Practical algorithms on partial
k-trees with an application to
domination-like problems

Jan Arne Telle & Andrzej Proskurowski

CIS-TR-93-04
February 1993

Department of Computer and Information Science
University of Oregon

Practical algorithms on partial k-trees with an
application to domination-like problems

Jan Arne Telle, Andrzej Proskurowski
Department of Computer and Information Science
University of Oregon, Eugene, Oregon 97403, USA

Abstract

Many NP-hard problems on graphs have polynomial, in fact usually linear,
dynamic programming algorithms when restricted to partial k-trees (graphs of
treewidth bounded by k), for fixed values of . We investigate the practicality
of such algorithms, both in terms of their complexity and their derivation, and
account for the dependency on the treewidth k. We define a general procedure
to derive the details of table updates in the dynamic programming solution al-
gorithms. This procedure is based on a binary parse tree of the input graph. We
give a formal description of vertex subset optimization problems in a class that
includes several variants of domination, independence, efficiency and packing.
We give algorithms for any problem in this class, which take a graph G, integer
k and a width k tree-decomposition of G as input, and solve the problem on G
in O(n2'%) steps.

1 Introduction

A graph G is a k-tree if it is a complete graph on k vertices or if it has a vertex
v € V(G) whose neighbors induce a clique of size k and G — {v} is again a k-tree.
The class of partial k-trees (the subgraphs of k-trees) is identical to the class of graphs
of treewidth bounded by k. Many natural classes of graphs have bounded treewidth.
These classes are of algorithmic interest because many optimization problems, while
inherently difficult (NP-hard) for general graphs are solvable in linear time on partial
k-trees, for fixed k. These solution algorithms have two main steps, first finding a
parse tree (tree-decomposition of width k) of the input graph, and then computing
the solution by a bottom-up traversal of the parse tree. For the first step, Bodlaender
[8] has given a linear algorithm deciding if a graph is a partial k-tree and if so finding
a tree-decomposition of width k, for fixed k. Unfortunately, the complexity of this

1

algorithm as a function of the treewidth does not make it practical for larger values of
k. For k < 4, however, practical algorithms based on graph rewriting do exist for the
first step (4, 16, 19]. In this paper we investigate the complexity of the second step
when £ is not fixed. There are many approaches to finding a template for the design
of algorithms on partial k-trees with time complexity polynomial, or even linear, in
the number of vertices [17, 2]. As a rule, these approaches have tried to encompass
as wide a class of problems as possible, often at the expense of increased complexity
in k and also at the expense of simplicity of the resulting algorithms. Results giving
explicit practical algorithms in this setting are usually confined to a few selected
problems on either partial 1-trees or partial 2-trees [20, 14, 22]. In this paper we try
to cover the middle ground between these extremes.

In the next section, we present a binary parse tree of the input graph which can
easily be derived from a tree-decomposition. This parse tree is based on very simple
graph operations which, as we show, will ease the derivation of practical solution
algorithms for many problems. In section 3, we give a formal description of vertex
subset optimization problems in a class that includes several variants of domination,
independence, efficiency and packing. Then, in section 4, we present an algorithm
template for any problem in this class. These algorithms take a graph G, integer
k and a width k tree-decomposition of G as input, and solve the problem on G in
O(n2*) steps. Since these problems are NP-hard in general and a graph on n vertices
is an n-tree, we should not expect polynomial dependence on k. In the last section
we discuss and give some extensions of the algorithms.

2 Practical algorithms on partial k-trees

We use standard graph terminology [9]. For a vertex v € V(G) of a graph G, let
Ng(v) = {u : uv € E(G)}, and Nglv] = Ng(v) U {v}, be its open and closed
neighborhoods, respectively. Let G[S] denote the graph induced in G by a subset
of vertices S C V(G). A partial k-tree G is a partial graph of a k-tree H, meaning
V(G) = V(H)and E(G) C E(H). A k-tree H has a perfect elimination ordering of its
n vertices peo = vy, ..., v, such that Vi : 1 < < n—k we have B; = Ng[v;)n{v;, ..., v}
inducing a (k + 1)-clique in H. We call B;,1 < i < n — k the (k + 1)-bag of v; in
G under peo and each of its k-subsets is similarly called a k-bag of G under peo.
The remaining definitions in this section are all for given G, H and peo = vy, ..., vy, a8
above.

We define a peo-tree P of G under peo with the node set {B,,..., B,_}. The node
B; has as its parent in P the node B; such that j > 7 is the minimum one with
|B; N Bj] = k. The (k + 1)-ary peo-tree P is a clique tree of H and also a width
tree-decomposition of both G and H (see Figure 1 for an example.)

2

987(654321)

()

9876(54321)

876(32) 9876(541)

JoIn)
o87(4) 9876(51)

Join
978(51) 8876

Primitive
G[oe76]

Figure 1: (a) A partial 3-tree G, embedded in a 3-tree H, dashed edges in E(H) —
E(G), with peo=1,2,3,4,5,6,7,8,9,10. (b) Its peo-tree P. (c) Part of its binary parse
tree T' defined by node Bg = {6,7,8,9} of P. Child-to-parent arcs of T labeled by
V{(Ghita) with non-sources in parenthesis.

We sketch an algebra on simple graphs needed to define a binary parse tree T of
G based on the peo-tree P. Let a graph with k distinguished vertices (also called
sources, terminals, boundaries) have type Gy. For our purposes the set of sources will
always be (k + 1)-bags or k-bags of G. Primitive graphs are G[B] for some (k + 1)-
bag B and have type Gi41. The two operations are Reduce: Gx+1) — Gy and Join:
Gi+1 X Gi — Gy, Reduce takes the vertex to be eliminated and discards it as a
source. Join takes the union of its two argument graphs, where the sources of the
second graph (a k-bag) are a subset of the sources of the first graph (a (k + 1)-bag);
these are the only shared vertices, and the two graphs agree on edges between sources.

The construction of the binary parse tree T is based on the peo-tree P. A node B;
of P, with ¢; children and parent p(B;) defines a leaf-towards-root path of T. The
path starts with the primitive graph G[B] as the leaf endpoint, has ¢; Join operations
as interior nodes and terminates with a node of a Reduce operation. The Reduce
operation discards the vertex v; as a source, and its node is the second child of the
node of a Join operation defined by p(B;) (see Figure 1 for an example.)

3

Note that T is indeed a parse tree of G since the primitive graphs in T contain
all vertices and edges of G, while Join and Reduce merely identify vertices of the
primitive graphs, in the order given by P, to form G. The root of T is thus a Reduce
node representing G with sources {vn—g41,...,vn}. Since P is a tree with n — k nodes,
the Binary Parse Tree T of G has

e n — k Primitive leaves, one for each (k + 1)-bag
e n — k Reduce operations, one for each vertex eliminated
® n—Fk — 1 Join operations, one for each edge of T

A dynamic programming solution algorithm for a problem on @ will follow a bottom-
up traversal of T. As usual, at each node u of T a data structure table is kept of
optimal solutions restricted to G,, the subgraph of G represented by the subtree of
T rooted at u. The table of a leaf is filled as a base case, the table of an interior node
is filled based on tables of its children and the overall solution is obtained from the
table at the root. The following information will complete the algorithm description
for a given problem

e Description of Tables
¢ Operations Initialize-Primitive-Table

e Operation Join-Tables

Operation Reduce-Table

Operation Root-Optimization

The dynamic programming strategy on partial k-trees of [5], differed from the above
primarily in that a vertex v; with (k+1)-bag B was eliminated by combining tables of
all k+1 k-bags in B in a single (k+1)-ary operation. Assuming the table for a k-bag
has index set I, this operation has complexity Q(|Z;|¥*!) when all combinations of
entries from each table are considered. Intuitively, the binary parse tree approach
described above replaces a single such (k + 1)-ary operation by at most k pairs of
binary Join and Reduce operations, for complexity O(k|Jx||x41|). Next we show how
the description and the derivation of the correct procedure for updating a table based
on the tables of children is simplified by using the binary parse tree T'.

Many strategies have been proposed for solving problems on graphs of bounded
treewidth using a variant of the dynamic programming described above. For any
such strategy, an algorithm for a given problem must describe the tables involved and

4

also describe how tables are updated. We can classify these strategies by whether
there is a procedure for automatic (mechanical) construction of a solution algorithm
from a formal description of the problem, or such an algorithm has to be constructed
“by hand”.

The EMSOL approach [3] is an automatic technique. A linear time algorithm solving
a given problem can be constructed automatically from the problem description in
a certain logic formalism. Although very strong for showing assymptotic complexity
results, this technique is unsatisfactory for practical algorithm design since the result-
ing complexity in k involves towers of powers of k. Currently, there is no automatic
algorithm design strategy giving algorithms which are practical for increasing values
of k without hand derivation of a large part of the algorithm [6, 8, 12, 23, 1, 10].

Hand derivation of algorithms involves definition of table indices. Each table index
represents an equivalence class of solutions to subproblems, equivalent in terms of
forming parts of larger solutions. A solution to a subproblem at a node u of the parse
tree T is restricted to G,. This subproblem solution interacts with the solutions to
larger problems only through the sources of G, a separator of G. Equivalent solutions
affect the separator in the same manner, and hence we can define a separator state
for each equivalence class (table index). A candidate set of separator states is verified
by the correctness proof of table update procedures for all operations involved. The
introduction of the operations Reduce and Join greatly simplifies this verification
process.

For many problems, we can define a set L of vertex states, that represent the different
ways that a solution to a subproblem can affect a source vertex, such that |L] is
independent of both n and k. A separator with k vertices has a separator state for
each k-vector of vertex states so its table index set has size |It| = |L|*. In the next
section we first present a class of such problems and then derive O(n|L|**) dynamic
programming solution algorithms for partial k-trees.

3 Formalization of domination-like problems

In this section, we formalize a class of problems to which we find realistic linear
solution algorithms on partial k-trees given with a tree-decomposition of width k.
Given a set S C V(G) of selected vertices, we assign a state to each vertex of G as
follows:

_f pi ifveV(G)~S and |[No(v)n S| =
states(v) = { o: ifveSand [No(v)NS| =i

We also use the abbreviations:

Term Expressed in our formalism

Dominating po not a final state

Independent oy only final o-state

Perfect Dominating | p; only final p-state

Nearly Perfect po and p; only final p-states

Efficiency of [F]-set | maxg g (m_get {v : states(v) = pi}|

Total P effect of P on p-states is extended to o-states

Table 1: The established terminology and our formalism

df

pzi = {pi, pis1,---}
df

o2 = {0i,0iz1y 00}

Mnemonically, o and p represents a vertex selected for S or rejected from S, respec-
tively, with the subscript indicating the number of neighbors it has in §. A variety
of graph parameters can be defined by optimizing over subsets § while allowing only
a specific set F' as final states of vertices. For example, S is a dominating set if
state po is not allowed for any vertex, giving the final states F = {p3;,030}. The set
L = {po, p21,020} of legal states with respect to F is a superset of the final states con-
taining also, for p-states and o-states separately, any state with an integer subscript
smaller than that of a final state. These states are needed for algorithmic purposes
since a vertex may acquire additional neighbors from S during the bottom-up traver-
sal of the parse tree. Optimization problems over these sets maximize or minimize the
size of the set of vertices with given states M and are denoted min M[F) or maz M[F].
For instance, min{o20}[p21,020] is the minimum size dominating set problem.

Definition Given a set F of final states as above, any § C V(G) such that Yv €
V(G) : states(v) € F is an [F]-set. For M C F, the problem of minimizing (or
maximizing) |{v : states(v) € M}| over all [F]-sets S is denoted by minM[F] (or
mazM[F]), and the corresponding parameter for a graph G by minM[F)(G) (or
max M[F](G)). The set of legal states with respect to Fis L=FU {p; & F: p; €
FAj>i}U{o; g F:0; € FAj>i}. The sets M,F and L should all contain
as few explicit states as possible (i.e. they use abbreviated states if necessary) while
maintaining the syntactic restriction M C F.

Table 1 relates some of the established terminology to our formalism and Table 2
shows some of the classical vertex subset properties [11] in our formalism.

We also allow vertex weighted versions and directed graph versions of these optimiza-
tion problems. As an example, we mention the NP-hard problem Total Redundance

Our notation
(P21, 020]-set
[p20, 00]-set

[POa P1y 0'0]'set
[p1, 0o]-set
[p21,00]-set

[Pl ? a';o]-set

[PZI ’ a?l]'set

[p; y 1]-set

[P0, p1, o20]-s€t
[P0, #1, G0, 71]-set
[p1, 00, 01]-set:
mtm{ﬂl}[ﬂo, P£1, Pz2, 0'20]

Standard terminology
Dominating Set

Independent Set

Strong Stable Set or 2-Packing
Efficient Dominating Set or Perfect Code
Independent Dominating Set
Perfect Dominating Set

Total Dominating Set

Total Perfect Dominating Set
Near Perfect Set

Total Near Perfect Set

Weakly Perfect Dominating Set
Efficiency Problem

Ahﬁmﬁmwmwwwwg

Table 2: Some classical definitions

[14], where the weight of a vertex v is given by w(v) = |N(v)| + 1 and the parameter
minimizes the sum of the weights of vertices with state o in any [p21, oo)-set.
From Table 2 we note that subset property definitions which distinguish vertices by
their having zero, one or more selected neighbors attract the most interest. Similarly,
the objective functions most studied involve minimizing or maximizing the cardinality
of the set of selected vertices, and in fact, for each entry in Table 2 there is an NP-
hard problem related to such a parameter. For Independent Dominating Sets it is
well-known that both minimizing and maximizing the set of selected vertices are NP-
hard problems. The following result shows additional problems for which both the
minimization and the maximization of selected vertices are NP-hard.

Theorem 1 [21] The problems opt{o1}[p>1,01), opt{oo,o1}[p21,00,1], opt{ao}[p22,00]
and opt{o,}[p>2,01] with opt replaced by max or min are all NP-hard. For any
P 2 1,9 2 0 the problem of deciding if a graph G has a (p,, a,]-set is NP-complete
(for p=q =1 even with G restricted to a planar bipartite graph of mazimum degree
three) and if the answer is affirmative then min{a,}(py, 0,}(G) = maz{o,}[p,, o,)(G).

4 Algorithm template

In this section we give algorithms for solving any problem in the formalism just
described, on a partial k-tree G.

Algorithm-optM{F], where opt is either maz or min.

Input: G, k,tree-decomposition of G of width &

Output: optM[F)(G)

(1) Find a binary parse tree T' of G with Primitive, Reduce and Join nodes.
(2) Initialize Primitive Tables at leaves of T'.

(3) Bottom-up traversal of T using Join-Tables and Reduce-Table.

(4) Table-Optimization at root of T' gives opt M[F)(G).

The algorithm follows the binary parse tree T of G as outlined in section 2. For a
given graph G and any fixed k, Bodlaender [8] has given an O(n) (exponential in a
polynomial in k) algorithm for deciding if the treewidth of G is at most k and in
the affirmative case finding a tree-decomposition of G of width k. From this tree-
decomposition it is straightforward to find a binary parse tree of G in time O(nk?), see
e.g. [15] for how to find an embedding in a k-tree, then find a peo and finally follow the
description given in section 2 for constructing the binary parse tree, For a problem
given by the final states F, legal states L and optimizing (min or max) the set of
vertices with state in M, we next describe the Tables involved and then give details of
Table-Initialization, Table-Reduce, Join-Tables and Table-Root-Optimization. Each
of the following subsections defines the appropriate procedure, gives the proof of its
correctness and analyzes its complexity.

Table Description

Let a node u of the parse tree T represent the subgraph G, of G with sources B, =
{w1,...;wi}. The table at node u, T'able,, has index set Iy = {s = s1,...5;: 8; € L},
so that |Ix| = |L|*. We define ¥, with respect to G, and s, to be the family of sets
S € V(G,) such that in the graph G,, for w; € B,, stateg(w;) = s;,1 <t < k and
for v € V(G,) ~ B, stateg(v) € F. ¥ forms an equivalence class of solutions to the
subproblem on Gy, and its elements are called ¥-sets respecting G, and s. The value
of Table,[s] will be the optimum (max or min) number of vertices in V(G,) — B, that
have state in M over all U-sets respecting G, and s, and —oo if no such ¥-set exists.

Table,[s] £ { ~2° S
* optimumses{|{v € V(G,) — B, : states(v) € M}|} otherwise

Table Initialization
A leaf u of T is a Primitivenode and G,, is the graph G[B,], where B, = {wy, ..., Wi }-
Following the above definition we initialize Table, as follows

Vs € Iry1 : Tabley[s] = —oc0
VS8 C B : Table,[s] = 0 for s such that in G[B,] states(w;) = s;.
The complexity of this initialization for each leaf of T is O(|L|*+! 4 2k+2losk),

Reduce Table
A Reduce node u of T has a single child a such that B, = {wy,...,w;} and B, =
{wr, ..., wit1}. We compute Table, based on correct T'able, as follows

Vs € Iy : Table,[s] = optimum{Table,[p](+1 if pr4a € M)}

where the optimum (min or max) is taken over all p € Iy4; such that py,, € F and
1<i<k,p; = s,

Correctness of the operation follows by noting that G, and G, designate the same
subgraph of G, and differ only by wi41 not being a source in G,. By definition, an
entry of Table, optimizes over solutions where the state of Wiy is one of the final
states F' and wy4 contributes to the entry value if it has state in M. The complexity
of this operation for each Reduce node of T is O(|L[*+).

Join Tables

A Join node u of T has children a and b such that B, = B, = {wy,...,w;;} and By is
a k-subset of B,, wlog let By = {w,,...,wx}. Moreover, G, and G} share exactly the
subgraph G[B;]. We compute Table, based on correct tables of children as follows

Vs € Iy : Table,[s] = optimum{Table,[p] + Table|q]}

where the optimum (min or max) is taken over all compatible pairs (p,q) such that
P € Ity1,q € Iiy pryr = sgy1. The pair compatibility is defined by (p;,q;) €
7(i,8),1 < i < k, with the function 7(i,s) defined next.

The function (i, s) gives the set of pairs of vertex states (p;, ¢;) which legally combine
to form the vertex state s; under the restriction of s. This set of pairs depends on
the number of source neighbors of w; with o-states. We define

a(i) = [{w; € {Ne(w;) N B,} : s; is a o-state}| and

B(i) = |{w; € {Ng(w;) N By} : s; is a o-state}|.

We define 7 as follows

if s; = p. then {(pc, pa) : ¢+ d — B(i) = z}

if s; = 0, then {(o.,02) : ¢+ d — B(i) = 2}

if 5; = p2. then {(pc,pa)} U {(pc, p2:)} U {(p21,p4)} U (p2:, p2:)
if 5; = o2, then {(oc,04)} U {(0c,02:)} U {(022,04)} U (022, 02,)

(i,s) L

where ¢ and d are integer subscripts of legal states L, obeying the bounds imposed
by a(i) and 8(z), respectively.

To show correctness of the computation, consider any s = s,,..., 5541 and let § C
V(G.) be a U-set respecting G, and s that optimizes the number of vertices among
V(G.) — B, having state in M. Let S, = V(G,)NS and S, = V(G,) N S and let
P = p1, ..y Pit (similarly q = ¢y, ..., gx) be such that in G, (respectively G;) we have
states,(w;) = p; (respectively states,(w;) = ;). We want to show that the pair (p, q)
is considered in the update of Table,[s]. Since Ng,(wit1) = Ng,(wiy) we have
Pk+1 = Sk41. Next we show that (p;,¢;) € #(¢,8) for any w;,1 < ¢ < k. Since S, and
Sy are subsets of S, if s; is a o-state then p;, g; are o-states as well (and similarly for
p-states),

Assume s; = p, so that z = |[Ng(w;) N S|. Let |Ng,(w:) N S.| = ¢, |Ng,(wi) N Si| = d,
so that (p:,qi) = (p.,pa). Since B, C B, we have S, N B, = S,N B, = SN B, and
thus |Nga(w,-) ns, N Bbl = |Nab(w,‘) nsS, N Bbl = lNan(w,‘) nsn Bbl = ﬁ(i), or
z = |Ng,(wi) N S| = (c— B(3)) + (d — B(i)) + B(i) = c+ d — B(i). We conclude
(pis ¢:) € 7(i,s). The remaining cases where s; equal to a.,05, or p»; can be argued
similarly.

To complete the proof of correctness we must show that Join-Tables does not consider
too many entries. If (p,q) € n(¢,8) and S, is a U-set with respect to G, and p while
Sy is a U-set with respect to Gy and q then § = S,US) is itself a U-set with respect to
G, and s. This since B; forms a separator of G, and the definition of 7 contains the
restriction ¢ +d — (i) = z (or ¢+ d — A(i) > z) on the number of selected neighbors
each vertex in B, has. We conclude that Join-Tables is correct.

For each Join node of T' the complexity of Join-Tables is O(|L|***1) since any pair
of entries from tables of children is considered at most once. Many of these pairs are in
fact not considered at all and a refined analysis gives the complexity @(Eses, (Il <i<k|7 (%, 8)|))
with the upper bound O(maz;g{|w(z,8)[}*|L[*+), which depends also on the partic-
ular legal states L of the problem.

Optimize Root Table

Let r be the root of T' with B, = {w;,...,wx}. We compute opt M[F](G) based on
correct T'able, as follows

opt M[FYG) = optimum{Table,[s] + |{w; € B, : s; € M}|}

where the optimum (min or max) is taken over s € I} such that s; € |1 <i < k.
Correctness of this optimization follows from the definition of Table entries and the
fact that G, is the graph G with sources B,.

The complexity of Table optimization at the root of T is O(|L|**1).

Overall correctness and complexity
Correctness of the algorithms follows from a simple induction on the parse tree T'. As
noted in section 2, T has n — k Primitive nodes, n — k Reduce nodes and n — k — 1

10

Join nodes. The algorithms execute a single respective operation at each of these
nodes, finds the parse tree T and performs Table Optimization at the root. The total
time complexity becomes T'(n, k, L) = O(n|L|***1), with Join Tables being the most
expensive operation.

Theorem 2 Algorithm-optM[F], with L the set of legal states with respect to F, com-
putes opt M[F)(G) and has time complexity T(n, k, L) = O(n|L|**+!).

Corollary 1 For any problem opt M[F) derived from Table 2, Algorithm-optM[F] kas
time complezity T'(n, k) = O(n2%).

The corollary follows since any problem derived from Table 2 has |L] < 4. Us-
ing the refined complexity analysis of Join-Tables we can get improvements on the

overall complexity, the problem Maximum Independent Set achieving complexity
0(n2k+2logk).

5 Extensions

Our technique applies to a number of more general problems, as follows.

Search problems To construct an [F]-set of G optimizing the problem parameter
we add pointers from each table entry to the table entries of children achieving the
optimal value.

Weighted problems For weighted versions of the above problems, Table entries
reflect optimization over the sums of weights of vertices and we need only modify
the operations Table Reduce and Table Optimization. The Reduce operation adds
the weight of the reduced vertex, when its state is in M, rather than incrementing
the optimum sum by one. The Root operation, with the domain of optimization
unchanged, becomes

opt M[F)(G) = optimum{Table,[s] + Sweight(uw;) : w; € B, A s; € M}

Digraph problems For the directed graph versions of these problems we define
INg(v) = {u :< u,v >€ ArcsG} and use INg(v), as opposed to Ng(v), in the
definition of states(v), the state of vertex v with respect to a selected set S C V(Q).
The only change in the algorithm is for the definition of e(3), B(3) in Join-Tables that
will use I Ng as well.

Maximal and minimal sets S is a mazimal (minimal) [F)-set if no vertex can be
removed from (added to) S such that the resulting set is still an [F]-set. Based on a

11

hand derived algorithm optimizing over all vertex subsets satisfying some property,
[6] gives an automatic procedure constructing an algorithm optimizing over maximal
(or minimal) vertex subsets satisfying the same property. This includes an applica-
tion of Myhill-Nerode finite state automata minimization techniques to minimize the
resulting number of separator states. For more on the connection with finite state
automata, see also [1]. Unfortunately, when the original algorithm contains |{L|* sep-
arator states, this automatic technique involves simplification of a table with |L[¥2IL1*
separator states, and quickly becomes infeasible for increasing values of k.

To account for problems which optimize over maximal (or minimal) [F]-sets we need
more elaborate changes. We now sketch a general procedure constructing a set of
final vertex states F'maz to identify maximal [F}-sets. Define
A={pi:pi€ FAo; & F} and

B={pi:pi€ FApis. € FYU{o;:0,€ F Ay, € F}.

S is a maximal [F]-set if and only if S is an [F]-set and Vv € V(G) — § either
states(v) € A or Ju € Ng(v) : states(u) € B. Note that if A contains every p-state
in F or if B = F and the input graph has no isolated vertices then S is a maximal
[F]-set precisely when S is an [F]-set. To identify maximal [F]-sets by vertex states
we distinguish certain vertices with state in B to be a mate of neighboring vertices
in V(G) — S which are in turn distinguished to have a mate as neighbor. These two
types of vertices will have states labelled is and has (a mate), respectively. The set
of final states Fmaz for maximal [F]-sets will contain (i) any o-state in F, (ii) any
p-state in A, (iii) any state in B with the added label is, and (iv) any p-state in F
with the added label has.

To design an algorithm solving a problem optimizing over maximal [F}-sets we use
(a possibly hand-refined version of) Fmaz as starting point, find a corresponding set
of legal vertex states and fill in details of Table Initialization, Reduce, Join and Root
Optimization.

A construction in the same spirit will likewise give final vertex states for minimal {F]-
sets. As an example, S is a minimal dominating set if it is a [pi*, p>1, g0, 024*]-set.

Other problems The irredundance number of a graph is the minimum size of a
maximal irredundant set. An explicit linear time algorithm computing the irredun-
dance number of a tree has been given [6], and since irredundance is expressible as a
linear EMSOL extremum problem [3] there exist linear time solution algorithms on
partial k-trees, for any fixed k. We believe 2 more practical algorithm computing
this parameter on a partial k-tree can be hand derived by the methods discussed in
this paper. In our notation, S is an irredundant set if it is a [po, pi?, p21, 90, 025%%]-set,
and the close relation with minimal dominating sets is obvious. A set of vertex states
for maximal irredundant sets can be constructed by a more complicated version of
the procedure given above.

12

We have also applied our technique to problems for which we could not find a vertex

state set with size independent of k. As an example, we mention Partition into Perfect
Matchings (PPM):

For a graph G, find the minimum value of p for which there is a partition V4, V3, ..., ¥,
of V(G) such that G[Vi],1 < i < p has vertices of degree one only.

Below, we sketch a linear time algorithm for PPM on graphs of bounded treewidth
(both [8] and [3] show only the existence of polynomial time algorithms). We ob-
serve that equivalent solutions to subproblems must induce identical partitions on
the separator. We classify solutions by whether a given separator vertex has a mate
among the other separator vertices, a mate among the reduced vertices, or no mate
yet. Based on this we define a set of separator states and implementations of Ini-
tialize, Reduce, Join and Root-Optimize operations that give a linear time solution
algorithm. The number of separator states as described here is |I;| = 3* B(k), where
B(k) is the kth Bell number and the algorithm, although linear in =, is not very
practical for increasing values of k.

References

(1] K.Abrahamson and M.Fellows, Finite automata, bounded treewidth and well-
quasiordering, manuscript (1992).

[2] S.Arnborg, S.Hedetniemi and A.Proskurowski (editors) Algorithms on graphs
with bounded treewidth, Special issue of Discrete Applied Mathematics.

[3] S.Arnborg, J.Lagergren and D.Seese, Easy problems for tree-decomposable
graphs, J. of Algorithms 12(1991) 308-340.

[4} S. Arnborg and A. Proskurowski, Characterization and recognition of partial
3-trees, SIAM J. Alg. and Discr. Methods 7 (1986) 305-314.

[5] S.Arnborg and A.Proskurowski, Linear time algorithms for NP-hard problems
on graphs embedded in k-trees, Discr. Appl. Math. 23 (1989) 11-24.

[6] M.W.Bern, E.L.Lawler and A.L.Wong, Linear-time computation of optimal sub-
graphs of decomposable graphs, J. of Algorithms 8(1987) 216-235.

[7] H.L.Bodlaender, Dynamic programming on graphs with bounded treewidth, Pro-
ceedings ICALP 88, LNCS vol.317 (1988) 105-119.

13

[8] H.L. Bodlaender, A linear time algorithm for finding tree-decompositions of small
treewidth, manuscript (1992).

[9] J.A.Bondy and U.S.R.Murty, Graph theory with applications, 1976.

[10] R.B.Borie, R.G.Parker and C.A.Tovey, Automatic generation of linear algorithms
from predicate calculus descriptions of problems on recurive constructed graph
families, manuscript (1988).

[11] E.J.Cockayne, B.L.Hartnell, S.T.Hedetniemi and R.Laskar, Perfect domination
in graphs, manuscript (1992), to appear in Special issue of JCISS.

[12] B.Courcelle, The monadic second-order logic of graphs I: Recognizable sets of
finite graphs, Information and Computation, 85: (1990)12-75.

[13] M.Garey and D.Johnson, “Computers and Intractability”, Freeman, San Fran-
sisco, 1979.

[14] D.Grinstead and P.Slater, A recurrence template for several parameters in series-
parallel graphs, manuscript (1992).

[15] J. van Leeuwen, Graph Algorithms, in Handbook of Theoretical Computer Sci-
ence vol. A , Elsevier, Amsterdam, (1990) pg.550.

[16] J.Matousek and R.Thomas, Algorithms finding tree-decompositions of graphs,
J. of Algorithms 12 (1991) 1-22.

[17] A.Proskurowski and M.Syslo, Efficient computations in tree-like graphs, in Com-
puting Suppl. 7,(1990) 1-15.

[18] N. Robertson and P.D. Seymour, Graph minors II: algorithmic aspects of tree-
width, J. of Algorithms 7 (1986) 309-322.

(19] D.Sanders, On linear recognition of tree-width at most four, manuscript (1992).

[20] K.Takamizawa, T.Nishizeki and N.Saito, Linear-time computability of combina-
torial problems on series-parallel graphs, J. ACM 29(1982) 623-641.

[21] J.A.Telle, Characterization of domination-type problems and their complexity,
in preparation.

[22] J.A.Telleand A.Proskurowski, Efficient sets in partial k-trees, to appear in Dom-
ination in graphs, Special volume of Discrete Mathematics.

[23] T.Wimer, Linear time algorithms on k-terminal graphs. Ph.D. thesis, Clemson
University, South Carolina, (1988).

14

