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PETER D. MARK

ABSTRACT. Sylow's theorem is a fundamental tool in group-theoretic in-
vestigations. In computational group theory there is an important role
for efficient constructive analogs of Sylow's theorem. For computational
purposes, we assume that a group is given by a set of permutations that
generate it. This leads to the following problems:

SYLFIND(p,G)

GIVEN: a prime p and generators for a group G,
FIND: generators for a Sylow p-subgroup P < G.

SYLCONJ(P,, P;,G)

GIVEN: generators [or G and two of its Sylow p-subgroups P, and P,
FIND: an element g € G for which Pf = 5.

SYLEMBED{P,G)

GIVEN: generators for G and for a p-subgroup P < G,
FIND: generators for a Sylow p-subgroup of G containing P.

This paper shows SYLFIND, SYLCONJ, and SYLEMBED {for solvable
groups are in the complexity class NC; namely, they are solvable in poly-
logarithmic time {O(log® n) steps) using a polynomial number of processors
working in parallel. A future paper by Kantor, Luks, and Mark extends
these results to general groups.

1. Introduction

Over the last two decades, sequential, polynomial-time algorithms have been
found for a variety of basic problems concerning permutation groups, including
determining the order, testing membership, and finding some of the important
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subgroups such as centers, commutator subgroups, and Sylow subgroups. Sylow
subgroups are a crucial tool in [6] for finding centers in quotient groups and for
various other problems (see also [11]). Also, a restricted version of SYLFIND
played a role in Luks’s polynomial time algorithm for bounded valence graph
isomorphism testing [8]. In a recent series of papers, Kantor gave polynomial-
time solutions for the Sylow problems SYLFIND and SYLCONIJ [3, 4, 5]. His
methods exploit a well-developed library of polynomial-time procedures for per-
mutation groups and consequences of the classification of finite simple groups.

Inspired by new generations of machines, new theoretical models were de-
veloped to describe and analyze parallel computation. In particular, the class
NC gives a useful framework in which to study the inherent parallelizability
and logical structure of computations independent of any interprocessor connec-
tion network. In the case of permutation group algorithms, many of the known
techniques appeared to depend on inherently sequential methods. In a series of
papers [1, 10, 12, 14], entirely new machinery was developed for permutation
group computation. It ultimately brought a sizable portion of the collection of
polynomial-time problems, including finding compaosition factors, into NC. How-
ever, a number of critical questions remained open. As pointed out in [1], a
leading one of these was the parallelization of Sylow subgroup computations.
This paper presents efficient parallelizations of these computations for solvable
groups. These are special cases of methods that solve the same problems for
general permutation groups {7, 13].

Most of the sequential permutation group algorithms exploit a tower of sub-
groups, G = Go 2 Gy > --- > 1, that is either a tower of pointwise set stabilizers
or a composition series for G [2, 3, 4, 19]. Membership testing, for example, uses
a tower of point stabilizers and reduces membership testing for G; to membership
testing for G4 [19]. Kantor’s polynomial-time sequential Sylow algorithms [4]
use a composition series [9] for G.

Both of these towers can have length linear in the degree n of G, and hence may
be too long for computation in NC. The parallelization of order and membership
testing as well as the new NC Sylow algorithms utilize a different (normal) tower
G=Ko > Ky > - > K, =1 for G whose length r is polylogarithmic in n.
The quotients K;/ ;4 of successive groups in the tower are semisimple {direct
products of simple groups). The existence and NC-constructibility of such a
normal tower are demonstrated in [1] and {10].

Groups in this tower arise from two different divide and conquer strategies.
The first involves only a naive construction of a structure forest [12], a data
structure based on the orbits and imprimitivity blocks of the group (see also
[11]). This reduces the tower construction to the primitive group case, which
requires a second divide and conquer approach based on the internal structure of
primitive groups, Luks’s composition factors algorithm, and other consequences
of the classification of finite simple groups. The tower may be refined so that
successive quotients K;/K;;, are direct products of simple groups that are either
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all abelian or all nonabelian. In the abelian levels (and hence for solvable groups,
in which all levels are abelian) the Sylow problems reduce to the problem of
solving systems of linear equations over finite fields, which has been shown to
be in NC by Mulmuley [15]. In nonabelian levels, parallelism arises for many
problems in a natural way by working within each simple group independently.

In this paper, we focus on the Sylow algorithms for solvable groups. However,
we follow an approach that works for Sylow subgroup computations in solvable
quotient groups as well. This plays an important role in the extension of the
present results to general permutation groups [7, 13]. Moreover, although the
nonsolvable case demands deeper group theory, including case analyses based
on the classification of the finite simple groups, it exhibits much of the logical
structure of the present paper.

One can describe the algorithm for SYLFIND as the computation of a tower of
subgroups G = Py > P, > --- 2 P, where P;/K; is a Sylow p-subgroup of G/K;
and G=Ko > K, & -+ & K, =1 is a semisimple tower of polylogarithmic
length as described above. Such a semisimple tower is available, indeed it is
intrinsic to the basic machinery for NC computation, including membership-
testing {1, 12]. However, it simplifies our exposition to avoid repeated and
explicit reference to a precomputed tower. Thus, we compute suitable i; as
they are needed.

Let X <1 H where H/K is abelian semisimple. An important ingredient in
parallel permutation group computations is the ability to represent H/K in a
computationally efficient manner as a product of vector spaces. Once effective
representations for such quotients are available, two particular problems emerge:
finding a Sylow p-subgroup P of a group H where K 4 H 9 G, K is an elemen-
tary abelian p’-group, and H/K is an elementary abelian p-group, and finding a
subgroup G* < G that normalizes P and contains a Sylow p-subgroup of G. The
latter problem is an algorithmic form of the Frattini argument. These permu-
tation group problems are transformed into solving systems of linear equations
over finite fields.

2. Preliminaries

2.1. NC Concepts and Results. The complexity class NC is the set of
problems which can be solved using a polynomial (O(n*)) number of processors
in polylogarithmic time (O(log® n) steps) where k and ¢ are constants and n
is the input size. Processors communicate via shared memory. This model of
computation, known as a PRAM and introduced in [16], has become a standard
tool for analyzing a problem’s inherent parallelizability.

Permutation-group problems require three basic permutation operations:
computing the product of two permutations, computing inverses of permuta-
tions, and computing large powers of permutations. The first two are straight-
forward. To form a power &’ of a permutation o, where b is represented in
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binary (in practice, b may be O(n!) where n is the degree of a), we form a®

independently on each cycle of o by reducing & modulo the cycle length. Note
that, for sequential computation, one does not need to emphasize such powering
as a “primitive” operation, for it is accomplished by repeated-squaring, therefore
by a polynomial number of multiplications. However, the number of successive
squarings would be prohibitive for an NC result.

We make use of NC algorithms for the following permutation group problems
that are described in [12]. In all of the following problems, we assume G is given
by a set of generating permutations: G = {§) < Sym(9).

ProBLEM 2.1.1. MEMBERSHIP(G, x)

GIVEN: & permutation group G < Sym(2) and an element z € Sym(Q),
DETERMINE: whether or not z € G.

PrROBLEM 2.1.2. COMMUTATOR(G)
GIVEN: a permutation group G = (S) < Sym(R2),
FIND: the commutator subgroup G’ of G.

G' is the normal closure of the set {[s,#] | 5,¢ € §}¢; an NC algorithm for
computing normal closures in solvable groups is given in [12].

ProBLEM 2.1.3. FACTOR(z, H, K)
Given: H, K < Sym(£2) where K = (Y) is normalized by H = {X), and
re HK,
FIND: elements & € H and * € K such that = = kk.

SKETCH OF THE ALGORITHM: The NC membership testing algorithm given in
[1] constructs z from the set X UY of generators of HK. Following the same
construction but substituting the identity for the elements of Y yields h.

2.2. Definitions and Basic Concepts. A group is semisimple if it is the
direct product of simple groups; it is abelian semisimple if each of its simple fac-
tors is abelian. Semisimple groups play an important role in the NC algorithms
for SYLFIND and SYLCONIJ in general groups in [7)]; in the present context of
solvable groups, we concern ourselves only with abelian semisimple groups. Since
an abelian semisimple group is a direct product of elementary abelian groups for
various primes, we may view it as a direct product of vector spaces over different
prime fields. For convenience, we refer to such a group as a generalized vector
space.

A generalized basis for a generalized vector space H = Py x .-+ x P (assume
P; is an elementary abelian p;-group with p; # p; for i # j) is the union U;B;
where B; is a basis for F;. Similarly, if the quotient H/K is abelian semisimple,
a subset B C H is called a generalized basis for H modulo K if {Kb|b e B} is
a generalized basis for H/K.
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LEMMA 2.2.1. Given groups K < H = (T) with H/K abelian semisimple, a
generalized basis B for H modulo K can be found in NC.

ProOF. Let H/K = P /K x ... x P/K where each P;/K is an elementary
abelian p;-group and p; # p; if i # j. Let # = I’ILI pi, let m; = #/p;, and let
Ci={t"" |te T} foreachi=1,...,l. Then P; = (C;, K) To obtain a basis B5;
of P; modulo X for alli = 1,...,{in parallel, suppose C; = {ty,...,1}, and let
Bi={t; €Ci |t & (t1,...,t5-1, K)}. These membership tests are each in NC
(Problem 2.1.1) and may be performed in parallel. B = Ul_, B; is a generalized
basis for H module K. [

‘We use qu to denote the d-dimensional vector space over Fy, the field of ¢
elements, and {e;,...,eq} to denote the standard basis. If H/K is an abelian
semisimple group, a generalized vecior space represeniation for H/K is a pair
(V, ¢) consisting of a generalized vector space V together with an epimorphism
¢ H— F;’l' R oo X F;’;' with kernel K, where the primes p; are all distinct. A
generalized vector space representation (V, ¢) for H/K is NC-effective if ¢ is an
NC-compuiable function, i.e. there is an NC procedure that can compute ¢(k)
for any given h € H.

LEMMA 2.2.2. Given groups K < H where H/K is abelian semisimple, an
NC-effective generalized veclor space representation (V, ¢) for H/K can be found
tn NC. Moreover, for any v € V, a pretmage of v in H, i.e. an element h€ H
Jor which ¢(h) = v, can be found in NC.

PROOF. Suppose H/K = P,/K x ---x Pi/K where P;,/K = V; = F&, for
each i = 1,...,l. By Lemma 2.2.1, a generalized basis B = Ul_,B; for H
modulo K may be found in NC, where B; = {b;,...,b:;} is a basis for B;
modulo K. Let {e;,...,eiq;} be the standard basis of V;. We specify an NC-
computable function ¢ : H — V as follows. Let & be an element of H. For all
bij, 1 £i<1,1<j<d;, in parallel: test, for all @, 1 < a < p; — 1, in parallel,
whether h=1 . 8% € (B\ {b;;}, K) (tested using Problem 2.1.1) and let a;; be
the unique @ satisfying this condition. Then & = T, bi;’ (mod K). Define
(k) = E,-J- a;jeij. Hence the map ¢ : H# — V is an NC-computable function
with kernel K. The pair (V, ¢) is an NC-effective representation for H/K.

Furthermore, for any element v = 3, a;;e;; € V, the element h =], . b;" €
H satisfies ¢(h) = v. Hence we may compute preimages in H of elements of V
in NC[

We also require the ability to perform basic operations of linear algebra within
generalized vector spaces in NC. A generalized linear iransformation of a general-
ized vector space V = V) x --- x Vy is a direct product of linear transformations
L = L) x -+ x Li, where each L; is a linear transformation of V;. Hence
Lv=(Lyv,--+,Lqvq), where v=(vy,---,v3) € V.
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LEMMA 2.2.3. Given a generalized linear transformation [ = Ly x -- - x Ly of
a generalized vector space V = Vy x.--x V; and an element b= (by,... ,b5) €V,
the sel of solulions of Lz = b can be found in NC.

ProoF. Each set X; = {z; | Liz; = b;} may be found in NC using [15]. Then
the set X; x .-+ x X4 C V is the set we seek. 0

A set of equations of the form described in Lemma 2.2.3 is called a system of
generalized linear equations.

For a prime p and a group G, let R,(G) denote the smallest normal subgroup
H 4 G for which G/H is an elementary abelian p-group, and let R4(G) denote
the smallest normal subgroup H < G for which G/ H is abelian semisimple. Note
that Ra(G) < G for any solvable G # 1. Let OF(G) denote the smallest normal
subgroup H 9 G such that G/H is a p-group. Let Rp(G) =G and R:,"’I(G) =
Rp(Ry(G)). Let dp(G) denote the smallest integer r for which Ry(G) = R{YYG).
Note that OP(G) = Ry(G), where r = dy,(G). Similarly, let R%(G) = G and
RIFYG) = RA(RY(G)). Let da(G) denote the smallest integer r for which
R7{G) = R}(G). Note that if G is solvable, R (G) = 1, where r = d4(G).

PropPosITION 2.2.4. For a solvable group G < Sym(Q), the tower G >

RA(G) > R4(G) > -+ > R%(G) = 1 has length s logarithmic in ||, i.e.
8 < clog |§1] for seme consiani c.

ProoF. Since da(G) < maxaco{da{G?)} where @ is the set of G-orbits, we
may assume without loss of generality that G is transitive. If 7 is primitive, then
|Gl < |S3-28, by [17, 20], hence d4(G) is logarithmic in [Q]. If G is imprimitive,
let G* be the primitive action on m > 1 blocks of size n/m and let K be the kernel
of this action. Inductively assuming the result is true for groups of degree smaller
than ||, we have d4(G) < da(G*) + da(K) < clogm + clog(n/m) = clog(n).

CoROLLARY 2.2.5. For a solvable group G < Sym(Q), the lower
G > RAOP(G) > (RAOP)X(G) b --- > (RAOP)(G) =1
has length s logarithmic in €]
ProOF. One shows that (R40P) (G) < Ry(e)0

CoRoLLARY 2.2.6. For a solvable group G < Sym(R), dp(G) 1s logarithmic
in |Q).

PRoOF. The quotient G/O?(G) is isomorphic to 2 homomorphic image P of
a Sylow p-subgroup P of G. Hence dp(G) = dp(G/OP(G)) = dp(P) < dy(P).
But d,(P) = d4(P), which is logarithmic in |Q] by Proposition 2.2.4. 0

LEMMA 2.2.7. Given a permutaiion group G = (§) < Sym(Q), the subgroups
Rp(G), Ra(G), and OF(G) can each be computed in NC.
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PROOF. Ry(G) = (G',{s” | s € 8§}) and RA(G) = (G',{s? | s € S}), where
q i8 the product of the primes that divide |G|, so each of these groups may be
found in NC (see Problem 2.1.2). Since OP(G) = R(G) where r = d,(G), OF(G)
may be found by computing R;',(G) fori=1,...,r sequentially. (This is an NC
computation since r is logarithmic in |Q] by Corollary 2.2.8.) (I

3. The Sylow Algorithms for Solvable Groups

3.1. A Base Case and the Frattini Argument. Finding and conjugat-
ing Sylow subgroups of solvable groups give rise to two particular subproblems:
finding a Sylow p-subgroup P of a group H where K <« H 4 G, K is an elemen-
tary abelian p'-group, and H/K is an elementary abelian p-group, and finding a
subgroup G* < G that normalizes P and contains a Sylow p-subgroup of G. The
latter problem is an algorithmic form of the “Frattini argument” ([18, p. 61]).
This section describes procedures BASECASEL and FRATTINI for these prob-
lems.

The essential technique in both these procedures is to transform a group theo-
retic condition into the problem of solving systems of generalized linear equations
over finite fields, for which there exist NC algorithms (Lemma 2.2.3). Linear
transformations arise where & and H are both normal subgroups of another
group G, H/K is abelian semisimple, and (V, ¢) is an NC-effective generalized
vector space representation for /K. Then each element g € G induces a gen-
eralized linear transformation on V denoted T}, given by é(z) — ¢(g~'zg).

ProBLEM 3.1.1. BASECASEI(H,K,L)

GIvEN: L 9 K 4 H < Sym(Q), L 4 H, H/K is an elementary abelian
p-group, and K/L is an abelian semisimple p'-group,

FIND: a group P for which L < P < H and P/L is a Sylow p-subgroup of
H/L.

PROPOSITION 3.1.2. BASECASET is in NC.

Proor. If P is such a group then H = PK and, since PNK =L, H/K =
P/L. In particular, P/L is elementary abelian. Suppose H = (§). Then for
each s € S, there exists z, € K such that sz, € P. Hence,

(i) forallse S, (sz,)P €L

(ii) for all 5,2 € S, [s2,,tz¢] € L.
Conversely, if {z, | s € §} C K satisfies (i) and (ii), then we can take P =
{{sz, | s € S}).

Let ¢ : K — V induce a generalized vector space representation of K/L (see
Lemma 2.2.2) and for ¢ € G, let T; be defined as above. Since {sz,,tz,] =
T?’(-"’:-I)'fsaf]mixn

¢([33::“3t]) = ""¢(-'5:) - T':¢(rt) + (ﬁ([S, t]) +Tl¢(zn) + ¢(mt)-
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Thus {sz,,tx] € L if and only if each pair of elements in {¢(z,) | s € S} satisfies
the following system of |S|? generalized linear equations:

Vs,te S, (T — DX, — (T, - DX, = —é(]s,1)).

Hence, a set {z, | s € S} satisfying (ii) is obtained by solving this system for
{X:} € V (see Lemma 2.2.3) and letting z, be a preimage of X, in K (see
Lemma 2.2.2).

We can modify this set to satisfy (i), while maintaining (ii), by replacing each
z, by s~!(sz,)™ where m is chosen so that |K/L| divides m and m = 1 (mod p).

Recall the Fraitini argument (see [18, p. 61]): if P < K 4 G with P a Sylow
p-subgroup of K then G = Ng(P)K, where Ng(P) is the normalizer of P in G.

ProOBLEM 3.1.3. FRATTINI(G,H,K,L,FP)

GIveN: L 4 K @ H 9 G < Sym(R), each of L, K is also normal in G,
K/L is an abelian semisimple g'-group, H/K is a p-group, and P/L
is a Sylow p-subgroup of H/L,

FIND: a subgroup G* < G that normalizes P and contains P for which
G* /L contains a Sylow p-subgroup of G/L.

ProrosiTiON 3.1.4. FRATTINI is in NC.

ProoFr. We are given G = (S), P = (T). By the Frattini argument, for any
§ € & there exists z, € K such that sz, € Ng(P). For any such collection,
{z, | s € 8}, we can take G* = (P, {sz, | s € §}); to see that G*/L contains a
Sylow p-subgroup of G/L, we observe that |G*K/L| = |G/L|, but the p-part of
|G*K/L| equals the p-part of |G*/L| since (|K/L],p) = 1.

To find such z, (in parallel for each s € S) it suffices to ensure that ¢+ € P
for each t € 7. For each ¢t € T, write t* = a;k,, with a, € P, k; € K (see
Problem 2.1.3). The required x, must therefore satisfy ag*k, € P. But, af*k; =
as[a, z,]k and [a,, z,])k: € K. Since PNK < L, the condition on z, is equivalent
to [a;, z,]k: € L, or, if ¢ : K — V induces a vector-space representation of K/L,
to

$(z,) — ¢(z]*) + d(ke) = 0.

Therefore, ¢(z,) is a solution to the system of |T| generalized linear equations
VieT, (I -T,)X + é(k) =0,

where T, is defined just before Problem 3.1.1. Hence, z, is obtained by solving
this system for X € V (see Lemma 2.2.3) and letting z, be a preimage of X in
K (see Lemma 2.2.2). J
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3.2. SYLFIND. Belore giving a procedure for SYLFIND, we describe an-
other special case.

PROBLEM 3.2.1. BASECASE2(G,K,L,p)

GIVEN: a solvable group Gand L 9 K d G < Sym(Q), where L g G,
G/K is a p-group, and K/L is an abelian semisimple p'-group,

FIND: a subgroup P < G containing L for which P/L is a Sylow p-subgroup
of G/L.

ProposiTION 3.2.2. BASECASE? is in NC.

Proor. Let G; = R,(G)L (see Lemma 2.2.7). Note that K < G,. If G, = G,
then G = K, and |G/L| = |/ L| is relatively prime to p so G/L has no nontrivial
Sylow p-subgroup. In this case, return P = L.

Otherwise, recursively find P, = BASECASE2(G), K, L). The group G* =
FRATTINI(G, Gy, K, L, P,) normalizes P, and contains a Sylow p-subgroup of
G. We seek a group P for which P/ P, is a Sylow p-subgroup of G*/P,. Find the
group U = Ry(G*)L (see Lemma 2.2.7) . By definition, G* /U is an elementary
abelian p-group. Also note that U//P; is an elementary abelian p’-group since,
letting W = U N K, we have U/P, = PLW/P, 2 W/(PANnW)= W/L < KfL,
which is an elementary abelian p’-group. Hence BASECASE] (see Problem
3.1.1) applies, and P = BASECASELN(G",U, P,) is the group we seck.

In each recursive call, L < Gy < @, so the number of recursive calls is
bounded by dp(G/L). Since dp(G/L) < dy(G), which is logarithmic in [Q] by
Lemma 2.2.6, the algorithm for BASECASE? is in NC. U

PrOBLEM 3.2.3. SYLFIND(G,p)

GIVEN: a solvable group G < Sym(Q) and a prime p that divides |G|,
FIND: a Sylow p-subgroup P of G.

THEOREM 3.2.4, SYLFIND 15 in NC.

Proor. Let K = OP(G) (see Lemma 2.2.7) and L = R4(K) (see Lemma
2.2.7). If L = K (tested using Problem 2.1.1) then R,(K) = Ra(K), which
implies K = 1, so return G. Otherwise let P = BASECASE2(G, K, L,p) and
recurse by returning SYLFIND(P, p).

To analyze the running time of SYLFIND, note that L = R40?(G) so the
group P that is passed in the recursive call satisfies R4OP(P) = RA0P(L) =
(RA0P)*(G). Hence the depth of the recursion is logarithmic by Lemma 2.2.5.

Moreover, the procedures BASECASE] and FRATTINI are in NC. Hence
SYLFIND is in NC.O
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3.3. SYLCONJ and SYLEMBED. We now describe a procedure
SYLCONJ-EMBED which can be used for conjugating Sylow p-subgroups and
embedding a p-subgroup into a Sylow p-subgroup. Specifically, we obtain SYL-
CONJ as a special case of SYLCONJ-EMBED by letting P; and P» both be
Sylow p-subgroups of G. Similarly, SYLEMBED can be implemented by first
letting P, = SYLFIND(G, p), then setting ¢ = SYLCONJ-EMBED(G, P,, P»)

and returning Pz-"_‘, a Sylow p-subgroup of G containing P,.

PRrOBLEM 3.3.1. SYLCONJ-EMBED(G, Py, P,)

GIVEN: a solvable group G < Sym(Q1), a p-subgroup P, of G, and a Sylow
p-subgroup P of G,
FIND: an element z € G for which P{ < P,.

THEOREM 3.3.2. SYLCONJ-EMBED is in NC.

Proor. Find H = OP(G) (see Lemma 2.2.7), so that P H/H < G/H =
PH{H. Find K = Ru(H) (see Lemma 2.2.7). If K = H, then H = 1 and
P, € P; = G. In this case, return z = 1.

We may assume K < H. We first show that we can find z € H such that
Pf < P,K. Suppose Py = (S). Since G = PoH, for each s € §, we can factor
s = bh with b € P2, h € H (see Problem 2.1.3). For z € H, 5* € P,K if and only
if b-15% = (z~!)*ch® € P,K; since h* = h[h, z] € hK, this happens if and only
if (z~!)*zh € P,KNH < K. Thus, if ¢ : H — V induces a generalized vector
space representation of H/K (see Lemma 2.2.2), then s* € P2 K if and only if
¢(z) is a solution to the system of |§| linear equations

Vs € S! (I - Tb.)x + ¢(hl) = 0:

where 5 = b,h, with b, € Py,h, € H, and where T}, is defined just before
Problem 3.1.1.

Hence, z is obtained by solving this system for X € V and taking a preimage
of X in H (see Lemma 2.2.2).

Let G* = (Pf, P2) and recursively solve SYLCONJ-EMBED(G*, PF, ) for
y € G* such that (PF)Y < P,. Return the element zy.

To analyze the running time of SYLCONJ-EMBED, note that the group K
computed in SYLCONJ-EMBED is equal to R 40P(G). Hence the group G* that
is passed in the recursive call satifies RxOP(G*) = R40P(K) = (RA0?)*(G).
Thus, the depth of the recursion is logarithmic by Lemma 2.2.5. Therefore,
SYLCONJ-EMBED is in NC.[]

4. Conclusion

A natural continuation of this work is the search for efficient parallelizations
of other group-theoretic sequential algorithms, for example, the problem of find-
ing Sylow normalizers. This problem has been shown to be in polynomial time
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by Kantor {5]. The ability to compute Sylow normalizers may extend the ap-
plicability of the Sylow theorems to parallel computation in ways analogous to
its use in sequential algorithms [6]. These algorithms may also give rise to more
efficient sequential algorithms than those initially given by Kantor.
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