Determinacy Testing for
Nondeterminate Logic

Programming Languages

E. Tick — University of Oregon
M. Korsloot — Delft University of Technology

CIS-TR-93-07
April 1993

Abstract

This paper describes an algorithm for the code generation of determinacy test-
ing for nondeterminate flat concurrent logic programming languages. Languages
such as Andorra and Pandora require that procedure invocations suspend if there
is more than one candidate clause potentially satisfying the goal. The algorithm
described has been developed specifically for a variant of flat Pandora based on
FGHC, although the concepts are general. We have extended Kliger and Shapiro’s
decision-graph construction algorithm to compile “don’t know” procedures which
must suspend for nondeterminate goal invocation. The determinacy test is compiled
into a decision graph quite different from those of committed-choice procedures, but
we argue that in most cases, the same low space complexity is retained.

This paper will be published in the ACM Transactions on Programming Languages
and Systems (TOPLAS), 1993.

Printing history: TR-90-18, November 1990,

DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE
UNIVERSITY OF QREGON

1 Introduction

This article describes compilation techniques for the Andorra/Pandora family of par-
allel logic programming languages [1, 2, 3, 4, 6). These languages share a common
execution model wherein a goal invocation is suspended if it can potentially be satis-
fied by two or more clauses in a procedure definition. We call these “nondeterminate”
goal invocations. If all goals suspend, causing deadlock, then one nondeterminate goal
is selected and forced to execute, creating a choicepoint for potential backtracking.

In this article, we limit ourselves specifically to our own variation of “flat” Pandora
based on Flat Guarded Horn Clauses (FGHC) [15]. The language we consider has
flat guards, no synchronization operator, and implicit synchronization rules, all as in
FGHC. However, the compilation techniques we developed are applicable to the entire
Andorra/Pandora family.

The techniques described are based on the decision-tree and decision-graph algo-
rithms developed by S. Kliger and E. Shapiro [10, 11]. The algorithm we introduce is
for generating the code for a determinism tester: the code that checks whether two or
more clauses can potentially satisly a goal invocation. QOur tester is a decision graph
that is built in quite a different manner than graphs for committed-choice languages,
as for example done by S. Taylor [12].

2 Pandora: Definitions and Example

In this section we introduce flat Pandora to clarify our later compilation techniques.
Our flat Pandora programs consist of FGHC procedures categorized as either don’t care
or don’t know procedures [2]. In a nutshell, a flat Pandora program executes like an
FGHC program, i.e., concurrent fine-grain processes communicate to solve a problem.
In addition, a don’t-know goal can backtrack through its clauses in an attempt to satisfy
its invocation.

At the time of its execution, a don’t-care goal is treated as in any committed-choice
language. If any clause head and guard can satisfy a goal invocation, then the goal
commits to that clause and reduces. If the head and guard of two or more clauses can
satisfy a goal invocation, then any one of the clauses is chosen for commitment. If no
clause head and guard can satisfy the goal invocation, but one or more can suspend,
then the goal suspends. Otherwise if no clause head and guard can succeed or suspend,
then the goal fails. Note that unlike a pure committed-choice language where goal
failure implies program failure, in Pandora goal failure causes backtracking.

A don’t-know goal is executed differently from a don’t-care goal. If only one clause
head and guard can satisfy the goal invocation, then the goal commits to that clause

and reduces. However, if the head and guard of two or more clauses can succeed,
then the goal suspends. We call this a nondeterminate goal invocation, and the test
to determine if one or more clauses can commit is called the deierminism test. If no
clause head and guard can satisfy the goal invocation, but one or more can suspend,
then the goal suspends as well. Otherwise if no clause head and guard can succeed or
suspend, then the goal fails.

In summary, don’t-know goals act similar to goals in a committed-choice language
with the exception that if more than one clause can commit then the goal suspends and
we call this a “nondeterminate goal invocation.” Flat Pandora execution proceeds much
like that of FGHC, with nondeterminate don't-know goal invocations suspending. At
any point in time, the group of suspended goals consists of don’t-care and don’t-know
goals. Unbound logical variables are “hooked” to these suspended goals, thus enabling
resumption as in any committed-choice language implementation (e.g., [9]).

For don’t-care goals, binding a hooked variable is the only method of resumption.
Resumption causes the goal to be reconsidered for execution, although it does not
guarantee reduction: the goal may suspend on another variable. For don’t-know goals,
binding a hooked variable will also cause resumption, but it is not the only method.
Certain suspended don’t-know goals may not even have associated hooked variables
because their procedure definitions are truly nondeterminate. In that case, the goals
remain suspended until no executable goals remain, i.e., deadlock ensues.

To break deadlock, any suspended don’t-know goal is forced to reduce. The fact
that the goal was suspended implies that two or more clauses can commit to this goal
invocation. Forced reduction must choose a clause to commit, after creating a choice-
point for potential backtracking. The choicepoint will direct execution to alternative
clauses. Any clause with a non-failing head and guard can be reduced (as in Prolog).
There is no distinction between input and output variables at this stage: the goal is
unified with the clause heads until one is satisfied. Unlike don’t-care goal reduction,

1 However,

output bindings may be performed during head and guard unifications.
certain guards cannot be forced to reduce with unbound inputs, e.g., X>3 cannot be
evaluated if X is unbound. These guards must suspend and another clause would be
chosen. It could be the case that the don’t-know goal chosen to break the deadlock
cannot reduce because of such tests. If this occurs, another goal must be chosen.
Given an “incorrect” program, all suspended goals may be don’t-care in which case
deadlock is fatal. It can also be the case that although don’t-know goals exist, none of

them can be forced to reduce because of guards that require bound variables. This is

1 As for all bindings, trailing must be performed if the variable to be bound is older than the current

choicepoint.

another form of fatal deadlock. Given a “correct” program, forcing reduction of a don’t-
know goal may issue new don’t-care goals and/or create bindings that resume old don’t-
care goals. However, some don’t-know goals may generate only nondeterminate don’t-
know goal invocations and/or create bindings that do not resume old don’t-care goals.
In this case, deadlock remains and another goal must be chosen for forced execution. In
general, it is hoped and expected that the execution periods of determinate reduction
of don’t-care goals are much longer than the periods required to break deadlocks.

Choicepoints leading to multiple, independent OR-branches of the execution tree
can potentially be searched in parallel [4], but this issue is orthogonal to the article and
will not be discussed.

To illustrate the flat Pandora procedural semantics, a small example is presented.
Consider the following code:

a(1,1,1) :- true : true.
a(2,1,1) :- true : true.
a(2,2,1) :- true : true.
a(2,2,2) :- true : true.

b(1,A) :— true | A=yes.

b(2,A) :- true | A=no.
The procedures utilize Kernel Andorra Prolog [7] syntax: the wait operator, ‘:’ signifies
don’t-know, whereas the standard commit operator, ‘|’ signifies don’t-care. Suppose

we make the following query:
7- a(X,Y,2), b(Y,r), Z=2.

Assuming that the goals are evaluated in their sequential order, the sequence of actions
executed is: a/3 is found to be nondeterminate and suspends, b/2 suspends, Z is bound
to 2, a/3 resumes and is found to be determinate (clause 4), X and Y are bound, b/2 is
resumed, and A is bound to no. In contrast, consider the following query:

?- a(X,Y,2), b(Y,no), Z=1, X=2.

One possible sequence of actions executed is: a/3 is found to be nondeterminate and
suspends, b/2 suspends, Z is bound, a/3 resumes, found to be nondeterminate and
suspends again, X is bound, a/3 resumes, still found to be nondeterminate and sus-
pends a third time. Now deadlock ensues so a/3 is forced to reduce, Y is bound to 1,
b/2 is resumed and feils, backtracking retries the execution of a/3, Y is bound to 2,
b/2 is resumed and succeeds. These two examples sufficiently illustrate the execution
mechanisms of flat Pandora to understand the rest of this article.

3 Decision Graphs: Background

The don’t-care procedures in flat Pandora are compiled in a manner similar to the
decision-graph algorithm given by Kliger and Shapiro for FCP [11]). Because we are
restricting ourselves to FGHC, our notation can be made simpler than that of the FCP
algorithm as we have no tell guards. We review the terminology and algorithm here as
a foundation for our method of compiling don’t-know procedures.

A guarded Horn clause is of the form:

H:— Gl,Gg,..., Gm I B],Bz,...,Bn.

where m and n are zero or positive integers. H is the clause head, G; is a guard goal,?
and B; is a body goal. The commit operator ‘|’ divides the clause into a passive part
(the guard) and active part (the body). The first step in the compilation process is to
translate source clauses into cenonical form.

Definition: A simple term is either a constant, a variable, or a compound
term in which the arguments are pairwise different variables. A complez
term is a compound term in which there exists either a non-variable argu-
ment or two arguments with identical names. a

For example, f(X,Y) is a simple term and g(k(X)) is a complex term.

Definition: A complex term is flaitened into a pair (F,S5), where F is
a simple term and § is a constraint sel. To flatten a complex term the
following rules are applied with § initially empty. Each of & instances of a
shared variable X is replaced by a unique variable {Z;4; |1 < ¢ < k} and
§:= SU{Zjn1 = Z;+2,Zj41 = Zj43,...}, for C(k,2) pairs.> A constant
argument « is replaced by a unique variable Z;, and §:= {Z; = a}US.
A complex argument is flattened into (F”,S5’) and replaced by a unique
variable Z;, and §:= {Z; = F'}uS§'US. m]

Note that all pairs of instances of a shared variable are explicitly generated to permit
rapid failure if any pair fails to unify. This definition can be simplified for don’t-care
procedures by generating only & — 1 constraints for k instances of a shared variable.
All these constraints link the new variables to the original.

Definition: A clause C = “H : — G | B.” has a normalized form C’ =
“H':—G'| B.”, where H' and G’ are computed as follows: the head H

2more precisely, an “ask” guard.
3C(xz,y) is the combinations function. Index j is chosen to produce unique variables.

4

is flattened into the pair (H',S) and a goal G; is flattened into the pair
(G4, S8:). Then the guard G’ := SUGIU..UGRrUS5U...USy, form
guards. a

For example, the clause
fIXIW]) :— X = g(a(Y), b(Y), e(Y)) | ...
is normalized to:
f(Z1):= 2, = [X|W)], X = g(Z2, Z3, Z1), Z2 = a(Zs),
23 =b(Zg), 24 =¢(Z7), Zs = Zg, Z5 = 27, Zeg = Z7 | ...

Normalization is needed to simplify a clause into a trivial head and an extended guard
containing the constituent constraints. This form facilitates code generation of triples or
quads, Normalization, however, is not enough: we need to rename variables among the
clauses belonging to the same procedure such that variables corresponding to the same
depth within the same procedure argument have the same name. This characteristic is
necessary for indexing purposes, as is shown later.

Definition: A simple term H = p(X,, X3, ..., X») is expanded, with respect
to a set of constraints G, into a tree, tree(H), with n branches labeled
1,...,n. For a variable X; and term T that appear in a constraint g =
{Xi=T} e Gor g ={T = X;} € G, the subtree at root 7 is T, expanded
with respect to G\ {g}. Otherwise the subtree at root ¢ is the leaf X;. O

Definition: A normalized clause C = “H : — G | B.” is renamed into
canonical form by expanding H with respect to G into tree(H). Each
variable X in C is replaced by Z, where p is the label sequence from the
root of tree(H) to the vertex corresponding to X. o

Using this sequence gives a complete ordering of all variables and retains identical names
for corresponding variables among clauses. For instance, f(g(X,Y)) has normalized
form f(A):— A = g(B,C) and canonical form f(Z,):— Z; = g(Z1,1, Z,,2).

Definition: A canonical-form procedure consists of canonical-form clauses,
each of the form < i,G > for clause number i with guard G. The head
is not needed because it has been flattened away. The head arguments
are always named Z,, Z,, ..., Z, for an arity-n procedure. The body is not
listed because the algorithms we discuss in this article do not deal with
body compilation. o

1Certain builtin predicates, such as =/2, </2, etc., are flattened in a slightly different manner than
described above. For example, X = a is considered already flat.

From this point on in the article, all references to “procedures” and “clauses” implicitly
assume canonical forms. Both don’t-care and don’t-know procedures are syntactically
identical and are converted into canonical form. The goals in guard G consist of builtin
predicates such as =/2, ‘=/="/2, and >/2. We call these constraints or tests. For
efficiency, we can represent G as a bit-vector corresponding to inclusion in the union of
all guards of a procedure. This makes set operations on guards very fast.

Definition: Variables within a clause are partially ordered on their label
sequences: Zj; .k 2v Zij,..kim,.. 1N words, a variable is 1-greater than
or equal to another variable if their label sequences share the same prefix
and the latter sequence is longer or equal. a

For example, Z; >y Z1,2, whereas Z; and Z;3 have no ordering, nor have Z;; and
Z2.

Definition: The constraints within a canonical-form clause form a relation
with respect to >, defined as follows:

g(zm C0CY) Zb) 2¢ g(zca ey Zd) ’_ﬂ {3 i€ {aa ---ab}7j € {c1 ?d} Z; Zl,b ZJ}

(]

For example, (Z, = Z3) 2y (Z1,2 > 3), whereas both (Z,2 = Z2) 24 (Z) = Z3,1) and
(Z1 = 22,31) 2y (Z1,2 = Z3). This ordering is necessary to characterize related variables
(see R,,(C,T) in Section 5).

Definition: suc{Z,) is defined to be the set of all variables within a proce-
dure with label sequence p extended by one index. o

For example, suppose a procedure has the variables {Z), 25, 2Z;,1,2; 2,221,221}
Then sue(Z,) = {Z;,1, 2,2} and suc(Z2) = {Z3,}.

In the generation of a decision graph, each node corresponds to a test of some
constraint in the procedure definition, e.g., Z; > 3. The branches emanating from the
node correspond to test results, e.g., yes (Z; > 3), no (Z; < 3), or undecided (Z; is
unbound). The children nodes of these branches contain subgraphs built from a subset
of the clauses in the parent node. In the following we define the concept of a residual
which is a function returning all those clauses satisfying a given set of properties. In
general, a child node is built from the clauses specified in the residual of the parent
(with respect to the condition on the corresponding branch, or the conditions on all
sibling branches).

These residual definitions are similar to those of Kliger, who formulated them in
terms of pairwise consistency of goals. One may think of this residual as a don’t-care
residual R4.(C,g) to be consistent with later terminology. Our different derivation
requires that we define two additional residuals, R, and Rpeither, given at the end of
this section. The use of these definitions will become clear later in this section.

Definition: Given that A is the set of guard goals for clause i, then the

residual of a clause C' =< i, A > with respect to a constraint g is denoted
as ®(C, g).

{<i,A\G>} G={g€A|V.g<=g}#0

0 otherwise

R(C.9)= {
o

The strict use of if-and-only-if, g <= g', is meant to keep the decision graph space-
linear in the number of clauses. In other words, the residual filters all and only those
clauses satisfying a decision test made in the execution path. The filter is strong in the
sense that any clause not “exactly” satisfying the test is not included in the residual.
For example, (Z; > 3) = (Z; > 2); however, the opposite does not hold. Therefore,
(Z1 > 3) <= (Z1 > 2), and a clause containing the latter constraint will not be
contained in the residual with respect to the former constraint. We shall see that
although this strict definition keeps the graph space-linear, it may not be optimal in
the execution path length.

The following definition is made to filter away all clauses that are inconsistent with
the inverses of the decision tests made in sibling branches.

Definition: The otherwise-residual of a clause C =< i, A> with respect to
a constraint set I' is denoted as ®,(C,T').

0 {€A|Igel. V.gd=g}=0
{<i,A>} otherwise

R,(C,T) = {
(]

The otherwise residual is used with I’ containing the decision tests of sibling branches.
We chose to define the otherwise residual by specifying which clauses are not included.
A clause is not included if it is inconsistent with the inverse of I' (i.e., the inverse
of each constraint in I'). More intuitively, il there exists a constraint ¢’ € A and
g € T, such that —g is inconsistent with g’, then A is not included in R,. Thus if
~(~gAg')=(gV—¢') = (¢ = g), then A is not included, as is specified in the formal

definition above. R, is simply the “remainder” of all clauses not chosen by sibling
residuals.

As an example of #,, suppose I’ = {Z; > 3, Z; < 3}. A clause containing Z; > 0 will
be included in R, (and by definition, it could not be included in any sibling residual).
However, a clause containing Z; > 3, or Z; > 4, will not be included.

In addition to the definitions above, we also introduce two definitions, R,, and
Rueither to optimize the code generated for “ask” tests, as described in the next section.

Definition: Given that A is the set of guard goals for clause i, then the
no-residual of a clause C =<1, A> with respect to a constraint g is denoted
as s“-no(cag)-

{<i,A\G>} G={g€A|V.~g=g'}#0

@ otherwise

Rno(Cr9) = {
(]

Definition: The neither-residual of a clause C =<, A> with respect to a
constraint set T is denoted as Rpeipner(C,T).

0 {0€A|Igel.V.g=¢g) V
gtnes'ther(ca r) = (V' g = g’)} # [/
{<i,A>} otherwise

]

Although we require these extra definitions, they are more intuitive to us (than Kliger’s
original definition), and have facilitated our implementation. Primarily, these defini-
tions engender “fast failure,” wherein the invocation terminates in failure immediately,
rather than having control propagate through a series of continuations, as in Kliger’s
method. Fast failure is more important in Pandora than in committed-choice languages
because failure is more frequent in the former than in the latter.

Definition: The residuals of a procedure (R(P, g), Rno(P, g), Ro(P, T), and
Rcither (P, T)) are the union of all residuals corresponding to the clauses in
P. More formally:

R(P,g)= |J R(C,9)
CeP

decision-graph(P, C, V)

if (P = @) then return{go(C});

if (<i,0>€ P) then
— any clause with empty guard can commit
return{commit {i));

else
— no clause(s) with empty guards
— first select test " and collect constraints
[:= index(P, V),
H(F={2, =t1,...,2p = tn}) then

— return the following code tree:

val(Z;)

D, Dy D, Dotper

V! :i= suc(Zp)UV;
{Viel...n| D;:= decision-graph(R(P, Zp = 1:), Dother, V') }
Doiher 1= decision-graph(R,(P, T),C,V);
else
if (T'={Z2,024,~(Z, ¢ 2,;)}) then
— return the following code tree:

Zpe 2,
yes o 27
Dyu Dno Dalher
Dy, 1= decision-graph(R(P, Z, Z;), Dother, V);
Dy, := decision-graph{Rno(P, ~(Z, ¢ Z;)), Dother, V);
Dgther 1= decision-graph(Rneitner (P, T), C, V);

Figure 1: Decision-Graph Construction Algorithm (Based on Kliger).

{<1,{Z21=22}>,<2,{Z1=a,Z2=b}>}
TO:val(21)

a 7

{<2,{Z2=1b}>} {<1,{Z1= 22}>}
T1:val(Z2) T2:21=22

b 7? yes 77

<2,{}>} {} {<1{}>} {}

commit(C2) go(T2) commit(C1) suspend

Figure 2: The Decision Graph for £/2.

4 Committed-Choice Compilation: Kliger’s Method

Kliger’s algorithm [11] for compilation of don’t-care (committed-choice) procedures
is reviewed in Figure 1. The algorithm we discuss is slightly modified for FGHC execu-
tion, i.e., no tell guards. The code-generation function decision-graph(P,C, V) is passed
the initial residual P (representing the procedure to be compiled), the continuation C,
and the visible variable set V.* The initial continuation is a suspend instruction that
will be explained later. The function returns an abstract code graph that can easily be
flattened into a linear code sequence. To illustrate the algorithm, consider the following
don’t-care procedure:®

£(X,X) :- true | C1.

f£(a,b) :- true | C2.
The final code graph produced is illustrated in Figure 2. Each node is labeled with
its residual P, followed by a set of constraints I', as returned by the indexer (see
Section 5.1). Each leaf is either suspend, fail, go, or a code segment. A branch
labeled ‘7?7’ is an otherwise-residual branch, i.e., the residual at its leaf is computed as
Ro(P,T). If T represents a switch test val(Z,) then a branch is labeled with a ground
value @ and its leaf computed as R(P, Z, = a). I T represents some “ask” test Z, e Z,
then branches are labeled ‘yes’ and ‘no’ with leaves computed as R(P,Z; ¢ Z;) and

5When the algorithm is called the first time, the set of visible variables for an arity-» function is
{Z1,22,...,Za}. On later calls, V will be extended to contain those variables that have been exposed
due to the partial ordering (as defined by the suc() function of the previous section).

5 As stated belore, clause bodies are not relevant to the compilation methods described in this article.

10

Rno(P, ~(Z, ¢ Z;)) respectively. o represents a built-in guard predicate.

If the residual contains a clause with no remaining constraints, tree generation
terminates with code committing to the clause. For an empty residual, tree generation
terminates with a control transfer to the current continuation.” Control follows the
otherwise branches whenever a test fails or cannot be evaluated because of unbound
variables. Note that failure will occur at the suspend instruction if the suspension stack
is empty, as explained in Section 5.3. For instance, if Z; and Z; are bound to different
values, then the test at T2 will fail, taking the otherwise branch to the suspend, which
will fail because of the empty suspension stack.

The code space required by this example procedure is grossly estimated as three
test nodes and four leaves. The actual code generated for each node will of course
differ, but in general nodes require more instructions than simple leaves. We assume
that suspend and fail are traps, i.e., their code bodies are not expanded in-line.

5 Determinism Testing

This section introduces an algorithm to generate decision graphs for don’t-know pro-
cedures in a nondeterminate concurrent logic programming language. Don’t-know pro-
cedures do not contain guards at the source level, but guards may be subsequently
introduced in the normalized canonical form.

Specifically we generate an abstract code graph, for flat Pandora, that can easily be
flattened into a linear sequence of triples suitable for code generation. Qualitatively, the
algorithm presented has space complexity comparable to Kliger’s method of decision
trees [10], reduced by sharing portions of the tree. The expected path length through
the code obviously depends on how procedure arguments are dynamically bound, but
it also depends on the sophistication of the indexer at choosing critical constraints near
the root, as in Kliger’s method (one indexer algorithm is described in Section 35.1).
Similarly, the completeness of the algorithm, i.e., the percentage of determinate invo-
cations that commit immediately, is dependent on the strength of the guard inference
mechanism. For the simplest inference mechanism over arbitrarily complex unifica-
tions, which is the common case, the code generated is complete. Ounly in the case
of complex interacting constraints in the (run-time) query, detection of determinism
cannot be guaranteed, and suspension instead of failure may occur. More discussion
about completeness over other domains is given in Section 5.2.

Definition: Given that A is the set of guard goals for clause ¢, then the

"In this example, the bottom right subtree is optimized by combining the ‘no’ branch (terminating
in a transfer to the suspend continuation) with the otherwise branch.

11

don’t-know residual of a clause C' =<1, A > with respect to a constraint g
is denoted as Rax(C,g). Let G={g' € A|V.g==>g'}and G' = {g’ € A |
v. g = -vg'}.

{0 G'#£0
Rae(C,g) = { {<i, A\ G>} otherwise
()

This definition means that only if g disproves the clause, will the residual be empty.
Otherwise the clause is retained, even if it is not implied by g. The essence of this in-
clusion is the construction of a full decision tree rather than a decision graph. However,
with the code-sharing optimizations described later, effectively a graph is built.

Definition: The unbound swilch residual of a clause C =< i, A > with
respect to a constraint set T is denoted as ®,,(C,T). Let G = {¢' € A |

Hg el g >y g'}.
Ru(C,T) = {<i,A\G>)

O

This definition means that the original clause C' is retained except for those guards ¢’
that test variables dependent on the unbound variables in the constraints in I'. For
exa.mple, Ru,(< 1, {Zl = g(Zl,l, Z]"z), Zl.g = h, Zg = 0}), {Z1 = g/2}) =

<1,{Z; = 0} >,

Definition: The unbound ask residual of a clause C =<1i, A> with respect
to a constraint set T' is denoted as R,,(C,T). Let G = {9 € A | Ig €
I.V.9>49 A g<=¢'}.

Rua(C,T) = {<i,A\G>}

]

This definition, although not in its strongest form, maximizes code sharing for an
unbound ask branch. This sharing is critical to keep code size low, but may cause
superfluous tests of variables which are known to be unbound. For example,
Rua(<1,{Z1 >0, 2, <10}>, {Z; >0, 2, £0}) =<1,{Z; < 10} >. Here it is clear
that Z; is unbound, yet a constraint on Z; remains in the residual.

Both previous unbound residual definitions used >, rather than >y. The former
condition is looser and thus encourages more sharing by retaining more constraints in
the unbound residual. This condition is sufficiently correct because variables ¥-equal

12

decision-graph(P, Table, V)
if (P = @) then return(fail); (0)
if (P = {<i,G>}) then (1)
— we can generate code for a single clause
if (3 [1eat, P, T] € Table) then

return{go(T)); 2
else Table : = [leaf, P,Label] U Table;
return{Label:execute(i,G)); 3)
else — multiple clauses

— first select test T and collect constraints
[:= index(P,V);
if (T = @) then return(suspend); (1)
if (3 [, P, T] € Table | P D P’ and T 2 I") then €))]
— matching residual table entry so code sharing possible
if (P = P') then
return(go(T)); (6)
else — not exact match, so partial code sharing
Table : = [T, P,Label] U Table;
return(share-node(P, P’,Label, T, Table, V')); (7)
else — miss in residual table, so no code sharing
Table : = [I', P,Label] U Table;
return(generate-node(P, T', Table, V)); (8)

Figure 3: Decision-Graph Algorithm for Don’t-Know Procedures.

to the unbound variable can always be accessed.® Since every variable is y-equal to
itself, this implies that tests may be shared for which we know, a priori, the unbound
outcome. This happens occasionally in the benchmarks we examined, but we think the
increased cost in execution time is justified by the code space reduction engendered by
avoiding strict filtering with >,.

We now describe the decision-graph construction algorithm for don’t-know proce-
dure determinacy testing. A correctness proof for this algorithm is given in Appendix A.
The algorithm (outlined in Figures 3, 4, and 5) has three arguments: the initial resid-
ual P (representing the procedure to be compiled), a pointer to a global residual table
Table, which is initially empty, and the visible variables V. Unlike Kliger’s algorithm, a
continuation is no longer necessary. Code-sharing optimization exploits the depth-first
generation of code with the residual table. This table is indexed by either a guard test,
such as Z1=Z2, or a special key, leaf, for those entries which have a residual containing
a single clause.

When the algorithm is down to a leaf (only a single clause is left in the residual,

8Variables <y an unbound variable cannot be accessed because, they would be subterms of that
unbound variable.

13

(1)), the residual table is tested for a matching entry, using leaf as the search key. If
a match is found (2), we can either generate a go(T) instruction or an execute(i,G)
instruction.® For code-size optimization, the go is better because the executa instruc-
tion includes code for checking the suspension stack and possibly forcing the bindings
specified in G. Returning a go(T) instruction also maximally shares code. If no match
is found, an execute(i,G) instruction is returned (3).

If multiple clauses are left in the residual, the indexer is invoked to select a test I'
from P to index on. We first check if the clauses all have empty guards. This situation
is detected by the indexer returning I' = § and a suspend instruction is returned (4).

To check if code sharing is possible, the residual table is accessed with T, returning
a set of residuals corresponding to nodes in the tree that have the same test (5). The
residual P is compared with each candidate P’ from the table until one is found such
that P 2 P'.1° If no such entry exists, then code cannot be shared and the function
generate-node() is invoked (8). If the stronger condition of equality exists, then
the entire node can be shared with a simple control transfer and a go(T) instruction is
returned (6). In the general case, part of the new node must be built with an otherwise-
continuation transferring control to the shared node. The new node is then constructed
by invoking the function share-node() (7).

Figures 4 and 5 show the code generation for sharing and non-sharing cases respec-
tively.!! The generation of a new node, as described in Figure 5, is comparable to
Kliger’s algorithm, except his otherwise-residual is now split into a neither- and an
unbound-residual. In the sharing case (Figure 4), code is generated for P \ P/, where
P’ is the clause set for which code has already been generated at Label. From the
original test I', only that part v is used, which is new, and not yet covered by the code
at Label.

As an example of this algorithm, consider the previous £/2 procedure, now de-
clared as don’t-know. Its code tree is given in Figure 6 (without collapsing superflu-
ous branches). The residuals are written above each node. Branches labeled ‘7’ are
unbound-residual branches and branches labeled with ‘neither’ are otherwise-residual
branches. Control follows the ‘?’ branches whenever a test cannot be evaluated because
of unbound variables, Control follows the neither branches whenever a test fails (for
example, when a variable is bound, but none of the tests succeed). Control transfers

?The exact semantics of execute(i,G) is given in Section 5.3. For now it suffices to say that we
commit to clause i.

Given P = {C}:,Cyt,...,Cx) and P' = {Cy,Ca,...,Ck}, P 2 P'is defined as (VC; € P'.C, € P).
Then, P\ P’ is defined as {C. € P|C, ¢ P'}.

1 A later code-generation phase may choose to do graph rewriting to remove superfluous branches.
The condensation techniques are straightforward.

14

share-node(P, P/, Label, I', T'able, V)
if (T'={Zp =1,..., Zy = tn}) then :
v:={gel| I3<i,A>e P\P.3¢d A V. g=¢};
—thusy={Z,=1,...,.2p, =1}, where k< n
— other values of Z, are covered at shared code Label
-— return the following code tree:

val(Z,)

Dy D, Dy go(Label) go(Label)

V' i= suc(Zp,)VV;
Viel...k. D;:= decision-graph(Rax(P, Zp = t;), Table, V');
else
if ([={Z, ¢ Z,,~(Z, » Z,}}) then
v:= {gel| I<i,A>eP\P.A¢ €A V. ¢ = g};
— thus v is “ask” test
- return the following code tree:

7

yes no ?
Dyes go(Label) go(Label)
Dy, := decision-graph(Rax (P, v), Table, V);

Figure 4: Shared-Node Generation for Don’t-Know Procedure.

with go represent code sharing. In this simple example, entire subtrees can be shared
because the corresponding residuals are identical. This code is complete in the sense
that it is guaranteed to detect determinacy.

5.1 Indexing

The decision-graph generation mechanism, as defined in Kliger’s work and extended
here, hinges on the indexer selecting a test either in the form of a “switch on value,”
or builtin predicate, e.g., >/2. Apart from the strength of its inference mechanism,
it is important that the indexer is fully determinate (allowing efficient lookup in the
residual table, with " as the key). This means that given the same set of residuals, the
indexer should always return the same I', even if multiple, equally well-suited choices

15

generate-node{ P, I', Table, V)
f(T={2, =1,..., 2, = t5}) then
— return the following code tree:

Va.l(Zp)

D1 Dz Dn Dnu'lhcr Dunbound

V= sue(Z,)VV;
Viel...n|D;:= decision-graph(Rar (P, Zp = 1;}, Table, V');
Drither 1= decision-graph(R,(P,T'), Table, V);
Dynound : = decision-graph(Ry, (P, T'), Table, V);
else
if (T'={Zp02Z,,~(Z, ¢ Z,)}) then

— return the following code tree:

Zp e Z,

yes no ?
Label: .Dy“ Do Dunbound

Dy, := decision-graph(Rar (P, Z, @ Z;), Table, V);
Dpo := decision-graph(Rax (P, ~(2Zp ¢ Z;)), Table, V);
Dunsound : = decision-graph(Ry.(P, T'), Table, V);

Figure 5: New Node Generation for Don’t-Know Procedure.

exist. If no choice is possible, e.g., all guard goals are empty, then the indexer returns
0.

QOur indexing algorithm is based on the min-variability indexing function given by
Hickey and Mudambi [8] and Kliger and Shapiro [11]. Our procedure index(R,V') takes
an input residual and the visible variables, returning the set T', which is either a val-
test or an ask-test. The reader is refered to [8, 11] for a description of the general
algorithm. As an example, consider

R= {<1,{Zl= 1,Z2,=1,Z3 = 1,Z.1>0}>
<2,{Zl =2,2,= 1,Za=2,Z4>0}>
<3,{Z]_ =3,Zg=2,23=2,z.;<0}>}

The following five tests are possible: val(Z,), val(Z,), val(Z3), Z, > 0,and Z, < 0.

16

{<1,{Z1 = Z2}>,<2,{21 = a,Z2 = b} >}
val(Z1)

{<1,{21 = 22} >, {<1,{21 = Z2}>] go(T1)
<2,{Z2 = b} >} go(T6)
T1:val(Z2)

{<1,{21 = Z2)>, {<1,{Z: = Z:]>} ge(T2)

<2,{}>} T6:execute(l,Z1=22)
T2:(Z1=22)
yes no ?
{<1,{}>, {<2,{}>} go(T3)
<2,{}>} Té:execute(2)

T3:suapend

Figure 6: Decision Graph for £/2 (Compiler’s Internal Code Tree).

We find that 3, 3, 3, 2, and 1 clauses “care” [8, 11] for each of these tests, respectively.
Maximizing the number of caring clauses thus leaves us with val(Z,), val(Z,), and
val(Z3). From these tests, the first one produces three branches (Z,=1, Z, =2, and
Zy =3), while the other two only produce two branches, so the first test is eliminated.
Finally, we select the test for the variable with the lowest variable number, in this
case val(Z;). When we assume that, repeatedly, the selected test is removed from all
clauses in the residual, and the indexer is called again, the tests val(Z3), val(Z;),
Z4 > 0, and Z; < 0 are returned, respectively.

5.2 Computing Residuals

Our method is only as complete as is its inference mechanism in determining the impli-
cations (e.g., ¢ => g¢) in the residual definitions. In this regard, qualitatively we have
found that simple implications rules are quite effective. Table 1 shows a subset of the

17

g g (g =g iff g ' (g =g')iff
X>I1I | x>J I>J X>I | X4 1>J
X<I | X<1J I>1 X<I | X<J J>1
X<1 X<J J>1 X<I X<J J>1
X2>21I Xz2J I1>7J X2>21I X>J I>J
X>I |x#£Je| I>J X>I |x\=7| 127
X<I | x#J | J>1I X<I |x\=J| JI>I
X>I | x#J I>J X>I | x\=J| 1>17
X<I | X#£J J>1 I X<I | X\=/J J>1
X==J| X>1I J>T X=J X>1I J>1
X==J| X>I I>1I X=J | x>1I I>T
X==J| X<I I>J X=J X<l I>J
X==J| X<I Ir>2J X=J X<r Ir>J
X=J | X#I| 127 |X==7| X#1I I#J
X==J| X\=1I I+£J

“*Although not essential for the compiler, note the difference between #, which expects
both its arguments to be arithmetic expressions, and evaluates them, and \ =, which simply
tries to unifly its arguments, without evaluation.

Table 1: Simple Rules Determining g == g’, for Integers I and J.

rules (involving integers) in use in Monaco, our current compiler [14].12

Shared variables cause problems because they transfer constraints indirectly. For
example, {X =Y,Y =2,Z =W} implies that X =W. Similarly, {X > Y,Y > 2} implies
that X > Z. The first case can easily be handled during conversion to canonical form,
as mentioned earlier. The latter case can be handled in a similar manner without sig-
nificant code expansion, since sharing is not frequent. However, this method is limited,
and does not easily operate across clauses. Furthermore, constraints involving both
equalities and comparisons need a strong inference mechanism. Given the constraint
g = {2 = 0}, the indexer is able to infer that “{Z > 0} => —g,” given the rules in
Table 1. However, we are confident that complex sets of interacting constraints within

the same procedure are rare.

5.3 Commit and Suspension

Because suspension and resumption of goals are costly operations, it is necessary to per-
form them as efficiently as possible. In this section, we describe an efficient implemen-
tation of this suspension mechanism, using a combination of an intelligent compile-time

12The Aquarius Prolog compiler [16] simplifies formulae in a similar manner. Both Monaco and
Aquarius use about 50 rules of comparable complexity.

18

code generator and a simple, but efficient, run-time implementation of this scheme.

A suspend leaf is meant to suspend execution, enabling either resumption by sub-
sequent binding of a hooked variable, or forced resumption upon deadlock. Ideally,
the clause bodies to be considered upon resumption should be the smallest set that
satisfy the suspended invocation. At compile time, when the code generator is down
to a suspend leaf, the residual has the form £ = {<C;,0>,<C;,0>,...,<C,0>}.
For this leaf, we can generate the wAM-like code:

suspand_or L
L: try Ci_H
retry Cj_H

trust Ck_H

where Ci_H points to the head of clause i. Suspension sets the continuation in the goal
record to point to the try instruction. This ensures that only the subset of clauses
known to be candidates is executed if the goal is forced to resume upon deadlock.!®

A simpler option (implemented in the Monaco compiler) is to generate a single se-
quence of try, retry, and trust instructions for all clauses, and to give all suspensions
the same continuation Ci_H, i.e., the first clause of the procedure. This obviates the
need for individual try sequences, a great savings in code size, at the potential expense
of execution redundancy.

At run time, when a variable in a test is unbound, the variable is pushed onto the
suspension stack. A continuation pointing to this suspended test can also be pushed
onto the stack. Upon reaching a suspend instruction, the stack is popped, and each un-
bound variable is hooked to the goal. As an optimization, the associated continuations
can be attached to each hook, so that resumption continues precisely at the relevant
test. With this optimization, it is possible to resume a goal (triggered by binding its
variable) at exactly the point where suspension took place, instead of restarting at the
root of the graph, thus having to perform previous tests again.!

As previously mentioned, residuals with single clauses terminate as code leaves. The
idea here is to force execution, even if some clause variable(s) have been pushed onto
the suspension stack, c.f., committed-choice (don’t-care) execution where suspended
variables imply goal suspension. There are two problems here: 1) we need to determine
which, if any, pushed variables are present in the leaf clause, and 2) we need to collect

13The try sequence semantics is more complex than in Prolog: as mentioned in Section 2, guards
may suspend when a don’t-know Pandora procedure is forced to resume. Also, clauses may be tried

out-of-order, perhaps managed by a clause vector in the choicepoint.
Y Note that code sharing can cause multiple copies of the same variable to be pushed onto the

suspension stack. Each variable should be hooked only once! If continuations are to be used, the
earliest one (closest to the base of the stack) is required.

19

the constraints associated with these suspended variables and attempt to execute them.
The latter collection proves too cumbersome, so we propose to simply re-execute the
clause head (and guard) if suspended variables exist.

In summary, if no code sharing is possible for residval ® = {< C;, G >}, we generate
execute(i,G), with the semantics:

if (suspension_stack_check == ok)
then {G; go(Ci_B);} /# Ci_B pts to clause i body */
else go{Ci_H);
The test suspension_stack_check returns ok if no suspension stack variables are rele-
vant to clause i. In this case, only the constraints in G are forcibly executed. Otherwise,
the entire clause is re-executed. Forcible execution implies sophisticated compilation,
e.g., for unbound X, X=3 must bind X, but X>3 must suspend.

This scheme can be implemented efficiently with bit vectors. At compile time, when
expanding each clause into its canonical form, the compiler generates a bit vector for
each clause, where for each variable which occurs in the canonical form, the corre-
sponding bit in the vector is set. For example, if the head of clause 7 is f(g(X,Y)), the
canonical form would be f(Z,) :— Z; = g(Z,,1, Z1,2) and the bit vector would be set
to B; = [Zl, Zl.ls Z1,2] = [100}.15

The original residual is extended with a new argument, the bit vector B;, as defined
above. When a new residual is calculated, a new bit vector B; is calculated as well, with
the following rules: for all branches labeled with ‘?* or ‘??’, the bit vector is unaffected.
For all other branches,!® the bits in B/ corresponding to the variables in T' are zeroed.

When 1) the entire compile-time bit vector B at a leaf is 0, and 2) no shared nodes
(targets of go instructions) appear on the path from the root to the leaf, then we
can replace the execute instruction with the simpler code sequence “G; commit(i).”
The semantics for the commit instruction is simply: “go(CiB).” Condition {2) can
be removed by combining bit vectors at shared nodes, although we do not pursue this
here.

At run time, a single bit vector S5 is used to represent the suspension stack. It
contains bits for all unique variables in the procedure, which are initially set to 0. Each
time a variable is pushed on the suspension stack, its corresponding bit in 55 is set to
1. The suspension_stack_check is then reduced to testing the logical AND of two bit
vectors. The execute(i,G) becomes:

if ((SS AND Bi) == 0)
then G; go(Ci_B);
else go(Ci_H);

13The actual test is Z; = g/2, therefore the bits for Z1,1 and Z12 are not set.
¥ This corresponds to those branches for which [can be fully evaluated, implying that all variables

in I' are ground.

20

% don’t-care versionm:
cell(I, J, J, I, I, I, begin, end, begin, end) :- true | bodyl.
cell(_, _, -, -, -, _, He, He, Vc, V¢) :- true | body2.

% don't-know version:
c¢ell(I, J, J, I, I, I, begin, end, begin, end) :- true : bodyl.
cell(_, _, -, -y ., —, He, He, V¢, Vc) i~ true : body2.

% don’t-know version (hand-translation into FGHC):
cell(I,J,H,V,L,R,Leiti,Righti,Le£t2,Right2) +— H\==J |
Left1=Right1, Left2=Right2, body2.

cell(I,J,H,V,L,R,Left1,Rightt Left2,Right2) :- V\==I |
Lefti=Rightl, Left2=Right2, body2.
cell2(1,J,H,V,L,R,Lefti,Right1,Left2,Right2) :- L\==I |
Left1=Right1, Left2=Right2, body2.
cel1(I1,J,H,V,L,R,Left1,Right1,Left2,Right2) :- R\==I |
Left1=Right1, Left2=Right2, body2.
cell(I,J,H,V,L,R,Lett1,Right1,Left2,Right2) :~ V\==L |
Lefti=Right1, Left2=Right2, body2.
cell(I,J,H,V,L,R,Leftl, Rightl,Left2,Right2) :- L\==R |
Lefti=Right1, Left2=Right2, body2.
cell(I,J,H,V,L,R,Left1,Rightl,Left2,Right2) :- R\==V |

Lefti=Rightl, Left2=Right2, body2.
cell(1,J,H,V,L,R,begin,end,Left ,Right) :- true |

H=J,Vv=1,L=1,R=I,Left=begin,Right=end, bodyi.
cel1(1,J,H,V,L,R,Left,Right,begin,end) :- true |

H=J,V=I,L=I,R=I,Left=begin,Right=end, bodyi.

Figure 7: Three cell/10 Benchmarks.

6 Code Space Evaluation

This section presents empirical measurements of code characteristics and size generated
by the previous algorithms. As an example of the benchmarks, Figure 7 shows the
cell/10 procedure, taken from an active-constraints program for solving N-Queens.
In the clauses, bodyl and body2 represent unspecified clanse bodies. The first two
procedure definitions have similar code, but the semantics are vastly different. The
don’t-know semantics are simulated by first translating the don’t-know version into an
equivalent don’t-care procedure with mutually exclusive clauses (third program shown},
as first indicated by R. Bahgat [1]. Note the additional body goals added to force
unification once the procedure has been found to be determinate. Although the number
of clauses has increased as a function of the number of constraints, the resulting clauses
each have only a small number of constraints. The decision graphs generated for the
first two of these procedures are shown in Figures 8 and 9, respectively.

Table 2 gives two alternative code-size measurements of a set of small compiled
benchmark procedures. Three program types are given. Kliger represents the code size

21

dcproc_antry(call(Zi ,22,23,24,25,28,27,28,29,Z10),
ask(Z1=24,
yor(
ask(Z1=2Z5,
yes(
ask(Z1=26,
yes(
ask(Z2=Z3,
yes(
switch(27,
[casa{begin,
switch{(Z8,
(case(end,
switch(Z9,
[case(begin,
switch(Z10,
fcase(end, commit(1,[bodyi1]}),
]casa(tag(??), go(L23))
)},
case(tag(??), L23: go(L22))
1),
case(tag(7?), L22: go(L21))
m,
case(tag(??), L21: go(L20))
1,
no(go(L20)),
other(L20: go(L15)))),
no{go(L19)),
other (L19: go(L18)))),
no(go(L18)}),
other(L18: go(L17}))),
no(go(L17)),
other(Li7:
ask(Z7=28,
yes(
ask(Z9=210,
yes(commit(2, [body2])),
no(go(L26)),
other(L28: go(L25}))),
no(go(L26)),
other(L25: suspend)))))

Figure 8: Don’t-Care cel11/10 Decision Graph.

22

dkproc_entry(cell(21,22,23,24,25,26,27,28,29,210),
ask(Z1=2Z4,
yeos(
ask(L39: Z1=Z5,
yes(
ask(L4a1: 21=2Z86,
yes(
ask(L43: Z2=Z3,
yes(
ask(L46: Z7=Z8,
yes(
ask(L47: 29=210,
yes(
ask(L49: Z7=begin,
yes(
ask(LE1: ZB=end,
yes(
ask(L53: Z9=begin,
yes(
ask(L55: Z10=end,
yes(suspend),
no(L57:commit (2, [body2])),
unbound (suspend) }),
no{go(LE7)),
unbound(ge(LEE)))),
no(go(LE7)),
unbound(go(L53)))},
no{go(LET)),
unbound(go(L51))))),
no{L61:
execute(1, [Z7=begin,ZB=end,
Z9=begin,Z10=end], [bedy1])),
unbound (go(L49)))),
no(go(L61)),
unbound(go(L47)})),
no(L64: execute(2,[29=210,27=28], [body2])),
unbound(go(1.45)})),
no{go(LE4)),
unbound (go(L43)))),
no(go(L64)),
unbound(go(L21})}),
no(go(L64)),
unbound{go(L39)))

Figure 9: Don’t-Know cell/10 Decision Graph.

23

procedure # Kliger | Bahgat | K&T | K&T/
name clauses size size | size | Baghat
Decision Graph Node Count
£/2 2 3 6 4 0.66
a/3 4 6 8 8 1.00
cell/5 2 3 7 5 0.71
cell/10 2 10 20 12 0.60
omerge/3 4 6 6 9 1.50
total 28 47 38 0.81

Monaco Instruction Count
/2 2 28 39 32 0.82
a/3 4 85 49 52 1.06
cell/E 2 38 46 22 0.48
cell/10 2 10% 144 112 0.78
omerge/3 4 33 33 39 1.18
total 259 311 250 0.80

Table 2: Empirical Measurements of Code Size.

if compiled as a don’t-care procedure. Such a program does not have the semantics of
the next two don’t-know versions, and is given simply as a baseline. Bahgat represents
the code size if first hand-translated into a don’t-care procedure with equivalent don’t-
know semantics, and then compiled [1). K&T represents directly compiling the don’t-
know procedures with our method.

The upper portion of the table lists the number of complex nodes within the decision
graphs, including ask, switch, commit, and execute nodes (the latter two are counted
only if they are not trivial jumps). The lower portion of the table lists the number
of intermediate abstract machine instructions generated by the our compiler for each

7 For K&T, the compiler normally appends a suspend_or code block to

program.
each procedure, effectively constituting the Prolog compilation of all clauses to try
upon deadlock. We discount these instructions in the K&T measurements given in
Table 2 to calibrate with Baghat which also requires, but does not include, the block.

The final column in Table 2 gives the ratio of code size between our and Baghat’s
method (comparison to Kliger does not always make sense, since the functionality
can be vastly different). Both the graph and Monaco code ratios closely match at
about 80%, although these metrics can differ more significantly for individual programs.

This evidence supports the claim that we can perform determinism testing at least as

7Relevant to this discussion, it should be noted that the Monaco compiler does local dataflow
analysis including common subexpression and deadcode elimination, branch-chain shorting and various
peephole optimizations. Thus the Monaco instruction count is a fairly optimized metric.

24

procedure cls. | ask | switch | execute | sum | don’t- | ratio
flatten_guard/9 5 0 6 0 6 | care 2.50
5 9 1 15 | know
lower_ask_vars/4| 8§ 2 8 0 10 | care 2.80
16 7 5 28 | know
select_best/3 4 0 3 0 3 | care 2.33
2 4 1 7 | know
better/5 6 11 3 0 14 | care 2.57
27 4 5 36 | know
lockup/3 5 2 7 0 9 | care 1.33
7 2 3 12 | know
match_ask_test/5| 5 9 5 0 14 | care 1.93
20 2 5 27 | know
equal/3 9 17 9 0 26 | care 1.96
40 2 9 51 | know
implies4/3 46 | 115 20 0 135 | care 0.70
31 17 46 94 | know

Table 3: Comparison Between Don’t-Care and Don’t-Know Size by Procedure.

cheaply, in code space, as the alternative method based on decision graphs. This result
is somewhat misleading because Baghat’s translation itself may have high complexity
(in the number of clauses generated) for certain degenerate procedures, so we have
not disproved the possibility that our method may also exhibit explosion in certain
instances.

In the five examples here, the code sizes of all the methods are equal. However, it
is clear that the space complexity of our method is in worst case exponential because
it derives from a full decision tree [10]. The effectiveness of heuristic code sharing to
avoid exponential behavior can be thwarted by degenerate procedures. In the con-
text of decision trees, Kliger describes the existence of such degenerate procedures in
large committed-choice systems. It is an open question if, among don’t-know proce-
dures in real Andorra/Pandorra applications, any or a significant number have similar
degenerate characteristics.

Table 3 shows the graph size measurements of a selection of complex procedures
from the Monaco compiler itself. Each procedure in the system was compiled both
as don’t-care and as don’t-know.!®* We count only complex graph nodes, a metric

Don’t-know procedures are hard to come by, since Pandora and Andorra are such new languages.
Within an entire Pandora program, there are relatively few don't-know procedures. Thus, for the
sake of characterizing code metrics, we chose to compile standard FGHC procedures, as if they were
don’t-know procedures.

25

calibrated to pseudo-code size, as discussed previously.

Although the procedures were not written with don’t-know semantics in mind, this
exercise allows us to further compare the code sizes of don’t-care vs. don’t-know. The
measurements indicate that compiling into don’t-know semantics requires a (up to
2.8 times) larger graph than for don’t-care semantics because of the added power of
rapidly detecting determinism and forcing execution of unbound constraints. Again,
this comparison has limited meaning because the semantics of the two types of graphs
are different.

Depending on the procedure, the relative code size varies between our method and
hand-translation. The causes why our method sometimes does not achieve the size of
the hand-translation are as follows:

e In some cases, hand-translation into don’t-care equivalents removes the need for
some constraints. The effective action of testing for these constraints is done by
body failure in the don’t-care equivalent.

e In direct-compilation of don’t-know procedures, some code leaves are complex
executes, whereas in don’t-care procedures, all code leaves are trivial commits.

e The method outlined generates “neither” branches causing “fast failure,” whereas
in Kliger’s graphs, failure propagates through all otherwise branches until the
initial suspend continuation is reached. Note that committed-choice implementa-
tions do not need to handle failure quickly, since it is an exception. In any case,
our faster failure has a cost in additional nodes.

To our knowledge, no algorithm has yet been found for Bahgat’s method of don’t-
know into don’t-care translation [1]. The compilation complexity of this hand-transla-
tion increases dramatically with the number of clauses. We feel comfortable that our
algorithm has approximately the same space complexity, at low compile-time cost.

Table 4 compares the maximum and average path lengths for all three methods.
Assuming that all paths have an equal probability, and normalizing with respect to
Kliger’s method, Bahgat’s method has an average path length 20% longer than Kliger,
while our method increases the path length by only 10%.

Composition of the graphs is also of interest, as summarized in Table 5. This ta-
ble gives the distribution of switch and ask node types for the compiler benchmark.
Whether compiled as don’t-care or don’t-know, the distribution of types is approx-
imately the same. Over half of all nodes are ask tests of a variable unified with a
constant. Note that switch nodes with a single child are converted into these ask
nodes. Switch nodes are categorized by the number of data types represented in their
children. For example a popular double-type switch node is a list-recursive procedure

26

procedure Kliger Bahgat K&T

name max | avg | max | avg | max | avg
1/2 41 2.8 5| 3.1 3| 2.9
a/3 3] 26 5 3.1 7 4.3
cell/5 21 18 5 34 3 2.0
cell/10 14| 8.2 12| 6.9 13| 8.1
omerge/3 6| 34 4 2.5 4| 2.5

Table 4: Maximum and Average Path Lengths.

don’t-care don't-know
node | type children | occur % | occur %
single 2 45 ¢ 10.0 58 | 11.7
switch | type >3 7 1.6 9 1.8
double 2 55 12.3 60 12.1
type 3 4 0.9 9 1.8
>4 1| o2 2| 04
Z=k 263 | 58.7 266§ 53.6
ask Zr = Zn 41 9.2 51 10.3
Z102s, 210k 12 2.7 19 3.8
integer, atom, etc. 20 4.5 21 4.3
total | 448 | 100.0 | 494 | 100.0

Table 5: Breakdown of Decision Graphs by Non-Leaf Node Type.

with both ./2 and [] values. In the compiler itself, no more than two types are found
in any switch, and usually the number of branches (children) is quite small.

Naturally, execution-time measurements are necessary to fully evaluate the utility of
the proposed compilation method, for instance with respect to the Andorra-I compiler
[5}]. Unfortunately, we have not yet implemented support for backtracking within the
Monaco runtime system [13] and thus execution measurements remain an area of future
work.

7 Conclusions

This article introduced a decision-graph construction algorithm for code generation of
determinacy testing in nondeterminate flat concurrent logic programming languages.
The code generated is complete over unification, i.e., determinacy is guaranteed to be
detected no matter how complex the data structures and shared variables are. Com-
pleteness over other domains, such as arithmetic comparison, is the responsibility of the
algorithm for computing implications, for which completeness has not yet been proved.

27

Our algorithm is formulated in the context of committed-choice compilation tech-
niques given by Kliger and Shapiro [10, 11]. For simple procedures, the two are shown
to have comparable code size. Thus we believe that with this method, complete de-
terminacy testing over unification need not significantly increase code size for a wide
selection of procedures. However, for degenerate procedures the don’t-know graph size
(theoretically of exponential complexity and reduced only by the heuristic means of
code sharing) can be significantly larger than the don’t-care graph size (of bounded
linear complexity). Comparing our algorithm to an elegant method of hand-translation
from don’t-know into don’t-care code [1], the code size appears to be least as good,
for small procedures (how these compare for degenerate procedures is unknown). Our
algorithm is, however, more general because it does not require that the clauses be
mutually exclusive and can be done fully automatically.

Acknowledgements

M. Korsloot was supported by a grant from the Delft University of Technology. E.
Tick was supported by an NSF Presidential Young Investigator Award with matching
funds granted by Sequent Computer Inc. Many thanks to Xiaoxiong Zhong for his
extensive help with the correctness proofs. We also thank the referees for their insightful
comments that led to clarifying and strengthening the article.

References

[1] R. Bahgat. Pandora: Non-deterministic Parallel Logic Programming. PhD thesis,
Imperial College, Department of Computing, February 1991.

[2] R. Bahgat and S. Gregory. Pandora: Non-deterministic Parallel Logic Program-
ming. In International Conference on Logic Programming, pages 471-486. Lisbon,
MIT Press, June 1989,

(3] V. S. Costa, D. H. D. Warren, and R. Yang. Andorra-I: A Parallel Prolog Sys-
tem that Transparently Exploits both And- and Or-Parallelism. In SIGPLAN

Symposium on Principles and Practices of Parallel Programming, pages 83-93.
Williamsburg, ACM Press, April 1991.

[4] V. S. Costa, D. H. D. Warren, and R. Yang. The Andorra-I Engine: A Parallel
Implementation of the Basic Andorra Model. In International Conference on Logic
Programming, pages 825-839. Paris, MIT Press, June 1991.

28

[5] V. S. Costa, D. H. D. Warren, and R. Yang. The Andorra-I Preprocessor: Sup-
porting Full Prolog on the Basic Andorra Model. In International Conference on
Logic Programming, pages 443-456. Paris, MIT Press, June 1991.

(6] S. Haridi and P. Brand. Andorra Prolog—An Integration of Prolog and Committed
Choice Languages. In International Conference on Fifth Generation Computer
Systems, pages 745-754, Tokyo, November 1988. ICOT.

[7] S. Haridi and S. Janson. Kernel Andorra Prolog and its Computation Model.
In International Conference on Logic Programming, pages 31-46. Jerusalem, MIT
Press, June 1990.

(8] T. Hickey and S. Mudambi. Global Compilation of Prolog. Journal of Logic
Programming, 7(3):193-230, November 1989.

[9] Y. Kimura and T. Chikayama. An Abstract KL1 Machine and its Instruction Set.
In International Symposium on Logic Programming, pages 468-477. San Francisco,
IEEE Computer Society, August 1987.

[10] S. Kliger and E. Y. Shapiro. A Decision Tree Compilation Algorithm for
FCP(—,:,7). In International Conference and Symposium on Logic Programming,
pages 1315-1336. University of Washington, MIT Press, August 1988.

[11] S. Kliger and E. Y. Shapiro. From Decision Trees to Decision Graphs. In North
American Conference on Logic Programming, pages 97-116. Austin, MIT Press,
October 1990.

{12] S. Taylor. Parallel Logic Programming Techniques. Prentice Hall, Englewood
Cliffs, NJ, 1989.

[13] E. Tick. Monaco: A High-Performance Flat Concurrent Logic Programming Sys-
tem. In PARLE’93, Springer Verlag, June 1993.

[14) E. Tick and C. Banerjee. Performance Evaluation of Monaco Compiler and Run-
time Kernel. In International Conference on Logic Programming. Budapest, MIT
Press, June 1993.

[15] K. Ueda. Guarded Horn Clauses. In E. Y. Shapiro, editor, Concurrent Prolog:
Collected Papers, volume 1, pages 140-156. MIT Press, Cambridge MA, 1987.

[16] P. L. Van Roy and A. M. Despain. High-Performace Logic Programming with
the Aquarius Prolog Compiler. IEEE Computer Magazine, pages 54-68, January
1992.

29

A Correctness Proof

We present a correctness proof of the code-generation algorithm presented in Section 5.
Refer to the following definitions for clarification. First we prove a weaker theorem that
a simpler algorithm, Ag, without code sharing, is correct. Then we prove the stronger
correctness theorem by showing that the code-sharing algorithm, A;, preserves the
correctness invariants.

Definition: Given a query @, i.e., an invocation of procedure P,
Py = {c € P| c satisfies @}
for clauses c. We call Py the induced clause set of P with respect to Q. O

For a clause to satisfy @, the clause must commit with Q. Furthermore for a clause
to satisfy a branch, no guard can contradict the decision represented by that branch. For
example, in Figure 6, the val(Z1) test and its result Z1=a comprise a decision. Clauses
satisfying the branch cannot have guards such as Z1=b and Z1\=a. More precisely,

Definition: Consider a switch node with T' = {g1,92,...,9m}. A clause
c=<i, A, B> with guard A = {¢}, 4}, ..., 9.} satisfies a branch if

V.g= (g Ag5A .. AgL) for case branch g

Vgel.-V.{(g=0,Ag)A..Ag}) for neither branch

true for unbound branch
Similar definitions are needed for ask nodes. a

Definition: Consider a procedure corresponding to a decision tree. A
candidate clause set, P,, is the set of clauses, from P, comprising the subtree
rooted at node u. In other words, P, is the recursive argument in 4. O

Intuitively, when successfully executing a case branch with test g, some clauses
are filtered out because they cannot possibly commit. Any clause remaining in the
candidate clause set must be such that each guard goal g’ can be implied by g. Inversely,
if the neither branch is executed, any clause with guards implied by any case branch
test g cannot be included in the candidate clause set (it has been included in the
candidate clause set of a sibling case branch). Finally, all clauses are included in the
candidate clause set of an unbound branch since during execution the switch variable
is unbound and the test is inconclusive. It should be clear that given a query @,
if program execution proceeds down branch b in some procedure with clause ¢, then
(c satisfies @) => (c satisfies b).

30

Definition: A decision tree (produced by Ag) is correct with respect to a
query ¢ of procedure P iff

V nodes u € tree. Pg C P,

a

Theorem 1 For any procedure P, the decision tree, produced by algorithm
Ap, is correct with respect to any query Q. O

The weak theorem is proved in Figure 10 for decision trees produced by algorithm
Ag. The proof hinges on a lemma concerning the mechanism by which code is generated,
which is given in Figure 11. The lemma is proved only for the switch statement. The
proof carries over, in a similar manner, to the ask statement. The crucial points in the
proof are (2) and (5) for D; branches and the D, .isp.r branch, respectively. For these
formulae, it is useful to consider the real domain with simple equalities for branch tests
and inequalities for constraints. Then we can view g and g’ as specilying sets of real
values. (2) cannot be true unless the value specified by g is contained by g/, for all
possible bindings. In this case there exists some value satisfying the RHS.

Showing (5) is a bit trickier. We first consider only clauses that have no self-
contradictory constraints. If this is true, then {g{,g3,..., 9.} must have at least one
shared value. Assume that g} is a singleton set with the same value as g;. This is
the only situation making the RHS false. Since all g} have at least one shared value,
this value must be g;. But this assumption will cause the LHS to be false because the
row corresponding to g; will have all false disjuncts since g; lies within all g!. Thus
(5) is true. For programs with self-contradictory clauses, this proof technique fails. In
fact, such clauses always travel down Dy.isher, but can never commit, so the program
remains correct,

To strengthen the weak theorem, we must consider the effect of code sharing in
A;. Code is shared if an entry in the global residual table contains proper subsets
of both the candidate set and the index set, of the current node. The strategy is
to generate local code for the difference between the index sets. A final ‘77" branch
transfers control to the shared code (previously generated) if all previous tests failed.
The stronger theorem is then:

Theorem 2 For any procedure P, the decision graph, produced by algo-
rithm Ay, is correct with respect to any query Q.]

The proof of this theorem is given in Figure 12. The proof hinges on the fact that
an entry in the residual table that can be used for sharing must meet the criteria stated

31

above. If the entry’s index set is a proper subset of the local index set, then the entry’s
candidate set cannot satisfy the constraints in the difference of the index sets. Induction
in this proof is done on the size of the table, corresponding to some creation-ordering
of the nodes in the tree.

We now informally prove that these algorithms terminate. Consider A;. Each step
of the algorithm reduces the candidate-clause set, either in the number of clauses, or
in the number of constraints within the clauses. Within the algorithm (Figure 3) are
three cases that do not recurse:

o If the candidate set is empty (0).
o If the candidate set has a single member (1).

o If the index set is empty (4). This happens when no constraints remain in the

residual.

Since the initial candidate set has a finite number of clauses and constraints, it follows
that eventually these will be reduced to either no candidates, a singleton candidate, or
a set of candidates, all with empty constraints. These three cases do not recurse, thus
the algorithm will terminate.

The previous two theorems are concerned only with queries that do not suspend.
Additional correctness proofs for suspension are not included here.

32

PROVE: For any procedure P, for any query ¢, algorithm A4g
produces a correct decision tree of P with respect to Q.

BASE CASE: at tree depth 0
By definition, Po = P, thus Pg C Po
INDUCTION STEP: at tree depth j > 0

Consider a node u with child node v, connected by branch b.
Assume that Pg C P, (partial correctness assumption).
We must first show that Pg C A,.

By the various code generation rules (see Lemma 1):
P, D {c € P, | c satisfies b}
By the semantics corresponding to executing along
branch &, we know that for any clause ¢,
(c satisfies Q) = (c satisfies b)
Also recall that by definition
Ve € Pg . c satisfies Q
For any clause c from Fg, we know:
cE Py
¢ satisfies
By (2) and (4),
c satisfies b
By (1), (3), and (5),
ce P,
Thus since any c in Py is also in P,
PQ Ch

By induction on the tree depth j,
Vnodes u€ tree . Pg C Py
Therefore the tree of P is correct with respect to §.

Figure 10: Proof of Weak Theorem For Decision Trees.

33

PROVE: For a node u, any child node v connected by branch &, it is true that
P, 2 {¢ € P, | ¢ satisfies b}
case D;:
P, =Rax(Pu,g) = |J Rarlc.9)
cEP,
U {e=<i, ANG> | {g'€A|V.g=>~¢'} =0}
cEP, -
={c€Pu I {g’EA]V.g#-g'}:ﬂ}
={ce P, | V¢ € A (V. g = ¢}
={ceP, | V€A 3. gAg'} (1)
Consider that for some g = (X = 1) and some constraint g;
(V.~gVvg}=> (3. 9Ag) (2)
because for LHS to be true, { must be within set defined by g}, thus
(V.g=g)=>(E gAg))
(Vo'eA.V.g=g)= (Vg' € A. 3. gng')
(V.g= (@A Ag)=> (V7 €A 3. gAyg)
(c satisfies b) = (Vo' € A. 3. g A ¢') (3)
Thus by (1) and (3)
P, D {c € P, | c satisfies b}

CaseDnelther
Py =R,(Py,T) = |] Ro(c,T)
cEP,
= | J{e=<i, A\G>| {¢ €A |3 €T.V.¢' = g} = 0}
cEP, -

={ceP. | {scA|Ipel.V.¢ =>y=}-m}}

={ceP, | {#eA|(¥. ¢ ==-91)V V(V.g =>gm)} 0}
={ceP, | V¢ €A -((V g=>m)v.. V(V g = gm))}
={ceP, | V¢ €A B g A-g)A..A@ g Agm)))
={ce Py | (A g A-9)A .. AB. gi Aogm))A

((3 7 A=g) A A (3. gl Agm)))
={c€P | 3. g} A-gs) (4)
for all i, _1 By discussion in the text,
(3 g1 A=g) V.. VE g1 Angi)A

((3 gm A=g1) V.V (3. gm A =gl)] = (3. gt A ;) (5)
After manipulating the LHS,)

YgeT. V. (g =>:q’1 A Agy)= (3. gi A gj)

(c satisfies b) = (3. g} A —g;) (6)
Thus by (4) and (6)

P, 2 {c € P, | ¢ satisfies &}

case Dynpound:
in this case, all clauses (with constraints suitably filtered) are
included in the residual so the proof goes through trivially.

Figure 11: Lemma (1) of Decision Tree Construction: Switch Statement.

34

PROVE: For any procedure P, for any query €, algorithm A,
produces a correct decision tree of P with respect to Q.

BASE CASE: Tablesize j =0
By definition, Py = P, thus Pg C Py

INDUCTION STEP: Table size j > 0
Case 1: No sharing: =(3 [['y, Pu] € Table . P, 3 P,,['y D Ty)
Consider a node u with child node v, connected by branch g.
By proof in Figure 10,
PaC R
By induction on Table size 7,
VY nodes u € tree . Pg C P}
Therefore the tree of P is correct with respect to Q.

Case 2: Sharing: (3 [I'y, Pu) € Table . P, 2 P,,Ty D Tw)
Where current node u has index set I' and shares candidates from P,.
We calculate v C T (see Figure 4)
Partial correctness assumption: Pg C P, (1)
There are two types of branches to consider:
Case 2a: {g € v} are local, generated by R4
By (1) and Case (1), the tree through these branches is correct.

Case 2b: ‘7?7’ branch b corresponds to ‘neither’ or ‘7’ branches.

We must show that execution through &, sharing code at P, is correct.
By Lemma 2 {Figure 13):

lr,=C,U¥y

=(Tu\7)+7=0+7 (2)

where « are nonlocal branches and + are local branches.
By the semantics corresponding to executing along branch b,
we know that for any clause c,

(c satisfies)} = (c satisfies b)
Thus no branches g; € v from P, can satisfy .
Thus by (2), only branches g; € o from P, can satisfy Q.
By (1) and Case (1), any tree through these branches is correct.

Disjoint branches 4 and o combine to prove that all branches from
node u are correct.

Figure 12: Proof of Strong Theorem For Decision Graphs.

35

PROVE: For a node P, sharing code with node P,,
such that P, D P, and T, DT,
Ty=Tu Uy :
where y={gel:|3<i,A>€(Pu\Fu). g €A VY. g<=7¢'} (1)

We can enumerate (tautologically) the sets 'y and T'y:
Ty={g€l,|3<i,A>€P,. g’ € A. V. g = ¢'}
Ty={g€Tyw|3<i,A>EP,. g €A V. g <=>¢'}

By definition of the indexer, we can redefine T'y:
To={g€ely|3<i,A>eP,. g €A V. g =17} (2)

Combining (1) and (2):

ToUy={g€ly[I<i,A>E(Pu\Pu). 37 €A V. g=y}U
{gel,|3<i,A>E P, . g € A. V. g <= ¢'}
={gel.|3 <i{,A>€ (Pu\Pu + Fu).
g cA V. g=79} (3)
Since P, 2 P, (given):
P.=P,+ P, \ Py

Thus by (3), }
TwUy={g€Tu|3<iA>€EPR. 37 €A Y. g4} =T,

Thereby proving the lemma. The situation is illustrated below.

The potential overlap in v and Iy, are those tests that are

identical in both local and non-local code.

Py

Pﬂ \ FW Fw
Ty

Figure 13: Lemma (2): Local and Nonlocal (Shared) Code Completely Cover Parent.

36

