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Abstract

A major goal of the Fifth Generation Computer Systems project was the de-
velopment of high-performance multiprocessors for symbolic applications. The key
technologies envisioned as critical were fine-grain concurrent languages and cus-
tom microprocessors for directly executing those languages. In contrast to this
top-down design approach were most other research laboratories, concentrating on
further refining scalable architectures by speeding up communication. One main
evolutionary trend was towards threaded architectures that supported latency hid-
ing by fast task switching and low-cost message passing. This article attempts to
compare these top-down and bottom-up approaches.
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1 Introduction

This article critiques the Parallel Inference Machine (PIM) research within the Fifth
Generation Computer Systems (FGCS) project conducted at ICOT over the period
of 1982-1992. I will direct my attention almost exclusively to hardware (processor,
memory, and network designs) and performance. Cost is also a critical factor, but one
that is difficult to accurately evaluate, and is perhaps less important because all PIMs
to date are experimental prototypes. The tack of this article is to compare the PIMs
with other recent experimental architectures and research machines, specifically not
commercial products. The latter is an unfair comparison primarily because the PIMs
are symbolic, not numeric, processors, and the PIMs are not Unix-based, which limits
their accessibility.

The key criterion in high-performance processor design (for single applications) is
the reduction and/or hiding of latency, primarily that of memory. For a sequential
microprocessor this requires some memory hierarchy, normally consisting of registers,
multi-level caches, primary physical memory, and virtual memory. Since CPU technolo-
gies are growing in speed at a faster rate than memory (SRAM and DRAM) technologies
[20], one can expect processors to have increasingly higher penalties, in cycles, when ac-
cessing memory levels far from the CPU. In a multiprocessors, latency reduction can be
accomplished via sophisticated network routers (e.g., [12]) and relaxed cache coherence
methods [39]. Router technology has improved over the past decade, making virtual
shared-memory models efficient. By building dual-processor nodes that both compute
and communicate concurrently, effective network bandwidth is greatly increased.

In distributed-memory multiprocessor design, latency hiding [3, 40] can be accom-
plished by “threading” together small grain tasks, quickly switching one task for an-
other if the former task undergoes a long latency action [51, 56). This can be viewed
as increasing the throughput of thread execution. Switching tasks on remote mem-

ory accesses!

requires some kind of tagging mechanism for returning the value to the
requester.

To make threaded architectures work efficiently, a few constraints must be met.
First, tasks must be plentiful, because substitutes must be available to switch in. Sec-
ond, tasks must be lightweight, because the time to switch a task must be low, otherwise
switching overhead will alleviate much (or all) of the gain of latency hiding. Plentiful
and lightweight tasks are synergistic requirements because paradigms that decompose
computation into its smallest components naturally derive many, many such compo-

nents. However, third, tasks cannot be too lightweight, or else the frequency of task

Yealled a “split phase” memory transaction in dataflow parlance.



invocation (if not sufficiently supported by hardware) will incur excessive overhead
reducing throughput: “medium” weight is best.

A fourth criterion, related to language design rather than architecture, is also con-
sidered (by some, including ICOT) critical for successful multiprocessing: efficient and
correct means of task synchronization must be found, to ensure that parallel programs
intended to be determinate are determinate. This is a key motivation behind applicative
dataflow and logic languages.

Dataflow languages [4] and concurrent logic languages [48] were the first versatile
programming languages to allow natural translation into threads with simple com-
pilation. Dataflow architectures were handicapped because the granularity was too
fine, until techniques where developed to efficiency invoke threads (removing token-
matching store bottleneck), and thicken threads (partition the data-dependency graph
to increase, up to an optimum, the required work per thread) [41, 58]. Both com-
munities were handicapped by software engineering concerns: their perceived radical
programming methodologies, and by continually changing, non-standardized languages.
Furthermore, all commercial efforts in multiprocessor construction were based firmly
on imperative languages with no implicit parallelism. To exploit the previous ideas
for such languages requires sophisticated compilers: either to decompose a program
into dynamically scheduled threads, or more complex still, into statically scheduled
threads as in a VLIW machine, e.g., [7]. With time however, dataflow architectures
have evolved to threaded architectures (e.g.,[10]), similar in concept but not in hardware
organization, to the architectures originally proposed by ICOT for the PIM project.

As elegantly summarized by Arvind and Jannucci [3], the two key architectural
features necessary for massive multiprocessors are the ability to hide latencies and to
efficiently synchronize tasks.? These two criteria are at odds in Arvind’s fine-grained
model where latency hiding occurs at the lowest level of instruction operands, perhaps
with reservation registers [57]. Thus to allow more execution concurrency within the
instruction stream, more registers are needed, and therefore task switching (e.g., due
to an external interrupt) time increases because the processor state is larger. This is
the general idea in the HEP [51] and Tera [56] machines: processes are composed of
threads that are rapidly and frequently swapped to hide all latencies.

The ICOT PIMs are founded on a more uriform model of medium-grain tasks, i.e.,
Horn clauses synchronized on logic variables. The custom processors developed for the
PIMs do not rapidly swap tasks to hide all latencies — any latency hiding is at a higher
level, and controlled by software. For example, on a cache miss, the PIM CPUs all idle

?Synchronization can incur task suspension, for which task switching is favored over busy waiting:
I therefore loosely refer to “task switching” as the action (and its related cost) most closely associated
with synchronization.



until the request is satisfied from memory. However, for a reference located on another
node/cluster, the requesting task is suspended by a microcode handler. In some sense,
the PIM model is more similar to threads in Mach [6], than to threaded architectures.
However, PIM tasks may tend to be smaller than Mach’s because they do not have
associated stacks (since they are not derived from sequential execution), although PIM
tasks can have peripheral data structures for suspension management.

This article is organized as follows. In Section 2 an overview of the PIMs is pre-
sented. Sections 3 and 4 describe the PIM/m and PIM/p designs in more detail. Section
5 presents an overview of alternative experimental multiprocessors based on threaded
architectures. Conclusions are summarized in Section 6.

2 Overview of PIM Hardware Technology

The main components of the PIM designs include the following (see Hirata et al. [21]
and Taki [54] for summaries of these machines):

¢ memory management: concurrent logic programs have a high memory bandwidth
requirement because of their single assignment property and lack of backtracking.
ICOT has developed an integrated solution for garbage collection at three levels
within the PIMs. Locally, incremental collection is performed with approximative
reference counting. Specifically, Chikayama’s Multiple Reference Bit (MRB) is
incorporated in each data word [8]. Distributed data is reclaimed across clus-
ters via their export tables. Finally, if local memory is filled, a parallel stop &
copy garbage collector is invoked in the cluster [23]. The effort in designing and
evaluating alternative garbage collection methods is one of the most extensive
of all ICOT projects (e.g., [38, 24, 17, 33]), primarily because the problem was
recognized several years ago. However, compilation techniques, such as stetically
determining instances of local reuse (e.g., [53]), were not explored.® The tradeoffs
between static analysis time vs. runtime overhead are still open questions for
such techniques.

¢ scheduling: concurrent logic languages have inherently fine-grain process struc-
tures. The advantage is exploitable parallelism, but the disadvantage is the po-
tential of a thrashing scheduler. The PIMs rely on explicit inter-cluster scheduling
with goal pragma (an attribute telling where the goal should be executed), and
implicit (automatic) load balancing within a cluster. Furthermore, goals can be

3The PIM compilers use MRB in conjunction with hardware support to dynamically reuse memory,
at some cost in execution complexity compared to static methods.



assigned priorities, which steer load balancing in a nonstrict manner. Although
functional mechanisms have been completed at ICOT, extensive evaluation has
not yet been conducted. Higher-level programming paradigms, such as motifs
[15], have not been designed to alleviate the complexity of user development and
modification of pragma.

meta-control: the PIMs are based on Flat Guarded Horn Clauses (FGHC, and a
superset called KL1) which by virtue of its simplicity cannot reflect upon failure
and does not have atomic tell unification. Failure of conditional tests in guards
cause execution to try alternative clauses; however, body goal failure is terminal.
Thus erroneous user-program failure will propagate through an unprotected op-
erating system also written in FGHC. Atomic tell unification is allows a richer
variety of guard tests that can make bindings conditional upon eventual com-
mitment. Without this capability (which is very complex to implement), output
bindings can be made only afier commit (see [49] for more details). These fea-
tures are desirable in operating systems, although perhaps less so for application
programs. To make up for this loss, ICOT developed protected tasks called shoen
[22], similar to work by I. Foster [14]. Functional mechanisms for shoen man-
agement have been implemented at ICOT over the past four years [34, 42, 43],
although empirical measurements of the operating system running applications
programs have not yet been made. Intra-cluster mechanisms include foster-parent
(a shoen’s local proxy) termination detection and deadlock detection; inter-cluster
mechanisms include weighted throw counts for shoen termination detection and
intelligent resource management [21, 25). Without further empirical data, it is
difficult to judge the effectiveness of these mechanisms for reducing runtime over-
heads.

unification: unification is peculiar to logic programs, and somewhat controversial,
in the general computing community, in its utility. Concurrent logic programs
reduce general two-way unification into ask and {ell unifications, which correspond
more directly to importation and exportation of bindings in imperative concurrent
languages. Still, logical variables cause two serious problems.

First, variables are overloaded to perform synchronization. This is both the
beauty and horror of concurrent logic languages. The programmer’s model is
simplified by implicit synchronization on variables, i.e., if a required input vari-
able arrives with no binding, the task suspends. Furthermore, if at any time
that variable receives a binding (anywhere in the machine), the suspended task
is resumable. Implementing this adds overhead to the effective binding time,



primarily because mutual exclusion is required during both binding and suspen-
sion/resumption management.

Second, in a distributed environment, optimizing data locality over a set of unifi-
cations of arbitrary data structures is a difficult problem. Message passing mech-
anisms defining import /export tables and protocols were developed [22], but little
empirical analysis has been published.

Compilation techniques to determine runtime characteristics of logical variables,
such as “hookedness” {60] and modes [59], and exploit them to minimize suspen-
gions or memory consumption, have not yet been implemented in the current PIM
compilers.

The ICOT research schedule followed the development of the personal inference
machines (PSI-LILII) [55, 35], followed by mockup PIMs (Multi-PSI-V1/2, built of
PSI-1Is), and finally the various PIMs: PIM/p (Fujitsu) [29], PIM/m (Mitsubishi)
[36]), PIM/i (Oki) [46], PIM/c (Hitachi) [32], and PIM/k (Toshiba) [5]. A great deal
of credit must go to ICOT’s central management of these efforts, based on a virtual
machine instruction set called PSL used to describe a virtual PIM (VPIM) running
on a Sequent Symmetry [54]. VPIM was shared (with slight modifications) by most
of the member organizations, making design verification feasible. These designs are
summarized in Taki [54]. Highly parallel execution of dynamic and non-uniform (but
explicitly not data-parallel) applications is cited as the target of the project. The
major design decisions were made for MIMD execution, of a fine-grain concurrent logic
programming base language, on scalable distributed-memory multiprocessors.

In the following sections, I review PIM/m and PIM/p because they represent the
main hardware efforts of the FGCS project.

3 PIM/m

PIM/m, derived from the Multi-PSI testbed, is a 16x16 mesh of processors, where
wormhole routing is used for communication. FEach node is built from three custom
VLSI parts: CPU, cache, and router. The node has 80 Mbytes of local memory and split
I/D caches of 5 Kbytes and 20 Kbytes respectively. The CPU directly executes KL1 [26]
in a five-stage pipeline, under microcode control. The pipeline has an interesting feature
of dereferencing operands within the fourth pipe stage (interacting with memory). No
published data is yet available concerning the performance of the pipeline or network.
In this section I will attempt to extrapolate some gross conclusions from experiments
on the Multi-PSI [34], since the two machines use the same operating system, PIMOS

[9].



PIMOS, and the PIMs, do not attempt to hide the latency of remote accesses at a
low level. The hardware design philosophy surrounding the PIM effort was to exploit
faster communication, not to speed up task switching within what are now termed
“multi-threaded” architectures. However, some latency hiding naturally occurs. First,
a task is forked by an explicit pragma, which sends a throw_goal message to a remote
node in PIM/m. Input data arguments to the task, if complex, are not sent, but
indirectly referenced. Note also that goal priority can be specified in a pragma, giving
some pseudo real-time control.

To access these complex arguments, the callee must send a read message, and
receive an answer_value message. This lazy approach hopes to reduce overall commu-
nication, for example when the forked task invocation can proceed without referring to
(all of) its input parameters. There has been no empirical evidence published showing
if this method is superior to the alternative wherein the entire task and its data are
thrown initially. It appears as if static analysis, to determine critical arguments for ea-
ger communication, would be beneficial. This protocol is too complex if not supported
by fast and seamless communication (a fast network/processor interface). However,
in some sense, the PIM/m is meant as a network testbed for PIM/p, where latencies
are reduced by clustering processors. There the software is responsible for keeping
inter-cluster communication to a minimum.

Within the body of a task, term unification is used to match and create data struc-
tures. In general, KL1 allows active unification of arbitrary terms, although programs
very rarely unify anything more than a term to an unbound variable. Latency is hidden
by treating body unifies as bonefide goals, not inlining them. A unify goal will either
immediately execute locally, or if an operand is a remote reference, the goal itself is
sent as a message requesting action. (Note that unification almost always acts as as-
signment, and if implemented properly, none of the overheads of full unification should
be visible to the execution). As in the previous case, this method of latency hiding has
been implemented, but not stressed, in the PIM designs. For example, extremely fast
task switching has not been achieved, which is critical for the latency to be effectively
hidden. Methods such as dynamic fattening of messages (increase message size, up to
an optimum, to effectively offset task switch overhead) in data-parallel C [19] have not
been implemented.

Sophisticated distributed garbage collection mechanisms have been developed for
PIMOS and PIM/m, e.g.,[22], the details of which are beyond the scope of this paper.
This is one area that the ICOT research has far surpassed that within the U.S., probably
because garbage collection has only recently become an issue in the U.S. (after seminal
work for Lisp and SmallTalk) with the increasing popularity of C++ and ML.



The PIM/m router chip is dedicated to communication among nodes and does no
part of message packet (de)construction. One conclusion of Nakajima's analysis [34]
was that the message-handling costs in Multi-PSI (and I assume PIM/m) are very
high. For example, forking a task with three arguments (65 byte packet) takes 419
{microcode) cycles. Sending a read message and receiving the answer value (for a list
pair) takes 117 and 397 cycles respectively. These measurements do not include network
transfer time. The Multi-PSI microprocessor, a PSI-II [35] with 200 nsec cycle time,
is sufficiently slow to make network performance assessments dubious. For example,
Nakajima [34] showed that the overdesigned 5 Mbyte/second network is scalable up to
1000 PEs (i.e., the network should not significantly degrade overall performance up to
this saturation point). His benchmarks showed, however, that on 64 PEs (full system),
about 20% of the processor cycles were idling (see comments below).

PIM/m CPUs have a 65 nsec cycle time, but are pipelined, making direct compari-
son to PSI-II difficult. Nakashima et al. [36] presented measurements that PIM/m ran
1.5-4.8 times faster than Multi-PSI on one processor. The average speedup of their four
benchmarks is 2.5, attributing the poor showing to inefficient task switching that takes
“dozens of cycles for execution in the E[xecution] stage” of the pipeline. The PIM/m
uses the same network as Multi-PSI. Nakashima observed multiprocessor efficiencies on
three large problems ranging from 82%-85%. The benchmarks chosen for that study
were a double-edged sword: on the one hand, they could produce any amount of par-
allelism given large enough inputs, allowing for the demonstration of speedups. On
the other hand, given unlimited potential parallelism, the PIM/m was still losing up
to 18% efficiency.

Since communication bandwidth was sufficient, the consistent results in both these
studies are mainly attributable to two effects: 1) inherent inefficiency at latency hid-
ing, and 2) load balancing and cold start effects. Although the benchmarks measured
were highly parallel, in some, process structure implied cold start/finish effects that
could account for a portion of the idle cycles. Furthermore, certain benchmarks used
software-implemented on-demand load balancing that might have been imperfect. Fur-
ther studies are needed to determine the exact proportion of the various effects.

4 PIM/p

The PIM/p [29] consists of a six-dimensional hypercube, each node of which is a shared-
memory cluster of eight processors (for a total of 512 processors). The PIM/p organi-
zation is similar in concept (but not cache coherency protocol) to DASH [30), although

‘Without, I may add, regard for solving the problem efficiently.



the PIM/p is very much customized to execute KL1. Latency is further reduced, with
respect to PIM/m, by the cache-based shared-memory clusters. Each processor has
two 64 Kbyte I4+D snoopy caches.

The PIM/p custom microprocessor pipeline has an interesting feature allowing dy-
namic insertion of instruction sequences triggered by macro instructions. This is useful
for implementing high-level operations, such as dereference, with less code expansion.
The pipeline however executes a single instruction stream, and no support of multiple
contexts to speed task switching is given. Recent architectural development of “active
messages,” e.g., [13, 44], are an interesting comparison to the PIM/p pipeline. An
active message is essentially a message that can be sent directly to a remote processor’s
pipeline and executed directly. The EM-4’s [44, 47) “fused pipeline” is an example of
such a scheme. The advantages over conventional message passing protocols can be
significant: messages require no interpretive overhead. It should be noted however that
the EM-4 is primitive compared to the PIMs in that it does not support memory syn-
chronization in hardware (i.e., logical variables or I-structures), resulting in very poor
performance for many naturally-parallel algorithms.

Each PIM/p processor is supported by a network interface processor that constructs
packets, sends packets to the router, and receives packets from the router. Actually,
each cluster has two wormhole routers, allowing for two hypercube networks, doubling
bandwidth. No evaluation of the network has been published. In general, the two-level
hierarchy presents an irregular model to mapping and load balancing algorithms that
has not yet been conclusively solved by ICOT (see [16, 32, 52]).

Within a cluster, unique architecture features include dynamic garbage collection
of data cells based on binary reference counting [8, 38], and split I/D copyback caches
with protocols that can reduce bus traffic by exploiting properties of the KL1 software
implementation [18]. The utility of these features has been evaluated, but extensive
comparisons to alternatives has yet to be done.

Published measurements [29] of the PIM/p are for eight PEs configured either within
a single cluster or as eight nodes of the hypercube. A single, simple benchmark was
measured {a multiple-solution search with sufficient parallelism), showing 93.8% and
01.0% efficiency on the two configurations, respectively. This is not sufficient data to
extrapolate the performance of real applications on a full system, especially since raw
execution breakdowns are not given.



5 Other Approaches

The recent evolution of dataflow architectures into threaded architectures occurred
concurrently with the hardware design and development of the PIMs within the FGCS
Project. It helps to clarify the PIM designs in light of the recent excitement [13, 37, 47].
There are several experimental machines serving as examples of threaded architectures:
Alewife, EM-4, J-machine, *T, TAM, and Tera. The concepts are roughly the same
in all, as outlined in Section 1. Monsoon [41] and Tera [56), in the spirit of the HEP
[51], swap threads each cycle.® The EM-4 [44] and J-machine [11] implement types
of active messages wherein there is essentially no overhead to received and execute
a message. Alewife [1] and *T [37] incorporate multiple contexts built within the
commercial SPARC and Motorola 88110 microprocessors, respectively. ‘In this section, I
further compare the TAM [10] threaded architecture proposal with the KL1 architecture
(26].

Both TAM and KL1 have threads represented by activation frames (called “goals”
in KL1) holding local variables. TAM however can represent more than one thread
within a frame. The distinction is that each procedure (called a “code block” in TAM)
may be split into multiple threads, whereas in KL1 there is a single thread. Because
KL1 has recursion and no iteration {as there is, for example, in Id [2]), the threads
end up being approximately the same small granularity. For example, in both systems,
nonlocal array references effectively suspend. In TAM, an array reference is compiled
as an explicit thread, whereas in KL1, the reference is through a system-builtin body
goal that can suspend. There is equal flexibility in both models with respect to the
compilation of arithmetic expressions. In KL1, arithmetic can be split out as a separate
task to increase concurrency, or generated in-line to increase granularity.

Further differences occur in synchronization and scheduling. At a high level, thread
synchronization is similar among the models: TAM uses I-structures and KL1 uses
logical variables. At a lower level, TAM gains efficiency by exploiting the functionality
of its source languages, in addition to compiler analysis. The number of “synchroniz-
ers” needed to fire a thread is determined statically, and the synchronization count
is atomically decremented as arguments (I-structures) are bound. The KL1 systems
do not attempt mode analysis to exploit this information, and thus goals can poten-
tially resume and resuspend multiple times before all necessary arguments are present
(furthermore, resumption always starts at a single entry point). Also, TAM retains
the information representing the call tree, i.e., the parents and children relationships
among the active frames. In all KL1 systems, this information is lost, and frames/goals

5This is not precisely accurate for Monsoon: a thread will retain control of the pipeline because no
additional long latency actions can occur, as guaranteed by the compiler.



are kept in pools represented by queues.

TAM introduces another level of abstraction, called a guantum, which is a group of
threads that actively execute from the register set until none of the group are enabled.
The hope is that a compiler can do intelligent register allocation across threads in a
quantum. KL1 has no such concept, and currently no compilers do global register
allocation on this form. There is a related abstraction called a time slice wherein a
KL1 thread cannot pass control tail-recursively too many times in succession — the
system will force suspension, enabling more fair scheduling,.

Empirical performance analyses of TAM are at more preliminary stages than those
of KL1, so comparison is difficult. In summary, the models have more similarities
than differences. The PIM design work did not focus on compiler analyses, which are
necessary to derive the functionality of programs allowing more streamlined execution.

6 Conclusions

The FGCS PIM organizations are more closely related to the threaded architectures
recently evolved from dataflow, than has been documented in the literature by ei-
ther group.® The KL1 language is in some sense “threaded” because it is founded on
small-grain tasks that synchronize on data dependencies. Threaded architectures in
“conventional” parallel processing derived from the unconventional dataflow processor
effort, going strong for the past several years. With respect to hardware, the key mo-
tivations were to speed up network communication and to improve the efficiency of
the network/processor interface. Seminal research in the former direction include the
J-machine [11], and in the latter direction include the EM-4 [44, 47] and Monsoon [41].
With respect to software, the key motivation was to thicken the too-small granular-
ity of dataflow packets into “threads” of sequential computation triggered by limited
inputs, and producing output(s). Sarkar [45], Culler [10], Traub [58] and others pur-
sued compile-time techniques to thicken the threads. Although ICOT did not address
these issues, others in the logic programming community have been, e.g., [27, 31].
Specialized microprocessor architectures had been developed for several experimen-
tal machines that support fast switching among threads, usually involving having mul-
tiple contexts in registers. ICOT did not pursue this approach to microprocessor design,
instead placing emphasis on direct execution of symbolic, concurrent languages. Hand
in glove with the evolution of fine-grain architectures of all types was the refinement
of network interfaces that support fast message passing. The state-of-the-art is illus-

®Interestingly, H. Tanaka’s group at the University of Tokyo, closely involved with ICOT, has
developed a link: the PIE64 machine [28, 50].
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trated by machines such as the EM-4 where active messages are merged directly into
pipeline execution. ICOT did not lead, but rather followed, in the design of network
and network-interface architectures.

By pushing a top-down design approach, ICOT has tackled some problems in great
depth that other research groups have only recently, or not yet, started to explore.
These include: 1) dynamic garbage collection; 2) dynamic load balancing; and 3) sym-
bolic applications development. However, the current slew of PIMs do not achieve their
potential performance because of several design flaws: 1) lack of compiler analysis to
exploit functionality (or can be viewed as insistence on sticking with KL1 instead of a
moded /strongly-typed form of the language); 2) lack of sophisticated “fused” pipelines
handling both incoming messages as well as local instruction stream; 3} lack of mul-
tiple context support for fast task switching, and 4) reliance on custom microcoded
microprocessors instead of leveraging generic microprocessors.

It is somewhat unfair to make the comparison with current threaded architectures
because the PIMs designs are circa 1988. Interestingly, the PIMs are built on a strong
foundation of an applicative, concurrent language (as opposed to multiprocessors built
for imperative, sequential languages). It should be possible to leverage this main
strength in further refining the PIM compiler and processor designs to achieve very
high performance.
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