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ABSTRACT. We give a fast polynomial-time algorithm for computing a com-
position series in a primitive permutation group given by a list of generators.
Permutation representations for the compaosition factors are also abtained.

The algorithm will be a key procedure in an O(sn3log®n) algorithm
that will the solve the same problems for an arbitrary subgroup of S, given
by s generators. The general algorithm will be described in a forthcoming
paper.

The firet polynomial-time algorithm for this problem was given by Luks.
QOur procedure follows the overall architecture of that original algorithm,
while replacing the subroutines by much faster ones. New combinatorial
estimates of suborbit sizes in primitive groups guarantee the improved per-
formance.

1. Introduction

In recent years, polynomial-time algorithms have been found for a great num-
ber of permutation-group problems. These range from constructing a strong
generating set (SGS) {24], which is the fundamental data structure for mem-
bership testing and other basic tasks (finding the order, constructing normal
closures, etc.), to obtaining structural information, such as composition factors
(20] and Sylow subgroups [14]. (See [15] and [21] for other examples.} In this pa-
per, we develop a more efficient procedure for the Composition-Series Problem:
Given generators for a permulatlion group G, find generators for the subgroups
in a composition series G = Ny > Ny > ... & N = 1 and permutation repre-
sentations for the composition factors N;fNi.1.
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QOur main result is

THEOREM 1.1. Given s permuiations generating a primilive group G < 8,
a composilion series for G, logether with permutalion represenialions for the
composition factors, can be found in O™~(n® 4 sn?) time.

In the above, as in other stated results, we use the “soft” version ([5]) of the
big-O notation: for two functions f(n), g(n), we write f(n)} = O~(g(n)) (read
“soft-oh”) if, for some constants ¢,C > 0, f(n) < Cg(n)log°n. Note, in this
notation, that we ignore the possible dependency of f and g on s. Indeed, the
main impact of our present algorithms is in the (most typical) situation where s
is small relative to n.

For possible implementations, it may cause concern that the exponent of log n,
hidden in the tilde notation, is rather large (greater than 20 in some lower or-
der terms nlog®n). However, for the present, our objective is to establish an
asymptotic performance guarantee that is several orders of magnitude better
than those previously known and we do not attempt to minimize the exponent
of lognn. Nevertheless, we do point out that, in the “practical® range of n, say
n < 105, one can eliminate the procedures that contribute these large exponents.

The first polynomial-time, O(n® + sn?), algorithm for finding a composition
series was given by Luks [20]. Although Luks’s goal was only to demonstrate
that the problem is solvable in polynomial time, he also established the requisite
structure, group-theoretic and algorithmic, upon which to build improvements.
Thus, the overall architecture of our algorithm still fellows Luks’s original pro-
cedure, while the subroutines have been replaced by much [aster ones, taking
advantage of new, mostly combinatorial estimates.

The case of primitive groups is & crucial instance of the composition-series
problem for general groups. The algorithm described herein will play a key role
in a forthcoming paper where the following general result will be proved.

THEOREM 1.2. [8] Given s permutations generating G < S,,, a composition
series for G, together with permutalion representations for the composition fac-
tors, can be found in O~(sn?) time.

Following [20], we remark that it is trivial to reduce the composition-series
problem to the primitive case in polynomial time. However, the naive reduction
will not yield the strong timing estimates stated in Theorem 1.2; indeed, it is
highly nontrivial to perform even the rudimentary task of finding strong gen-
erators within the time bound stated. The latter accomplishment is the main
result of [6] and the results of the present paper are used as a subroutine in the
SGS construction given there. By the time the SGS has been constructed, a
composition series is a byproduct.

En route to Theorem 1.1, the present paper also resolves the following subcase
of Theorem 1.2, which involves “small-base” groups (see Section 2.2).
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THEOREM 1.3, Let ¢ be fired. Given s permutalions generaling G < S,
where log |G| = O(log®n), a composition series for G, together with permutation
representalions for the composition factors, can be found in O™~(n3 4 sn) time.

We also point out that our algorithm for this problem requires only O™~ (sn)

space.
While no deterministic algorithm is currently known to beat the asymptotic
timing of Theorem 1.3, Beals and Seress [8] have recently constructed a ran-
domized (Monte Carlo) slgorithm for finding a composition series in small-base
groups, running in nearly linear, O™~ (ns) time. That algorithm follows the out-
line of the present paper and uses novel randomization techniques to overcome
the n2 and n® bottlenecks (cf. Section 4).

To handle the primitive groups of large order, our algorithm is strongly guided
by their structure theory (ef. Theorems 2.1, 2.7, and 2.8 below).

The timing analysis of our algorithm depends on the classification of finite
simple groups via estimates of the orders of primitive groups (Theorems 2.1, 2.2)
and Schreier’s Conjecture (Theorem 2.3). We shall also make use of the Odd
Order Theorem [11].

2. Notation, Definitions and Background

2.1, Group Theory. For basic definitions and facts about groups and per-
mutation groups, we refer the reader to [12] and [286].

For H <€ G, HS denotes the normal closure of H and Ng(H) is the normalizer
of H. The automorphism group and outer automorphism group of G are denoted
by Aut(G) and Out(G), respectively. The socle of G, Soc(G), is the subgroup
of G generated by all minimal normal subgroups. If G = Ty x -+ x T3 is
the direct product of groups each isomorphic to a fixed group T, the diagonal
Diag(Ty x---x T;) of G is the subgroup comprised of { fi(t) fo(t)--- f-(t) |t € T}
where, for each i, f; : T — T; is a fixed isomorphism. For H < G, G/H denotes
the set of right cosets of / in G.

The full symmetric group acting on the domain {2 is denoted by Sym(2), while
A, and S, denote the alternating and symmetric groups of degree n, respectively.
We say that G acts on a set £ if & homomorphism G — Sym(f2) is given; the
action is faithful if its kernel is the identity. If G acts on 2 and w & 2, we denote
by w€ the orbit of w under G, namely {w? | g € G}; we say G acts transitively
on {2 if ) consists of one orbit. If G acts transitively on {2, a nonempty subset
A € Q is called a block of imprimitivity for G if, for all g € G, A = A or
A? N A = 0; the singletons and © itself are the trivial blocks; G is said to aet
primitively, and is said to be primitive in the case G < Sym(Q), if it has no
nontrivial blocks of imprimitivity. A G-invariant partition B of Q is minimal if
G acts primitively on B. For B C (), Gp denotes the pointurise stabilizer of B
in G. A transitive group G < Sym({({}) is called regular if G, = 1 for any (all)
w € f.
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When speaking of subgroups of S, we call S, and A,, the giants. They are
the two largest subgroups and, by far, the two largest primitive subgroups of S,.

For the analysis of our algorithm, we need several consequences of the classi-
fication of finite simple groups. The first one originated with Cameron [9] who,
based on results of Kantor [13], classified the primitive groups of degree n and
order > n®'98196 ", We state a simplified version due to Liebeck [17], suitable for
algorithmic purposes. (Unless otherwise indicated, logarithms in this paper are
to base 2.)

THEOREM 2.1. [17] Let G < Sym(Y) be primitive and let n = |Q]. Then
either |G| < n®'°8™ or the socle of G is the product of isomorphic alternating
groups.

We also need an estimate for the order of non-giant primitive groups G < S,..
The following can be deduced from results of Cooperstein [10] and Liebeck,
Sax] [19].

THEOREM 2.2, Let G < Sym(f2) be o non-giant primitive group, and let
n=|Q| Ifn¢{8,11,12,24} then |G| < 5™/2. In the exceptional cases, only
AGL(3,2) (for n = 8) and the Mathieu groups (for n = 11,12,24) violate this
bound. In any case, |G| < 7(5"/2).

Remark. Elementary estimates |G| < 4™ and |G| < n*V#1%8% have been ob-
tained by Praeger, Saxl [22] and Babai [2, 8], respectively. While Babai’s bound
is asymptotically sharper than 7(57/2), the latter is better, and more convenient,
for small n.

We cite the following additional consequence of the classification, traditionally
termed Schreier’s “Conjecture”.

THEOREM 2.3. If G is simple then Out(G) is solvable. Moreover, if G has
a permulation represeniation of degree n, then |Out(G)| has no prime factor

> /n.

2.2. Algorithmic Concepts and Results. It is assumed that permutation
groups are input or output via a list of generators.

In his pioneering work [24],[25], Sims introduced the notions of a base and
strong generating set as the fundamental data structures for computing with
permutation groups. A base for a permutation group G < Sym(f}) of degree
n is a subset B = {b;,b2,.,bm} of O such that Gg = 1. Viewing B as a
linearly-ordered set, the point-stabilizer chain of G relative to B is the chain of
subgroups

C=G>c@ > >cM+) 1
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where G(¥) = Giby,...0i-1}- The base B is called nonredundant if there is strict
inclusion G* > G**! for all 1 < i < M. A strong generating set (SGS) for G
relative to B is a set S of generators of G with the property that

(NG =6M, for1<i<M+1.

With reference to some fixed ¢ > 0, an (infinite) family G of groups is called
a family of small-base groups if all members G of degree n admit bases of size
O(log®n). Equivalently, log|G] = O(log® n) for a fixed constant ¢ and each
G € G of degree n.

Let B = {b;,...,bpr} be a base of the group G andlet G=GW > G > ... >
G(M+1) = 1 be the corresponding point-stabilizer chain. Moreover, let R; denote
a transversal (complete set of right coset representatives) for GU+1) in G,
1 €1 £ M. Each g € G can be written uniquely in the form g = rysrpr—y -+ - r2m,
r; € R;. The process of factoring g in this form is called sifting or stripping.

Knuth [16] has offered a version of the Schreier-Sims SGS construction that
is particularly suitable for small-base groups. Although he did not explicitly
analyze the timing in this fashion, it is straightforward to check the following.

THEOREM 2.4 ([16)). Given G = (S) < S,, |S] = s, the following can be
computed in O(n?log® |G| + snlog |G]) time.

(i) A base of size < log|G|) and an SGS of size < log? |G| relative to
this base. The SGS allows for membership-testing in the group in lime
O(nlog |G)).

(ii) Strong genervlors for the kernel of an action G — Sym(A) on a set A
of size O(n).

Remark. The space requirement of Knuth’s procedure can be expressed as
O(n®log|G|). In [4, Lemma 2.2], Babai, Cooperman, Finkelsteir, and Ser-
ess gave a version of Sims’s Schreier vector data structure {24] for the storage
of the (partial) transversals. This allows a time-space trade-off, adjusting the
space demand to O(nlog? |G|) while increasing the time for SGS construction to
O(n?log? |G)+ snlog? |G|) and membership-testing to O(rlog? |G|). Note, how-
ever, that for small-base groups this trade-off improves the space requirement by
essentially an order of magnitude, from O~(n?) to O™~(n), while maintaining a
time of the form O~(n? + sn) for SGS construction and O™~ (n) for membership-
testing.

If a base and an SGS [or a small-base group are already in hand, certain
further elementary operations can be performed in nearly linear time. Standard
methods, augmented by [4, Lemma 2.2], yield the following theorem. (Note:
although [4] deals with probabilistic methods, the cited lemma is deterministic.)

THEOREM 2.5. If a base B of size O(log |G|) and an SGS of size O{log? |G|)
are known for G < Sym(§) then, given s’ generators for H < G, the following
can be computed in time O(nlog® |G| + #'log®|G).
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(i) An SGS of size O(log? |G|) for H (relative to the base B).
(ii) An SGS of size O(log?|G|) for the normal closure of H.

Atkinson’s algorithm [1] shows that blocks of imprimitivity can be found in
O(sn?) time. While this bound suffices for Theorem 1.1, we observe that, for
small-base groups, Beals [7] has the following improvement.

THEOREM 2.6 ([7]). Given G = (S) < Sn, |S| = s, it can be decided in time
O(nlog® |G} + snlog|G|) whether or not G is primitive. If not, the procedure
finds a nonirivial block of imprimitivity.

Finally, we quote two results from {5] which enable us to handle the large
primitive groups.

THEOREM 2.7 ([5]). Given a primitive group G = (S) < Sy, |S| = s, it can
be recognized in O~(n® + sn?) time whether or not G contains A,. If it does,
then, within the same time bound, e strong generating set of size n can also be
consiructed from S,

Remark. The phrase “constructed from S” in the above signals the construc-
tion of 8 straight-line program, that is, a sequence of group elements starting
with elements of S, in which each successive element is determined as a product
or power of some predecessor(s). Thus, for example, having identified a group
as A,,, we do not allow the luxury of writing down arbitrary even permutations
as members. The reason for such restriction is that we must deal with groups
that are alternating only on some orbit or some induced representation, but
permutations must be specified globally.

THEOREM 2.8 (NATURAL ACTION (5]). If the order of the primitive group
G = (S) < Sn exceeds n®'198n 10818 gnd Soc(C) = (Ax)" then these properties
can be recognized and the natural imprimitive action of G on a sel of size kr,
with the factors of the socle acting on blocks of size k as Ay, can be constructed
in O~(sn?) time.

Remark. The discrepancy between the bounds n?'°8" in Theorem 2.1 and
nfleanloglogn in Theorem 2.8 is due to the fact that, for small values of =,
our algorithm may not recognize the imprimitive action if |G| < nd'08nloglogn,
Asymptotically, the cutoff point can be pushed down to nSlegnloglogn 5]

3. Primitive Permutation Groups

In this section, we state the results about primitive groups that are necessary
to prove the correctness and timing of the composition-series algorithm.

A central ingredient is the O’Nan-Scott theorem, which classifies primitive
groups according to their socles [28],[8],[18]. The statement below represents
a regrouping of the subcases to suit our purposes. Note that a primitive group
may belong to more than one subcase,



COMPOSITION SERIES IN PRIMITIVE GROUPS 7

THEOREM 3.1. Let G be a primitive permutalion group of degree n. Then at
least one of the following holds:
(i) G is cyclic of prime order.

(ii) G has a proper normal subgroup of indezx < 7\/m.

(iii) G has one or two regular normal subgroups.

(iv} N = Soc(G) is the unique minimal normal subgroup of G, and it admits
a decomposition N = Ny x ... X N, with ml/2 > 7\/n (and, conse-
quently, m > 1+ logn/(2loglogn)), where the N; are conjugate under
the action of G. Moreover, G acts on {N;}1<i<m a3 the full alternating
group Am,. In addition, one of the following holds.

(a) No=(N1)w X ... X (N, 1 # (N;), # N:.
(b) N=T)x---xT, for some m|r, where the T; are isomorphic
nonabelian simple groups and N, = Diag(T) x ... x T,).
(v) G is nonabelian simple.

Proor. Let G be a primitive group. If G has a regular normal subgroup then
G falls in case (i) or (iii). Otherwise, G has a unique minimal normal subgroup,
Soc{G) = Ty x ... x T, where the T; are isomorphic nonabelian simple groups,
and r <loggn. If r =1 then T} € G <€ Aut(T}) and, by Theorem 2.3, G falls in
case (ii) or (v).

If r > 1 then G acts, by conjugation, transitively on {71, ...,T-}. Let M be
the pointwise stabilizer of 2 minima! block system in this transitive action. Then
M < G and G/M =~ L for some primitive group L, L < S, for some mjr. If L
does not contain A, then, by Theorem 2.2, |L| € 7(57/2) < 7/n and G falls in
case (ii). If L = Sy, then G has a normal subgroup of index 2. Finally, if L = A,,
then either m!/2 < 7./ and G falls in case (ii) or m!/2 > 7\/n and G is in case
(iv). Each N; is the direct product of the T; in a block of the minimal block
system. The two subcases of case (iv) involve an elementary rearrangement (as
in [20, pp. 96-97]) of cases in the O’Nan-Seott Theorem. O

Remark. To establish Theorem 1.1, it would suffice to work with the coarser
bound n in case (ii) of Theorem 3.1, eliminating the need for Theorem 2.2.
However, the 7,/n bound eliminates one n® bottleneck in the algorithm.

DEFINITION. We say that primitive groups of the types described in Theo-
rem 3.1 (iv)(a) and (iv)(b) are of type (iv)a and type (iv)b respectively.

In order to speed up the handling of primitive groups of types (iv)a and (iv)b,
we must strengthen some of the results of [20]. We start by examining the
connection between the conjugation action of G on {Ny, ..., N} and the orbits
of G, forwefl.

We have N = Soc(G) =T} x ... x T, where the T; are isomorphic nonabelian
simple groups and G acts (via conjugation) as A, on a minimal block system
in {Tj}; for some mir; the blocks in {7}, correspond to the N; in case (iv)
of Theorem 3.1. Furthermore, since G/N =~ G, /N,, G, also acts as A, on
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{N1,...,Nm}. Let K < G, be the kernel of this action. Then G,/K =~ A,
and conjugation by K fixes each N;. Note that N, < K.

Since N is transitive, 2 can be identified with N/N,, via w* — N_z; con-
sidering the induced conjugacy-action of G,, on N/N,, this identification is a
G.-mep. In particular, the orbits of G,, correspond to the G, conjugacy classes
in N/N,. Also, if G is of type (iv)a, we have

(1) 2 NNy 2 N1 f(N1)w X -+« X N /(Nen ).

In this situation, let 4 € £ and take z € N such that ¢ = w®, Thenz =z, -2
with z; € N;. We call (N;),z; the i*® coordinate of ¥ and call this coordinate
nontrivial if z; & (Ny)o.-

We also need the following general observation.

Fact 1. Let G < Sym(Q) be primitive and N be a nontrivial, nonregular
normal subgroup of G. For @ € Q, the only point fized by the stabilizer Ny, is @.

Indeed, the equivalence relation on £ defined by
@~ iff Ny = N
is clearly G-invariant. O

LEMMA 3.2. Let G < Sym(Q) be o primitive group of lype (iv)(a). Then,
Jor any w € Q, the size of the smallest orbit of G, on Q\ {w} is < log° n.
FPurthermore, the elements of such a smallest orbit have precisely one nontrivial
coordinate.

PROOF. By (1), n = [N; : (N).|™ and therefore |N; : {N;).} < log®n, since
m 2> 1+logn/(2loglogn).

As above, let K < G, be the kernel of the conjugation action of G, on
{Ny,...,Nm}. Let g be the size of the smallest K-orbit in Ny/(N;),. We
claim that if ¥ € Q has k nontrivial coordinates, then the G, -orbit of 1 has
at least (7)g2¥~! conjugates under G,. To show this, we first note that the
(7) term accounts for the action of A, & G,/K. We may now assume that
the k nontrivial coordinates of 3 occur in N;/(Ni)., i = 1,...,k. The term
q derives from the action of K on Ny/(N;),. Finally, we see that there is an
additional independent factor of 2 contributed by the conjugacy action of (N;).,
on N;/(Ni)w, for each £, 2 < i < k; for this, observe, if a coset (N;),v were fixed
by (N;)., then N, v would be fixed by N,,, contrary to Fact 1.

On the other hand, there is an element ¢ = w" & § with one nontrivial
coordinate, such that N,u has g conjugates under K, so that the G-orbit of v
has cardinality mgq.

Hence coset representatives in the smallest G,-orbit have only one nontrivial
coc;rdina.te and the size of the smallest G,,-orbit is mqg < (logg n)|Ny: (N1)u] <
log”n. 0O
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LEMMA 3.3. Let G < Sym(Q) be a primitive group of type (iv)(a) and let
w & 2. Then there exist points 1, x, ¢ € 0 such that
(i) ¥, x belong to the smallest orbit of G, tn Q\ {w}.
(i) ¢ belongs to the smallest orbit of Gy in Q\ {x}.
(iii) The subgroup H = {(Guy,Gye) # G, and the action of G on the cosets
of any mazximal subgroup containing H is either nonfaithful or of degree
< nf2.

Proor. By Lemma 3.2, [or any i, 1 € i € m, there is an element in the
smallest G,,-orbit in 2\ {w} that is nontrivial only in the i* coordinate. Let v,
x belong to that smallest orbit, with ¢ nontrivial in the second coordinate and
with ) nontrivial in the first coordinate. There exist t € N, u € Na, such that
wh =y, w* = 1. Let ¢ = x* = ¢* so that ¢ belongs to the smallest orbit of Gy
(= Gt) in 0\ {x}. Thus ¥, x, ¢ satisfy (i) and (ii).

To show that w, ¥, x, ¢ satisfy (iii), we first show that H = (Guy,Gye) <
Ng(N2) < G. Suppose z € Guy. If N = Nj then v*u~! € N, N N;N; =
(Nj)w(Nz2)o. Since u ¢ (Na)w, we must have 7 = 2. Thus, G,y normalizes Na.
Similarly for Gy.

Let M be a maximal subgroup of G containing H. Suppose that the action
of G on the right cosets of M is faithful. We show that |G : M| < n/2.

Since t € Ny, (Ni) = (Vi) for i > 1, but, by Fact 1, N, # N,; thus,
(N1)w # (N1)x. Since u centralizes Ny, (N1)w € Guy; similarly, (N1)y < Gyg.
We have

(N)w < (N1)uy (M)} < (M) < (M)

(the latter two being “point” stabilizers in the actions of N, on G/H and
G/M, respectively). In particular, [(Ny)p| 2 2|(N1)w|. But, since G acts on
{Nih1<icm as does G, we know that (V;)a is conjugate under Gpr to (Ny)u.
(Of course, G is just M but it is more useful to emphasize the point-stabilizer
interpretation.) Thus |Nas| > (2|(Ny)w|)™. Since N is transitive in the (primi-
tive) action of G on G/M,

IG: M =|N: Ny| < (IN1: (N))I/2)™ =n2"". DO

The next two lemmas give us the machinery to deal with primitive groups of
type (iv)b.

Let 22 denote the set of unordered pairs of elements of 2. Then G acts
naturally on (2,

LEMMA 34. Let G £ Sym(f2) be a primilive group of type (iv)(b) and let
w € Q. Then there is a point Y # w € N such that
(i) ¥ belongs to a G -orbil of size < log>n.
(ii) If B is ¢ minimal block system in the G-orbit of the pair {w, ¥} € Q2
then the action of G on B i3 either nonfaithful or |B| < n/2.
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ProOOF. Wehave N =Soc(G) =T x...xTy,n=|T1|""}, and |Ny| = |T{/m|.
Therefore n = |N;|™(1-1/7), On the other hand, r > m > 1+ logn/(2loglogn),
hence |T3| < |Ny| < log?n. Also, since r —1 < logiz,| n, we have r < logn.

Let ¢ € T be an involution {guaranteed to exist by the Odd Order Theo-
rem[11]) and set 4 = w’. To see that (i) holds, note that any ¢t € T} has at
most |T}|r < log*n conjugates under G, so that the G,,-orbit of N,¢ in N/N,,
is also bounded by log®n. The result follows now by the G-set identification
N/N, ~Q.

Suppose that the action of G on B, as in (ii), is faithful. We show that
|B| < n/2.

Let b denote the block in B containing {w,v¥}. Since ¢ fixes {w, ¥}, it fixes
b in the action on B. It follows from (T); # 1 that |B| = |T}: (T1)s|" (e.g., by
consideration of the cases of the O’Nan-Scott Theorem [9]). Since /n < r1/2,
we have |Ty| = n!/("—1) < (71/2)%("—1} and the latter is less than 27! for all
r > 2. Therefore, |B| = |T1: (T1)s|” £ |Th|7/27 =n|T1|/2" < n27-1/2r. O

In our application of Lemma 3.4, we need to locate such a 1 without having
to search through many points. For this, we have

LEMMA 3.5. Let G < Sym(Q) be a primitive group of type (iv)(b) and let
w € Q. The union of all G, -orbits that have < log’ n points has cardinalily
o~(1).

Proor. We consider points in {2 as equivalence classes of N, each class of size
|N,| = |Diag(Ty x ... x T:| = |Ty| < log? n. It suffices then to show that there
are only O~(1) elements of N with fewer than log® n conjugates under G,,, for
if an an element has at least log® n conjugates, then the number of equivalence
classes among these conjugates is at least log® n/|N,,| > log® n.

Let k* be the smallest integer such that (::) > log®n. (For large n, we have
k* = 6). Let u € N be arbitrary and write u in the form v = wug - um,
u; € N;. We note that the diagonal subgroup N,, = Diag(T} x --- x T}.) defines
a G,-invariant identification (specific isomorphism) between the 75; this in turn
determines an identification between the N;. So we can compare u;,ug,.... If
a particular element of N, occurs exactly £ times among the u; where k* < £ <
m—k* then u has at least (’L‘) > log® n conjugates, due to the A,, action. If there
are &t least k* + 2 different values among the u; then u ha§ at least m*” > log®n
conjugates. Finally, we observe that there are < (;’:)k +1|N1|""H = O~(1)
elements u € N which belong to neither of the above cases. O

We shall also need the following simple lemma.

LEMMA 3.6. Suppose that the primitive group G < Sym(Q)) has a regular
normal subgroup N, w,¥ € Q, and let M be a mazimal subgroup containing
Guy. Then |G: M| <|Q].
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PROOF. Let |2] = n. We know that |G : Guy| €n(n—~1) and Gy NN =1.
We distinguish two cases:
(i) M contains N. In this case, [M| > |GuylIN|, 50 |G: M| <n-1.
(ii) M does not contain N. In this case, since M is maximal, MN = G.
Hence |G| = |[MN| < |M||N| and |G: M| <n.O

4. The Algorithm

We reduce Theorem 1.1 to Theorem 1.3 as follows. Given a primitive G,
then by Theorem 2.8, in O~(sn?) time it is possible to detect whether or not
|G| = n?legnloglgn gand by constructing the imprimitive natural action of G,
to reduce the composition-series problem to the giant and the small-base case.
However, for giant G, we can, by Theorem 2.7, identify G/A, and construct an
SGS for A,,.

Thus, it remains to prove Theorem 1.3.

The core of the algorithm used for the problem in Theorem 1.3 is a procedure
that solves the following problem and is especially efficient for small-base groups.

ProBLEM. GENERALIZED PROPER NORMAL SUBGROUP (GPNS)
INPUT: G = (8) < 8ym(Q), |0 =n, |S| =s.
OuTPUT: One of the following.
(1) The report “G is simple”.
(2) Genemators for a praoper normal subgroup of G.
(3) A faithful action of G on a domain of size at most n/2.

QOur procedure for GPNS follows the outline of the algorithm given in
[20, Section 5]; the novel parts are the handling of primitive groups with a
regular normal subgroup (see Step 4} and the improvement in the handiing of
primitive groups with a unique nonabelian normal subgroup (see Steps 5 and 6).

In most cases, outputs of types (2) and (3) are discovered in induced actions
of G. Each constructed action gives rise to a primitive action in which we test
the kernel and the size of the domain. The procedure TEST_ACTION formalizes
these steps. The input, A, is a set of size > 1, on which G acts transitively.

procedure TEST_ACTION(A)
begin
B:= a minimal G-block system on A;
N:= the kernel of the G-action on B;
if N #1 then (output N; halt);
if |B| < |A|/2 then (output {G — Sym{B)}; halt)
end.
TEST_ACTION is called at several points in procedure for GPNS. If it does

not detect a proper normal subgroup (output of type (2)) or a smaller domain
{output of type (3)) then control is passed back to the calling procedure.
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The slgorithm for the GPNS problem:
procedure GPNS
Step 0. Construct a nonredundant base and an SGS for G

Step 1. ¥ := any nontrivial orbit of G;
TEST_ACTION(¥).

Step 2. if |G| = |¥| then (output “G is simple of prime order”; halt).
Step 3. A := any subset of G of size 7/n +1;
for each pair {a,b} € A do
N = (ab~1)%;
if N # G then (output N; halt).
Step 4. w, := any two points of ¥;
H :=Ng(Guy);
M := a maximal subgroup of G containing H;
if |G : M| < n then TEST_ACTION(G/M).
Step 5. w := any point in J;
for all ¢, ¥ in smallest G_-orbit do
for all ¢ in smallest G,-orbit do
H := (Guy, Cxe);
if H # G then TEST_ACTION(G/H).
Step 6. w := any point in ¥;
for all ¥ in G,,-orbits of size < log®n do
Iy := the G-orbit of {w, ¥} in set of unordered pairs;
TEST_ACTION(Iy,).

Step 7. output “G is nonabelian simpla”.

LEMMA 4.1. Tke output of the procedure GPNS is correct.

PRroOF. It is clear that the output is correct if the algorithm encounters a
proper normal subgroup or a smaller domain. We have to prove that G is simple
if the output says so.

If Step 1 is passed then G acts primitively on ¥. A primitive regular group
is cyclic of prime order, so the output of Step 2 is correct. Suppose that the
algorithmn passed Step 2; it is sufficient to show that, if it reaches Step 7, then
G is simple,

If G falls in case (ii) of Theorem 3.1 then the algorithm halts at Step 3.

We claim, if G falls in case (iii), that the algorithm halts at Step 4. To see
this, let N be a regular normal subgroup of G. By Lemma 3.6, |G : M| < n, so
TEST.ACTION will be called. The unique = € N carrying w to 1 centralizes
Gy, 50 £ € M. This means that N cannot act regularly on the cosets of M; so,
if the action on the cosets is faithful then the number of cosets is < |[N|/2 = |¥|/2
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(Since N is normal in G, it acts transitively in any primitive action of G, whence
the size of the domain is the index of a point-stabilizer in N.)

If G falls in case (iv)(a) of Theorem 3.1 then Lemma 3.3 implies that the
algorithm halts at Step 5.

If G falls in case (iv)(b) then, by Lemnma 3.4, the algorithm halts at Step 6.

So, if Step 7 is reached then & is simple. O

As in Theorems 2.4 and 2.5, we express the timing of GPNS as a function of n
and |G]. At this point, however, it is convenient to introduce an extension of our
“soft O” notation. In considering numerica! functions on the pairs (G, n), where
G < Sy, we write f(G,n) = O%(g(G,n)) if, for some constants ¢,c/,C > 0,
f(G,n) € Cg(C,n)logn log""JG]. If we were dealing exclusively with small-
base groups G < Sy, the log® |G| term would be superfluous. However, we
ultimately need to use the GPNS procedure in induced representations of a
small-base group. With respect to these, possibly smaller, domains the image of
& need not be a small-base group.

LEMMA 4.2. The procedure GPNS runs in O%(n® + sn) time.

Proor. First, we point out that a call of TEST_ACTION takes O~(n?) time
on a set of size O~(n) since, by Theorem 2.6, a minima! block system B can be
computed in O¥(n) time and, by Theorem 2.4, the kernel of the action on B can
be obtained in O%(n?).

By Theorem 2.4, Step 0 runs in O¥(n? + sn) and, as observed above, Step 1
runs in O®(n?). Theorem 2.5 shows that Step 3 takes 0~(n?) time.

Step 4 contains the n® bottleneck of the algorithm. One can choose w, ¥ to be
the first two points of the base returned in Step 0. Let {u;} and {v;} denote the
set of coset representatives for G, in G and for G,y in G, respectively and let
S, be the set of strong generators for G,,5. Then |S,| = OF(1). The subgroup
H = Ng(G.y) can be computed in O=(n?) time since for each of the < n? coset
representatives vju; for Guy in G, it is enough to trace the image of w and 9 at
the conjugates y"#*¢, for y € S.. Computing M can be done by setting M := H
and then, for all coset representatives of Gy in G, computing M* = (M, vju;).
If M* = G then discard vju;; otherwise, set M := M*. By Theorem 2.5, one
computation of M* takes O~(n) time. Eventually, a maximal subgroup M is
obtained in O=(n3) time. The action of each of the O(1) (strong) generators
y of G on the cosets of M can be constructed in O=(n?) time since for each
coset representative z of M in G, the coset of zy can be found in O%(n) time, by
testing which of the ratios zyz~!, z € G/M, are in M. Testing one Z amounts
to a sifting through an SGS of M. This can be done in O¥(1) time, since it is
enough to follow the images of the (common) base of G and M.

Step 5 runs in O%(n?) time since, by Lemma 3.2, we have to test only 0=(1)
triples v, x,¢. By Theorem 2.5, H can be computed in O¥(n) time. Since
H = (G.y, Gx¢) contains G.., the action of G on the cosets of H is the action
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of G on a block system of cosets of G.4. The action of G on the cosets of G.y
is the action of G on (w, )%, and can be found in O=(n) time since the index of
Gy in G is OF(n). The block system corresponding to H can be found in O¥(n)
time since we can compute generators for H. Finally, calling TEST_ACTION
on G/H costs 0%(n?).

Step 6 also runs in O~(n?) time since there are only O~(1) choices for ¥ (by
Lemma 3.5), for each 1, the images of the unordered pair {w,+} can be found
as a block system of cosets of Gy, and, as above, this block system is obtained
in O%(n). Calling TEST_ACTION on I'y, costs 0¥(n?). O

As indicated, we apply the above algorithm to ¢{G) where ¢ : G — S, is some
induced representation of & and always m = O™~(n). Although not essential for
the asymptotic result, it seems most reasonable to carry out such procedure
calls “locally”, e.g. elementary operations, such as permutation multiplications,
are performed only in the m element domain. To facilitate the “lifting” of the
answer back to G € S, in an initial construction of the base and SGS for ¢(G),
preimages in G of the SGS are kept; for small-base G, doing this via the method
of Theorem 2.4 costs O™~(nm+ gn) time. The lifting of elements (e.g., generators
of targeted subgroup) is done at a per-element cost of O™~(n) by sifting through
the base of ¢(G), copying the computation in the lifting of the SGS. The complete
lifting of a subgroup also includes the kernel of the action (Theorem 2.4(ii)).

‘We complete, finally, the

Proor oF THEOREM 1.3. It suffices to indicate how one obtains a maximal
normal subgroup M together with a permutation representation for G/M, for
this may be repeated O™~(1) times to obtain a composition series of G. We
cutline the construction of M, which follows that in [20].

To find a maximal normal subgroup M, we apply the procedure for GPNS to
G. If the output of GPNS is of type (3), we rerun GPNS with the induced action.
Thus, for nonsimple groups, at most log n applications of GPNS will produce a
proper normal subgroup N (output of type (2)). In such case, we can construct
a nontrivial action ¢ : G — Sym(¥) with N < ker(¢) and |¥| < |Q|, namely,
take ¥ = G/GUIN, where { is minimal such that G > G N (by Theorems 2.4
and 2.5), this action is constructible in O™~(n?) time). Again, we may assume
the output is of type (1) or (2). If #(G) is simple then M = ker(¢) is maximal
normal in G and ¢ induces a faithful representation of G/M. Otherwise, if N is
a proper normal subgroup of ¢(G), we have N < ¢~ 1(N) < G. Replace N by
¢~ Y(N) and repeat, i.e., construct an action whose kernel includes N, etc. O]
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