description language, some
subsets will be immediately eliminated from the set of possible competing
subsets. When a concept description language is biased in such a way that it
cannot express all possible partitionings of D into P and N, it is said to be
incomplete. This is the type of bias used by Mitchell’s candidate elimination
algorithm. A bias that severely limits the hypothesis space is said to be a
strong bias, and a bias that does not significantly limit the hypothesis space is
a said to be a weak bias. If bias A has a smaller hypothesis space than bias B,

bias A is stronger than bias B and bias B is weaker than bias A. Note that this
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does not imply that the hypothesis space induced by bias A is a subset of the
hypothesis space induced by bias B, although that may be the case.

We return to the tasty mushroom domain. We consider a simple
concept description language. All hypotheses will be described in terms of a
single value for color and as a continuous range of values for weight. That is,
a hypothesis will be of the form {color: c; weight: i to j], where c € {red, green,
blue, yellow, purple, orange, brown, gray, white, black]}, i is some multiple of
0.1 in the range [4.0..8.0], and j is some multiple of 0.1 in the range of [i..8.0].
This gives a 10 possible values for color and ::Zj{n = 820 possible values for
weight, yielding 8,200 hypotheses in the candidate set. Since this is of order of

magnitude 103, we have reduced the number of hypotheses in the candidate

by a factor of 10117, a considerable reduction!

Version Spaces and the Candidate Elimination Algorithm

Now that we have defined bias and consistency with respect to a set of
training instances, we can concisely state the definition of a version space.
Given a biased concept description language and a set of training instances T,
the version space with respect to T are all hypotheses that are consistent w.r.t.
T and are expressible in the biased description language?. The candidate
elimination algorithm maintains a representation of the version space, and
updates it appropriately for every newly encountered training instance. Any

hypothesis that does not properly classify the newest instance is eliminated

2For the remainder of this thesis, it will be a unstated assumption that only
hypotheses that are expressible in the concept description language will be considered.
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from the version space. A very high-level description of the algorithm

follows.

function candidate_elimination

begin
let 7 = {}
let 75 = {the set of hypotheses consistent with 7}
for each new training instance t do
T=T Ut}
for each h € 95 do
if h is not consistent with T
then 75 = 95 - {h}
fi
od
od
return 75

end

Note that when T is empty, the version space contains every
hypothesis over the domain that is expressible in the concept description
language. Even with a biased concept description language, this can quite a
large set, and can be infinite in certain domains (e.g., it is infinite in any
domain that allows one or more continuously valued attributes).

Fortunately, it is not necessary to represent each consistent hypothesis
within the candidate set explicitly. It is sufficient to keep track of only the

most general and the most specific consistent hypotheses in the version space.
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A hypothesis h; is more general than h; iff P; D Pj, where P; is the partition of
positive instances on the domain imposed by h;, and Pj is the partition of
positive instances on the domain imposed by h; (as before). The specificity
relation is defined similarly; a hypothesis k; is more specific than h; iff P; > P;,
where P; and Pj are as defined previously. For notational convenience, we
will represent the relation h; is more general than h; as h; >g hj , and h; is
more specialized than h; as h; <5 h; 3 The more general relation and the
more specific relation are logical inverses, i.e., k; <g hj iff h; > hj. It is worth
noting that the more general and more specific relations impose a partial
ordering upon the hypotheses in the hypotheses space, but not necessarily a
total ordering.

We can now redefine the version space in terms of these most general
consistent hypotheses and the most specific consistent hypotheses. Let G be
the set of most general consistent hypotheses w.r.t T, and let S be the set of
most specific w.r.t T. Let I be the set of hypotheses such that for each h € I,
there exists some g € G and some s € S such that h <g g and k >5 s (note that
we do not insure that these hypotheses are consistent, as that will follow).
We can define the version space wr.t Ttobe G US UL

It is easy to prove that all hypotheses in G, §, and I are consistent w.r.t
T. By definition, this is true for all hypotheses in G and S. Note that this
implies that every hypothesis in G and § partition T correctly, which is to say
that each hypothesis in G and S partition T exactly as C does, where C is the
target concept. Since every hypothesis in I is less specific than some
hypothesis in S, any hypothesis in I must partition all positive instances in T

as some hypothesis in § partitions T. Since every hypothesis in I is less

3Please note that the letter of the subscript is actually meaningless, i.e., <g and <g are
equivalent relations, as are >g and >s.
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general than some hypothesis in G, any hypothesis in I must classify no more
instances in T positive than some hypothesis in G. Since each S and G
partition T identically, and since I must lie between these, by the squeezing

lemma, any hypothesis in I must also partition T in the same way.

Figure 1.1: Relation of hypotheses in the hypothesis space. The area on
the graph represents instances accepted by the hypothesis.
Hypothesis g in more general than i, whereas i is more
general than s. Hypotheses h and j are incomparable to the

other hypotheses.

We still need to prove that no consistent hypothesis is excluded from
G U SUIL Let us assume that there is a consistent hypothesis k such that h ¢
G U S UL Since I contains all hypotheses less general than some hypothesis
in G and less specific than some hypothesis in S, k must either be more
general than all hypotheses in G, more specific than all hypotheses in S, or

simply incomparable to any hypothesis in G or S. Clearly, k cannot satisfy
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either of the first conditions, for that would violate the definition of G and S.
However, if k is incomparable to any hypothesis in G and S, it would be in
both G and §, since it would be both most general and most specific.
Therefore, h is self-contradictory, and does not exist. Therefore the version
space w.r.t T corresponds exactly to G U § U I, as previously stated.

Since I is defined solely in terms of G and §, it need not be represented
explicitly. Therefore we can represent a version space in terms of G and §,
adopting the notation of Mellish[3], as <G, S>. We can now modify our
description of the candidate elimination algorithm to reflect these
improvements. Let us assume that the description language allows a single
hypothesis that classifies all instances as positive, denoted by T, and a single
hypothesis that classifies all instances as negative, denoted by L. The

candidate elimination algorithm follows on the next page.
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function candidate_elimination

begin
let G=1{T}
lets={1}
for each new training instance t do
T=T Ut}
if classification(t) = positive
then G=validate(g, DO
S = generalize(s, DO
else G = specialize(g, 7
S = validatel(s, 7)
fi
od
return <gG, $

end

The functions validate, generalize, and specialize will be defined
in more detail in chapter three. Function validate removes all hypotheses
from the set given that are not consistent with 7. Function generalize
returns the set of hypotheses that are consistent with Z, no more general than
any of the hypotheses in G, and no more specific than any of the hypotheses
in §. Function specialize is analogous to generalize except it specializes

its argument rather than generalizing it.
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A Sample Run of the Candidate Elimination Algorithm

We now return once again to our mushroom domain, to consider an
example of the version space algorithm at work. We will use the notation
(<V,G>, i) =<V’, G’> to denote that version space <V, G> is transformed into
version space <V’, G’> after encountering training instance i. The comments
interspersed with the example refer to the event immediately above the

comment,

(<[(color: T;weight: T)}, {(color: L; weight: L})}>, [color: brown; weight: 4.5;
class: +])

= <{(color: T; weight: T)}, {(color: brown; weight: [4.5..4.5])}>

Since the first instance is positive, the G set remains unchanged, for its
sole hypothesis is consistent with the training data. The most specific
hypothesis, though, must at least accept this single positive instance,
and so the S set contains the single hypothesis that excepts only this

instance.

(<{(color: T;weight: T}}, {(color: brown; weight: [4.5..4.5])}>, [color: brown;
weight: 7.2; class: -])
= <{(color: T; weight: [4.0..7.1])), {(color: brown; weight: [4.5..4.5])}>

Having encountered a negative instance, the single hypothesis in the G set
must be replaced by those immediately less general than it that are
consistent with the training data. Though hypotheses that accept any

instance that is not brown would be less general than (color: T;
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weight: T) and would properly reject the newest instance, they would
not be less general than any hypothesis in the S set, and therefore they
are not in the new G set. Similarly, (color: T; weight: [7.3..8.0]) is not
more general than any hypothesis in the S set, and therefore the single
element of the new G setis (color: T; weight: [4.0..7.1]). As before,
since the single element of the S set is consistent with the new

instance, the S set remains unchanged.

( <{(color: T; weight: [4.0..7.1]}}, [(color: brown; weight: [4.5..4.5])}>,
[color: brown; weight: 5.1; class: +])

= <{(color: T; weight: [4.0..7.1]}}, {(color: brown; weight: [4.5..5.1])}>

( <{(color: T; weight: [4.0..7.1]}}, {(color: brown; weight: [4.5..5.1])})>,
[color: gray; weight: 5.1; class: -]}
= <{(color: brown; weight: [4.0..7.1])}, ((color: brown; weight: [4.5..5.1])}>

This is the first mushroom encountered that is not brown. Since it is a
negative instance, the G set must specialize its members such that no
hypothesis accepts a non-brown mushroom (due to our bias's inability
to express disjunction). Had the instance been positive, the § set
would have to accept any color mushroom, and therefore the single

element would be (color: T; weight: [4.5..5.1])

(<((color: brown; weight: [4.0..7.1])}, {(color: brown; weight: [4.5..5.1])})>,
[color: brown; weight: 5.2; class: -])

= <{(color: brown; weight: (4.0..5.1])}, {(color: brown; weight: [4.5..5.1})}>
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(<{(color: brown; weight: [4.0..7.1])}, {(color: brown; weight: [4.5..5.1])})>,
[color: brown; weight: 4.4; class: -])

= <{(color: brown; weight: [4.5..5.1]}}, {(color: brown; weight: [4.5..5.1])}>

We note that at this point the S and G sets have converged upon a single
hypotheses, and so the candidate set has been reduced to a single
hypothesis. From this point on, no learning can occur, regardless of
subsequent instances considered. Each new instance will either be
consistent with the current § and G sets, causing no change in the
representation, or the bias will be revealed as insufficient, in which

case learning will fail.

Difficulties with the Candidate Elimination Algorithm

Nonetheless, there are difficulties with the candidate learning
algorithm that arise from preset assumptions, i.e., the bias, which can cause
learning to fail completely. Careful examination of the candidate elimination
algorithm reveals that the G set and the S set can become empty. When this
happens, the version space is empty, and the candidate elimination algorithm
reports that it cannot learn the target concept. There are two reasons why this
failure can occur. Since the candidate elimination algorithm guarantees that
all of the hypotheses in <G,S> are consistent with the training data, severe
problems can result if the data is itself inconsistent. Noisy data can cause the
algorithm to incorrectly remove a hypothesis from the version space, which
will in the very least result in the algorithm eliminating a legitimate
representation of the target concept, and in the worse case will result in the

algorithm failing to learn completely. For similar reasons, the candidate
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elimination algorithm is not well structured for training data with instances
which have unknown attribute values.

But by far the most serious obstacle to the candidate elimination
algorithm is selecting the proper bias. The dominating factor of the time and
space required to run the version space is the strength of the bias: the stronger
the bias, the more efficient the algorithm, and the better the resulting
hypotheses. However, this is true only when the target concept is expressible
in the concept description language. When the target concept is not
expressible in the concept description language, given a sufficient number of
unique training instances, the version space will become empty (because no
concept description exists in the concept description language that is
consistent with the training data). When the choice of bias excludes the target
concept from the version space, the bias is said to be incorrect, and learning
will fail, given an adequate number of unique training instances. Conversely,
when the target concept is expressible in the concept description language, the
bias is said to be correct.

In the mushroom example above, let us assume that the target concept
is actually all brown or yellow mushrooms that have weight from 4.5 to 5.1
grams. This is not expressible in the concept description language. Indeed, in
the example run of the candidate elimination algorithm given previously, if
the next training example is [color: yellow; weight: 4.7; class: +], the version
space will become empty and learning will fail.

As seen previously, choosing a bias that is too weak will cause the
learning problem to be intractable, whereas the most recent example shows
that an incorrect bias can also thwart learning. Therefore, the goal of the
agent employing the candidate elimination algorithm is then to choose the

strongest correct bias possible. Not surprisingly, this is mostly guesswork,
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since typically little intuition can be gained from the training data without
perhaps running another learning algorithm on it. Sadly, experience shows
that a first guess is most likely wrong, and all effort spent in learning is
therefore wasted. The fact that seemingly small increases in bias cause a very
severe degradation in performance worsens the problem, because it makes it

unacceptable to err on the side of a weak bias.
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CHAPTER I

PREVIOUS RESEARCH

Theoretical Results Concerning Bias and Version Spaces

In order to better understand inductive bias, we will examine the
formalism and results of Valiant [11], Haussler [2], and Vapnik and
Chervonenkis {12]. It would be useful to be able to estimate the number of
instances needed to reveal a bias as correct or incorrect. Not surprisingly, it is
not possible to accurately estimate a reasonable number of instances required
in every case, but we can make estimates with a high degree of probability.

Let D be our learning domain, T be a set of training instances from that
domain, and H the restricted hypothesis space. Clearly, there are 2!T !
different ways of partitioning T into positive set P and negative set N. If H is
capable of expressing each of these partitionings, H shatters T. It is easy to see
that whenever H shatters T, the current bias is sufficient to express a
hypothesis consistent with the training data. This can give us a lower bound
on the number of instances required to reveal a bias a incorrect.

Let us consider an example. We return to the examples given in the
previous chapter. We allowed each hypotheses to be described in terms of
[color: c; weight: { to j] as before. A simple bias of this type is known as a

purely conjunctive bias, because the concept description language is only
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capable of expressing concepts in terms of conjunctions of acceptable attribute
values. We expand upon this definition somewhat by permitting weight to
be expressed as a contiguous range rather than a single numerical value.

Let T = {[color: brown; weight: 4.5], [color: yellow; weight: 5.5]}. It is easy
to see that regardless of which mushrooms in T are tasty, a corresponding
hypothesis exists in H. Let us add one more instance to T such that T =
{[color: brown; weight: 4.5], [color: yellow; weight: 5.5], [color: brown;
weight: 5.5]). H no longer shatters T, because no hypothesis consistent with
{[color: brown; weight: 4.5; class: +], [color: yellow; weight: 5.5; class: +],
[color: brown; weight: 5.5; class: -]} exists within H. As this example illustrates,
common biases can fail to shatter relative small sets of instances. The reason
the H no longer shatters I is because it is forced to generalize over the third
instance, i.e., after seeing the first two instances, the bias forces the third
instance to be classified as ‘+' as well.

Though this result shows us how quickly a bias can be revealed to be
incorrect, it does not lend us much intuition on how many instances can be
expected to reveal a bias as insufficient. Define the Vapnik-Chervonenkis
dimension of H, denoted as VCdim(H), to be |T|, where T is the largest subset
of D that is shattered by H [2] [12]. In the example above, the initial set {[color:
brown; weight: 4.5], [color: yellow; weight: 5.5]} is the largest (not necessarily
unique) subset of D that is shattered by H,, and so VCdim(H) = 2. Our
experience indicates that most useful biases produce relatively small values
for VCdim(H).

We now introduce the notion of exhausted and e-exhausted version
spaces. A version space is said to be exhausted when either it has been
reduced to a single hypothesis consisting of the target concept, or when it is

empty. An exhausted version space is therefore one where no further
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learning can occur, because either the concept has been learned or learning
has failed. Unfortunately, this concept is not particularly useful, for in most
situations it is difficult to insure that a version-space will be exhausted. A
version space is said to be £-exhausted when every hypothesis remaining
within the version space misclassifies less than e of the domain [11]. So
whereas an e-exhausted version space may not be exhausted, at least it
consists of hypothesis that are arbitrarily close to the target concept
(depending on €) or is empty.

It has been shown# that for a hypothesis space H and a set of instances
T, the corresponding version space will be g-exhausted with probability at

least 1-6 when

 4log(2/8) +8VCdim(H)log(13/e)
E

i Tl

Though obviously the right-hand side can be arbitrarily large depending on
VCdim(H) and error parameters € and 3, we can claim that the version space
is nearly exhausted with high confidence after considering relatively few
instances.

However, this result is not quite enough for us to reasonably estimate
when an incorrect bias will be revealed as incorrect, because of the definition
of an e-exhausted version space. In particular, since the remaining hypothesis
in an e-exhausted version space are allowed to differ from the target concept,
the target concept may not be in the version space and the bias may still be
proven incorrect in subsequent trials. Let o be the smallest o such that some

h € H differs from the target concept C on exactly a of D. This is the

4See [Haussler 88) for a formal proof.
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probability that any given training instance will eliminate the hypothesis
differs the least from C from the version space. Let k be the hypothesis that
differs from C on @ of D. Therefore, we can expect that k will be eliminated
from the version space in log(8)/log(1 - w) trials with at least probability 1-5.
Since no hypothesis differs from C on less t € D than h, we can state that with

probability at least 1-3, an incorrect bias will be revealed after

log(S) 4Iog(2/ 8) + 8VCdim(H)log(13/ e)]
log(1 - m) E

independent trials. This result shows that if there is a significant difference

between the target concept and the most similar hypothesis in H, that the bias

will be revealed as incorrect with relatively few trials with a high probability.

Introducing STABB, a Bias Shifting Program

Somewhat surprisingly, little research has been done in the area of bias
shifting for the candidate elimination algorithm. However, there does exist
one significant work, Paul Utgoff’s STABB program [10]. STABB (Shift To A
Better Bias) is a bias-shifting program for the candidate elimination algorithm
that is built into Mitchell’s LEX program. To understand STABB fully, we
must examine the LEX system.

LEX is a self-contained learning system that learns heuristics in the
domain of integral calculus. It is composed of four inter-related parts: a
problem generator, a problem solver, a critic, and a generalization engine
which uses the candidate elimination algorithm. The problem generators
takes the version spaces of the generalization engine as input; from this

input, it creates new problems to be solved by the problem solver. These
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problems are then given to the problem solver, which uses various
techniques to reduce the integrals. The paths of the solutions produced by the
problem solver are recorded, and passed to the critic as input. The critic then
analyzes every application of a technique; an application that is on a
minimum cost solution path is labeled as a positive instance, and the rest are
classified as negative. These classification are then passed to the generalizer
as training instances. These training instances are incorporated into the
version spaces, which are passed to the problem generator, starting the

process anew.

Problem
Generator

Problem -
e Generalizer

Figure 2.1: Overview of LEX

The domain of LEX was that of integral calculus problems. An instance
of that domain is some unsolved integral. The concept description language
(i.e., the bias) was chosen to be a grammar that could express such integral
calculus problems. It is crucial to realize what effects such a decision has on

the hypothesis space and the bias. Since a grammar is used to describe the
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instances, the attributes are said to be tree-structured®>. That is, possible
attribute values can be arranged in a tree (a parse tree in this case), rather than
in a total ordering as with linear structured attributes. An interesting
consequence of this structure is that a disjunction of attribute values may be
expressible by an attribute value that is a common parent, a property exploited
by STABB. We also note that as LEX was learning heuristics for multiple
techniques, it maintained multiple version spaces, one for each technique.
The initial concept description language chosen for LEX proved to be
insufficient for the task of describing the target concept for all the techniques.
STABB was created to enable the generalizer to shift its bias, and was added to

LEX as a subroutine for the generalizer.

Problem
Solver |

Generalizer STABB

Figure 2.2: Interaction between LEX and STABB

5Presumably, instances in LEX's domain were specified with a single attribute, the
description of the integral, though this is not stated by Utgoff.



Overview of the Bias-shifting Method Used by STABB

Utgoff divided the bias-shifting process into three phases:
recommending new constructs to be added to the concept description
language, translating these recommendations into a new concept description
language, and assimilating newly expressible hypotheses into the version
space. The last phase can be thought of as creating the appropriate version
space in the new bias.

The distinction between the first two phases can be best illustrated by
means of an simplified example. Recall that the description of the integral is
expressed in single terms of a grammar, and so the attribute is tree structured.
Assume that we have seen but one positive instance, which is sin. This is
graphed on the tree structure below, the classification of the instance below
the instance name, where n/a indicates a composite instance (whose

classification is not meaningful, since they will never be encountered as a

&
HOOOOC

Figure 2.3: Tree-structured Attribute, One Positive Instance

training instance).
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Currently, the version space is <{trig),(sin)>, using the <G,S> notation.
Now assume we see cos, another positive instance. The version space now
contains but a single hypothesis, being <(trig],{trig}>. Let us assume that the
next training instance is a negative instance, and that instance is tan. At this
point, the version space becomes empty, since there is no symbol currently in
the grammar that would allow sin and cos, but not tan. Therefore, a shift of
bias must occur to enable incorporation of the new instance.

In the first phase, recommendation, the problem is identified, and a
solution is proposed. In this case, the concept description language needs to
be able to accept sin and cos without accepting tan. Though accepting any
subset of the children of trig that includes sin and cos and not tan could be
used, we will assume that the recommendation produce the
recommendation, “Enrich the language such that the disjunction of sin and
cos can be expressed.” This marks the end of the first phase.

However, though the problem has been identified and a solution
proposed, there is still no way to incorporate the newest instance into the
current (unenriched) concept description language. This goal of the
translation phase is to facilitate this incorporation. The recommendation
produced by the first stage is translated into symbols to be added to the
grammar. The fact concept description language type (i.e.,, a grammar)
remains the same, but is only increasing in complexity (number of symbols} is
one of the advantage of tree-structured attributes. We can add a new symbol
to the grammar that represents the disjunction of sin and cos, which is
equivalent to allowing a concept to be described as a disjunction of sin and
cos, but is simpler to implement. The resulting grammar is shown in Fig. 2.4.

The symbol is added to the grammar, and the translation phase is completed.
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Figure 2.4: Translating the New Symbol into the Grammar

Implementation of the Three Phases of STABB

In the previous section, we have hinted on how the translation step
might be implemented, as it is fairly straightforward given the tree-structured
attributes and the recommendation produced in the first stage. The
recommendation stage is not so obvious, however. Utgoff outlines two
competing methods used by STABB: the least-disjunctions method, a goal-
free method; and constraint back-propagation, a goal-sensitive method. A
goal-free method is one that incorporates no knowledge of how the trials
were acquired or how the data is to be used, and so is independent of the
particular goal of learning. A goal-sensitive method makes use of this sort of
domain knowledge. Since in our paradigm we assume no domain
knowledge, the constraint back-propagation is not applicable and will not be
covered here.

The least-disjunctions method is similar to Michalski’s STAR
methodology. The goal of this method, as its name suggests, is to produce the
a recommendation with the least number of disjunctions necessary to

sufficiently enrich the language. The process starts by creating an initial
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disjunction of the set of all positive instances, a worst-case disjunction. Then,
the size of the disjunctions are increased by combining disjunctions. Any
disjunction that contains a negative instance is discarded, and any disjunction
that is a subset of another disjunction is also discarded. This process
continues until the set of disjunctions is quiescent. Then, any common
features are removed from the remaining disjunctions. As an example, let us
consider the tasty mushroom domain used previously. Assume that the
least-disjunction returned was (color: brown; weight: [4.5..5.1]) U (color:
yellow; weight: [4.5..5.1]). Since weight: [4.5..5.1] is a common context for both
disjuncts, it is removed from the recommendation, and the recommendation
returned is “Enrich the language such that the union of brown and yellow
over color is expressible”. The advantage of removing this context is that the
other concepts, for instance (color: brown or yellow; weight: T) would also be
expressible in the language.

Finally, it remains to be seen how to implement the final phase,
creating a new version space in the enriched bias that is consistent w.r.t
previously seen trials. Utgoff suggests a simple and effective method.
Though the candidate elimination algorithm may safely discard a training
instance after updating the version space, the STABB program must maintain
a history of past instances to run its least-disjunction method. Since all the
previous instances are still available, it would be easy to simply restart the
generalizer with a version space of <{ TJ{ L}, and have it reprocess the

previous instances.
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CHAPTER 1II

IMPLEMENTATION ISSUES FOR THE CANDIDATE
ELIMINATION ALGORITHM

We now return to our discussion of the implementation of the
candidate elimination algorithm. We expand upon our earliest formulation
into an equivalent formulation that is more efficient in terms of both time
and space, although it is not as straightforward. We will show the
relationship between revision as they are introduced.

We noted previously that it is not necessary to keep track of all
members of the candidate set explicitly, since a most general set of consistent
hypotheses and a most specific set of hypotheses can be maintained, which
will uniquely define the candidate set. This is by far the most beneficial in
our series of refinements, since it greatly lowers the space requirements (since
only a fraction of the candidate set is represented). This also greatly reduces
the time spent, because no processing is ever done to the implicitly
represented candidate hypotheses. Of course, processing of the explicitly
represented candidate hypotheses (the G and S set, as defined previously)
becomes considerably more complicated. It will be necessary to generate a
new G and S set that is consistent with T \U ¢ from the old sets consistent
with T. We introduce three new functions for this purpose: validate,
generalize, and specialize. Function validate(Set, T} will return a new

set Set’ that contains all hypotheses in Set that are consistent with T.



28

Function generalize(S, T) will return S’, which is the set of most specific
candidate hypotheses consistent with T. Function specialize(G, T) is
analogous to generalize(S, T) except that it returns the set of most general
candidate hypotheses consistent with T. A functional definition of these

functions are follows.

function validate(set, D

begin
let Set’ = {}
for each h € Set do
consistent = true
for each t € 7do
if h misclassifies t
then consistent = false
fi
od
if cansistent
then Set’ = Set’ U {h}
fi
od
return Ses

end



function generalize(s, D

begin
let 5’ = {}
for each he 5do
consistent = true
for each t e 7do
if h misclassifies t
then consistent = ralse
fi
od
if consistent
then 5’ = 5’ U (h}

else §’ = §’ U generalize_theory(h, 7

fi
od
return §’

end

29
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function specialize(g, T

begin
let ¢ ={}
foreach he gdo
consistent = true
for each t € Tdo
if h misclassifies t
then consistent = false
fi
od
if consistent
then ¢’ = G U {h}
else G = GuU specialize_theory(h, 7)
fi
od
return ¢’

end

The implementations of generalize_theory(h, T)
and specialize_theory(h, 7) are bias-dependent. Function
generalize_theory(h, 7) returns the set of all most specialized hypotheses
that are more general than h and are consistent w.r.t. T. Function
specialize_theory(h, 7) returns the set of all most generalized hypotheses
that are more specific than h and are consistent w.r.t. T.

We can see that the previously stated properties of G and § are

maintained by this algorithm. Consistency is maintained since every
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inconsistent hypothesis is removed from the G and the S sets. Also, since a
hypothesis is replaced with the most general or most specific consistent
hypotheses directly below (or above) the invalid hypothesis h in the partial
ordering, the sets will contain the proper members. This leads to the
observation that the hypotheses in G never become more general, but only
more specific. That is, there does not exist a hypothesis in Gt that is more
specific than some hypothesis in Gt ¢). The contrary is true for S, i.e., there
foes not exist a hypothesis in St that is more general than some hypothesis in
St ut) This corresponds to our intuition that as more trials are considered,
our knowledge should be monotonically increasing, and so the cardinality of
the version space should be decreasing (although this does not imply that our
version space representation as <G,S> in terms of storage costs is strictly
decreasing).

Our candidate elimination algorithm implementation is still not as
efficient as it could be. Incorporating the information represented by a new
trial takes ©(T(1 G| + 1S1)) time, neglecting the time required to perform the
generalize_theory(h, T) and specialize_theory(h, T) operations.
Since this must be done once as each trial is added to T, we have a lower
bound of Q(T?) time. We can improve on this by making some observation
about the relationship between G and S. Recall the our previous formulation
of the version space w.r.t Ttobe G U S U I, where I was the set of all
hypotheses h such that there exists some ge G and s e S such that h <g g and
s >s h. We can state a similar relation between S and G. For every ge G,
there exists some s € S such that either g > s or g=s. Similarly, for every s €
S there exists some g € G such that either s <s gors=g. Our argument

follows:
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Recall that G is defined to be the set of consistent hypotheses w.rt T
that are not less general than some other consistent hypothesis w.r.t T, and S
is defined to be the set of consistent hypotheses w.r.t T that are not less specific
than some other consistent hypothesis w.r.t T. It follows that for every ge G
there exists some s € S such that either g >z s or g=s. We can prove this by
contradiction. Assume that there exists a consistent hypothesis h such that
g>g h,but h ¢ S, and there does not exist some s € S such thath >gs. This
contradicts the definition of S, because h meets the criterion for inclusion in
S5, since it is both consistent and not less specific than any other consistent
hypothesis. Therefore there is no such h. Assume that there exists an
consistent hypothesis h such that g=h, but k ¢ S and there does not exist
some se€ S such that h >gs. Again, this contradicts the definition of S,
because h meets the criterion for inclusion in S. Therefore there is no such k,
and the claim is proven. By a similar argument, it can be proven that for
every s € § there exists some g e G such that eithers <sgor s=g.

We can use this relation between S and G to perform our consistency
checks and therefore make it unnecessary to check for consistency with
previous trials. Let # be the newest training instance, T be the set of training
instances prior to £, and define T tobe T U {t}. Let <GT,51> be the version
space w.ar.t T and <G71/,S1-> be the version space w.r.t T'. Consider the
validate(set, t) function. Since <GrT,ST> D Set, we know that every
hypothesis k € Set is consistent w.r.t T. Therefore, we need only eliminate
h € Set from Set that do not properly classify t. The rewritten

validate(Set, t) is given on the following page.



function validate(set t)

begin
let Set = {}
for each h e Set do
consistent = true
if h misclassifies t
then consistent = false
fi
if consistent
then Set’= Set’ U {h}
fi
od
return Sef

end

For similar reasons, we are assured that every hypothesis k € G; is
consistent w. r. t. T, and hypothesis k € St is consistent w. r. t. T. We would
like to be able to generalize and specialize hypotheses without considering T.
Let G- be the subset of G that misclassifies . Let us change the definition of
specialize_theory(h, t) so that it returns the set of hypotheses that
correctly classify ¢ that are immediately less general than k. That is, the set
returned by specialize_theory(h, t) will be the set of hypotheses such
that each member hypothesis k’ satisfies the following conditions; h’ <gh, h’
is consistent w.r.t £, and there does not exist a hypothesis k" such that h"" <g h,
h' <g h’’, and h’’ is consistent w.r.t. . Unfortunately, this no longer

guarantees that the set returned by specialize_theory(h, t) is consistent



34

with T, but merely that it is consistent with . However, as noted previously,
for every g e G there exists some s € S such that either g>gsorg=s. Wecan
use this property to prune the set returned by specialize_theory(h, t).
Fortunately, this pruning also insures that only hypotheses consistent with T
are returned. Let G’ be the set returned from this process. Let k € G’ be such
that h ¢ G1. We have proved above that there is no hypothesis in G that is
more general than k, so we must assume that k is not consistent w. r. t. T’.
Since h is consistent with respect to £, h must not be consistent w.r.t T. That is
equivalent to claiming that there is some training instance in T that is
misclassified by h. Let t’ be that instance. Assume that # is a positive
instance. Since there exists an s € § such that either h >g s or h = s (because of
our pruning), s must also misclassify £’, by the definition of more general and
equivalence relations. This would violate the definition of §, producing a
contradiction. So it must be that £’ is a negative instance. However, we are
guaranteed that there exists a g€ G such that k <g g. This implies that g must
also misclassify ¢/, by the definition of the less general relation. However,
since G is consistent w.r.t. T, this is a contradiction. Therefore, no such hk
exists, and G'= Gt

A similar argument can be generated for the construction of S7.. The
pseudocode for the revised functions generalize(s, t) and

specialize(g, t) are given on the following pages.
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function generalize(s, G, t)

begin
let s’ = {}
for each he Sdo
if h misclassifies t
then begin
s* = generalize_theory(h)
for each s ¢ 5* do

prune = true
foreachge Gdo

if s <s g then
prune = false
fi
od
if prune
then s = 5" - {s)
fi
od
S=5s0vs

end
else §’ = 5’ U {h}
fi
od
return §°

end
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function specialize(g, S, t)

begin
let G = {}
for each h e Gdo
if h misclassifies t
then begin
G"' = specialize_theory(g)
for eachge G' do
prune = true
for eachse Sdo

if g >g s then
prune = false
fi
od
if prune
then ¢* = ' - (g}
fi
od
g=6u g

end
else ¢ = g’ U {h}
fi
od
return ¢’

end
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Finally, we incorporate these new functions into the candidate
elimination algorithm. For efficiency, we introduce one more function,
eliminate_redundancies(Set), which eliminates redundant
representations from a set. Multiple representations is a by-product from the
generalizel(s, G, t) and specialize(g, S, 1) functions, which may produce

the same hypothesis by generalizing or specializing different hypothesis.

function candidate_elimination

begin
let G={T}
let § = {1}
for each new training instance t do
if classification(t) =paesitive
then G=validate(g, t)
S = generalize(s, G, t)
S = eliminate_redundancies(s)
else S = validate(s, t)
G = specialize(g, S, t)
G = eliminate_redundancies(g)
fi
od
return <G, &

end

We note several interesting properties about the candidate elimination

algorithm and version spaces. Perhaps the most elegant feature of the
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candidate algorithm is that once a training instance has been processed, it can
be discarded. The relation between the S and G sets and the training instances
also deserves some mention. Though both are constrained to correctly
classify all previously seen instances, the S set can be thought of as an acceptor
set, since it is formed to cover all positive instances and as little of anything
else as possible. By contrast, the G set can be thought of as a discriminator set,
since it is formed to reject all negative instances, and reject as little of
anything else as possible. Finally, since the candidate elimination algorithm
works with version spaces, it has several advantages. It can guarantee that if
the target concept is expressible in the concept description language, it will
successfully learn that concept. Also, if the G and S sets do not converge on a
single hypothesis, the algorithm can return all consistent hypotheses. The

intelligent agent can then choose the most beneficial representation.
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CHAPTER IV

A CLOSER LOOK AT BIAS

A Generalized Framework for Examining Bjas Shifting

In order to better understand what is involved in bias shifting, we
propose a general framework that should be sufficient for any learning
problem in our paradigm. Although it would certainly be possible to achieve
better results in particular domains if a more specialized model was used, we
opt for a more general approach as to eliminate any advantages that may be
gained from particular learning formulations between the methods we will
examine.

We formalize our idea of a generalized framework by stating two
necessary and sufficient requirements of a generalized framework; it must be
possible to express arbitrarily complicated descriptions of training instances,
and a hierarchy of biases must be stated that will allow the bias-shifting
program to arrive at the correct bias after a finite number of bias shifts.

Let us consider the first requirement. It is necessary to be able to
describe any completely specified training instance. In the framework we
propose, this is facilitated by allowing an arbitrary large number of attributes
to be used to describe the instances of any learning domain. Note that we do
not require that there is a method of describing partially described instances

(i.e., instances who have unspecified values for certain attributes)-- indeed,
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the candidate elimination algorithm makes no provision for such instances
and we also do not state how they should be handled. Another approach
would be to limit the number of attributes but make the attribute values
arbitrarily complex, as meta-attribute approach. However, we feel that our
approach is more natural and easier to implement. For similar reasons, we
require that all attributes be either nominally-valued (with an optional
ordering defined, partial or total) or numerically-valued (continuous or
discrete} but not tree-structured. The tree-structured approach certainly has
some advantages over ours; however, it complicates implementation, makes
bias more difficult to quantify, is not applicable to many domains, and is not
consistent with our policy of avoidance of meta-value attributes values (since
an attribute parent value represents several attribute values, namely its
children). Since we can express any meta-value attribute value with a
disjunction of leaf attribute values, we apply Occam’s razor and do not allow
tree-structured attributes. For simplicity, however, we do enrich the set of
possible attribute values by adding one meta-value attribute value, namely

T, and one new attribute value representing no value, namely L.

Figure 4.1: Enriched Set of Possible Attribute Values

Before we consider an appropriate hierarchy of biases, we shall consider

what is meant by a hierarchy of biases. Recall that biases differ in there ability
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to partition a domain, which is how their strength is measured. For a given
domain, an ordering can be defined over the set of biases B where each bias is
mapped into an equivalence class according to the value of VCdim. If the size
of the domain is infinite, there is an infinite number of equivalence classes
and an infinite number of biases.

Though we have defined an ordering over the (possibly infinite) set B,
our equivalence relation is not quite intuitive, since biases in the same class
are not necessarily able to represent the same partitionings of the domain.
We define a partial ordering over instances in the domain D where a > b iff
VCdim(a) > VCdim(b) and all concepts expressible in b are also expressible in
a. This ensures that there are no tradeoffs in expressive power, and so that if
shifts in bias are made in terms of strictly increasing in terms of our partial
ordering, then there is never a chance of switching from a bias that could
express the target concept less accurately then the previous bias. This serves

as our hierarchy of biases.

Figure 4.2: A Representation of a Partial Ordering of B
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Our reason for wanting to define such an ordering is simple; though it
would be possible to move effectively through the space of biases in such a
way that biases are not strictly increasing in terms of our partial ordering,
such movement would surely require more information than we allow in
our learning paradigm. One can imagine a version-space approach through
the space of biases, a meta-candidate elimination algorithm where
insufficient biases are eliminated from the candidate set as their own
candidate sets become empty. Though such a formulation may be of
theoretical interest, it would be computationally intractable for all but the
most trivial of domains and therefore is not a practical bias shifting method.

It is therefore necessary to choose a path through the hierarchy rather
than considering multiple pathsé. However, we want to avoid the difficulties
associated with backtracking (i.e., switching to a bias that has a lesser VCdim
value), so it is necessary to choose a path through the hierarchy that is
guaranteed to contain some bias capable of expressing a hypothesis consistent
with the training data. This is equivalent to stating that for every possible
subset of the domain (i.e., possible training instances), there exists a bias on
our path through the hierarchy that is capable of expressing a hypothesis
consistent with that subset.

To simplify matters, we predefine a path through the hierarchy and use
that for all of our tests. We shall start with the purely conjunctive bias as
described earlier as our base bias. For each bias shift, we will enrich our
concept description language so that it can express an additional disjunct.
Since the purely conjunctive bias does not support any disjunction, it is

equivalently the bias of one disjunct (or 1-d). The next bias in our list of

6This two approaches are analogous to a depth-first and a breadth-first search
through the space of biases.
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biases is 2-d, which means that any hypotheses can be a disjunction of two
conjunctions. In the case of 2-d, a hypotheses can be thought of as a
disjunction of 1-d hypotheses (i.e., a disjunction of purely conjunctive
hypotheses). This should not be confused with internal disjunction, where
each atfribute value is a can contain disjunctions, but the overall hypotheses
is still a conjunction of acceptable values for each attribute.

We return to our previous examples in the mushroom domain.

Assume that we have seen the following instances:

{ [color: brown; weight: 4.5; class: +], [color: brown; weight: 5.1; class: +],
[color: brown; weight: 4.7;

class: -1}

This is not expressible with just one conjunction. However, with the 2-d bias,
the hypothesis (color: brown; weight: [4.5..4.5] U color: brown; weight: [5.1..5.1])
can be expressed, which is consistent with the training data.

For bias n-d, the next highest bias will be (n+1)-d. It is easy to show that
a correct bias lies on this infinite sequence of biases. Let T be the set of
training instances considered. The bias IT| is a correct bias, because it is
possible to express a consistent hypothesis as a disjunction of all the positive

instances in T, which is at most I1T].

Consequences of Our Choice of Paths Through the Hierarchy

Any purely ascending path through the hierarchy of biases would serve

as a legitimate path, provided that it contained some bias capable of
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expressing a hypotheses consistent with the training data, for every possible
set of training data. In particular, it would not be necessary to require the
concept description languages (and therefore the bias) to be as similar as in
our sequence of biases. The strengthening technique in our sequence is an
explicit use of disjunction; we will examine the increase in ability to shatter a
subset of a domain given by explicit disjunction and the effect disjunctions
have on the size of the § and G sets, which in turn have a direct effect upon

space and time resources expended by the algorithm.

The Base Bias

We will begin with the base bias, the purely conjunctive bias(1-d),
which allows no disjunctions. We will denote the hypothesis space as
defined by bias B over D as H(B). As noted earlier, the VCdim(H(1-d)) is 2,
because there does not exist a subset of D which is shattered by H(1-d) that
contains more than two instances. Therefore, 1-d is a relatively strong bias’.
An interesting property of the 1-d bias is that the S set is always a singleton.
We consider a graph of a domain with two attributes on the following page,
with positive instance represented as ‘+’. Our domain consists of two totally
ordered attributes with quantized values. This differs from the mushroom
domain described previously, because the color attribute of the mushroom
domain was not ordered. The mushroom domain could also be graphed, but

a range on the graph in the color dimension would not be meaningful.

7Recall that the strength of a bias refers to the number of candidate hypotheses that
are inexpressible; therefore a weaker bias will be able to express more distinct hypotheses.
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Figure 4.3: Positive instances in a domain with two attributes.

It is easy to see that there is only one most specific hypothesis that is
consistent with the training data. The reason for this is simple; any
hypothesis that is consistent with the training data must extend to the
instances at the extremes for each attribute, and there is only one minimal

way of doing so.

Figure 4.4: The Unique Most Specific Hypothesis.
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Upon examining Fig. 4.4, we make another observation; the three
instances of the “borders” of the hypothesis determine the shape of the
hypothesis, while the “internal” instances have no affect on the hypothesis.
Due to the conjunctive bias, we are forced to classify the internal instances as
positive, and hence encountering them does not affect the composition of the
S set. It is reasonable to consider such a hypothesis to be defined by a set of
instances; we will call the instances that have determined the shape of a
hypothesis h to be the defining instances of h. For any most specific
hypothesis that contains more than one possible training instance from the
domain, there must have been anywhere from 2 to 2 * (number of attributes)
that has defined the hypothesis. In our example, this would be from two to

four instances; in this case, it is three.

Figure 4.5: Set of Instances Defining the Most Specific Set.

Similar statements can be made about the members of G. Sadly, G is
not nearly as well behaved; it can grow to exponentially large sizes (in the
number of attributes). Let us consider a similar example, but with negative

instances rather than positive ones. As figure 4.5 shows, even with only
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three instances, the situation becomes very complicated. For clarity, the
figure has been divided into two parts to make the individual hypotheses

more clear; the darkest shaded regions are where two hypotheses overlap.
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Figure 4.6: The G set.

There are eight hypothesis in the G set shown above. This is actually
slightly worse than would occur in practice, because the candidate
elimination algorithm as formulated by Mitchell states that learning must
begin with a positive instance. Nonetheless, the G set can be very large in
relation to the number of instances; each subsequent negative trial can “split”
each hypothesis in G into two hypothesis for each attribute in the domain;
though at most one of these two hypothesis may be consistent per attribute,
one may be consistent per attribute, which means that the size of the G set can
increase by O(1G | |41), where A is the set of attributes. Consider the following

set of instances;
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Figure 4.7: A Few Training Examples Leading to a Very Large G set.

We leave it to the reader to count the number of hypothesis that would be in
the G set after encountering the training instances above.

Similar to the most specific theories of the S set, the most general
theories of the G set have a set of defining instances, as well as other instances
that do not affect the hypothesis. Since a most general hypothesis is as
general as possible without accepting any negative instances, it is the negative
instances just beyond the boundary of the most general hypothesis that
determine its composition. This can be anywhere from one instance to
2* 1A|l. Similarly, those negative instances do not lie on the boundary of

acceptance for a most general hypothesis do not affect it.

Biases with an Arbitrary Number of Disjunctions

Now that we have an understanding of how the candidate elimination

algorithm behaves in the base bias, we consider biases with a higher number
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of disjunctions. The observations we made about hypotheses in the base bias
will apply to the individual disjuncts of hypotheses in these biases with a
larger number of disjuncts. It is not immediately clear what the interaction
between these disjuncts might be. We consider the value of VCdim(H(2-d)).
It is easy to see that any subset of D containing four or less instances is
shattered by H(2-d); however, for reasons similar as with 1-d, H(2-d) does not
shatter any subset of D that contains five or more instances. Indeed, we
realize that for k-d, VCdim(k-d) = 2k. However, the decrease in bias strength
is quite large for the switch from 1-d to the 2-d. How does this affect the
performance of the candidate elimination algorithm?

We will examine the effect of disjunction on the S set. Unfortunately,
the property that the S set contains only one most specific hypothesis is not
true for biases with an arbitrary number of disjunctions. Indeed, we shall see
that the S set can grow to be quite large. There are eight most specific
hypotheses consistent with the training data used in the previous example of
six positive instances. A list of these are given in Appendix 1. Sadly, this is
not even a worse case example. The G set also suffers a similar increase in
size relative to that of the 1-d bias. Though the difference between subsequent
biases are not as great as between 1-d and 2-d, a similar decrease in
performance (in terms of time and space required to process an instance) is

encountered for each increase, since the amount of weakening is the same.

Disjunctive Bias in Practice

Our experience has been that for many real databases, even the 2-d bias

can become unusable, due to the exponential explosion of the G and $ sets.
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This makes the need to perform learning in as strong a bias as possible even
more apparent. The amount of time spent in an invalid bias is negligible to
the time spent in the next higher bias in most cases. This makes bias shifting
even more attractive, since the wasted time in invalid biases is proportionally
very small, and well worth examining the possibility that one of the weaker
biases may actually be correct.

One interesting feature of the size of the § and G set is that they tend to
grow exponentially at first, taper off at some large size, and then gradually
contract. It is therefore the learning that occurs immediately after a bias shift

that is the most costly.
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CHAPTERV

A REVIEW OF BIAS-SHIFTING TECHNIQUES

Utgoff's Approach and Our Generalized Framework

We recall that Utgoff's STABB program was devised for use by a
particular learning system, LEX, which performed learning in a particular
domain, the domain of integral calculus. Can the techniques used by STABB
be of value in our generalized framework? We address this question
presently.

Utgoff divided the process of bias shifting into three phases:
recommending a new bias, translating the recommendation into the concept
description language, and assimilating the training data previously
considered into a new version space in the new bias. In our new
formulation, the second phase becomes trivial, for we need only change the
maximum number of disjuncts allowed. We therefore present a simplified
model of bias-shifting, based on Utgoff's model that consists only of two
phases: recommending a new bias (in our framework, a number of allowed
disjunctions), and assimilating the previous learning data into the version
space in the new bias. Utgoff's method for assimilating previous training
data, which is simply restarting the candidate elimination algorithm in the

new bias on the previously seen data, easily translates into our framework.
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We now consider the bias recommendation phase. Utgoff presented
two methods of recommending a new bias; a least-disjunctive method and
constraint back-propagation. Since constrain back-propagation utilizes
domain knowledge, it is not applicable to our learning paradigm. There is no
apparent use of domain knowledge in the least disjunction method, and so
we will consider its use within our framework. Although Utgoff never states
the algorithm formally, he suggests an algorithm that combines two or more
disjuncts at a time, eliminating inconsistent generalizations, until no two
disjuncts can be combined without including a negative instance.

An efficient algorithm based on this vague description can be devised
for a learning domain that has only one attribute (which is totally ordered).
Begin the first disjunction with the first positive instance, and consider
strictly increasing training instances, adding each positive instance to the
disjunct until a negative instance is encountered. At this point, continue
examining consecutive instances until another positive instance is
encountered. Begin the next disjunct with this positive instance, and
continue the process, until the greatest instance is considered. The result will
be a least-disjunction of the positive instances. It is easy to see that the time
complexity of this algorithm is linear in the number of instances.

Sadly, there does not seem to be way of generalizing this algorithm into
an efficient algorithm for an arbitrary number of dimensions. Indeed, we
were unable to come up with any least-disjunction algorithm that had a
running time less than O@!T!l), which is clearly not acceptable. Another
method of recommending a new bias must be used. We opt for a simple yet
sufficient method; if k disjunctions proves to be insufficient, try k+1
disjunctions. This guarantees that we will arrive at the strongest bias in our

sequence of biases that is sufficient for the learning task, provided that we
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assimilate previously seen instances. We are not guaranteed that the bias we
initially recommend is sufficient, unlike in the least-disjunction method, but
we instead may have to shift bias again before we have finished assimilating
the training instances. Nonetheless, we are guaranteed to have arrived at

strongest correct bias once assimilation is complete.

Two Methods for Shifting Bias

We are now prepared to state two methods of bias shifting within in
our generalized framework. Since we have divided the bias shifting process
into two phases, a bias recommendation phase and training data assimilation
phase, we need only state how each method will perform in each phase to
fully specify the method. We shall call our first method the fully consistent
method, which is closest to Utgoff's original method. For the first phase, bias
recommendation, we will use the heuristic stated earlier, and simply switch
to the next highest bias in the sequence. For the second phase, we shall restart
the candidate elimination in the new bias with the version space <{ T},{ 1}>,
and assimilate the previously seen instances. Once this assimilation is
completed, the resulting version space is guaranteed to be the version space

consistent with all previously seen trials.
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Figure 5.1: Order of instances considered for the fully consistent
method. The dashed lines represent bias shifts, whereas
the numbers show the order in which the instances are

considered.

It is questionable if this assimilation of previous training instances is
really necessary. Our theoretical results show us that in many cases, an
incorrect bias will be discovered in relatively few trials. Similar results show
us that a version space will be e-exhausted with high probability after
relatively few trials. Furthermore, since we do not need previous instances
except for such replays (since we have abandoned the least disjunction
method), we could lessen our space requirements not replaying instances and
discarding previous instances.

These observations led to the formulation of the base method. For the
bias recommendation phase, we will use the same heuristic as in the fully
consistent method, i.e., simply increasing the bias by one. However, in the
assimilation phase, we shall not recapture lost training data, but instead start
with the version space <{ T],{ 1}> on the newest training instance. No
assimilation takes place. Our hope is that we shall arrive at the same version
space as the fully consistent method when the training data is exhausted, but

will have saved memory overhead having not kept every training instance.
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Note that in contrast to the fully consistent method, the base method does not

guarantee consistency with past training instances once a bias shift occurs.

|
) ]
instance 2.k 3k instance
1 n

Figure 5.2: Order of instances considered for the base method. The
dashed lines represent bias shifts, whereas the numbers

show the order in which the instances are considered.

BEANHEAD: An Aggressive Heuristic Method for Shifting Bias

We notice one great failing of all the bias shifting methods that we
have considered so far; none make any attempt to utilize the information
represented by the learning prior to the bias shift. That is, all learning in the
incorrect bias (i.e., the previous version space) is simply discarded—- no benefit
is received from running the candidate elimination algorithm on the
previous training instances with the incorrect bias. The question arises: can
no useful knowledge be gleaned from the old version space? The
BEANHEAD system is one system meant to answer this question by using
information from the old version space.

We will note two types of information that could possibly be derived

from the previous version space: information about instances seen in the old
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version space, and information about the hypothesis in the revised version
space. What information can be gleaned about the previously seen instances?

Sadly, it is impossible in most case to identify what instances have been
seen previously, because many previously seen instances will not be defining
instances in the current version space. We will simplify matters by only
considering what can be learned by analyzing a single hypotheses rather than
a set of hypotheses. This is a reasonable simplification, considering that the
candidate set is usually very small before a bias shift. Determining which
instances have been seen previously from the invalid version space is
difficult because of two reasons. It is ambigious which instances have defined
a hypothesis, and instances which are in the “interior” of a hypothesis are not
represented since they are generalized.

We shall make these statements more clear with an example. Let us

consider the version space

{(color: T; weight: [4.0..7.1])), ((color: brown; weight: [4.5..5.1]))

What instances have been previously encountered? In this particular
domain, we are assisted by the fact that color in nominally valued. We can
deduce from the S set that we have seen [color: brown; weight: 4.5; class: +]
and [color: brown; weight: 5.1; class: +], which are the instances on the “edge”
of the sole hypothesis in S. However, we do not know if we have seen
instances on the “interior” of this single hypothesis, i.e., we do not know if
we have seen any tasty brown mushrooms whose weight is greater than 4.5
grams but less than 5.1 grams. The reason we do not know is because
encountering them would not change the version space; they are already

classified and therefore do not represent any new knowledge. Similarly, we



57

can deduce from the G set that we have seen [color: brown; weight: 3.9; class: -]
and [color: brown; weight: 7.2; class: -], but we cannot determine if we have
seen any negative instances beyond these boundaries, nor if we have seen any
negative instances that are not brown.

It would be possible to run the candidate elimination algorithm on
every possible set of defining instances for the invalid version space. This
would be another meta-candidate elimination approach. Again, though it is
interesting in a theoretical sense, it would translate into a very poor
algorithm. Considering that it also would much more costly then simply
retaining the previous training instances, and offer no advantage over that
approach, we abandon this particular source of information.

Can anything be said about the composition of the new version space
directly? This is the tactic we take with the BEANHEAD system. Let t be the
bias-breaking instance, and let T be the training instances prior to the bias-
breaking instances. We make one simple yet compelling observation about
the version space prior to £, that it is consistent with all but one trial in TU .
Furthermore, we know the sole instance that the prior version space is not
consistent with; it is £. Can we use this information to generate the new
version space without considering any past instance other than #?

One approach would be use the principles of the candidate elimination
algorithm to determine what the new version space should be. We can
enumerate from the current information every possible § and G set in the
new bias that would be consistent with T U t. This would require creating a
most general and most specific version of both the G and S set, because we
would be running the candidate elimination algorithm on each to find the
real G and S set. Let these be sets be Gy, Gs, Sg, and S;. Gg would correspond to

the most general possible G sets, whereas G; would be the most specific
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possible G sets, based on what the composition of T might actually be. As
with the standard candidate elimination algorithm, we would be guaranteed
that the corresponding G set, had we run through all the trials with new bias,
will lie between these most general and most specific boundaries. Sg and S,
are defined similarly.

Though correct, the requirements of this approach in terms of space
and time are prohibitive. So we adopt a heuristic for our BEANHEAD
system; if a disjunct was valid throughout past learning, it may be valid in the
new version space. This allows us to “repair” the previous version space,
rather than generating a completely new one, by making small changes to the
existing hypotheses. Our algorithm is simple; for each hypothesis, and for
each disjunct within the hypothesis, replace the disjunct with a new disjunct
that represents no information if that disjunct caused a misclassification,
otherwise do not modify the disjunct. Once this process in completed, we
weaken the bias, and the result is a version space in the new bias that can
incorporate the bias breaking instance without needing a further switch in
bias. Pseudocode for our algorithm follows. Please note that VS is the

version space prior to encountering t.
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Function BEANHERD(%/s, t)

begin
for each hypothesis hin gor 5do
for each disjunct d in h do
if d misclassifies t
if classification(t) = positive
thend=1
elsed=T
fi
fi
od
oad
1S = incorporate(1/s, t)
return 5

end

BEANHEAD's aggressive strategy gives it two advantages over the
other methods. The obvious advantage is that the assimilation phase is
much faster, depending only on the size of the § and G sets, rather than also
begin dependent on the number of trials previously encountered. The other
benefit is that once assimilation has taken place, learning the BEANHEAD
way will continue to be faster than in the other methods. This is because the
version space generated by BEANHEAD will be more restrictive in most cases

and therefore be closer to exhaustion.
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Figure 5.3: Order of instances considered for the BEANHEAD method.
The dashed lines represent bias shifts, whereas the numbers

show the order in which the instances are considered.

Of course, such an aggressive strategy is not foolproof. The main
hazard of the BEANHEAD's heuristic is that it may cause an erroneous
increase in bias. This is because the goal concept may not be in the version
space returned by BEANHEAD, even though it is expressible in the current
bias. During subsequent learning, when the version space becomes empty,
BEANHEAD will mistakenly switch to a higher bias, instead of realizing that
its previous version space estimate was incorrect.

Let us consider an example of BEANHEAD's version space reparation.
We will show the G set and the § set separately for clarity. The following
figures show BEANHEAD translating an inadequate hypothesis in the 2-k
bias to one that does not misclassify any instances in the 3-k bias (although it

may fail to classify some previously encountered instances).
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Bias 2-k s
©
Bias 3-k 5
Figure 5.4: BEANHEAD translates a single hypothesis in the S set in 2-

k to a new hypothesis in 3-k that is consistent with the
negative bias breaking instance. Note that instances that
fell within the bottom left disjunct in the hypothesis in the
2-k bias are now not covered in the new hypothesis in the 3-

k bias.
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Figure 5.5: BEANHEAD translates a single hypothesis in the G set in 2-
k to a new set of hypotheses in 3-k that is consistent with
the negative bias breaking instance. The diagram is
complicated by the fact that the old leftmost disjunct can be
specialized in several ways, and so the four overlapping
regions can be combined in 4*3 = 12 different combinations,

each a valid hypothesis in the new G set.



CHAPTER VI

AN EXPERIMENTAL COMPARISON

Due to the heuristic nature of the method we have proposed, it is
difficult to compare it to the others with strictly theoretical means. For this
reason, we will evaluate the methods solely by their comparative
performance. We ran several the candidate elimination on several databases
with each of the following methods. Our desire was to see how the bias-
shifting methods would perform on real problems. Sadly, we encountered a
serious impediment; either the concept could be described in 1-d, requiring no
bias-shifting, or all three methods performed so poorly that comparison was
impractical. This poor performance was due to the increased complexity
when disjunctions added.

Luckily, one database was simple enough to allow comparison. This
database was originally used by J. Cendrowska [1], the domain being the fitting
of contact lenses. This domain has four attributes and 24 possible instances,
all which are present in the database. There are three distinct concepts in the
database; patients that should be fitted with hard contact lenses, patients that
should be fitted with soft contact lenses, and patients that did not need contact
lenses. The methods were used to learn each class. Two of the concepts
required a 2-d bias, whereas the third required a 3-d bias. The fully consistent
method was required to consider each instance in the set only once; the other

methods, since they do not insure consistency, were required to consider each
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instance in the database after the last bias shift. This affect was accomplished
by feeding the instances prior to the last bias shift back to the algorithm after
the last instance had been read.

The results of all our tests are given in terms of trials considered8,
which is a good measure of the time required. The results for the three

concepts are given below.

Concept #1
Fully consistent BEANHEAD Base
39 39 39
Concept #2
Fully consistent BEANHEAD Base
44 44 44
Concept #3
Fully consistent BEANHEAD Base
42 38 38

Table 6.1: Results using the LENSES database.

8Trials considered in this case include trails “reconsidered” during the assimilation
phase.
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As the data shows, the three methods performed identically on concept
#1 and concept #2, but the base method and BEANHEAD outperformed the
fully consistent method. This is because concept #3 is a 3-d concept, which
requires two bias shifts. Since the fully consistent method requires that all
previous trials be assimilated into the new version space after a bias shift, the
first trials were assimilated three times, the initial ime and one for each bias
shift. However, the other methods delay assimilating past information; since
both had switched to the 3-d bias (the correct bias) before the initial trials were
exhausted, they avoided assimilating the earliest instances one extra time.

Though encouraging, these results gave us little insight on how
successful the version space repair method of BEANHEAD was. It become
apparent that it would be necessary to use databases that would require a
several shifts of bias to see a noticeable difference between the methods. Due
to our inability to find usable databases from real domains, we created a set of
artificial databases with a very small number of instances. Each database
contained every instance from the domain; the exact composition of all
artificial databases are given in Appendix 2. Each database was a n x n matrix
(two attributes), and was named according to the n and the required number

of disjuncts. Our results follow;



Database 3-3
Fully consistent BEANHEAD Base
22 22 22
Database 34
Fully consistent BEANHEAD Base
29 23 29
Database 3-5
Fully consistent BEANHEAD Base
35 28 34

Table 6.2: Results using artificial databases with 3 x 3 attributes,

requiring three to five disjuncts
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Database 4-3
Fully consistent BEANHEAD Base
43 39 39
Database 4-4
Fully consistent BEANHEAD Base
54 44 51
Database 4-5
Fully consistent BEANHEAD Base
57 53 56

Table 6.3: Results using artificial databases with 4 x 4 attributes,

requiring three to five disjuncts



Database 4-6
Fully consistent BEANHEAD Base
74 61 73
Database 4-7
Fully consistent BEANHEAD Base
85 55 84
Database 4-8
Fully consistent BEANHEAD Base
78 68 92

Table 6.4: Results using artificial databases with 4 x 4 attributes,

requiring six to eight disjuncts

The results on this set of databases were in BEANHEAD's favor. For
all the databases given above, BEANHEAD had the best performance of the
three methods. Also, the base method out-performed the fully consistent
method on most of the databases. The reason is the same as stated for the
lenses database; since the base method delays reconsidering past instances
until all instances have been considered, a savings can occur. Interestingly,

this savings appears to be minimal in the above trials, with the base and fully
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consistent method giving roughly the same performance. In one case, the 4-8
database, the base method performed considerably worse. This is because
important instances (in terms of bias shifting) were encountered early in
learning; since the base method does not reconsider such instances
immediately, it took significantly longer to detect necessary bias shifts.

The fact that BEANHEAD also outperformed the base method,
especially on the 4-8 database (where the base method's performance was so
poor) is significant, because it indicates that the reason for its success on these
databases is linked to its version-space reparations and not because it does not
immediately reconsider the previous instances (the same method used by the
base method).

Unfortunately, the results on these databases are somewhat biased, for
all databases share the same characteristics; they all are complete, and they all
have positive disjuncts that contain only one positive instance. It could be
that BEANHEAD performs best on these sorts of databases, but poorly on
others. Though we were limited by experimental difficulties previously
mentioned, were able to devise several usable databases that do not share
these characteristics. We defined three databases that had at least one positive
disjunct that contained multiple positive instances, and two databases that
were incomplete. We follow the nomenclature used earlier, although we add
a "n" to the complete databases and an "i" to the incomplete databases. Qur

results follow.
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Database n4-3
Fully consistent BEANHEAD Base
32 28 36
Database n4-4
Fully consistent BEANHEAD Base
54 46 49
Database n4-5
Fully consistent BEANHEAD Base
44 42 42

Table 6.5: Results using artificial databases with 4 x 4 attributes,
requiring three to five disjuncts, some disjuncts

nontrivial.



Database 110-3.1
Fully consistent BEANHEAD Base
41 36 36
Database i10-3.2
Fully consistent BEANHEAD Base
26 34 29

Table 6.6: Results using artificial databases with 10 x 10 attributes,
requiring three disjuncts, with approximately 20% of

possible instances represented.

The results on the complete databases with larger positive disjuncts is
very similar to the results on the previous databases; BEANHEAD
outperforms the others by approximately the same amount. However, we
note that the incomplete databases the results are not the same as with the
other databases; BEANHEAD has the best performance on one database, but
had the worst on the other. Why the difference? Upon examining the trace
of the BEANHEAD run on the i10-3.2 database, we realize BEANHEAD had
switched to the 4-k bias, which is unnecessary for this database. This was a
possible flaw with BEANHEAD's approach that we noted in the previous
chapter. Since BEANHEAD aggressively re-uses the old version space, it
generates a new version space that is usually more restrictive than necessary;

in some cases it will cause BEANHEAD to switch to a bias that is too weak.
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There are two reasons why BEANHEAD may have an empty version space
(unlike with the other methods, which would only have the first of the
following two reasons: the bias is insufficient; or the bias in not insufficient,
but in a past reparation of the version space BEANHEAD arrived at a bad
representation of the version space. Unfortunately, BEANHEAD does not
know the reason it has arrived at an empty version space, and so it always
assumes the first reason and shifts its bias. Presumably this hazard would be
lessened for databases that require a weaker bias, because there would be less
difference between consecutively weaker biases according to out hierarchy.
Also, since the base method also performed worse than the fully consistent
method on database i10-3.2, we realize that BEANHEAD also suffered because

of the order it considers instances.



73

100

#-pu aseqejep

B Fully consistent
O BEANHEAD

U
0
]
m

i

£-pu aseqejep
.......... 8y aseqeiep
-b aseqeiep
9% aseqerep
R
¥y Sseqerep

C-¢ Iseqeiep

$-£ aseqeiep
€-€ aseqeiep
E# SISUI|
Zi SI5UI]

L S3su3|

%0
80
70
60
50
40
30
20
10

0

7
U
1]
8
[ ]
s
i}
o
"o
=1
o
£
=
i
W
T
)
Q
i
o,
1]
}
0
L -]
.
.2
5%



74

CHAPTER VII

CONCLUSION

This thesis was motivated by a desire to better understand the
intricacies of bias shifting, and to evaluate several methods of bias shifting.
We used the candidate elimination algorithm as our method for studying
bias, as it allows a direct encoding of arbitrary biases, and represents every
hypothesis expressible in the given bias that is consistent with the training
data. We studied the candidate elimination from a theoretical point of view,
from which we made two salient observations; a relatively few number of
trials are required to learn the concept with a small amount of error in most
cases, and a relatively few number of trials are required to reveal an
inadequate bias in most cases.

In order to perform an experiment that was impartial, we developed a
generalized framework for learning an arbitrary concept with an arbitrary
bias. In particular, we defined a hierarchy of biases, which is an ordering over
the domain of possible biases, from the strongest bias to the weakest bias. Our
model of bias shifting is rephrased in terms of traversing this hierarchy.
However, an unguided traversal through this hierarchy would be difficult to
implement and analyze; for this reason, we deemed it necessary to choose a
subset of this hierarchy, a totally ordered set of biases where each successively

weaker bias could express every concept expressible in the weaker biases. We
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chose the class of disjunctive biases, with the purely conjunctive bias serving
as our base case.

We presented three methods for shifting bias. The first was the fully-
consistent method, which guaranteed that its version space was consistent at
all times with previous training data, similar to the bias shifting method
STABB. This consistency was guaranteed by maintaining a list of previous
instances, and restarting the version space on the previous instances before
considering the next instance. The second was the base method, which
started the version space anew after a bias shift without immediately
reconsidering past instances. Once the instances were exhausted, all instances
encountered before the last bias shift were reconsidered, in order to guarantee
consistency. The final method was BEANHEAD, an aggressive heuristic
method that attempts to repair a version space and translate it into the
weaker bias rather than completely disregard previous learning.

Unfortunately our experiment was somewhat thwarted by the lack of
appropriate databases. In most cases, the databases we considered either
required no bias shifting, or were intractable with our bias. One natural
database did provide results, though there was not enough difference in
performance to draw any conclusions. Therefore, we created a series of very
small databases that required several bias shifts. Our data showed little
difference between the fully-consistent method and the base method.
However, BEANHEAD significantly outperformed the others in most cases,
the improvement in performance was more pronounced as the number of
bias shifts increased for the databases we considered.

Nonetheless, we recognize that the BEANHEAD method will not
perform optimally in every case. In particular, because of its heuristic nature,

it may “repair” the version space in such a way that improperly excludes the
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target concept, even though it is expressible in the current bias. The result of
this improper exclusion is that BEANHEAD will erroneously switch to a
weaker bias than is necessary with the other methods in order to express the
target concept. For the databases we used, this only occurred once; however,
we realize that our evaluation was limited by difficulties with finding
training data usable with our implementation and therefore the impact of

our results is somewhat lessened.

Areas for Future Research

We were interested in exploring the possibility of using learning in an
inadequate bias to guide learning in a correct bias. The success of
BEANHEAD shows that such information can successfully enhance learning
in the correct bias. BEANHEAD is but one possible method for re-using the
learning in the incorrect bias. Various hybrid methods could be proposed,
such as a method that uses more than just the most recent instance to repair
the version space, or a method that could combine the three methods that we
presented, deciding at run-time which method was likely to meet with the
most success per bias-shift.

Further evaluation of BEANHEAD is also necessary to determine if it
is a good heuristic for all learning problems or just those of the type
considered. In particular, it would be illustrative to evaluate BEANHEAD
using a different set of biases. Though our biases were straightforward to
implement and understand, the granularity may have been too coarse for
many real world domains. It would be revealing to test BEANHEAD's
performance with a sequence of biases that allowed a much finer weakening

of bias, such as with a tree-structured bias.
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Finally, we would feel more confident with the results had they been
acquired with databases that simulated real learning problems. It is an open
question what the typical learning problem might be; therefore, it was hard to
create databases that would assuredly give a fair test of the bias-shifting
methods. Nonetheless, these initial results show that BEANHEAD is indeed
a viable method in at Ieast some domains, and that further research in

making use of learning in an invalid bias may well prove profitable.
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APPENDIX B

COMPOSITION OF ARTIFICIAL DATABASES

The following are a graphical representation of the artificial database used
in this thesis to evaluate the competing bias shifting methods. Each database has
only two attributes; ‘+’ will be used to denote a positive instance, and ‘- will be

used to denote a negative instance.

3-3 34 3-5
+ - - -+ - - o+ - .
- + - - - - - + -
- - + - - + - - +
4-3 44 45
+ - - - + - - - + - - -
-+ - - -+ - - -+ - -
- -+ - - -+ - + -+ -
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