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EUGENE M. LUKS

ABSTRACT., We discuss aspects of computation in permutation groups as-
suming polynomial time as a measure of efficiency. Of particular intercst
are problems, such as finding the intersection of two groups, that resemble
or generalize the problem of testing graph isomorphism. We also summarize
the instances where the problems are known to be solvable in polynomial
time and indicate methods that accomplish this. As with graph Isomor-
phism, the computational complexities of the general problems are open,
though we can demonstrate polynomial-time reductions and equivalences
among them. A typieal approach to such issues is shown to involve an
NP-complete prablem. Several open questions are listed.

1. Introduction

Our focus is on polynomial-time computability. Naturally, in employing so
broad a brush, we do not pretend to delineate the present practical frontiers of
computational group theory. Polynomial time is, on the other hand, a widely-
recognized standard of tractability as well as a robust model in which to measure
and compare efficiency. But, we leave even that point to be delended, or disputed,
elsewhere. From our perspective, polynomial time provides, independently, a
productive and elegant domain in which to study the structure of group-theoretic
computation, while the group-theoretic setting provides insight into the structure
of unresolved issues in computational complexity. Furthermore, this interface
with theoretical computer science motivates attractive problems for the group
theorist, a haunting example stemming from the failure of all efforts to develop
a provably efficient method for testing graph isomorphism. Thus, where the
state-of-knowledge about polynomial-time efficiency does not conform to current
perceptions of “practical” efficiency, there lie the most tantalizing of the open
questions.

We discuss permutation groups G < Sym(f2) that are input via generators.
It is reasonable to insist that the generating set is “small”; e.g., of cardinality
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< |©2]2. With this understanding, polynomial time “in the input” translates to
an O(|Q[°) bound, for some constant c, on the number of steps required in the
worst-case. In this paper, we are not concerned with optimizing the exponent
c. Such “low-level” complexity matters are, of course, of great interest and are
closer to, even when not identical with, implementational concerns. Nevertheless,
these are, in the present context, extraneous issues and we gain more insight
into polynomial-time matters by ignoring them. Thus, we avoid specification
and justification of precise constants in the exponents, favoring clarity of the
polynomial-time status over optimization of time or space requirements.

We sample not only what 4s in polynomial time but also a range of problems
that, to date, have not met this standard. Our eoncentration is on issues that
are motivated by graph-isomorphism testing. Such issues include important and
standard group-theoretic problems, including the computation of intersections
of permutation groups, centralizers of elements and stabilizers of subsets, As
with graph isomorphism, these problems are not considered hard in practice.
Nevertheless, no algorithm has been shown to require less than exponential time
in the worst case. On the other hand, there seems some evidence that “decision”
versions of the problems are not NP-complete. If that is the case, then another
level of difficulty (assuming PsNP) is represented by the related problem of
finding lexicographically least elements in double cosets, for we show (the decision
version of) this one is NP-complete.

On the positive side, we offer various proofs of polynomial time. While there
is a large polynomial-time library (see [18}), our emphasis again is on instances
of the problems that are related to graph isomorphism and its group-theoretic
analogues. For most of the problems, there are efficient procedures for solvable
groups.

Our discussion also brings out several open questions.

In Section 3, we review basic polynomial-time tools for dealing with permuta-
tion groups. Consistent with computational experience, these efficient techniques
are rooted in methods of C.C. Sims. However, in Section 4 we move on to some
problems for which efficiency has not been theoretically substantiated. Although
their complexity is unknown, they can be shown to be polynomial-time equiv-
alent. The NP-hardness of the aforementioned lex-least problem is proved in
Section 5. To better understand the difficulty, we offer two proofs. One of these
involves abelian groups with small orbits. In that case, we can explain away the
difficulty in terms of the choice of linear orderings on the permutation domain.
To be precise, we go on, in Section 6, to show that, with an ordering based upon
the orbit/imprimitivity-block structure of the group, the lex-least problem is in
polynomial time for groups with restricted noncyclic composition factors, thus
automatically including all solvable groups. This result, in turn, recovers in-
stances where the graph-isomorphism-inspired problems are in polynomial time.
Other polynomial-time instances are discussed in Section 7, where it is seen that
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the search for subgroups is apparently made easier if the targeted subgroup is
normal. For instance, in Sections 7 and 8, we show that the cores of intersections,
centralizers and set stabilizers can be found in polynomial time. In Section 8, we
give samples of results of Kantor and Luks that indicate how the procedures, as
well as the open problems, are extended to quotients of permutation groups, the
theme being that, as far as polynomial time is concerned, the problems are no
harder when dealing with quotients. There is, however, remarkable additional
overhead in generalizing to quotient groups, for some problems that previously
had elementary solutions now seem to require much deeper theory. In particular,
the solutions make use of Sylow subgroups which are accessible in polynomial
time only through results of Kantor that use consequences of the classification
of finite simple groups. By contrast, we present, in Section 9, an approach to
finding p-cores (maximal normal p-subgroups), While implemented solutions
to this problem typically use Sylow subgroups, we describe an elementary, self-
contained method that bypasses these. Some other related problems are listed in
Section 10, none of which are known to be in polynomial time. In fact, to date,
they seemn to represent various levels of difficulty, thereby opening up questions
even about the existence of polynomial-time reductions between the problems.

2. Notation and Preliminaries

Let G be a group. We write H < G, respectively H < G, to indicate H is a
subgroup of G, respectively a normal subgroup; H < G and H « G, respectively,
indicate strict inclusion. We say H is subnormal in G, denoted H << G, if there
exist groups Hy,..., Hp such that H A Hy 9 ..- 94 H,, 4 G. If H € G, a right
(left) transversal for H in G is a complete set of right (left) coset representatives
for Hin G. A right (left) subcoset of G is a coset Hzx (zH) of a subgroup
H < G. For AC G, (A} denotes the subgroup generated by A. For g,h € G, let
h9 = g~ 'hg, the conjugate of h by g, and let [g, h] = g~'h~1gh, the commutalor
of gand h. For AC G, A% = {a% | a € A}; il H € G, the centralizer of A in
His Cy(A) = {h € H | a* = a,VYa € A}; for a € G, Cy(a) = Cy({a}). For
subgroups H, K £ G, the normalizer of H in K isNg(H) ={k€ K | H* = H};
we let H¥ = (| ey H*), this is the normal closure of H in {H, K}, namely the
smallest normal subgroup of (H, K} that contains H. For H < @, the core ol H
in G is Coreg(H) =(,ec HY, it is the largest subgroup of H that is normalized
by G.

We denote by Sym{f2) the symmetric group on the finite set Q. Suppose G
acts on 2, that is, there is a homomorphism ¢ : G = Sym(f); if G < Sym(Q),
¢ is understood to be the natural injection. For w € f), ¢ € G, w? denotes the
image of w under ¢(g); for A C Q, A9 = {w? |w € A}; for w € 8, the orbit of w
is {w? | g € G} and is denoted w®. For w € 2, G,, denotes the subgroup fixing
w, namely {g € G | w9 = w}; for A C 2, G denotes the pointwise stabilizer
of A, namely [ ea Gu; if an ordering wy, ... ,wy of Q is understood, and A; =
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{wi,...,wi1} then G®) = G4, (in particular, G(!} = G and G = 1). For
A C Q, the (set) stabilizer of A in G, denoted Stabg(A), is {g € G| AfF = A);
G stabilizes A if Stabg(A) = G. For a € Sym{Q2),A C 0, let a® denote the
induced function A — A®, and for A € Sym(2), A% = {a® |a € A}. In
particular, if G < Sym(f) and C stabilizes A then G® < Sym(A). A subset
A C Qis called a block for G if, for all g € G, either A= Aor ANA =0. We
say that G acts transitively on Q if §) consists of a single orbit; G acts primitively
if it acts transitively and there is no block A for G with 1 < |A| < [Q[; G acts
regularly if it acts transitively and G, =1 for any (all) w € Q.

We refer to Chapter 1 of [30] for elementary results in permutation groups
that are not specifically recalled herein.

Unless otherwise indicated, we suppose n = |2]. It is useful to recall that an
increasing chain of subgroups of Sym(f2) has polynomially-bounded length; for
example, Lagrange’s Theorem implies that the length cannot exceed log, n! =
O(nlogn) (in fact, a linear bound can be proved [1]). Though not explicitly
stated, this is often essential to the verification of polynomial running times. For
algorithmic purposes, unless indicated otherwise, it is assumed that subgroups
of Sym(£) are specified (input or output) by generating sets.

A problem is said to be in polynomial time if it is solvable in O(m¢) steps where
m is the size of a reasonable encoding of the input. In saying that a problem A is
polynomial-time reducible to a problem B, we mean that if B is in polynomial time
then A is in polynomial time. However, in the case of reductions between two
decision problems, i.e., those with a “yes”/“no” answer, we always intend Karp
reduclions, that is, there is a polynomial-time-computable mapping of instances
of A to instances of B, so that “yes”, *no” instances map, respectively, to “yes”,
“no” instances. Two problems are polynomial-time egquivalent (in either sense) if
there are reductions in both directions. See, for example, [12], for elaboration of
these issues, including the need for Karp reductions, as well as formal definitions
of the classes P, NP, and NP-Complete. Note that these particular terms apply
only to decision problems.

3. Basic Polynomial-Time Tools

In this section, we recall some elementary problems that are solvable in poly-
nomial time and that we need to reference later. The techniques will be quite
familiar to most readers. Still, it is worth reviewing a few of these not only
to emphasize polynomial-time thinking, but also to distinguish these problems
from those in Sections 4 and 5, for which presently implemented methods do not
meet our measure of efficiency,

We assume that G = {X) < Sym(£).

Some efficient procedures follow a divide-and-conquer approach that exploits
the orbit and imprimitivity structure of the group. We observe that standard
computations of orbits and imprimitivity blocks run in polynomial time.
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(3.1) Given w € 9, find w€, the orbit of w under G, and for each ¢ € w©,
find g € G such that w9 = .

A naive transitive closure algorithm involves, at worst, applying each generator
to each element of (2, for a worst-case time of O(}|X|n). O

(3.2) If G acts transitively on §, test whether G acts primitively and, if not,
find a non-trivial block system.

For example, the (unique) smallest block containing any given o, 8 € Q is the
component of « in the undirected graph (2, {a, 8}€). DO

We often concatenate polynomial-time procedures, up to a polynomial number
in fact, to obtain, thereby, a polynomial-time procedure. To do so freely, however,
we must be sure that the size of the output of each procedure is bounded by some
fixed polynomial in the size of the permutation domain. (Technically, the output
of a quadratic procedure could use space that is quadratic in its input size; the
concatenation of an unbounded number of such procedures is prohibitive.) In
particular, since many procedures involve finding generators for some targeted
subgroup, we need to exercise some control on the sizes of generating sets. For
example, there is an polynomial-time procedure for

(3.3) Find a set of < n? generators for G.

The underlying logic for this is at the heart of Sims’s methods [29]. We review
the idea, from which polynomial time is then a straightforward observation.

fori=1ton~-1do
while 3 distinct z,y € X N G® such that w? = w? do

replace such a pair z,y by z,yz~!.

Discarding duplicates, the modified X does not contain distinct elements of any

G that lie in the same right coset of G¥+1). Hence, the final X has size at
most 30 (G G < T M n— it 1) <2 O

Remark. Henceforth, we assume that all polynomial-time algorithms that
output generators for a subgroup return fewer than n? generators. We also
assume that |X| < n?,

It is often the case that a subgroup H of our given G is specified only by
some testable condition, i.e., there is a polynomial-time procedure which, for any
g € G, determines whether g € H. (The subgroups G serve as examples.) In
such case, we say that H is (polynomial-time)} recognizable.

(3.4) Find generators for a polynomial-time-recognizable subgroup H for which
|G: H| = O{(n®} and determine |G: H|.

A right transversal T for H in G and a set Y of Schreier generators [14] of H
are both constructed in:
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T:={1}; Y:=0; @:={1}
while @ # 0 do
remove ¢ from Q;
forallz e X do
if 3teT:grt ' € H then addsuchqzt ' to Y
else add gz to T and to Q.
Thus, T has been constructed by a transitive closure method, having right mul-
tiplied every element of T by all generators of G to see if this produces any new
cosets, In the end, TX C (V)T so that G = (Y)T, whence (Y) = H.
The running time is O(|G: H|?n=*+¢"), where O(n®') is the time for 2 mem-
bership-test in H and ¢ is an absolute constant, so that an upper bound is
O(n2c+c"+c")_ O

Remarks. 1t is often the case that H-recognizability also involves some natural
interpretation of the cosets, obviating the search through all ¢t € T to find whether
some gzt~! € H; this could eliminate as much as ¢+ ¢’ from the exponent in the
timing. The prototypical example is H = G, wherein T is keyed by the orbit
of wy.

It is assumed that the bound |G: H] = O(n®), for some constant c, is known,
though the method can also be interpreted as testing this bound in polynomial
time; if the procedure takes longer than the predicted number of steps, the bound
does not, hold.

Applying (3.4) iteratively yields a polynomial-time solution to

(3.5) Find generators for a subgroup H given that H=H,, < H, <---
Hy = G where the H; are each polynomial-time-recognizable and |H;: Hiy, |
Oné) for0<i<m. O

IA

In particular, as each G} is polynomial-time recognizable, we can solve in
polynomial time

(3.6) Given any A C R, find generators for Ga (the poiniwise stabilizer
of ). O

Since |G| = [T IGW: GG+Y)|, we can, in polynomial time,
(37) Find |G. O

Noting that z € G ifl |G| = |{G, z)|, we have a polynomial-time algorithm for
membership-testing:

(3.8) Given z € Sym(R), test whetherz € G. 3

Remarks. We should emphasize that we are not recommending this indirect
approach to membership-testing in practice. We are only reminding the reader of
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a particular logical interconnection of these problems, through which polynomial
time is made clear.

The observation that Sims’s methods run in polynomial time was made by
Furst, Hopcroft and Luks [11].

More generally we refer later to a polynomial-time procedure for

(3.8) Given yn,... ,¥m € Q, withm < n = ||, test whether 3z € G such
that wi = iy, for 1 <1< m, and, if g0, find (the subcoset of) all such .

By (3.1), we can find y € G such that w¥ = 9y, if any such y exists. Recursively
find the subcoset Hz of G,,, mapping u; — 1}:}'-1, for 2 < i < m; return Hzy.
(Note that the single recursive call involves a permutation group on at most n—1
letters.) O

As an immediate consequence of (3.8), we have a polynomial-time algorithm
for

(3.10) Given H = {Y') < Sym(Q2), lest whether H < G.
le,test VYCCG. O

Several applications require normal closures.

(3.11) Given H = ({Y) < Sym(R), find HS.

To get generators, ¥ of HS: initialize ¥ = Y; while there exist z € X,y € ¥
such that 5* ¢ (¥), addsuch s to Y. O

Remark. We remind the reader that we use (from now on implicitly) the
polynomial constraint on the length of any increasing chain of subgroups of
Sym(2).

As the derived group G’ is the normal closure in G of {|z,y] | z,y € X), we
have a polynomial-time procedure for

(3.12) Find the derived series G 2 G’ > (G') 2 ---. Hence, lest whether G
i3 solyable. [

To compute the lower central series of G, let L,(G) = G = {X); then if
Li = {Xi), Li+1(G) = ([z,y] | z,€ X,y € X;}¥. Thus we have a polynomial-
time procedure for

(3.13) Find the lower central series of G. Hence, test whether G is nilpo-
tent. O

An alternative polynomial-time nilpotence test is to check that G is 2 direct
product of p-groups: For each z € X and each prime p dividing |G|, let (z,)
be the Sylow p-subgroup of (z); for example, z, = ™ where |G| = mp* with
(m,p) = 1 (such large powers of z are computable by “repeated squaring” tricks,



-] EUGENE M. LUKS

though an even faster approach could be to compute the power in each cycle of
z, first reducing m modulo the cycle length). Letting G, = {z, | z € X), verily
that |G| is a power of p for each p and that the generators of G, commute with
the generatorsof Gy forp#4¢. O

4. Not Known to be in Polynomial Time

There is general agreement that, by all measures, the problems in the preced-
ing section have efficient solutions., We turn now to some which seem to have
satisfactory implementations but for which all known algorithms have exponen-
tial worst-case complexity. Were there no other reason for looking at them,
these would be of theoretical interest because of their relation to the graph-
isomorphism problem:

ProsLEM. GRAPH ISOMORPHISM (GRAPH-ISO)
INPUT: Graphs G) = (W, ), G2 = (Wa, E2).
QUESTION: Are G,,Gs isomorphic?

1t is generally felt that GRAPH-ISO is not a hard problem in practice (see,
e.g., (23] for an implemented procedure that many have found satisfactory).
Nevertheless, although the problem has been extensively studied, nothing close
to polynomial time has been proved. Indeed, there is no known approach that
has proved to be subezponential (say, for example, in O(n!°8" ") time) in the worst
case. (See remarks at the end of Section 6). On the other hand, there is evidence
that GRAPH-ISO is not NP-complete, otherwise there would be a collapse of
the “polynomial-time hierarchy” [13]. Indeed, from the earliest expositions of
NP-completeness (e.g., see discussion in [12]), there has been speculation that
GRAPH-ISO may be one of the few classical decision problems that is neither
in polynomial time nor NP-complete.

We recall polynomial-time reductions of GRAPH-ISO to permutation-group
problems. To introduce the groups, we consider

ProBLEM. GRAPH AUTOMORPHISM-GROUP (GRAPH-AUTO)
INPUT: Graph G = (V, E).
FIND: Generalors for Aut(G), the automorphism group of G.

The following is well known.

ProposITION 4.1. GRAPH-ISO and GRAPH-AUTO are polynomial-time
equivalent problems.

Proor. To reduce GRAPH-ISO to GRAPH-AUTO, we first note that it suf-
fices to consider the GRAPH-ISO case where the graphs G, G, are connected,
for, in general, one may test all pairs of connected components. Given connected
G = (W, B1),Ga = (Va, ), form the disjoint union § = (V|UV,, E;UE;) and
suppose Aut(G) = (X). Then G, =G iff Iz e X : Vi =Va.
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We turn to the reverse reduction. For this, we first observe that GRAPH-1SO
would enable us to solve

ProBLEM. RESTRICTED GRAPH AUTOMORPHISM

(RES-GRAPH-AUTO)
INPUT: Graph G = (V, E) and, for some m < |V|;
sequences vy, V2, ... ,Um and wy, wa,... , Wy, of distincl vertices in V.

QUESTION: [y there some g € Aut(G) such that vf = wy, forl <i<m?

Reducing RES-GRAPH-AUTO to GRAPH-ISO: Attaching distinguishable
“gadgets” to the v; forming a graph G; and similar gadgets to the respective
w; forming a graph G, RES-GRAPH-ISO reduces to testing isomorphism of the
modified Gy, G2. A suitable gadget at v;, respectively w;, could be a new cycle
of length |V| + ¢ through the vertex.

Reducing GRAPH-AUTO to RES-GRAPH-AUTO: Repeated application of
a procedure for the decision problem RES-GRAPH-AUTO facilitates the actual
construction of a suitable g; for, having received a “yes”, we go on to find a
possible v7, . ; (using a RES-GRAPH-AUTO procedure to test all candidates)
then v .., etc. Note this will have used O(|V|?) calls to RES-GRAPH-AUTO.

In this fashion, O(JV]*) applications of RES-GRAPH-AUTO determine the
orbit of ¥, under Aut(G) and a right transversal for Aut(G)® (the stabilizer of
v1) in Aut(G). Similarly, we get transversals for each Aut(G)\+Y in Aut{g)¢),
The union of such transversals generate Aut(G). Thus, GRAPH-AUTO has been
recovered from O(|V|*) applications of GRAPH-1SO (to graphs of polynomial
size O(|V[?)). O

Observing then that GRAPH-AUTO is the problem that we would have to
solve, we consider the natural action of G = Sym(V) on the set of unordered
pairs in V, and see that Aut(G) is precisely the subgroup that stabilizes E. With
this in mind, we define the problem

ProBLEM. SET-STABILIZER (STAB)

INPUT: G < Sym(Q2); A C 9.
FIND: Stabg(A) = {g € G| A9 = A}.
Thus, the above argument showed
PROPOSITION 4.2. GRAPH-I50 is polynomial-time reducible to STAB. DO

There are two other important formulations of STAB. Consider

ProsLEM. INTERSECTION (INTER)
INPUT: G, H < Sym{f2).
FIND: GN H.

ProBLEM. CENTRALIZER (CENT)
InPUT: G £ Sym(Q); =z € Sym(R).
FIND: The centrulizer, Cg(z), of z in G.
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PROPOSITION 4.3, The problems STAB, INTER and CENT are polynomial-
lime eguivelent,

PROOF. Suppose we are given an instance (G, 2, A) of STAB. To reduce this
to INTER or CENT, let G act in the diagonal on the disjoint union & = 2,00,
of two copies of 2 (i.e., (wi)? =], Vw € 0, 1 =1,2, Vg € G, where w; denotes
the §); copy of w € §2). Let x be the involution in Sym(ﬁ) specified by: (w)* = uy
ifw¢ A and (w;)* =w3—; if w € A. Then Stabg(A) = GN G= = Ce(z).

We indicate reductions in the other direction. For INTERS: let G x H sct on
2 x §) in the natural way, and set A = {(w,w) | w € 0}; then Stabgxy(A) =
{{g,9)lg € GNH}. FOR CENT: g € G commutes with z iff g, acting diagonally
on  x Q, stabilizes {{w,w®) |we N}. O

Remarks. In a panel discussion at the DIMACS workshop that gave rise to
these Proceedings, the sentiment was generally expressed that STAB, INTER
and CENT are “not hard in practice.” Thus one should ask:

QUESTION 1. Are STAB (or INTER or CENT) in polynomial time? Are
there even subezponential methods?

Of course, affirmative answers would carry over to GRAPH-ISO. Until such
time as this is resolved, implemented methods that rely on general procedures
for STAB, INTER or CENT cannot be proved efficient. In particular, they must
be excluded from the polynomial-time toolkit.

We emphasize “general” in the last paragraph, for it is entirely plausible that
the problems can often be solved efliciently. The challenge that we put forth,
therefore, is to back this up with theory.

QUESTION 2. For what classes of inpuls do implemenied procedures, or mod-
ifications thereof, for STAB, INTER or CENT, have polynomial {or subezpo-
nenlial) worst case performance?

If the question seems vague, we welcome reformulation, even to the exclusion
of polynomial time as a targeted criterion. Assuming there is an acknowledged
class of “interesting” groups, what can you guaruntee about the running time
over that class? A proffered system should be able to promise efficiency beyond
the observation that a procedure took S seconds for group G on machine M.

At first glance, the sentiment that STAB, etc., are “not hard in practice,”
seems entirely consistent with feelings about GRAPH-ISO. However, in the latter
case, one can provide some theoretical justification, since there are well-defined
and accepted notions of random graphs, with respect to which naive isomorphism-
testing procedures are provably fast on average (e.g., [5]). Can one do the same
for groups?

QuesTiON 3. What is the average running time of implemented procedures
Jor STAB, elc.?
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We leave open the choice of probability distributions from which to approach
this problem. A uniform distribution over all permutation groups is just one
possibility. One could also look at conjugacy classes (in Sym(f2)) or even iso-
morphism classes. One should, as well, look at this problem for restricted classes
of groups.

In Sections 6 and 7, we do give examples of procedures for STAB, INTER,
CENT that are provably in polynomial time for specified input classes, including,
for example, solvable groups.

The similarity of these problems to GRAPH-ISO carries over to analogues of
the GRAPH-AUTO/GRAPH-ISO relationship. Namely, there is, in each case,
an equivalent decision problem in NP. Essentially, these may be obtained by
substituting cosets for (one or both of) the groups in the problem and asking
whether the targeted set is nonempty. E.g., corresponding to INTER, we ask
whether Gz N H # 0. Then, with minor reformulations, we obtain the following
problems corresponding, respectively, to STAB, INTER, CENT.

ProBLEM. SET-TRANPORTER (TRANS)
InpUT: G < Sym(Q); Ay, A2 C Q.
QUESTION: Is there some g € G such that A = A,?

ProBLEM. DOUBLE-COSET EQUALITY (DC-EQ)
INPUT: G, H < Sym(Q); =, z2 € Sym{Q2).
QUESTION: Does Gx1H = Gz, H?

ProBLEM. CONJUGACY OF ELEMENTS (CONJ-ELT)
INPUT: G <€ Sym(R2); zy,z2 € Sym(Q).
QUESTION: Is there some g € G such that 2] = z,?

Note, we include “ELEMENTS” in the title specifically to distinguish from the
corresponding question of conjugacy of groups (see Section 10.2).
We have the following analogue of Proposition 4.1.

PROPOSITION 4.4. STAB is equivalent to each of the problems TRANS, DC-
EQ and CONJ-ELT.

Proor. We outline this for the equivalence STAB = TRANS. (One can also
get CENT = CONJ-ELT and INTER = DC-EQ by establishing TRANS =
CONI-ELT = DC-EQ the way one established STAB = CENT = INTER. Note
that DC-EQ is trivially restated as testing non-emptiness of an intersection of a
group H=' and a coset Gzoz;?.)

Reducing TRANS to STAB: Given an instance (G, Ay, Az) of TRANS, con-
sider the wreath product G = G'{ Z, acting on the disjoint union QUQ of two
copies of 2 and let A = A;UAy, in which A, is considered as lying in the ith copy
of (2. Then the answer to TRANS is affirmative iff some generator of Stab¢(ﬂ)
switches Ay and As.

For a reverse reduction, we consider the following analogue of RES-AUTO:



12 EUGENE M. LUKS

ProBLEM. RESTRICTED SET STABILIZER (RES-STAB)
INPUT: G < Sym(f2); A C Q; sequences wy,... ,wy and ¥y, ..., Pm 0.
QUESTION: Is there some g € Stabg(A) such that wi =y for 1 i < m.

Reducing RES-STAB to TRANS: Find, using (3.9), the subcoset Hy of G
consisting of elements mapping w; +— #; for 1 < i € m; apply TRANS to
(H,A,AV),

Reducing STAB to RES-STAB: This proceeds exactly as the reduction of
GRAPH-AUTO to RES-GRAPH-AUTO. 0O

Remark. Extending the analogy to GRAPH-ISO, Babai and Moran [8] have
shown that TRANS (therefore DC-EQ and CONJ-ELT) could be NP-complete
only if the polynomial-time hierarchy collapses to £§ = II}. Thus, even if
GRAPH-ISO were to be resolved via other methods (there is a legion of suf-
ferers from the “Graph-Isomorphism Disease”, see [28] for traditional attacks)
such group-theoretic problems would very possibly remain as outstanding candi-
dates for membership in a complexity class strictly between P and NP-Complete.
There is also the possibility of an affirmative answer to the following open ques-
tion:

QuEesTION 4. Is DC-EQ (equivalently TRANS, CONJ-ELT ) polynomial-time
reducible to GRAPH-150?

See Section 10 for additional open questions on where group-theoretic decision
problems fit in this hierarchy.

5. Not Likely to be in Polynomial Time

A suggested approach to DC-EQ (e.g., [9, 19]) has been to determine, in any
given double-coset GxH, its lexicographically least element, as Gz H = Gzo H
ifl the lex-least element in Gz H is the lex-least element in Gxzo /. This is anal-
ogous to, and a generalization of, attacking GRAPH-ISO by establishing lexico-
graphically least representations (e.g. lex-least adjacency matrices) as canonical
forms.

Of course, proponents realize that the approach has limitations. It is never-
theless worthwhile to provide theoretical substantiation of its difficulty, namely,
that it involves an NP-hard problem.

We suppose that 2 is linearly ordered with respect to a relation <. Then
Sym(§2) acquires a lexicographic ordering <, specifically, if z,y € Sym(Q2) and
z #y, then z < g iff w* < w¥ for the least w € Q such that w® # w.

We state a polynomial-time equivalent decision problem in order to bring the
question into NP.

ProBLEM. LEXICOGRAPHIC LEADER in DOUBLE COSET (LLDC)
INPUT: A linearly-ordered set Q; G, H < Sym(f2); z,y € Sym(Q).
QUESTION: Is there some z € GxH such that z <y?
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LLDC is in NP, for one can guess permutations g, h and verify that g € G,
h € H and gzh < y. Clearly, if one could find lex-least elements in polynomial
time then LLDC would be solvable in polynomial time. Conversely, a polynomial
number of calls to an LLDC procedure would suffice in a binary-search procedure
for lex-least elements.

We show

THEOREM 5.1. LLDC is NP-complete.

In fact, we give two distinct reductions of known NP-complete problems to
LLDC, as they involve different, yet seemingly reasonable, classes of groups and
seem to display different reasons for the difficulty. The first shows that LLDC is
“hard” even if G and H are symmetric groups (not, of course, in their natural
actions). The second reduction shows that LLDC is “hard” even if G and H are
abelian and even if the orbits of (G, z, H) are small (size 3). (However, see the
remark following the prools.)

FIRST PROCF OF THEOREM 5.1. It is known that the following problem is
NP-complete (see, e.g., [12]).

ProBLEM. MAXIMAL CLIQUE (MAX-CLIQ)
INPUT: Graph G = (V, E), integer K.
QUESTION: Does G contain a clique of cardinality K?

(Recall that W C V is called a cligue in G if {w), w2} € E, for all wy,wy € W)

We reduce MAX-CLIQ to LLDC, thereby establishing LLDC is also NP-
complete:

Let (G = (V, E), K) be an instance of MAX-CLIQ. We may assume that V is
linearly ordered so that V' = {v;,... ,vm}, the subscripts reflecting the ordering.
Let Q be the set of pairs {{v;,v;} | 1 €1 < 7 €< m}. Then 0 is linearly ordered
with {v;,v;} < {wk, v}, for1 <i<j<m,1<k<ign,ifeitherj <lorj=1I
and i < k. Forany ¢, 1 < g < (7), let Q, denote the set consisting of the first g
elements of £ in this ordering.

Note that £ C . We may assume that |E| > (¥). Let z be any permutation
in Sym(Q?) that maps Qg to E. Let H be the natural image of Sym(V) in
Sym(f2) and let G = Sym(Q)q\n), (s0 G = Sym(Qg)).

Let y € Sym(2) be the transposition switching the elements in positions (“.f )
and (".f) + 1. Then, for z € Sym(Q), z < y Iff z pointwise fixes 0 Ky We
claim there is a clique of size K in G iff 3z € GzH such that z < 3. This
follows from the fact that there is a clique in G of cardinality K iff there exists
k € H(= Sym(V)) such that (Q(.;:))" C E (the clique then being {v},... ,v%}).
But, as the permutations in Gz map Q(;;) precisely to the subsets of cardinality

(¥) in the set £, there is a clique of size K iff some permutation in H agrees
with some permutation in Gz on ﬂ(:;:), which is true iff some z € Gz H pointwise
fixes n(f)’ ie,ifz<y. O
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SECOND PROOF OF THEOREM 5.1. The following is also NP-complete (see,
e.g., 12)).

PRrOBLEM. EXACT 3-COVER (X3C)
INPUT: A set X together with a collection © of size-3 subsets of O.
QUESTION: Is there a subcollection ©' C © with |©'| = |Z|/3 such that

2 = UGEQ' 0.

Reduction of X3C to LLDC:

Given an instance (X, 0) of X3C, we construct an instance (2, G, H, z,y) of
LLDC as follows.

We may assume the triples in © are distinct. Let ¥ = {{8,0'} | 0,0' €
©,0N ¢ # 0}, the collection of unordered-pairs of intersecting triples. Let
® =T UGUT. The desired permutation domain is

Q=>&x{1,23}

and we fix any linear ordering of £2 subject only to the condition that & x {1}
precedes & x {2} and ¢ x {2} precedes ® x {3}.

For any ¢ € ®, we let ag € Sym(f2) be the 3-cycle {(¢,1),(¢,2),(9,3)) (i.e.,
(¢,1) = (¢,2) — (¢,3) — (¢,1)), and let by € Sym(f2) be the transposition
((#,1),(¢,2)). (Note that ({ay | ¢ € $}) is an elementary abelian 3-group and
{{bs | ¢ € §}) is an elementary abelian 2-group.) For @ = {o,,09,03} € ©,
define ¢ € Sym(Q2) by

&= ad], adgaﬂaae * H a"b -
beyev

Now let

G = ({xl0e8})
({bg | € BUTY);

z = Ha;l.

oEn

o
I

Further, let y € Sym(£2) be the transposition switching the last point in & x {1}
with the first point in & x {2}, Then, for 2 € Sym(f2), z < y iff z fixes & x {1}
pointwise.
To establish the reduction we show that LLDC with input (2, G, H, z,y) has
an affirmative answer iffl X3C with input (X, ©) has an affirmative answer.
First suppose that 8’ C O is an exact cover of I. Let

g = [[eweG
fee’
ho= JIe- I] be) €&

dee’ deyew
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We claim that gzh pointwise fixes & x {1} (whence gzh < y). To see this:
for o € X, o is in @ for exactly one 6 € ©' so that {(0,1)%** = (g,2)** =
(o, 1)% = (0,1); for 8 € O\ €', (0,1) is fixed by each of g,z,k; for ¢ € &,
(8,1)5=F = (0,2)"* = (0,2)» = (0,1); finally, for ¢y € ¥, if y N O’ = O then
(#,1) is fixed by each of g, z, h, otherwise 8 € ¢ for precisely one # € @’ so that
(%, 1% = (9, 2)** = (¥, 2)" = (%, 1).

Conversely, suppose that gzh < y, for g € G, h € H, so that gzh pointwise
fixes ;. We can express

g = H cg’, where e =0,1, or 2;
/e

h = J]be J] by, where®’'c O, %' C¥.
11> M pew!

We show that ©’ is an exact cover of I: For 8 € ©, (8,1)9*% = (0,1) implies
eg =0if 0 ¢ © and ¢g = 1i[ # € ©'. Hence, g = [Jpeq-cs. For o € I,
(0,1) = (0,1)9%* = (o, 1)9%% ‘andso o € Ugeer ¢ Finally, we must show that
©' does not contain 4,8 with 8N ¢ # 0. Suppose, to the contrary, that such
0,0/ € © and let ¢ = {0,0'} € U; then (9, 1)9* = (3, 1)%0¢? = (9, 3)* =
(1, 3), contradicting the fact that gzh fixes (y,1). O

Remarks. The construction in the second proof should be compared with the
result of Theorem 6.2, where it is shown that, with a judicious choice of ordering
of Q (determined by G alone), the problem is actually in polynomial time for
interesting classes of groups G. This includes all solvable groups as well as all
groups with bounded orbits. Either of these conditions are satisfied by the groups
of the above reduction, in fact for (G, z, H).

On the other hand, we conjecture that there is no analogous fix for the situ-
ation encountered in the first proof. Therein ) is the set of size-2 subsets of a
linearly ordered set V, H the natural image of Sym(V) in Sym(Q) and G is the
subgroup of Sym(S2) fixing all but the first g points for some g < ('%!). In this
special setting, we ask

QUESTION 5. Given such Q, G, H, is there a reordering of Q) with respect to
which the lezicographically least elements in Gz H, for any x € Sym(f2), can be
found in polynomial time?

With such an ordering in hand, one could define a polynomial-time computable
canonical form for graphs G = (V, E) with |E| = ¢q: take any z € Sym(Q)
such that 7 = E (Q; remains the first ¢ elements in the original ordering);
find z, the lex-least element (with respect to the new ordering) in Gz H; set
CF(G) = (V,9). The graph CF(G) is independent of the choice of z; even more
significantly, it is a complete isomorphism invariant (hence a canonical form),
that is, G = (V, E) is isomorphic to G’ = (V, E') iff CF(G) = CF(&’).
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As we do not expect an affirmative answer to Question 5, we suggest looking
for evidence to the contrary. Could one show, for example, that with such G
and H, LLDC remains NP-complete for any prescribed ordering of 27

An important restricted case of LLDC occurs when G = H (e.g., [19]). Thus,
it is worth observing that this case is equally “hard”,

COROLLARY 5.2, LLDC remains NP-complete when G = H.

Proor. We describe a polynomial-time reduction of the general LLDC prob-
lem to this special case.

Suppose (2, G, H,z,y) is an instance of LLDC.

Set 1 = % {1,2} and linearly order {2 so that (w,3) < () ifi<jorifi=3
and w < 4. Let & = G x H act on  via (w, 1)#8) = (w9, 1), (w,2)9H) = (wh,2)
for we 2,9 € G,h € H (thus G acts naturally on 2 x {1} and H acts naturally
on Q x {2}). Let £,§ € Sym(Q) satisfy (w,1)2 = (w%,2), (w,1)? = (w¥,2) and
(w,2)? = (w,2)? = (w,2) for w € 0.

To establish the reduction, we show that the instance (R, G, H, z, y} of LLDC
has an affirmative answer iff the instance (ﬁ, G, Gz, #) has an affirmative answer,

Suppose dg € G,h € H satisfying gzh < y. Then (g,1)2%(1,k) =< §. This
follows from that the fact that, for w € , (w, 1) V2{LA) = (yo=k 2),

Conversely, suppose (g1, h1), (g2, h2) € G satislying (g1, k1)E(go, ha) < .
Then g1zhs < y. To see this: the first point in & at which (g3, ky)Z(ga, ha) and
§ differ must lie in 2x {1} for no permutation agrees with § on 2x {1} and strictly
precedes it; the result now follows from the observation (w,1)(s1:m)2{g2:h2) —
(w=h2 2). O

Remark. A context in which LLDC arises is the actual enumeration of all
double cosets Gz H of subgroups G, H of some L € Sym(Q2) (see, e.g., [9]). (For,
assuming LLDC is not significantly harder than DC-EQ for the particular groups,
it would be most efficient to compute and store the lex-least elements as canonical
representatives of their double cosets.) Since the answer is not necessarily of
polynomial size, the natural question to ask in this case is how much work has
to be done beyond that which is dictated by the output.

QUESTION 6. Given G, H,L € Sym(QY) with G, H < L, can the double cosets,
GzH, for z € L, be enumerated in time O{(v + n)°), where v is the number of
such double cosets?

The proof of Theorem 5.1 contains the ingredients of another NP-complete-
ness result. Consider the class of problems

ProBLEM. MEMBERSHIP IN PRODUCT OF m GROUPS (m-MEMB)
INPUT: Ay, Az, ..., Am £ Sym(Q2); z € Sym(Q).
QUESTION: Isz € A1As... A ?
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Of course, 1-MEMB is in polynomial time by (3.8). The problem 2-MEMB is
simply a restatement of DC-EQ, which is of unknown complexity.

What happens for m > 37 Clearly, m-MEMB is in NP, for one can guess
and verify a factorization z = a; -- -2, with a; € A;. Now, in the reduction
in each proof of Theorem 5.1, the element y was taken to be a transposition
of two adjacent elements w;_j,w; in the linearly ordered . Then, for z €
Sym(f), z < y iff z € Sym(2)"). Hence, there exists z € GzH preceding y iff
Gz H N Sym()(+1) £ 9, which oceurs iff z € GSym(Q)E+DH. It ollows that

PROPOSITION 5.3. m-MEMB is NP-compleie form > 3. 0O

Remark. Variations on these reductions can be used to show that even the
special case of testing membership in GHG, for G, H < Sym(Q), is NP-complete,
Furthermore, this remains NP-complete even when G and H are both abelian.

8. A Polynomial-Time Instance of LLDC

Following techniques introduced in [20] and [8], we show that the difficulty
of the LLDC instance used in the second proof of Theorem 5.1 is attributable
entirely to the particular linear ordering of Q. That is, for a more general choice
of G, one can define (in polynomial time) a linear ordering of £} so that the
lexicographically-least element in any GzH is obtainable in polynomial time.
This will, in turn, yield polynomial-time solutions to special cases of INTER,
STAB and CENT.

The restriction to be placed, on G alone, is a limit on the sizes of the noncyclic
composition factors. Specifically, for any fixed integer d, let I'y denote the class
of groups all of whose non-cyclic composition factors are isomorphic to subgroups
of S4. So, in particular, I'y includes all solvable groups. The following is proved
in [2].

LEMMA 6.1 (BaBAl, CAMERON, PALFY). There is a constant ¢ such that if
G is a primitive subgroup of Sym(¥')} and G € Ty then |G] = O(|¥[*9).

Remark. Since many problems on permutation groups have natural reduc-
tions to the primitive case, results that bound the size of primitive groups under
various conditions are often essential to the analysis (see, e.g., [7] for other
examples). Indeed, the investigations leading to Lemma 6.1 were inspired by
computatjonal complexity applications. In particular, the lemma enables a sim-
plification as well as a wider applicability of the set-stabilizer algorithm in [20].

In this section, the lemma comes into play in the base case of a “divide-and-
conquer” algorithm that is guided by the orbit/imprimitivity structure of G, For
convenience, we keep track of this in a structure forest F for G. Such a forest
includes one structure tree for each orbit. The (rooted) tree 74 on the orbit A has
leaf set A and is such that the action of G on A can be lifted to automorphisms
of Ta, with the further property that the subgroup of G that fixes any node
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acts primitively on the children of that node. The polynomial-time construction
of a suitable 75 is an easy consequence of (3.2): if G is primitive then simply
attach all points to a root, else find any non-trivial block A; and recursively
construct a structure tree for the action of G on {A,}€ and a tree for the action
of Stabg(4A,) on A,, using G to copy the latter to the other blocks (in this case,
Stabg(A;) is the stabilizer of a single “point” in the action on {A;}€).

We establish some additional notation that is convenient for a recursive ex-
ploitation of orbits and blocks. Let Q be a fixed linearly-ordered set. For
any A C £, Sym(2)2 acquires a lexicographic linear ordering (via f; < f iff
J1(6) < f2(6) for the least § € A such that f;(6) # f»(6)). Define u : Sym{f2) x
Sym(£2) — Sym(Q) by u(g, £) = g~k and let pr; : Sym(2) x Sym(Q2) — Sym(92),
for 7 = 1, 2 be the projections onto the first and second factors, respectively. For
A C Sym(02) x Sym(Q2), A C 9, let €£4(A) denote the lexicographically-least
element in u{A)®; observe that the lex-least element of Gz H is €q((1,2)G x H).
We also consider the elements that induce €4 (A), namely LLao(A) = {z € A |
u(2)® = £8a(A)}. We need the following facts.

FacT 1. If A = AUA, with the elements of A, strictly preceding all those
of Ag then

LLA(A) = LLa,(LLa, (4)).

FacT 2. If A=A VAU UA,, then

Ea(A) = lex-least{€ln(A;)|1<igm}
LLa(A) = | JLLa(A:) | 2a(A) = 2(A), 1 <i < m)

FAacT 3. If A is a left coset of M and A is invariani under pri(M), then
LLA(A) is a left coset of Stabp ({(6,6%2(4)) | § € A)).

The proofs of Facts 1 and 2 are straightforward. Fact 3 follows from the
observation that, for u,v € Sym(f2) x Sym(f2), if pr;(u~'v) stabilizes A then
n(w)® = p(v)® iff u'v stabilizes {(5,6*)) [§ e A}. O

These facts are used in the main theorem of this section:

THEOREM 6.2. Let d be fived. Given G < Sym(Q), with G € Ty, in polyno-
mial time one can establish a linear ondering of Q with respect to which one can
then find, in polynomial time, the lexicographical least element in GzH for any
given = € Sym{f2) and any given H < Sym(Q).
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PROOF. Let F be a fixed structure forest for G. Taking any planar layout of
JF, with the leaves (i.e., the set Q) situated at the same level, order the leaves
left-to-right.

To accommodate recursion, we describe a general procedure for finding
LLqa(zM) where zM is any left coset of M < Sym(2) xSym(£) and pr; (M) < G.
(Our overall goal is the special case £8n((1, )G x H).) Note that we may consider
M as acting on ) via either pr; or prz, and pr;(M) also acts on F.

Assuming the orbits of G occur in the order ,,... ,8,,, we have, by Fact 1,

LLQ(ZM) = Lan( . (LLQ, (ZM)) s )

By Fact 3, the intermediate answers are always lelt cosets.

Thus it suffices to describe the construction of LLg{2M) where @ is the set
of roots descendent from a node v in F and v (therefore ®) is fixed by pry(M).

If v is a leaf, then & = {¢}. In this case, £ly(zM) is the least element in
the orbit of ¢#(=) under prz2(M). If wk is the subcoset of M mapping ¢#(*) to
£4(zM) (via the prg action) then LLg(zM) = zwL.

If v is not a leaf, then let L be the subgroup of M that fixes the immediate
children, u1,...,1, (listed left-to-right), of v (L is found by an application of
(3.6)) and find a left transversal {w,... ,wia. 1} for L in M, so

[M: £
M= U w,-L.
i=1
By Fact 2, computation of LLg (2M) follows from computation of LLg(zw; L) for
1 £i < |M: L|. By Fact 3, each contributing subanswer, i.e., each LLg(zus L),
for which &g (zw;L) = £8s(zM), is a coset v; K of the same subgroup K =
Staby,({(6,6%a(=M)) | § € A}), so that the subanswers v, K,...,v K gloe
together to a coset as in:

v, KO- Uy, K =94,(K, {11,-_]111{‘}25“5,).

Finally, to compute LL¢ (2w L), we exploit the fact that pry(L) stabilizes each
v, in the iterative approach

LLg(zw; L) = LLg, (- - - (LLg, (zu5 L)) - - -),

where ©; denotes the set of leaves descendent from ;.

For the purpose of timing, we observe that, that |M: L] is bounded by the
size of the primitive group in the action of G, on {vy,...,1}. Suppose now
that G € Tq. Then {M: L| £ O(rd). Thus, the one problem on & has involved
at most O(r°d+1) recursive calls to problems on sets of size |®|/r. It follows that
the timing for the entire procedure is O(ncd+<'),

Since double cosets can be compared when lex-least elements are available,
Theorem 6.2 has immediate applications to the problems ol Section 4.
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COROLLARY 6.3. Let d be fized. Given G < Sym(§2), with G € Iy, in poly-
nomial lime one con
(i) for any Ay, Az C 9, test whether there exists g € G such that A = Ay;
(ii) for any given H < Sym(QY) and any z;,z2 € Sym(f1) test whether
Gz H = Gz H;
(lii) for any z1,z2 € Sym(f2), test whether there erists g € G such that
=z 0O

The methods of Section 4 yield polynomial-time equivalent “AUTO" versions
for the statements in Corollary 6.3.

COROLLARY 6.4. Let d be fited. Given G < Sym(R?), with G € Ty, in poly-
nomial lime one can
(i) for any A C Q, find Stabg(A);
(i) for any given H < Sym(Q2), find GN H;
(iii) for any z € Sym(R2), find Ce(z). 0O

Remarks. The timing in all of these results, as implied by the proof of Theo-
rem 6.2, can be expressed in the form O(|Q|*¥), for constant ¢. An improvement
described in [4] results in the timing O(|Q]e¥/ load),

If G = (V, E) is a connected graph of valence d, and e € E, then Aut(G). €
['4-;. This observation, together with the result in Corollary 6.4(i), was used
in [20] to establish a polynomial-time isomorphism test for graphs of bounded
valence. Using the improved timing as above, one gets isomorphism-testing for
valence-d graphs in time O(|V|*¥/ 16 9) (so the exponent is o(d)). Together with
the “valence-reduction” trick of Zemlyachenko [31], this, in turn, yields the best-
known timing for general graph isomorphism, O{nV <"/ lo&n) [4].

The result of Corollary 6.4(i) also underlies polynomial-time isomorphism
tests for a broader class of graphs generalizing both bounded valence and bounded
genus [25, 286].

We remark, finally, that Corollary 6.4 can be approached directly, and possibly
a bit more compactly, than via Theorem 6.2. However, there is some dividend
in the lex-least approach. For example, one can apply it to find canonical forms
in the above graph classes [6].

7. Exploiting Normality

Problems that involve finding normal subgroups often have efficient solutions
according to the criterion of this paper. We illustrate the point, in this section,
with the problems of Section 4. Other examples are given in Sections 8 and 9.

We first consider INTER.

PROPOSITION 7.1. Given G,H < Sym(f), where G normalizes H, then
G N H can be found in polynomial time.
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Proor. This is an application of (3.5), for we have the tower
CNH=GNGMH <N VH<...<GnGPH <6nGWH =G.

Generators for G H are available (union of generators for G®) and generators
for H) and so membership-testing in both G and G®)H, therefore in GNGWH,
is in polynomial time. Moreover,

IGNGY-DH: GnGWH| < |GEVH: GWH| < |60 g0 < n —i.
Hence, (3.5) applies. O
The result generalizes to

COROLLARY 7.2, Given G and H such that H 9« (G, H). Then GN H can
be found in polynomial time.

Proor. If G normalizes H then apply Proposition 7.1. Otherwise, since
H << (G, HY, HS < {G,H) and so GN HS < G. It suffices then to observe
that GN H = H N (G N H®), which we compute recursively (G N HS being
obtained by the proposition). O

Remark. In particular, Corollary 7.2 offers an alternative approach for inter-
secting subgroups of a nilpotent group (wherein all subgroups are subnormal).
The method appears substantially different from the orbit and imprimitivity-
blocks divide-and-conquer that led to Corollary 6.4(ii).

If a targeted normal subgroup N < G can be interpreted as the kernel of some
induced action 7 : G — Sym(¥), then N = Gy (obtainable in polynomial time
by (3.6)). We use this in several places, including the following.

PROPOSITION 7.3. Given G,H < Sym(fl), where G normalizes H, then
Cc(H) can be found in polynemial time.

Proor. We describe an action 7 : G — Sym(¥), with |¥| < |)|. Then il
K = ker(w), we describe a new action ¢ : K — Sym(Q) such that Cg(H) =
ker{¢).

Let ¥ be the set of equivalence classes in  relative to the relation defined
by a ~ B & H, = Hp. Let 7 : G — Sym(¥) be the action of G induced by
conjugation. Note that Cg(H) < K = ker(n).

To define ¢, fix a point oa in each orbit A of H. Then for k € K let

L]
(@A) = ol

Since Hk o = Ha,, ¢ is well-defined, whence it is immediate that ¢ is a homo-
morphism. We need to verify only that Co(H) = ker(¢)
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Clearly, if k centralizes H then k € ker(¢). Conversely, suppose k € ker(¢).
Let h € H; we must show hk = kh. Foranyw e , w = ag‘ for some A and
some h; € H. Since k € ker(¢),

ho_ bk _ (k) o mEpRE o iR Rk
W' =ap” = oy =(ap' )" =(ap)" =uw".
Hence h* =h. O

Remarks. In [21], it is observed that, when G normalizes H, Cg(H) can be
directly interpreted as a kernel, though the action is on a set of size O(|Q2)).
The above approach avoids this blowup in space demands.

Proposition 7.1 offers still another approach, as centralizers in Sym(f2) can
be found in polynomial time (see, e.g., {10] or [15]). With that in mind, we can
employ Co(H)=Gn CSym(Q)(H)-

Proposition 7.3 has the immediate corollary

COROLLARY 7.4. Given G < Sym(2), then the center of G can be found in
polynomial lime. []

In practice, centers are typically computed by cutting down to the central-
izers of successive generators. Since the elements to centralize are chosen in a
special way, for example, the first one from within the group itself, one might ask
whether there may be a polynomial-time approach of this sort, notwithstanding
the uncertain complexity of general CENT. However, we observe that in the first
round, one is already solving a problem as hard as CENT. Consider

ProBLEM. INTERNAL-CENTRALIZER (INT-CENT)
INPUT: G < Sym(Q2); z € G.
FIND: Cg(z).

Unfortunately,
PROPOSITION 7.5. INT-CENT is polynomial-time egquivalent to STAB.

PROOF. Suppose INT-CENT is in polynomial time. ‘Then, with notation as
in the reduction of STAB to CENT (in proof of Proposition 4.3), in the faithful
action of {G, z} on & we could find C(c,x) (x) Observe, however, that (G, z) also
acts on the system Q = {{w,w;} | w € N2}, which may be identified with Q (via
(wy,w2) + w); the resulting action of Cig z)(z) on N is Ce(z). O

Remarks. We note that the proof shows finding Cg(z) is “no easier” when
z € G is an involution.

CONJ-ELT (Section 4) has an analogous “internal” case in which z;,zs are
assumed to be in G. Agein, this is polynomial-time equivalent to the general
problem.

Corollary 7.2 inspires the question of whether the following is also in polyno-
mial time.
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ProBLEM. SUBNORMAL-CENTRALIZER. (SUBNORM-CENT)
INPUT: G, H < Sym{$?) with H 94 G.
FInD: Ce(H).

However, this problem, too, is no easier then CENT.
ProrosiTION 7.6, SUBNORM-CENT is polynomial-time equivalent to STAB.

Proor. In the above discussion of INT-CENT, (z)€ is an elementary abelian
2-group, so that {z) € (z)€ < (G, z), whence (z} <« (G,z). I

Proposition 7.3 does give a bit of information about general centralizers.

COROLLARY 7.7. Given G, H < Sym(Q1), then Coreg(Cc(H)) can be found
in polynomial time.

Proor. Coreq(Ce{H)) = Ce(H®). O

Following the reduction of STAB to CENT, this immediately yields

COROLLARY 7.8. Given G < Sym(Q2) and A C Q, then Coreg(Stabg(A))
can be found in polynomial lime. [

Corollaries 7.7 and 7.8 prompt the question of whether Coreg(G N H) can be
computed in polynomial time. It can. However, we do not know an “elementary”
proof (see Proposition 8.6).

Remarks. The polynomial-time methods for Propositions 7.1, 7.3 ultimately
utilize the fact that the targeted subgroup H < G lies in a chain

(l) H=HmSHm—IS"'SH0=G

with [H; : Hiy1] “small”. In fact, this is true for any H << G, where “small”
can be interpreted as < n. To show this, it suffices to consider to assume H < G,
in which case
H=HG"™ <...HC® < HGW =,

This suggests that (3.5) should provide the tool for finding targeted normal
subgroups much more generally. The difficulty that arises, however, is that
we do not have, a priori, ways of “recognizing” the intermediate groups. (See
Question 10, for example.}

One expects, also, to find normal subgroups as kernels of actions. However, for
arbitrary N « G £ Sym(f2), G/N may not be representable on a polynomial-size
set [27]. One knows, however, for H << G, there is a chain

H=L,ALp 1 2:--ALy=C

with L;/ Ly — Sym(2) for each i. (To show this, we may assume H <4 G, using
the chain in (1), inductively let L4+, be the kernel of the right-multiplication
action of L; on the right cosets of H;;, in H;.) Call the minimal such m the
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depth of L in G. It is not hard to show that if L < G then m = O(log? |©?(). (This
reduces easily to the primitive case, wherein one uses the Cameron classification
of primitive groups, see, e.g., [7].)

Though we are not sure of polynomial-time implications, the following ques-
tion seems of interest.

QUESTION 7. What is the least upper bound on the depths of normal and
subnormal subgroups in permutation groups?

The proof of Proposition 7.3 shows, for example, that the depth of the centralizer
of a normal subgroup is at most 2.

8. Quotient Groups

In [18], Kantor and Luks suggest the thesis that problems that are in poly-
nomial time for permutation groups remain in polynomial time for quotients of
permutation groups. The justification is not, however, via routine consideration
of the quotients as permutation groups, as is often the case in available systems,
inasmuch as quotients may not have any small (polynomial-size) faithful permu-
tation representations [27]. The generalizations of problems INTER and CENT
provide good illustrations of the techniques that are brought to bear in [18].

ProsreM, QUOTIENT-INTERSECTION (Q-INTER)
InpuT: G, H, K < Sym(Q2) with K 4G, K9 H.
FinD: G/KNH/K.

ProBLEM. QUOTIENT-CENTRALIZER (Q-CENT)
InpuT: G, K < Sym(Q); z € Sym(Q2), with K 9 G and = normalizing K.
FIND: Cgp(zK/K).

(G/K, H/K may be considered as contained in the group (G, H)/K and G/K,
zK/K in the group (G,z)/K.)

Since permutation representations of the quotients may be infeasible, the ques-
tion arises of whether these problems present a still higher level of challenge.
However,

ProPosITION 8.1. @Q-INTER end Q-CENT are polynomial-time equivalent lo
STAB.

ProoF. It is obvious that Q-INTER is no harder than INTER, since
G/IKNnH/K =(GNnH)/K.

Reduction of Q-CENT to STAB: Let (G, K, z) be an instance of Q-CENT.
Let & = {(9.9k) | g € G,k € K} acting on 2 x . For z € G let Afz) =
{{w,w®) |w € N} C O x Q. Then for (g,9k) € G, A(z)9%) = A(z%), so that
(9, gk) stabilizes A(z) iff [z,g9] = k~!. But gK € Cgx(zK/K) ifl there exists
k € K such that [g, z] = k. Hence, if we compute Stabas(A(z)) and let H be its
first coordinate projection, we have Cg x (zK/K)=H/K. O
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Remark. Similarly, the quotient versions of DC-EQ and ELT-CON1J are pol-
ynomial-time equivalent to the permutation-group cases.

Thus, it seems, from a polynomial-time perspective, that these problems do
not get any harder for quotients. In a positive direction, we next show that the
instances where INTER and CENT are in polynomial time generalize to quotient
ETOUpS.

The following is just a repeat of Proposition 7.1.

PRoOPosITION 8.2. Given G, H, K < Sym(Q), with K 4 G and K Q H, and
where G/K normalizes H/K, then G/K N H/K can be found in polynomial
time.

Proor. G/KNH/K = (G N H)/K and the hypotheses imply G normalizes
H. O

Corollary 7.2 generalizes immediately, as well.

Generalizations of Corollary 6.4(ii,iii) and Proposition 7.3 require & surprising
amount of additional machinery.
The following is proved in [16, 17].

LEMMA 8.3 (KANTOR). Given G < Sym(f2) then
(i) For any prime p dividing |G|, a Sylow p-subgroup of G can be found in
polynomial time.
(ii) Given Sylow p-subgroups Py, P; of G, some g9 € G such that P? = P,
can be found in polynomial time.
(ili) Given K,P < Sym(Q) with P a Sylow p-subgroup of K and K 9 G,
then Ng(P) can be found in polynomial time.

Quite unlike the methods being described in this paper, which have relied on
elementary group theory, the algorithms and proofs underlying Lemma 8.3 use
substantial consequences of the classification of finite simple groups, including
detailed knowledge of simple-group types. Nevertheless, that having been done,
it is demonstrated in [18] that one can effectively use the result as a “black-
box” in further, once again elementary, arguments. We illustrate first with a
generalization of Corollary 6.4(iii). This involves a constructive version of the
well-known

FRATTINI ARGUMENT. Let P < K 9 G with P a Sylow p-subgroup of K.
Then G = KNg(P).

PROPOSITION 84. Given G, K < Sym(f)) and = € Sym(Q2), where K A G, =
normalizes K, and with G/K € Ty, then Cg k(zK/K) can be found in polyno-
mial time,
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PRrROOF. Note that the I'y hypothesis applies only to G/K. II, however, G &
[y then the reduction in the proof of Proposition 8.1 would lead to an instance
of STAB with a group, G, in I'y, whence we could apply 6.4(i).

So suppose G € I'q. Then K ¢ I'y. In particular, K is not nilpotent, so that,
for some prime p dividing | K|, any Sylow p-subgroup, P, of K is not normal.
Find generators for such a P as well as Gy = Ng(P) and K; = Ng(P), and find
k € K such that P¥ = P* (Lemma 8.3). Let y = 2k™!, so y normalizes P and
therefore normalizes K.

Recursively compute L/K; = Cg,,k,(yK1/K1). Then Cgx(zK/K) =
LK/K.

The recursive procedure runs in polynomial time since G; < G. The cor-
rectness is a consequence of a Frattini argument: Since G = G, K, it suffices to
show, for g1 € G that g, K centralizes zK/K (in (G, z}/K) iff g, K, centralizes
yK (in (L,y)/K1). But g1 K centralizes xK/K ifl [g1,z] € K ifl [g1,9] € K
ilf [g1,y] € K, (since Ky = Ng(P) and both g; and y normalize P) iff g K,
centralizes yX;. 0O

A similar Frattini argument (see [18]) is used for the following extension of
Corollary 6.4(ii).

PROPOSITION B.5. Given G,H,K < Sym(Q), where K € G, K 4 H, and
with G/K € g, then G/K N H/K can be found in polynomial time. [

We reiterate that, while Corollary 6.4(ii,iii) has been extended to quotient
groups, the fact that the extensions are dependent upon Lemma 8.3, means that
we have now had to invoke the classification of simple groups. On the other
hand, in the special case when (G/K, H/K} is solvable, there are “elementary”
proofs of Propositions 8.4 and 8.5 based upon results in [22].

QUESTION 8. [s there an “elementary” consiruction of Cg i (H/K) and/or
G/KNH/K if only G/K is assumed to be solvable?

Our extension of Proposition 7.3 to quotient groups requires the ability to
compute cores of given subgroups of permutation groups. In practice, this is
commonly done by intersecting conjugates until the resulting group is normal.
Since intersections are not presently available, this approach is not yet feasible
in polynomial time. Nevertheless, cores are attainable. Following the theme of
Section 7, we observe that the normality of the targeted group facilitates this.

PROPOSITION 8.6. Given G, H < Sym((2), then Coreg(G N H) can be found
in polynomial lime.

PROOF. For each prime p, find a Sylow p-subgroup, Pp, of G. Since
Coreg{GN H) 4 G,

Coreg(G N H) = ({ P, N Corec(G N H) | p divides |G]}).
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It suffices to determine P, N Coreg(G N H) for each p. This is made feasible by
the fact that we can test membership in Coreg(G 1 H), that is, if g € G then
g € Coreg(G N H) iff {(9)¢ < H. Thus, initially setting T = P, test whether
TC < H and, if so, output T else we can find g € G such that 79 £ H (the
computation of generators for the normal closure, (3.11), can maintain generators
as conjugates of the generators of T') and repeat with T := TN H9 ' (intersect
by Corollary 6.4(ii})).

The procedure succeeds because the relation T N Coreq(GNH) =
P, nCoreg{G N H) is maintained. O

It is immediate that

COROLLARY 8.7, Given G, H < Sym(Q) with H < G, then Coreg(H) can be
Jound in polynomial time. [

Remark. The proof of Proposition 8.6 provides a striking counterpoint to that
of Corollaries 7.7 and 7.8. While the latter two were elementary, the former uses
Lemma 8.3 which, in turn, uses the classification of finite simple groups. On
the other hand, we observe in Section 9 that another problem (finding p-cores)
which, in practice, has seemed to require construction of Sylow subgroups, has
a direct and elementary approach. Once again we are led to questions about the
existence of non-classification-dependent arguments.

QUESTION 9. Is there an “elementary” approach to finding Coreg(G N H) or
even for finding Coreqg(H) when H < G?

In particular, considering the remarks at the end of Section 7,
QUESTION 10. Is there an “elemeniary” construction of a chain
Coreg(H)=Ng ANy <---dA N, =G
in which Nyy. is the kernel of @ “small” degree representation of N;?
Of course, these issues may lie with Lemma 8.3 jtsell.
QUESTION 11. Is there an “elementary” approach to finding Sylow subgroups?
Can one even get started?

QUESTION 12. s there an “elementary™ method for locating an element of
order p where p is a prime dividing |G|?

Returning to the main issue, we complete this section with the following
extension of Proposition 7.3,

COROLLARY 8.8. Given G,H,K < Sym(R), with K 9 G and K < H, and
where G normalizes H, then Cg;i(H/K) can be found in polynomial time,
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Proor. Consider G x G acting naturally on the disjoint union, QUS, of two
copies of §2. Let L = {(g,9k) | g€ G,k € K} and M = {(g,g9h) | g€ G,h € H}.
Find Corep(L) (Corollary 8.7) and let C be the group obtained by restricting
Coreps (L) to the first copy of 2. Output C/K.

We show that C/K = Cg x(H/K), i.e., that for g € G, (g, gk) € Corep(L)
for some k € K iff gK centralizes H/K (in (G, H)/K). Since K x K 4 M, we
have K x K < C so that K < C. Then, for (g, gk) € L,

(g, 9%) = (9,9)(1, k) € Corepr(L) iff (g,9)M C L
iff (g.0)"™elL VYheH
iff gl"eK, VheH
if gk centralizes H/K. O

9, p-Cores

For any prime p and group G, the p-core of G is the (unique) maximal normal
p-subgroup of ¢ and is denoted O,{G).

THEOREM 9.1. Given G < Sym(f1), then Op(G) can be found in polynomial
lime.

A suggested method for computing the p-core of a permutation group has
been to find a Sylow p-subgroup P < & and then use

Op(G) = Coreg(P).

This does give a polynomial-time solution. However, the conceptual overhead in
this approach to O,(G) is that the known method for finding P (Lemma 8.3)
uses the classification of finite simple groups. Nevertheless, unlike the situation
for general cores, we offer a self-contained elementary proof of Theorem 9.1,
giving another measure of support for the theme that normal targets are easier
to locate. (See [27] for another direct approach to p-cores.)

A few lemmata are required.

LEMMA 9.2. Given a transitive G < Sym(Q1) with |G} > n, one can find a
proper normal subgroup or eise establish that G does not have a regular abelian
normal subgroup.

ProoF. If G =1 then |G| < n?. (Recall that G® is the subgroup fixing
wy and wa.) In that case, the elements of G can be listed and the normal closure
of the group generated by each can be computed in polynomial time. If none
of these yield a proper normal subgroup then G does not have a regular abelian
normal {or any proper normal) subgroup.

Assume G # 1 and let ¥ = {(G™)9 | g € G}. Then 1 < |¥| < (3) and
G acts transitively (via conjugation) on ¥. Let B be a minimal G-block system
in ¥ (i.e., start with B = ¥ and while G does not act primitively on B, replace
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B by a nontrivial partition of B into blocks of imprimitivity). Output Gg (the
kernel of the action of G on B) il it is proper, else declare that G does not have
a regular abelian normal subgroup,

We must show, under the assumption that G has a regular abelian normal
subgroup A that G does not act faithfully on B. Since A is regular, there is a
unique a € A such that w$ = wy. Such a normalizes, in fact centralizes, G,
for if z € G®), both a and =~ 'az are elements of A mapping wy to wy so that
a = z"laz. Hence a fixes the block in B containing G®). We conclude that
A does not act regularly on B. But then A cannot act faithfully on B, for a
normal subgroup of a primitive group is transitive and so, il it is abelian, it is
regular. O

Remarks. The above algorithm simplifies one with an analogous purpose in
[21]. The modification is due to A. Seress. (See also [7].)

Note that the output of a proper normal subgroup leaves open the question
of whether there is a regular abelian normal subgroup, thus leading us to ask

QUESTION 13. Given G < Sym(f}), can one delermine, in polynomial lime,
whether G has o reqular abelian normal subgroup and, if so, find one?

More generally,

QUESTION 14. Given G < Sym(f2), cun one delermine, in polynomial time,
whether G has a regular normal subgroup end, if so, find one?

Both of these issues are in polynomial time for primitive groups: il a primitive
group G has an abelian normal subgroup N, then N = O,(G) for (the unique)
prime p dividing =; in general, il H is the smallest nontrivial term in a com-
position series for G ([21]), then G has a regular normal subgroup iff HC is
regular.

LEMMA 9.3. Given G < Sym(), in polynomial time one can find a proper
normal subgroup of G or else establish that Oy(G) = 1.

Remark. Output of a proper normal subgroup does not yet mean O,(G) # 1.

PRrOOF OF LEMMA. Let A be any nontrivial orbit of G and construct a min-
imal G-block system B in A (so that G acts primitively on B). Let ¢ : G —
Sym(B) be the induced action. If K = ker{¢) # 1, output generators for K. Oth-
erwise, the primitive group ¢(G) is isomorphic to G. We may assume |G} > n
else G is listable and the lemma resolvable by brute force. Apply Lemma 9.2 to
¢(G). If ¢(G) has no abelian regular normal subgroup then O,(G) = 1 (else,
if A is the the last nontrivial term in the derived series for O,(G), ¢(A) would
be a regular normal subgroup of the primitive group). Otherwise, the call to
Lemma 9.2 produces Y, generating a proper normal subgroup, in which case
return N = ¢~}(Y). (The lifting ¢~'(y) for y € Y is computed, for example,
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(3.9); alternatively, while computing Y, keep track of liftings of elements yielding
YCGwithg(Y')=V;then N=(Y' K).) D

LEMMA 9.4. Given G < Sym((1), in polynomial time one can find a nontrivial
normal p-subgroup of G or else establish that Op(G) = 1.

PROOF. We describe a procedure p-NORM(G) with output as indicated.

Apply Lemma 9.3. If we discover O,(G) = 1 then return that information.
Otherwise we have 1 £ N « G and we proceed as follows.

Recursively call p-NORM(N). If the call returns P < N, then output PC.
Else {Op(N) = 1) recursively call pNORM(Cg(N)) (using Proposition 7.3 to
find Co(N)). If the call returns for P g Cg(N) then output P€. Else report
“Op(G) =11

The procedure succeeds since Op(N) = 1 implies Op,(G) N N = 1, whence
05(G) < Ca(N).

Timing concern: What if both recursive calls are made? That only happens
when Op(N) =1 so that p does not divide |[N N Cg(N)|, whence

|N|plCe(N)l, = INCa(N)l, < |G,

where sub-p denotes p-part. Thus, except for multiplicative contributicns from
known polynomial timings, the time is linear in log|Gl,. O

LEMMA 9.5. Given P,G < Sym(Q2) with P q G where P is e p-group and G
is naol a p-group, one can conslruct in polynomial time another action ¢ : G —
Sym(2), where ker(¢) is a nontrivial normal p-subgroup of G.

Proor. Replacing P, if necessary, by the last nontrivial term in its derived
series, we may assume that P abelian. Let {A;};c; be the set of orbits of P
and let w : G — Sym(I) be the naturally induced action, i.e., A = A;n( for
i€ I,g € G. Choose § € A; for each i € I. Then ¢ is defined via

(ﬁ:)d’(g) = T:(a) '

for i € I,z € P. (The superscripts z,z? denote the given action.) That ¢
is well defined follows from the fact that P2+ is regular (since it is abelian),
for, if 6 = &} for z,y € P, then x and y act identically on A; so that =9
and 37 act identically on A;«;. From this it is straightforward to see ¢ is a
homomorphism. Since ker(¢) stabilizes each A; and commutes with the action
of P thereon, ker(¢)8¢ = P2+, Hence ker(¢) is an abelian p-group containing P.
It is proper in G as G is not a p-group. (]

Proor oF THEOREM 9.1. We may assume G is not a p-group. By Lemma 9.4
we establish immediately that O,(G) =1 or else obtain a proper normal p-sub-
group K. In the latter case, we apply Lemma 9.5 to obtain an action ¢ : G —
Sym(©2) with 1 < K = ker(¢) < G. Recursively, compute (Y) = O,(¢(G)).
Then O,(G) = ¢~1(Y) (computed, say, via (3.9), wherein it is convenient to
consider ¢(G) as acting on a disjoint copy of ),
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For correctness, we observe that, since ker(¢) is a p-group, ¢(0p(G)) =
Op(#(G)).

For the timing, note that the recursive call involves a smaller group ¢(G) on
a permutation domain of the same size. [0

Remark. In [18] it is pointed out that, in polynomial time, one can construct
the maximal normal subgroup with composition factors in any specified collection
of simple groups, but the general result ultimately makes use of the elassification
of finite simple groups.

10. Other Problems and their Relationships

We comment on several other problems resembling GRAPH-ISO and STAB,
ete. There are open questions, not only about when they are in polynomial time,
but in the relationships among them.

10.1. Finding Subgroups. Possibly presenting a challenge beyond STAB
is
ProBLEM. NORMALIZER (NORM)
INPUT: G, H < Sym{Q2).
FIND: Ng(H).

Techniques announced in [22] show that NORM is in polynomial time when
{G, H) is solvable. Questions that immediately arise include

QUESTION 15. fs NORM in polynomial lime when only G is assumed to be
solvable?

The next step up the group ladder would appear to be

QUESTION 16. Is NORM in polynomial lime when (G, H) is in 'y (See Sec-
lion B).

How is NORM related to the problems of Section 47 STAB reduces to NORM,
either by Proposition 7.1, or, lollowing the reduction of STAB to CENT in
Proposition 4.3, the fact that z is an involution implies N,({z)) = Cg(z). But
is NORM, in general, “harder” than STARB, ete.?

QUESTION 17. [s there a polynomial-time reduction of NORM to STAB?

For this question, notice that it would suffice to find & polynomial-time solu-
tion to the special case

ProBLEM. NORMALIZER IN SYMMETRIC GROUP (NORM-SYM)
INPUT: G < Sym().
FIND: Ngym(n)(G).
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Recall that centralizers in the symmetric group are computable in polynomial
time (see, e.g., [10]). However, the complexity of NORM-SYM is open.

QUESTION 18. Is NORM-SYM in polynomial time? Is there even a subezpo-
nential solution?

If NORM-SYM were in polynomial time, then NCRM would reduce to INTER
(since Ng(H) =Ngyma)(H)NG). In fact, even if polynomial-time algorithms
are not available, reductions between the problems are of interest.

QuesTION 19. Is NORM-SYM polynomial-time reducible to STAB? Is STAB
polynomicl-time reducible to NORM-SYM?

Affirmative answers would, respectively, put NORM equivalent to STAB or
NORM-SYM.

One of the reasons that Questions 18 and 19 are particularly intriguing is
that GRAPH-AUTO is polynomial-time reducible to NORM-SYM (as well as to
STAB). Reduction: Given a graph G = (V, E), we construct 2, G < Sym((2) and
describe an epimorphism ¢ : Ngym(n)(G) — Aut(G). Let I = {1,2,...,2|V]}.
Set @ = VxIUEx{1,2} (so |2 = 2(|V|? + |E|)). For each v € V, let g,
be the involution in Sym((2) that transposes (v,2i — 1) with (v,2i), for 1 < i <
[V|, and transposes (e, 1) with (e,2), for every e € E having endpoint v, while
leaving other points fixed; thus g, moves precisely 2(|V|+ degree(v)) points. Set
G = {{gv}vev) (an elementary abelian 2-group). Within G the only non-identity
elements that move < 4|V| points are the g,,. Hence, permutations in Ngym(a(G)
permute the gy, so that there is an induced homomorphism ¢ : Ngym)(G) —
Sym(V). Since {v,w} € E iff g, and g, move the same point (i.e., the point
({v,w}, 1)), it is clear that ¢(G) < Aut(g). It is straightforward to show that ¢
is surjective. 0O

Notice that the above reduction involved an elementary abelian 2-group.
Thus, Question 18 is interesting and open even in this case,

For any finite field GF(g), there is a natural action of Sym{Q2) on GF(g)® via
permutation of coordinates. Then g € Sym(2) stabilizes A C 2 iff g stabilizes
the vector (e, )uen With e, =1 for w € A and a,, = 0 otherwise, Thus STAB is
polynomial-time reducible to

ProBLEM. VECTOR STABILIZER {VEC-STAB)
INPUT: G < Sym(Q2); a representation ¢ : G — GL(V), where V is a finite
dimensional vector space over GF(g); v eV
FIND: Gy, = {g € G | v? = v}.

Here, we assume that V is specified via a basis and ¢ is specified on the given gen-
erators of G. By results of [22], VEC-STAB is solvable in polynomial time if G is
solvable. (“Polynomial in the input” is taken to be O{(|Q|+dim(V}+log )¢).) In
[act, it is also indicated there that the following is solvable in polynomial time
if G is solvable.
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ProBLEM. SUBSPACE STABILIZER (SUBSP-STAB)
INPUT: G < Sym(RQQ); e representation ¢ : G — GL(V), where V is a finite
dimensional vector space over GF(q); a subspace W <V
FIND: Stabg(W) = {g€ G| W9 = W}.

QUESTION 20. fs VEC-STAB in polynomial lime for G € Ty? Is SUBSP-
STAB in polynomial time for G € T'4?

VEC-STAB is polynomial-time reducible to SUBSP-STAB. The “obvious”
reduction seems to be to stabilize first the 1-dimensional W =Span(v), after
which we only need the kernel of a homomorphism ¢ : Stabg(W) — GF(q)*
(multiplicative group). While this is not difficult to complete, we refer instead
to the reduction between the corresponding decision problems (VEC-TRANS <
SUBSP-TRANS) in Section 10.2,

Remark. One can also show that the problem of finding No(H) when H a4
(G, H} is polynomial-time reducible to SUBSP-STAB.

Another question that arises is whether normality helps for some of these
problems. Techniques of [18] (in particular the method of Theorem 8.6 of this
present paper), can be used to find Coreg(G,) and Coreg(Stabg(W)) (where
v, W are a vector and subspace, respectively). We wonder, however, about

QUESTION 21. Given G, H < Sym(Q2), can one find Coreg{Ng(H)) in poly-

nomial time?

Note that we have found Coreq(G N H), which is the kernel of the right-
multiplication-action of G on right cosets of H by G, while Coreg(Ng(H)) is
the kernel of the conjugacy action of G on the conjugates of H by G.

10.2. Decision Questions. The problems of Section 10.1 suggest decision
analogues,

Corresponding to NORM:

ProBLEM. CONJUGACY OF GROUPS (CONJ-GROUP)

INpuT: G, Hy, Ha < Sym($).
QUESTION: Is there some g € G such that H = H,?

As in the STAB = TRANS equivalence, NORM is polynomial-time equivalent
to CONJ-GROUP.

The right analogue of NORM-SYM would seem to be
ProBLEM. CONJUGACY IN THE SYMMETRIC GROUP (CONJ-SYM)

INPUT: H}, H; < Sym(£2).
QUESTION: Is there some x € Sym(f2) such thet HY = H,?
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Here, we do not see the equivalence. While a reduction of CONJ-SYM to NORM-
SYM is not difficult, we do not have a reverse reduction. Thus, we ask

QUESTION 22. Is NORM-SYM polyromial-time eguivalent to CONJ-SYM?

VEC-STAB and SUBSP-STAB are, respectively, polynomial-time equivalent
to

ProBLEM. VECTOR TRANSPORTER. (VEC-TRANS)
INPUT: G < Sym(RQQ); a representation ¢ : G — GL(V), where V is a finite
dimensional vector space over GF(g); v1,12 € V
QUESTION: Is there some g € G such that v = va?

and

ProBLEM. SUBSPACE TRANSPORTER (SUBSP-TRANS)
INPUT: G < Sym(§2); a representation ¢ : G — GL(V), where V is a finile
dimensionel vector space over GF(q); subspaces Wy, Wh e V
QUESTION: Is there some g € G such that W{ = W, ?

The reduction of VEC-TRANS to SUBSP-TRANS is worth noting. While a
polynomial-time reduction can be completed along the lines begun in the VEC-
STAB to SUBSP-STAB discussion, that would not then be a Karp reduction
(yes/no instance mapping to yes/no instance). Here then is another approach:
Let (G, ¢, V, v1,v2) be an instance of VEC-TRANS; we may assume that v # 0,
Then G acts naturally on the tensor product V@V (so that (v®@w)? = v? @w?)
and therefore there is an induced action G —» GL(Ve® (V® V)). Let W; =
Span((v;, % ® v)), for i = 1,2. We claim that for g € G, v{ = vy iff W = W,
The only-if direction is clear. Assume WJ = Wa. Then, for some ¢ € GF(g),
(v1, 91 ®v1)? = c(vy, v2@v3), s0 that v] = cvs and (v; ®11)¢ = c(v2®va). Thus,
Av2 @ v2) = (cv2 @ cvz) = (v§ @ vf) = (v; @ 11)9 = c(va @ va). It follows that
c= 1, proving the claim. O

We add two more problems that seem of particular interest.

ProBLEM. GROUP ISOMORPHISM (GROUP-ISO)
INPUT: Cayley tables for groups G, H.
QUESTION: Are G and H isomorphic?

Here “polynomial in the input” translates to polynomial in |G| (presumably
|G| = |H]). It is not hard to reduce GROUP-ISO to GRAPH-ISO. (See [24] for
a discussion of this and related issues.) But is this problem easier? In particular,

QUESTION 23. s GROUP-ISO in polynomial time?

It can be solved in subexponential O(|G|°t'83151) time since there is a set of
< log, |G| generators, and 2 homomorphism G — H is determined by the images
of the generators. This, however, appears to be the best result known for general
groups.

Possibly on the “harder” side is
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ProBLEM. PERMUTATICN-GROUP ISOMORPHISM
(PERM-GROUP-ISO)
InpuT: G, H < Sym(f2).
QUESTION: Are G and H isomorphic?

PERM-GROUP-ISO is in NP: Supposing G = {X}, one can guess an isomor-
phism f : G — H by guessing f(z) for all £ € X and then verilying that f
is indeed an isomorphism by checking that |G| = |H| = [{{(z, f(z)}zex)| (the
latter being considered as a subgroup of G x H acting, say, on QU). 0O

It is shown in [3] that CONJ-GROUP is polynomial-time reducible to PERM-
GROUP-ISO.

To summarize the known relationships, letting “<” denote “is polynomial-
time Karp-reducible to” we have:

GROUP-ISO < GRAPH-ISO

GRAPH-ISO < TRANS

GRAPH-ISO < CONIJ-SYM
TRANS < CONJ-GROUP
TRANS < VEC-TRANS

CONJ-SYM < CONJ-GROUP
CONJ-GROUP < PERM-GROUP-ISO
VEC-TRANS < SUBSP-TRANS

(And recall, TRANS = DC-EQ = CONJ-ELT.)

QUESTION 24. Are there any other reductions belween these problems ezcept
as implied by the above?

We do not anticipate seeing a negative answer very soon (as that would neces-
sarily include a proof of P # NP), but we believe a search for other relationships
could shed additional light on these problems.
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