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Abstract

The increasing complexity of parallel computing systems has brought about a crisis
in parallel performance evalualion and tuning. Although there have been important ad-
vances in performance tools in recent years, we believe that future parallel performance
environments will move beyond these tools by integrating performance instrumentation
with compilers for architecture-independent languages, by formalizing the relationship be-
tween performance views and the data they represent, and by automating some aspects of
performance interpretation. This paper describes these directions from the perspective of
research projects that have been recently undertaken.

1 INTRODUCTION

As the hardware and software technology for parallel systems has advanced, so too has the de-
velopment and use of performance tools. However, the two have rarely been well-coordinated.
Indeed, the increasing complexity of the computational environment brought on by rapid ad-
vances in parallel computing technology has created a crisis in parallel performance evaluation.
This crisis has forced the development of techniques for parallel performance measurement,
analysis, and visualization to counter the growing computational complexity, with the primary
goal of increasing performance observability {23]. As a result, significant results have been
achieved in several important areas: high-resolution timing measurements [22, 34, 35|, global
clock synchronization [9, 17], hardware performance monitors [2, 19, 25, 32, 31], event-based
behavioral abstraction [1, 42], software event tracing [20, 27, 30, 34, 39], perturbation analysis
[26], and event-based visualization [4, 12, 24].

One consequence of past work in parallel performance tools is the present concern with
what can be termed “performance complexity.” The conventional wisdom is that detailed mea-
surements are required to study the time-varying performance behavior of parallel programs
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when investigating a particular performance evaluation problem, or for automatically gener-
ating the instrumentation needed to perform the measurement. When measurements can be
defined, the volume of data they produce and their potentially complex performance semantics
(measured and implied) can quickly saturate the user’s capacity to synthesize the data and to
perceive important correlations between diverse performance variables. Unfortunately, reducing
measurement detail to simplify the interpretation runs the risk of losing critical performance
information.

The problem of performance complexity is therefore not one of detail, but rather one of
understanding. Parallel system users cannot be expected to understand all of the issues related
to performance, and, therefore, are and will be ill-equipped to deal with many aspects of the
parallel performance evaluation process, including problem specification, tool application, data
interpretation, and performance optimization.

Recent trends in parallel processing suggest that the issues of performance observability
and complexity will become more difficult. Massive parallelism has been adopted as the sal-
vation for computationally intensive applications. The notion of scaling the problem size has
been proposed as a way to achieve performance scalability on machines with a large number of
processors. The shift from control parallelism to data parallelism as a programming paradigm
- for reasons of programmability and performance scalability - is evidenced in recent parallel
Fortran [6, 8], C [11], and C++ [21] language implementations. At the same time, parallel exe-
cution models that abstract the underlying parallel machine to hide machine-dependent details
of their implementation from the user are becoming more prevalent (e.g., the Single-Program
Multiple-Data (SPMD) model or the Linda tuple space model). These trends - increased per-
formance through increased parallelism and scalability, plus increased programmability through
abstraction and machine independence — pose a new challenge for performance tools. Indeed,
the “grand challenge” problem in computational software for scalable, parallel systems is the
development of tools that can routinely (and, ideally, automatically) produce high-performance
applications.

In addition to the advances in performance tool technology that must occur to provide
users with a higher-level interface for measuring, analyzing, visualizing, and interpreting par-
allel performance data, we advocate the notion of a fully-integrated toolset (a performance
environment) embedded in and using the resources of a parallel programming system. The
idea is to provide an environment for solving performance problems which relieves the user of
much of the manual effort of performance observation while reducing the intellectual burden
of evaluating complex performance behavior. Clearly, such an environment cannot spring into
being overnight, especially if it is to leverage parallel programming technology (e.g., program
analysis tools and compilers). It is therefore important to concentrate at present on the needs
and requirements for tool integration, the design of techniques that promote performance and
program tool interaction, and the opportunities for environment development.

In this paper, we study three directions that will be interesting to pursue for future par-
allel performance environments. In Section 2, we consider the problem of measuring parallel
programs based on the SPMD execution model. The principal issue here is performance observ-
ability, and in particular, how performance measurements can be specified and implemented
in a SPMD parallel programming environment. Parallel performance visualization is the topic
of Section 3. Here we propose a performance visualization model which emphasizes specifying
performance and view abstractions and mapping these to one another. Actual visualization



generation is postponed until this formal specification is defined. In contrast to current perfor-
mance visualization tools, this allows complex performance views to be imagined and rendered
through a variety of graphical means. Finally, in Section 4 we introduce the concept of a perfor-
mance expert system. The aim here is to provide the user with a tool that acts as an intelligent
performance assistant, automating measurement and analysis tasks, providing critiques based
on known performance models, directing performance optimization efforts, and predicting the
performance impact of program or system changes.

2 Performance Measurement of SPMD Computations

The Single-Program Multiple-Data (SPMD) parallel execution model has been advocated as a
basis for languages for massively parallel systems because of its scalability, programmability, and
portability. In SPMD programs, all processors execute the same program, but take advantage
of memory locality by operating primarily on local data. The parallel data structures in the
program are distributed across the processors in a fashion that enhances parallelism. When local
computation involves data from other processors, some form of communication is invoked to
retrieve the data. Because algorithm designers often think in terms of synchronous operations
on distributed data structures {15}, SPMD programming languages allow massively parallel
computation to be easily specified. Furthermore, because the SPMD execution model is an
abstraction of a machine’s low-level operation, the user is typically presented with a hierarchy
of concurrent programming abstractions based on SPMD semantics that insulate her from
machine specific implementation issues, thereby increasing the portability of both the language
environment and resulting parallel programs.

For example, Fortran D [6, 8] and pC++4 [21] are two parallel programming languages
which assume an SPMD style of execution. Fortran D is an enhanced version of Fortran
that provides data decomposition specifications for problem mapping (to maximize memory
locality and reduce data movement given an unlimited number of processors) and machine
mapping (to translate the problem onto the finite resources of the machine). These two levels
of parallelism are abstracted by explicit decomposition, alignment, and distribution statements
in the language. This implies that selecting a data decomposition strategy is the task of the
user. The Fortran D compiler translates a Fortran D program into SPMD code with explicit
message communication for execution on MIMD parallel machines. The compiler partitions the
program using the owner computes rule whereby each processor is responsible for computing
the value of data it owns [3].

Parallel C++ (pC++) is a language based on an object-oriented, parallel programming
paradigm called the Distributed Collection Model. In the model, programmers can keep a
global view of a whole data structure as an abstract data type, while specifying how the global
structures are arranged and distributed among differ processors to exploit memory locality.
Parallelism in pC++ programs is defined by the parallel action of class operators on the indi-
vidual elements of a large collection of related objects. Users control the distribution of objects
of a collection to processors and memory hierarchies. This “object parallel” concept subsumes
all the features of “data parallel” computation with the ideas in Fortran D data distributions,
but also incorporates the techniques of abstraction and specialization that make object oriented
design powerful.

The advantages of using high-level languages for parallel programming based on the SPMD



model — concise coding, parallelism abstracted through distributed data structures, and porta-
bility — is, seemingly, a disadvantage when programmers try to tune applications for a particular
system. Because the language presents an execution model to the user which hides the underly-
ing parallel system environment, it restricts user-level access to performance data. Such access
can be critical to evaluating a program’s execution or comparing alternative data decompo-
sition strategies (e.g., message communication overheads, levels of parallelism, timings of pe-
processor computations). Clearly, what is required is an SPMD measurement strategy that is
integrated with the SPMD language compiler.

2.1 Measurement Strategy

There are two important performance observability issues that arise when deciding on an SPMD
measurement strategy. The first concerns how performance measurements are specified and
at what level. In particular, there is the question of whether performance instrumentation
should be tied to SPMD parallel program abstractions. Although languages such as Fortran
D and pC++ prohibit direct measurement (i.e., from the user program) of the performance
of the underlying parallel system, the programming abstractions they provide to the user are
central to the interpretation of any performance data collected. Thus, it is reasonable to
think that performance instrumentation should be specified at the language level and should
be based on program semantics. In this sense, one could provide performance instrumentation
as first class objects or statements in the SPMD language, able to reference other language
objects, assign instrumentation attributes, and possibly provide a mechanism for the program
to read performance data during computation. For example, for the pC++ environment, we
are developing a system of program instrumentation annotations that can be used to select
measurement alternatives.

The second issue concerns how performance measurements are implemented. Clearly, per-
formance instrumentation specified at the language level cannot by itself describe what low-level
data are needed to obtain the desired performance measurement, nor how those data are to be
collected. Rather, instrumentation specifications at this level must be processed in association
with the SPMD language compiler if performance measurements are to be properly realized.
For instance, the instrumentation may specify that an event should be captured every time a
particular section of a data structure is accessed. In this case, the performance measurement
generated must take into account how the SPMD language compiler generates code to partition,
distribute, and access the data structure. In general, when program transformations are per-
formed by the compiler, it is necessary for the performance tool interpreting the instrumentation
specification to adapt the measurement support to ensure consistency and efficiency.

The contrast implicit in the above is one between performance measurement policy (i.e.,
how performance instrumentation is specified) and performance measurement mechanism (i.e.,
how the performance measurement is implemented). The high-level nature of SPMD parallel
languages (and of other parallel languages that abstract low-level details of the execution envi-
ronment) forces measurement policy and mechanism to be separated if the parallel performance
environment is to fully support the performance evaluation needs of the user. It is unreason-
able to expect a single solution combining measurement policy and mechanism (for instance,
instrumented communications libraries such PICL [7]) to fulfil these requirements. However,
separating policy from mechanism requires the performance tools to be integrated with other



tools in parallel programming environment; in particular, with program analysis and compiler
tools.

2.2 SPMD Measurement Examples

Because SPMD parallel languages present an abstraction of the execution environment to the
user, they can be targeted to different machines and architectures. It is important that per-
formance instrumentation (i.e., measurement policy) be consistent to enhance instrumentation
portability and allow cross-machine performance comparisons. Obviously, the underlying per-
formance measurement implementation will change, depending on machine characteristics. To
simplify our discussion, we will consider a general MIMD distributed memory machine in the
following examples. The examples are not complex, but even so they demonstrate the need for,
and the potential capabilities of, new SPMD performance measurement support.

The first example comes {rom a paper on compiling Fortran D for MIMD distributed memory
machines [13]. Consider the following code segment:

REAL X(N,N)
doi=2,N
do j =1, N
X(i,j) = X(i-1,j)
enddo
enddo

Fortran D provides data decomposition specifications that allow the matrix X to be decomposed
across processors in the machine and operated on in a distributed manner. Figure 1 shows three
possible decompositions of X (row blocked, column blocked, row and column blocked) and the
cross-processor dependencies these lead to.

Suppose we want to capture a trace event each time a row of X is updated and each time
a remote communication takes place in any processor. To satisfy the first measurement re-
quirement, one might think of placing measurement code between the i and j loops. However,
using source-level statements, it will be difficult to express the semantics of the instrumentation
with respect to the SPMD parallelization which the compiler might perform. For example, if a
row is distributed across processors, how does the user express in the language what is meant
by “at every point when a row of X is updated”? Furthermore, source instrumentation may
actually restrict the set of parallel transformations possible. Satisfying the second measurement
requirement is even more difficult, since message communication operations are hidden at the
source level.

As referred to above for the pC++ environment, providing a set of annotations for speci-
fying instrumentation semantics is a reasonable approach to providing a measurement policy.
Annotations appear merely as comments in the source, but allow the program objects and se-
mantics to be used to express instrumentation requirements. Clearly, such annotations would
have to be interpreted by a performance tool responsible for implementing the measurement
and, thus, must adhere to some defined language. The important point is that the annotation
language (and the performance instrumentation that it specifies) is not constrained by SPMD
language syntax.

In the example above, we might use an annotation like:



C$ann [ IfDef(INSTRUMENT)
C$cont for this processor{

Cé$cont vhen X(i,j) updated for each local i and for all j
C$cont RecordEvent (X_ARRAY_UPDATE, i)

C$cont }

C$cont RecordMessageComm()

C$cont ]

Here the semantics of the instrumentation is clear: a separate event is recorded (in each pro-
cessor trace) when the entire row segment of X within that processor has been updated, and
whenever a message communication operation takes place. The instrumentation specification is
interpreted by the performance tool implementng the measurement for each program execution
case, thereby binding the instrumentation semantics to the program parallelization. In Figure
1, we show execution time graphs that might result from such measurements, highlighting the
message communication events. The key point is that the instrumentation specification (i.e.,
annotation) remains the same.

Our second example is shown in Figure 2. Here, a matrix is distributed across processors.
We specify two types of measurement: recording events corresponding to selective matrix up-
dates, and accumulating profile statistics (counts and times) of selective parts of the program
involving matrix computations. As in the previous example, each processor performs the spec-
ified measurements with respect to its own local data (i.e., instrumentation activation can be
conditioned on the attributes of processor-local data), creating a local trace buffer of events
and an array of profile statistics. Qur interest in this case is not what the measurements are,
but how performance data might be accessed.

One interesting extension of the annotation approach is the idea of using annotations to
give a program access to the performance data collected. The ability to access runtime perfor-
mance information is important for supporting functions such as real-time parallel algorithm
animation, computational steering, and adaptive parallel execution. Suppose, for instance,
that within an instrumented block of matrix computations, the programmer wanted to know
the number of times a particular computation was performed or how long a set of computa-
tions took. She might use an instrumentation annotation to assign a program variable to those
performance values!:

C$ann { IfDef(INSTRUMENT)
C$cont count = GetCount (COMPUTATION_A)
C$cont time = GaetTime(COMPUTATIONS_ABC)

Cfcont ]

C$ann [ IfNotDef (INSTRUMENT)
C$cont count = -1

Cicont time = 0

C$cont ]

Here we see how objects of the performance measurement can be made, in a sense, first
class objects of the SPMD parallel language. It is also important to note that the performance

1Care must be taken by the instrumentation preprocessor or by the programmer {as is the case here) that the
program variable used has a defanlt value when the instrumentation is disabled.



measurement itself can leverage the semantics of the SPMD language for its implementation.
For instance, in Figure 2 we have shown two high-level, data parallel performance objects
that give an SPMD view of the performance data. Thus, operations that the performance
measurement system might need to perform on its own behalf (such as combining all processor
traces into a single time-sequenced trace at the end of program execution) or on behalf of the
user (such as determining the average amount of time spent by any processor in a section of
code for the last iteration) can be implemented using the features of the SPMD language.

In summary, as parallel languages and environments continue to raise the level of the
programming interface, thereby abstracting away execution characteristics of the underlying
parallel system, performance measurement tools must adjust by separating instrumentation
specification (i.e., measurement policy) from measurement implementation (i.e., measurement
mechanism). Although this will require a tighter integration of these tools with other tools in
the programming environment, it is encouraging to note that the high-level execution seman-
tics of SPMD parallel languages might provide a useful metaphor for performance measurement
abstraction.

3 PARALLEL PERFORMANCE VISUALIZATION

What is to be sought in designs for the display of quantitative information is the
clear portrayal of complexity. Not the complication of the simple; rather the task
of the designer is to give visual access to the subtle and the difficult — that is, the
revelation of the complex.

Graphics reveal data.
— Edward Tufte, The Visual Display of Quantitative Information

Performance visualization is the use of graphical display techniques for the analysis of per-
formance data in order to improve understanding of complex performance phenomena. Al-
though significant advances have been made in visvalizing scientific data [10, 5], techniques for
visualizing performance of parallel systems remain ad hoc. Unfortunately, the need for bet-
ter visualizations of paralle] performance will become more acute as parallel systems become
more complex. A more robust performance visualization paradigm is required if we are to use
sophisticated computer graphics techniques to present complex performance data.

Tufte's statement above implies that one useful approach to performance visualization might
be to begin with an understanding of the complexities of the performance data (i.e., what the
data represents) and then consider how graphics could be used to “reveal” important aspects
of the data. Unlike scientific visualization, the graphical display of information about the
performance of parallel systems rarely has any real physical basis; rather, the data represent
relationships and interactions between logical or virtual ebjects. By implication, renderings
tend to be more abstract and impressionistic, constrained less by “reality” and based more on
parameters controlling the graphic design space. This lack of a direct mapping complicates
performance visualization. Furthermore, the most useful sets of visualizations are likely to be
determined only from experience, and will depend on the needs and personal preferences of the
user, These arguments suggest that performance visualization research could benefit greatly
from an integration of performance evaluation, application domain expertise, human-computer
interaction (HCI), visual perception, and graphic design.



Although significant intellectual effort has been devoted to the design and development of
performance visualization tools {4, 12, 27, 24], much of the software is specialized and exper-
imental, and cannot easily be extended to provide new functionality or to be applied to new
performance evaluation scenarios. In part, the problem is due to the custom nature of the tools
developed (e.g., only accepting performance data of a specific type, restricting analysis and dis-
play options, or incorporating non-reusable user-interface and graphics software). Recent work
[33, 16] has addressed the issues of reusability and configurability by providing toolkit-based
technology that allows analysis and display modules to be composed into a performance data
visualization graph. To promote inter-operability and flexible configuration, the analysis and
display modules in these environments are generally based on simple functional transformations;
standard mechanisms are then provided for module composition and interaction. The general-
ity of the analysis and display modules requires that their implementation be independent of
performance semantics. However, for the visualization to be meaningful, performance seman-
tics must be expressed. The configuration of modules is therefore an encoding of performance
semantics through a mapping of analysis module output to the graphic display parameters. Be-
cause of this, the environment often does little more than provide a visual interface for module
configuration to aid in the semantic binding between analysis and display - much of the burden
is placed on the user for constructing semantically meaningful visualizations. For this reason,
it may be difficult to incorporate sophisticated graphics in existing performance visualization
environments in other than naive ways.

If performance visualization is to become an integral tool in parallel performance evaluation,
it must be based on a formal foundation that relates abstract performance behavior to visual
representations (i.e., “visual performance abstractions”). It must be possible to formally rep-
resent performance visualizations as functional mappings of semantic performance abstractions
to performance views, independent of graphics display technology. These representations can
then be used to produce performance visualization software by generating interfaces to graph-
ical programming libraries or input data to existing visualization systems®. In this manner,
new parallel performance visualization techniques can be quickly developed and studied. In
addition, techniques from HCI and visual perception can be more readily applied and tested.

3.1 PARASEER: A Parallel Performance Visualization Project

We discuss this future direction in parallel performance visualization against the backdrop
of the PARASEER project just beginning at the University of Oregon. PARASEER is an
exploratory research study of next-generation parallel performance visualization technology
[28]. The objectives of the project are to:

¢ Define a formal framework for describing new parallel performance visualization tech-
niques based on the paradigm of mapping performance data abstractions to performance
views.

e Develop techniques for generating parallel performance visualization software from ab-
straction, view, and mapping specifications and displaying the results with object-oriented

2The nascent work in this direction [38, 18, 37) highlights the potential power of this approach, although the
prototype tools are still limited by their interface to powerful data analysis and graphics sofiware.



display extensions to graphic user-interface software and existing data visualization sys-
tems.

s Construct new parallel performance visualizations and evaluate their usefulness in real
parallel applications.

o Apply HCI and visual perception technology to performance visualization.

Figure 3 shows the model of parallel performance visualization on which PARASEER will be
based.

The first step in visualizing performance is to define abstractions that embody performance
semantics. This is done by specifying input parameters, performance “state,” and execution
rules or procedures in abstraction definition. In this way, we can think of a performance
absiraction language being used to build a “performance object” whose definition encapsulates
its semantics and behavior. The language further supports the composition of objects for
the purpose of higher-level performance abstractions. In PARASEER, we intend to develop
a performance abstraction language combining the prior work of Snodgrass [42] and Ogle [14]
with recent developments in object-oriented languages.

Like performance abstractions, performance views encapsulate the appearance and behav-
ior of graphic displays. Again, a formal language, the performance view language, is used to
construct “view objects.” Of particular importance to view object definitions are the algo-
rithms that describe various geometric properties and transformations of views in a virtual
coordinate space as a function of view object inputs. The performance view language should
be object-oriented, supporting the structural composition of primitive performance views. The
descriptions ol graphic appearance can be supported by functional, geometrical syntax in the
language.

The binding of a performance abstraction to a performance view - mapping performance
object outputs to view object inputs - conceptually generates a performance visualization.
As we can develop languages for performance abstraction and view definition, so too can the
mapping be formally specified. The mapping language might use the notion of type matching
between abstraction output and view input parameters to determine compatible combinations.
It is also reasonable explore the use of coercion to match abstractions with views. Finally,
procedural semantics can be incorporated in the language to specify abstraction and view
interaction (e.g., view animation via changes in performance object state).

3.1.1 Some Illustrative Examples

As a simple example of these ideas, consider the performance abstraction of load balance
among a set of processors mapped to two views of processors: one as a vibrating string in two-
dimensional space and the other as balls moving in a three-dimensional space. The load balance
performance abstraction is a composite object containing P processor utilization abstractions,
where P is the number of processors in the system. The processor utilization abstraction con-
tains the percentage utilization of a processor over a specific time interval. Let us assume the
utilization information is broken into user, system, and idle time percentages. The load balance
abstraction accepts a vector of numbers representing processor utilization data and specifies
how this data is combined to produce utilization statistics concerning global load balance (e.g.,
average processor utilization and variance). As a result, new data might be passed back to the
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processor utilization abstractions to indicate the amount of processor deviation from the global
average.

Given the load balance abstraction, let’s consider using the following view abstractions for
its visualization. The first is a vibrating string view. We think of each processor as representing
a point along a string of equally-spaced points; this abstraction would be most appropriate when
the number of points is anticipated to be large (e.g., P = 1000). The “shape” of the string is
determined by how much each point deviates (plus or minus) from an average value — if each
point has zero deviation, a straight line results. Clearly, we can map the load balance abstraction
to this view abstraction by assigning the string’s average value to the average utilization (e.g.,
user utilization) and each string point deviation to the processor deviation. In this manner, as
the performance abstraction processes new processor utilization input, the view abstraction is
“animated”, and the string takes on a new shape (Figure 4). At this point, only the graphical
generation of the visualization remains. It is interesting to note, though, that in this case certain
geometrical and presentation attributes of the visualization (e.g., size, orientation, string color)
are left unspecified because they are not important in the view abstraction.

A more complex view abstraction for load balancing might describe balls in a three-dimensional
space where ball position and motion are targets for mapping the load balance abstraction.
Suppose we think of the three axes of the space representing the three utilization values: user,
system, and idle. A ball’s position, therefore, in the space is determined by these coordinates.
Visually, we will perceive load balance as spatial relationships between the balls. A unique ball
could be used to show the global utilization average. Averaging the utilization values of each
processor using a sliding time window whose duration was defined by the user would animate
the display. Shortening the window would make the balls more “responsive” to small changes in
utilization, but the resulting “jitter” could make the display difficult to interpret. Lengthening
the window, on the other hand, would give a more settled, but possibly less informative, display.

A last example of a complex view that we hope to generate automatically with PARASEER
is the “kaleidoscope” defined for a fine-grain concurrent logic programming language {43]. The
basic concept is simple: we display the dynamic call graph (process tree) in polar coordinates so
that computationally intensive nodes are afforded proportionally more space. Another perfor-
mance dimension can be represented by color; for example, in [43] nodes were colored according
to time of function invocation. Creating views of this complexity requires algorithmic speci-
fication {as opposed to pure functional composition, as in toolkit approaches), if for no other
reason than ease of programming. The PARASEER notion of performance abstraction and
view specification languages will allow rapid exploration of alternative heuristics for coloration
and node placement. It is also important to look at the configuration effort to apply a new
view, such as the kaleidoscope view, to another performance abstraction, for instance load bal-
ancing. Again, we hope to significantly reduce the effort with a formal abstraction framework
and binding language.

3.1.2 Instantiating Views

The ultimate goal of the PARASEER project is to explore new parallel performance visualiza-
tion techniques and to evaluate their effectiveness in real parallel performance problem domains.
In addition to the formal framework for performance visualization design, PARASEER will take
two approaches to visualization instatiation. The first will build interfaces to existing data visu-
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alization software packages (e.g., AVS, used extensively for scientific visualization) to provide a
flexible environment for graphics prototyping and control. This approach leverages these tools’
capabilities for handling large data sets, applying sophisticated graphics functions, supporting
distributed processing, and extending the visualization architecture.

The second approach will develop a performance display library as an extension to graphical
user interface software to provide more programmatic performance visualization support. The
concern here is that AVS and other visualization packages might not provide enough flexibility
for certain visualization problems. We want to be able to develop executable “targets” (using,
for instance, Silicon Graphics’ graphics language GL or their Iris Inventor 3-D object library) for
visualization instantiations at the program level, rather than the application level. The paraliel
performance visualization will still be formally specified, but the user will able to construct
custom performance visualization tools programmatically, with graphic display objects closely
associated to the view specification. The second approach is necessary to build performance
visualizations that operate in real time.

3.1.3 PARASEER Validation

We intend to validate the PARASEER approach by defining performance abstractions and views
for commonly found parallel performance visualizations in tools such as Paragraph [12], Pablo
[33], and TraceView {24]. The goal is to evaluate the generality and flexibility of the PARASEER
framework by formally specifying the visualization types found in these tools. In this work, we
will use the two approaches discussed above to instantiate visualization specifications. If the
PARASEER method cannot easily specify existing visualization types and show that thereis a
path to instantiate the visualization, it will be difficult to justify its use in more sophisticated
visualizations.

3.2 The Role of Computer Graphics in Performance Visualization

Most parallel performance visualization techniques that have been developed for use with to-
day’s high performance graphics workstations are inherited from the graphic arts field. Many
images are simple two-dimensional representations evolved from early displays of statistical
data. This is quite natural because until graphic workstations became available, artists and
graphic designers working with traditional media were the only way that technical illustration
could be done.

There are, however, numerous computer graphic techniques which improve upon and go
beyond the traditional artistic methods. For example, in the area of color, it is possible with
today’s workstations to compute color scales from perceptually uniform color spaces and use
these scales to display the variation of a parameter related to parallel performance [29]. Trans-
parency techniques can be employed to place a colored filter over an object and relate the density
of the filter to the value of some variable [36]. Other computer graphic image synthesis methods
remain to be exploited in parallel performance visualization. Correlating surface roughness or
surface texture with a parameter that tracks a performance variable or using shadows as a visual
cue for the existence of performance phenomena has obvious appeal. Shading algorithms can
also be adapted to allow parallel performance parameters control diffuse and specular reflection.
Given the discrete form that the data for visualization problems typically assumes, volumetric
rendering techniques are easily adapted to the problem and should be explored more {ully.
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Together, these techniques open up exciting possibilities for displaying subtle differences
and complex interactions among performance variables. In addition, the huge volume of in-
formation generated in high-performance, massively parallel systems will require the use of
high-bandwidth graphical images. The PARASEER project represents an effort to develop a
formal infrastructure for advanced parallel performance visualization research. Its purpose is
to significantly reduce the software implementation burden often encountered in performance
visualization projects, freeing the researcher to concentrate on the fundamental properties of
the performance abstractions and views that together represent a performance visualization.

4 Using Expert Systems in Parallel Performance Evaluation

The final future direction we will discuss is also the most speculative. As mentioned earlier,
programming parallel computers in a language which abstracts away the characteristics of par-
ticular hardware platforms can be a disadvantage when programmers have to tune applications
for particular systems. While it may be desirable, when designing an algorithm, to ignore
details such as the number of processors, their interconnection, or even whether they oper-
ate synchronously (SIMD) or asynchronously (MIMD), it is exactly these attributes which are
important to performance optimization.

A partial solution to this problem is to allow programmers to annotate their programs
(using “pragmas” or compiler directives) in order to express machine-dependent optimizations.
However, the combination of the number of attributes of the underlying system which such
annotations might reflect and the different ways programming constructs could be implemented
would lead to a bewildering variety of choices. A more attractive solution in the long term
is to automate, or partially automate, performance evaluation and tuning. In this section
we describe our plans for a performance expert system that combines advances in tools for
parallel performance analysis with Al technology for knowledge-based analysis to function as
an “expert performance advisor”. The prototype system we are now developing is named
EXPOSE (EXpert Performance Qptimization SystEM), and is intended to demonstrate how
expert systems technology could be used in parallel program evaluation and optimization.

4.1 Automating the Performance Optimization Process

Optimizing a program’s performance is an inherently cyclic process, in which code development,
instrumentation, execution, and evaluation are done repeatedly. While today’s state-of-the-art
performance analysis systems offer little more than basic measurement and analysis facilities,
the ideal system would serve as a “performance advisor”, using observed performance charac-
teristics and stored knowledge to direct optimization efforts. We believe that the development
of more measurement and analysis tools which leave the intellectual burden of performance
interpretation on the application developer will, by itself, do little to improve the average pro-
grammer’s productivity. Instead, such tools must be integrated with advances in performance
modeling and prediction to create a system capable of automatic, “intelligent™ performance
optimization.

Such a “smart” performance optimization system would couple an intimate knowledge of
the semantics of parallel computations with models (measured and theoretical} of the overall

12



nature of parallel performance behavior at the program, system, and machine levels. It would
include:

e an extensive performance measurement framework for capturing data at all levels;

e a set of tools for automatically and interactively characterizing observed performance
phenomena and building a database of performance knowledge;

e techniques for abstracting observed performance data to create models of performance
behavior; and

¢ an approach to performance prediction that would rely on performance models and known
relationships between computational properties and performance characteristics to {ore-
cast the effect of changes in the program or execution environment.

The difficulties in building such a system are as daunting as the problems the system is trying to
solve, The level of sophistication such system would represent has never been achieved, and will
require advances in the states of several arts. However, even partial failure will be informative,
as it will help clarify which aspects of performance tuning may be considered “routine”, or
domain-independent, and which can only be done using domain knowledge.

4.2 System Goals

The basic model of EXPOSE is that the system should help the user design and execute
performance evaluation plans. For a plan to be realized, it must:

e specify the parallel program for evaluation;

¢ specify the target environment for the program’s execution;

¢ identify performance objectives to be achieved;

¢ identify critical performance factors related to the objectives;

¢ define a set of experiments to measure the performance factors;
e specify a measurement approach for each experiment;

¢ select analysis alternatives to be applied; and

e request performance results to be generated.

On one level, EXPOSE will be just a set of tools for measurement, analysis, and results presen-
tation. The user will choose different combinations of tools to apply by actuating different parts
of a plan. At a more sophisticated level, EXPOSE will help the user construct and execute
performance evaluation plans according to strategies that it has been given. These strategies
will embody knowledge about how the different components of a plan are interrelated, about
good and bad plans for different performance objectives, and about how performance results
relate to known problems.
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Deciding what performance measurements to make, the set of experiments to conduct, and
the type of analyses to perform to produce results that address a particular performance ques-
tion is (to say the least) non-trivial. However, we believe that strategies can be specified for
a variety of generic parallel performance problems, particularly those related to data decom-
position and load balancing. One of the aims of this work is to determine just how much of
program tuning is generic in this sense, and how much relies on domain-specific knowledge.

As an example of a generic tuning problem, suppose we want to determine load balance
during a particular phase of a parallel program’s execution. A strategy for doing this would
describe instrumentation to detect changes in processor state, measurements that capture pro-
cessor utilization data at different time scales (i.e., traces versus samples), analyses to produce
statistical profiles of load balance at different perspectives (local and global), and criteria for
evaluating the quality of load balance performance. Such a strategy could then be incorporated
into a hierarchy of more complex strategies, such as strategies for observing the effects on load
balance as the number of processors vary.

A more complicated problem area in which domain knowledge might play an important réle
is choosing a combination of data decomposition and work allocation which together give highest
performance in a particular program. For example, consider the simple dynamic programming
code discussed in [44]. The main data structure being manipulated is an upper-triangular
matrix; in order to update a point {z,y), all points between it and the main diagonal in its
row and column must be accessed. On a distributed-memory machine, a simple row-wise or
column-wise decomposition of the matrix would allow half of all accesses to be local, but would
force the other half to be non-local. Duplicating the matrix, and storing one copy by row
and the other by column, can reduce these memory access costs; caching previously-fetched
rows and columns, and allocating work to processors so that cached values can be re-used as
often as possible, affords a similar work reduction. There is clearly some scope here for a tool
to recognize data access patterns (using information provided by the compilation tools and
observation of actual program per{formance}, to help design experiments to compare alternative
caching and work allocation strategies, and to record, analyse, and report on the results of these
experiments.

A separate problem from the notion of designing strategies for performance analysis is the
concept of performance problem recognition. The most common question of parallel systems
users is, “Why is my program performing as poorly as it is?” rather than simply “What are the
performance characteristics of my program?” The approach which we will adopt in EXPOSE
will be based on model abstraction and identification. We will attempt to create abstract
representations of a program’s execution, annotate these with actual performance data, and
match them against archetypal performance models. Execution abstractions will be derived
from:

o user supplied execution specifications (e.g., flow graphs);
¢ control and data flow information {from static program analysis; and
¢ pattern analysis of performance data (e.g., computational phases).

Once an execution abstraction has been formulated, it will define a basis for experimentation
within which different parameters of the execution model can be evaluated. These experiments
will generate a performance database which will be used in the recognition process.
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4.3 Evaluating the Expert System

While the other tools discussed in this paper represents extensions of existing research direc-
tions, EXPOSE is a step into the unknown. It will therefore be as important to evaluate its
failures as its successes, in order to guide further research. The most important evaluation
criterion that will be used is also the simplest: can programmers improve the performance of
their programs more quickly using the tool? If the answer is “no”, then it will be important to
determine why not — is the overhead of using EXPOSE outweighs the performance gains it re-
alizes, is most performance optimization done using domain-specific knowledge which EXPOSE
does not, or cannot, incorporate, etc. While a positive answer to the first of these would call
the whole approach into question, the second would indicate that the direction for follow-on
research should be toward developing knowledge capture tools capable of encoding what experts
know about particular domains.

A second evaluation which will be made of EXPOSE is the degree to which it can detect key
aspects of program performance, and present these to users in a comprehensible fashion. Once
a programmer knows why a program is performing poorly, it is often relatively straightforward
for her to alter its behavior accordingly; the hard part is determining what the bottlenecks
actually are. The main challenge we foresee will be to find a representation which will make
model classification and matching possible. One option which will be explored is to have the
programmer implementing a library encode her understanding of how it is likely to behave, and
what aspects of its behavior are likely to be critical to performance on particular architectures.
This knowledge would then be available for EXPOSE to use directly in designing and analyzing
experiments, and, through EXPOSE, to the programmer using the library, so that she could
avoid performance problems rather than correct them after the fact.

5 CONCLUSION

Each of the advances outlined in the previous sections is ambitious; their combination will
undoubtedly be difficult to achieve. However, as the complexity parallel computing systems
continues to grow - as more complicated memory hierarchies and caching strategies are in-
troduced, for example, or as inter-processor communication systems gain new capabilities —
understanding and modifying program behavior will become a major bottleneck in the overall
cycle of supercomputer utilization. The cost of developing these tools is likely to be less than
the purchase price of any of the next generation of teraFLOPS computers, and the overall
return much greater,
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