A Compile-Time Granularity
Analysis Algorithm and its
Performance Evaluation

X. Zhong and E. Tick

CIS-TR-93-08
April 1993

Abstract

A major implementation problem with implicitly parallel languages, is that small
grain size can lead to execution overheads and reduced performance. We present
a new granularity-analysis scheme that produces estimators, at compile time, of
the relative execution weight of each procedure invocation. These estimators can
be cheaply evaluated at runtime to approximate the relative task granularities,
enabling intelligent scheduling decisions. Our method seeks to balance tradeoffs
between analysis complexity, estimator accuracy, and runtime overhead of evaluat-
ing the estimator. To this end, rather than analyze data size or dependencies, we
introduce sferatien paramelers to handle recursive procedures. This simplification
facilitates solving the recurrence equations that describe the granularity estimators,
and reduces the runtime overhead of evaluating these estimators. The algorithm is
described in the context of concurrent logic programming languages, although the
concepts are applicable to functional languages in general. We show, for a bench-
mark suite, that the method accurately estimates cost. Multiprocessor simulation
results quantify the advantage of dynamically scheduling tasks with the granularity
information.
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1 Introduction

The importance of grain sizes of tasks in a parallel computation has been well recognized
[9, 7, 12]. In practice, the overhead to execute small grain tasks in parallel may well
offset the speedup gained. Therefore, it is important to estimate the costs of the
execution of tasks so that at runtime, tasks can be scheduled to execute sequentially
or in parallel to achieve the maximal speedup.

Granularity analysis can be done at compile time or runtime or even both [12]. The
compile-time approach estimates costs by statically analyzing program structure. The
program is partitioned statically and the partitioning scheme is independent of runtime
parameters. Costs of most tasks, however, are not known until parameters are instan-
tiated at runtime and therefore, the compile-time approach may result in inaccurate
estimates. The runtime approach, on the other hand, delays the cost estimation until
execution and can therefore make more accurate estimates. However, the overhead to
estimate costs may be too large to achieve efficient speedup, in which case the approach
is infeasible. A more promising approach is to try to get as much cost estimation infor-
mation as possible at compile time and make the overhead of runtime scheduling very
slight. In the context of logic programming languages, such approach has been taken
by Tick [16], Debray et al. [3], and King and Soper [6]. In this paper, we adopt this
strategy.

A method for the granularity analysis of concurrent logic programs is proposed.
The method can be well applied to other languages, such as functional languages. In
this paper, we discuss the method only in the context of concurrent logic programs.
The key observation behind this method is that task scheduling in many concurrent
logic program language implementations, such as Flat Guarded Horn Clauses (FGHC)
[18], can be made efficient by exploiting the relative costs of tasks. If the compile-
time analysis can provide simple and precise cost relationships between an active goal
and its subgoals, then the runtime scheduler can efficiently estimate the costs of the
subgoals based on the cost of the active goal. The method achieves this by estimating,
at compile time, the cost relationship based on the call graph. We show that for a suite
of benchmark programs, the method correctly estimates time complexity for 85%-
91% of all procedures analyzed. Multiprocessor simulations show that performance
improvements can be attained for an on-demand scheduler exploiting the granularity
information vs. a naive scheduler.

The paper is organized as follows. Section 2 reviews results in the area of granu-
larity analysis. Section 3 outlines our algerithm. Sections 4-5 give the details of the
algorithm, with illustrating examples. Section 6 contains empirical results of the accu-
racy and effectiveness of the scheme. Conclusions and future work are summarized in



Section T.

2 Motivations and Literature Review

Compile-time granularity analysis is difficult because most of the information needed,
such as size of a data structure and number of loop iterations, are not known until
runtime. Sarkar [12] used a profiling method to get the frequency of recursive and
nonrecursive function calls for a functional language. His method is simple and does
not have runtime overheads, but can give only a rough estimate of the actual granularity.

In the logic programming community, Tick [16] first proposed a method to estimate
weights of procedures by statically analyzing the call graph of a program. The method,
as refined by Debray [1], derives the call graph of the program, and then combines
mutually-recursive procedures into clusters (i.e., strongly connected components in the
call graph). Thus the call graph is converted into an acyclic graph. Procedures in a
cluster are assigned the same weight which is the sum of the weights of the cluster’s
children (the weights of leaf nodes are one, by definition). This method has very low
runtime overhead; however, goal weights are siatic estimations. Thus every procedure
invocation uses the same weight estimation, irrespective of dynamic state such as input
arguments. This problem is especially severe for recursive procedures.

To illustrate this and other algorithms in the paper, we now introduce concurrent
logic programs, built of guarded Horn clauses of the form:

H - Gla G2: ey Gm I BI:B23 weey Bn

where m > 0 and n > 0. H is the clause head, G; is a guard goal, and B; is a body goal.
The commit operator ‘|’ divides the clause into a passive part (the guard) and active
part (the body). Note that if the guard is empty, no commit operator is given. The
informal semantics! of such programs are: to execute a procedure p{A;, 4,, ..., A;) with
arguments A;, the arguments must match (passively unify with) the formal parameters
of the head of some clause with name p. In addition, the guard goals must all succeed.
If these conditions hold, the procedure invocation may “commit” to that clause (or
any other clause so satisfying these conditions). The body of the committed clause is
then executed. A program successfully executes when no goals remain to be executed.
Synchronization in committed-choice programs is enforced implicitly in the commit
rule. If no clause can commit to a procedure invocation, that invocation suspends.
Suspension occurs because a passed parameter is not sufficiently instantiated to allow

1For more formal semantics, see for instance Shapiro [14].



nrev([1,R) :- R=[].

arev([HIT],R) :- nrev(T,R1), append(R1, [E],R)%3K 0 nrev
append([],L,A) ;- A=L.

append([H|T],L,A) :- A=[H|A1], append(T,L,A1).

back 1o append

Figure 1: Naive Reverse and its Call Graph

successful head matching or guard reduction. A suspended invocation is resumed when
a later binding is made to a variable associated with the suspended invocation.

As an example of Tick’s original method, consider the naive-reverse procedure in
Figure 1.2 Examining the call graph, we find that the algorithm assigns a weight of
one to append/3 (it is a leaf), and a weight of two to nrev/2 (one plus the weight of its
child). Such weights are associated with every procedure invocation and thus cannot
accurately reflect execute time.

Debray et al. [3] presented a compile-time method to derive costs of predicates.
The cost of a predicate is assumed to depend solely on its input argument sizes. Rela-
tionships between input and output argument sizes in predicates are first derived based
on so-called data-dependency graphs and then recurrence equations of cost functions
of predicates are set up. These equations are then solved at compile time to derive
closed forms (functions) for the predicate costs and predicate input argument sizes.
In addition, we derive the closed forms (functions) between the output and input ar-
gument sizes. Such cost and argument size functions can be evaluated at runtime to
estimate the body goal costs. A similar approach was also proposed by King and Soper
[6]. Such schemes represent a trend toward precise estimation. For nrev/2, Debray’s
method gives Costy.ey(n) = 0.5n2+ 1.5n 4 1, where n is the size of the input argument.
This function can then be inserted into the procedure code. Whenever nrev/2 is in-
voked, the cost function is evaluated, which obviously requires n. If the cost is greater
than some preselected overhead threshold, the goal is executed in parallel; otherwise,
the goal is executed sequentially.

2Procedures are named as nrev/2, where ‘2’ is the number of formal parameters. The clauses in the
nrev/2 program do not have guards, i.e., only head unification is responsible for commit.



The method described suffers from several drawbacks. First, there is a consid-
erable runtime overhead to keep track of argument sizes, which are essential for the
cost estimation at runtime. Although relationships between sizes of input and output
arguments, within one goal, can be derived at compile time, such relationships must
be evaluated at runtime, a potentially heavy overhead. Furthermore, the sizes of the
initial input arguments have to be given by users or estimated by the program when
the program begins to execute.

Second, the fundamental assumption behind these methods is that the cost of exe-
cuting a goal is solely a size-monotonic function of its input arguments. However, the
complexity of many procedures depends on other factors, and perhaps even nonmono-
tonically on argument size, limiting the application of the approach. Furthermore,
within the general metric of argument size, different metrics may be needed, e.g., list
length, term depth, and the value of an integer argument. It is unclear (from [3, 6]) how
to correctly and automatically choose metrics which are relevant for a given predicate.

Third, the resultant recurrence equations for size relationships and cost relationships
can be fairly complicated. Although a conservative solution method (i.e., estimate the
upper bound of a cost) is adopted, and common recurrence equation templates are
used (3], it is still unclear what systematic methods can be used to salve the recurrence
equations.

It is therefore worth remedying the drawbacks of the above two approaches. It is
also clear that there is a tradeoff between precise estimation and runtime overhead. In
fact, Tick’s approach and Debray’s approach represent two extremes in the granularity
estimation spectrum. Our intention here is to design a middle-of-the-spectrum method:
fairly accurate estimation, applicable to any procedure, without incurring too much
runtime overhead. Instead of considering data dependencies and sizes, we use only the
call graph as input to our algorithm, as described in the next section.

3 Overview of the Approach

We argue here, as in our earlier work, that it is often sufficient to estimate only relative
costs of goals. This is especially true for an on-demand runtime scheduler {e.g., [13]).
Therefore, it is important to capture the cost changes of a subgoal and a goal, but
not necessarily the “absolute™ granularity. Obviously the costs of subgoals of a parent
goal are always less than the cost of the parent goal, and the sum of costs of the
subgoals (plus some constant overhead) is equal to the cost of the parent goal. The
challenging problem is how to distribute the cost of the parent goal to its subgoals
properly, especially for a recursive call. For instance, reconsider the naive reverse



procedure nrev/2. Suppose goal nrev([1,2,3,4],R} is invoked (i.e., clause two is
invoked) and the cost of this query is given: what are the costs of nrev([2,3,4] ,R1)
and append(R1, [1],R)? Intuitively, the recursive call is heavier than the append (this
intuition is solidified in Section 5).

The correct cost distribution depends on the runtime state of the program. For
example, consider a parent goal A = nrev([1,2,3,4],R), its first child goal B =
nrev([2,3,4],R1), and C = nrev([3,4] ,R2), which is the first child goal of the pre-
vious goal (i.e., the grandchild). Although all goals are defined by the same procedure,
the percentage of cost distributed to B (with respect to A’s children} is different from
the percentage of cost distributed to C' (with respect to B’s children). To capture the
runtime state of a procedure invocation, we introduce an iteration parameter to model
that state, and we associate an iteration parameter with every active goal. Since the
cost of a goal depends solely on its entry runtime state, its cost is a function of its
iteration parameter. Several intuitive heuristics are used to capture the relations be-
tween the iteration parameter of a parent goal and those of its children goals. To have
a simple and efficient algorithm, only the call graph of the program, which is slightly
different from a standard call graph, need be considered, to obtain these iteration rela-
tionships (see Section 4.1). Such relations are then used in the derivation of recurrence
equations of cost functions of an active goal and its subgoals. The recurrence equations
are derived simply based on the above observation, i.e., the cost of an active goal is
equal to the summation of the costs of its subgoals plus a constant.

We then proceed to solve these recurrence equations for cost functions. Unknowns
in the recurrence equations are eliminated in their bottom-up order in a reduced call
graph which is obtained by clustering together mutually recursive nodes in the original
call graph (see Section 2). The leaf nodes are solved first, and so on, in a bottom-up
fashion.

After we obtain all the cost functions (which are functions of iteration parame-
ters), cost-distribution functions between an active goal and its body goals are derived
as follows. Suppose the cost of an active parent goal is given. We first solve for
the parent’s iteration parameter based on the cost function derived. Once the itera-
tion parameter is solved, costs of the parent’s child (body) goals, which are specified
in terms of iteration-parameter functions, are derived. The assumption is that the
iteration-parameter functions are simple functions of the parent’s iteration parameter,
as specified by heuristics. The derived child goal costs are functions of the parent’s
cost, and constitute the cost-distribution functions needed for runtime goal scheduling,.

To recap, our compile-time granularity analysis procedure consists of the following
steps:



1. Form the call graph of the program.

2. Transform the call graph into a reduced call graph, by collapsing strongly-
connected components (i.e., mutually recursive goals).

3. Associate an iferation parameter with each procedure, and use heuris-
tics to derive the iteration-parameter functions.

4. Form recurrence equations for the cost functions of goals and subgoals.

5. Proceed bottom up in the reduced call graph to derive the cost func-
tions.

6. For each clause, solve for the iteration parameter, and derive a cost-
distribution function for each body goal.

4 Deriving Cost Relationships

In this section we describe steps (1-5) in the analysis algorithm, using an example to
illustrate the technique.

4.1 Cost Functions and Their Recurrence Equations

To derive the cost relationships for a program, we use a graph G (a call graph) to
capture the program structure. Intuitively, a call graph gives the call relationship
among procedures, similar to a standard call graph. Unlike the standard call graph,
however, in our call graph, calls within one clause are distinguished from calls in other
clauses. Such a distinction of calls is used in our cost-analysis scheme.

Formally, G is a triple (N, E,A), where N is a set of procedures denoted as
{p1,P2,---,Pn} and E is a multiset of pair nodes. E represents the call relationship
among procedures. (p;,p;) € E represents a call of procedure p; from one of the clauses
of procedure p;. Notice that there might be multiple edges (p;, p2) because p; might
call p; in multiple clauses. A is a partition of the multiple-edge set E such that (p1, p2)
and (p1,p3) are in one element of A if and only if p; and p3 are in the body of the
same clause whose head is p;. Intuitively, A denotes what procedure calls are within
one clause. Edges exiting a node are partitioned by A into groups which correspond
to clauses. Nodes with zero out degree are called terminal nodes. Figure 2 shows an
example, where edges in the same partition represented by A are marked with a hor-
izontal bar. For this example, the reduced call graph has the same structure without
the back-edges, which are subsumed into their source nodes.

As in Debray [1], we modify G so that we can cluster all those recursive and mutually
recursive procedures together and form a directed acyclic graph (DAG). This is called



qeort([], s) :- s=0.
gsort([MIT1,s) :-
split(T,M,5,L),
gsort(s,ss),
gsort(L,LS),
append(SsS,LS,S).
split([J, M,s,L) :- 8=
split([HIT], M,S,L) :- H
S=[H|TS), split(T,M,
split((H|T]),M,S,L) :- H>= M
L=[H#|TL]), split(T,M,S,TL).

append([],L,A) :- AsL.
append([HIT],L,A) :- A=[HIA1],

append(T,L,A1). back 1o append

Figure 2: Quick Sort: FGHC Source Code and its Call Graph.

the reduced call graph, G’, achieved by traversing G and finding all strongly-connected
components. In this traversal, the calls from different clauses are immaterial, and we
simply discard the partition A. A procedure is recursive if and only if the procedure is
in a strongly-connected component. After nodes are clustered in a strongly-connected
component in G, we form a DAG G’, whose nodes are those strongly-connected com-
ponents of G and edges are simply the collections of the edges in G. This step can be
accomplished by an efficient algorithm proposed by Tarjan [15].

The cost of an active goal p is determined by two factors: its entry runtime state s
during the program execution and the structure of the program. We use an integer n,
called the iteration parameler, to approximately represent state s. Intuitively, n can be
viewed as an approximate encoding of a program runtime state. Formally, let S be the
set of program runtime states, M be a mapping from & to the set of natural numbers
N such that M(s) = n for s € S. It is easy to see that the cost of p is a function of its
iteration parameter n. It is also clear that the iteration parameter of a subgoal of p is
a function of n. Hereafter, suppose p;; is the j** subgoal in the i** clause of p. We use
I;;(n) to represent the iteration parameter of p;;. The problem of how to determine
iteration-parameter function [;; will be discussed in Section 4.2.

To model the structure of the program, we use the call graph G as an approximation.
In other words, we ignore the attributes of the data, such as size and dependencies.
We first derive recurrence equations of cost functions between a procedure p and its
subgoals by examining G. Let Cost,(n) denote the cost of p. Three cases arise in this



derivation:

Case 1: p is a terminal node in G. This includes cases where p is a built-in

predicate. In this case, we simply assign a constant ¢ as Costy(n). c is the
cost to execute p. For instance such cost can be chosen as the number of
machine instructions in p.

For the next two cases, we consider non-terminal nodes p, with the following clauses
(i.e., OR-processes),

Ci:p = Piiye-eyPliy-
Co:p = pase-rPony-

Cr:P = DPrlye-orPhu-

Let the cost of each clause be Costg,(n) for 1 < j < k. For flat committed-choice
languages, we can safely ignore the guards: their costs are assumed to be constant (see
Equation 4). For non-flat languages, we can assume that deep guards are included as
goals p;; above. We now distinguish whether or not p is recursive.

Case 2: p is not recursive and not mutually recursive with any other procedures,

We can easily see that

k
Costy(n) < Y Coste,(n). (1)
=1
Conservatively, we approximate Costy(n) as the right-hand side of the above
inequality. However, this doesn’t account for potential suspensions and their
associated overheads.

Notice that in a committed-choice language, the summation in the above in-
equality can be changed to the maximum (i.e., max) function. However this
increases the difficulty of the algebraic manipulation of the resultant recur-
rence equations and we prefer to use the summation as an approximation.
Another alternative is to use a weighted-arithmetic mean for the right-hand
side, which does not complicate the solution. A linear mean could be used
for simplicity; however, runtime profiling information [12, 19, 10] will give
more accurate estimation of cost. We believe the use of profiling informa-
tion within our analytical framework is an interesting issue to explore in
the future.



Case 3: p is recursive or mutually recursive. In this case, we must be care-

ful in the approximation, since minor changes in the recurrence equations
can give rise to very different estimations. This can be seen for split/4 in

the Quick Sort example in Section 2.

To be more precise, we first observe that some clauses are the “boundary
clauses,” that is, they serve as the termination of the recursion. The other
clauses, whose bodies have some goals which are mutually recursive with p,
are the only clauses which will be effective for the recursion. Without loss
of generality, we assume for j > u, C; are all those “mutually recursive”
clauses. For a nonzero iteration parameter n (i.e., » > 0), we take the
average costs of these clauses as an approximation:

1

Costp(n) = g

k
>~ Costg,(n) (2)
J=u4l
and for n = 0, we take the sum of the costs of those “boundary clauses” as
the boundary condition of Costy(n):

u
Cost,(0) = ) _ Costg, (0). (3)
=1
See the beginning of Section 4.2 for the intuition behind this boundary
condition.

The above estimation only gives the relations between cost of p and those of its
clauses. The cost of clause C; can be estimated as

vj
Costg,(n) = d; + > Costy,,, (Iim(n)) (4)
m=1
where d; is a constant reduction cost of clause C;, and Jj,,(n) is the iteration parameter
for the m** body goal.® Substituting Equation 4 back into Equation 1 or 2 gives us the
recurrence equations for cost functions of predicates.
The above recurrence equations are not complete because the iteration parameters
of each body goal I;;(n) are still unknown. These iteration-parameter functions I;; are
derived based on some heuristics described next.

3The cost d; accounts for matching head arguments, evaluating the guard, and enqueuing body
goals.



4.2 Iteration Parameters

There are several intuitions behind the introduction of the iteration parameter. As
we mentioned above, iteration parameter n represents an approximate encoding of a
program runtime state as a positive integer. In fact, this type of encoding has been used
extensively in program verification, e.g., [5], especially in proofs of loop termination. A
loop £ terminates if and only it is possible to choose a function M which always maps
the runtime state of £ to a nonnegative integer such that M monotonically decreases for
each iteration of £. When the integer becomes zero the loop exits, which corresponds to
the invocation of a boundary clause (Equation 3). Such encoding also makes it possible
to solve the problem that once the cost of an active goal is given, its iteration parameter
can be obtained. This parameter can be used to derive costs of its subgoals (provided
the iteration-parameter functions I, are given), which in turn give the cost-distribution
functions.

Admittedly, the encoding of program states may be complex. Hence, to precisely
determine the iteration-parameter functions for subgoals will be complicated too. In
fact, this problem is statically undecidable since this is as complicated as to precisely
determine the program runtime behavior at compile time. Fortunately, in practice,
most programs exhibit regular control structures that can be captured by some intuitive
heuristics.

To determine the iteration-parameter functions, we first observe that there is a
simple conservative rule: for a recursive body goal p, when it recursively calls itself
back again, the iteration parameter must have been decreased by one (if the recursion
terminates). This is similar to the loop termination argument. Therefore, as an ap-
proximation, we can use I,(n) = n — 1 as a conservative estimation for a subgoal p;,
which happens to be p (seli-recursive). Other heuristics are listed as follows:

§1. For a body goal p;,, which is not mutually recursive with p (i.e., not in a
strongly-connected component of p), l;m(n) = n.

§2. If p;n is mutually recursive with p and its predicate only occurs once in the
body, Iim(n) =n - 1.

§3. If pim is mutually recursive with p and its predicate occurs & times in the
body, where & > 1, I;n(n) = n/k (this is integer division, i.e., the floor

function).

The intuitions behind these heuristics are simple. Heuristic §1 represents the case
where a goal does not invoke its parent. In almost all programs, this goal will process
information supplied by the parent, thus the iteration parameter remains unmodified.

10



Heuristic §2 is based on the previous conservative principle. Heuristic §3 is based on the
intuition that the iteration is divided evenly for multiple callees. Notice for the situation
in heuristic §3, we can also use our conservative principle. However, we avoid use of the
conservative principle, if possible, because the resultant estimation of Costy(n) may be
an exponential function of n, which, for most practical programs, is not correct.

These heuristics have been derived from experimentation with a number of pro-
grams, placing a premium on the simplicity of I(n). A summary of these results is
given in Section 6. A remaining goal of future research is to further justify these
heuristics with larger programs, and derive alternative heuristics.

4.3 Solving for Cost Fuctions and an Example

After setting up the recurrence equations for cost functions and determining iteration-
parameter functions, we have a system of recurrence equations for the cost functions.
This system of recurrence equations can be solved in a bottom-up manner in graph G’.
That is, we first solve equations for procedures in the leaves of G’ and then solve those
for procedures in higher levels of G’. It should be pointed out that the complexity of
these recurrence equations depends on the iteration parameters. The problem of sys-
tematically solving recurrence equations derived with the above heuristics is discussed
in the Appendix.

We now consider a complete example for the qsort/2 program given in Figure 2.
The boundary condition for Costgaor:(n) is that Costyser:(0) is equal to the constant
execution cost d; of gsort/2 clause one. The following recurrence equations are derived:

COStq,grg(O) = dl
Costgyori{n) = Costg,(n)

With Heuristic §1 and §3, we have
Coste,(n) = da + Costyptis(n) + Costappend(n) + 2Costgsor:(n/2)

where d; is the constant reduction cost of the second clause of gsort/2. Similarly, the
recurrence equations for Cost,pit(n) are

COStaplit(o) = da
Cost,pm(n) = dy+ (Costc,(n) + Costg,(n))/2

Furthermore,
Coste,(n) = Costg,(n) = ds + Costypriz(n — 1)

11



where dj is the constant reduction cost of the second (and third) clause of split/4.
The recurrence equations for Costgppend(n) are

Costappend(n) = Costnppcnd(n - 1) + dﬁ

We first solve the recurrence equations for split/4 and append/3, which are in
the lower level in G', and then solve the recurrence equations for qsort/2. This gives
Cost ptir(n) = d3+(dy + ds)n and Costoppend(n) = d7 +dgn which can be approximated
as (dy4 + d5)n and dgn respectively. We then have Costyyor¢(n) = dy + dalogn + (dy +
ds + dg)nlog n, which is the well-known average complexity of gsort.

It should be emphasized that it is necessary to distinguish between the recursive
and nonrecursive clauses here, taking the average of the recursive clause costs as an
approximation. If we simply take the summation of all clause costs together as the
approximation of the cost function, both cost functions for split and gsort would
be exponential, which are not correct. More precisely, if the summation of all costs of
clauses of split is taken as Cost,pi(n), we will have

Cos‘;split(ﬂ') = d-3 + dd + 2(d5 + COStaplit(n = 1))

In this case, the solution of Cost,pit(n) is an exponential function, which is not correct.
Adopting Equation 2, however, the correct relationship is derived, as shown above.

5 Distributing Costs

After we have derived cost functions for each procedure, we are ready to derive cost-
distribution functions for the body goals of each clause. The first step is to solve for the
iteration parameter n in Equation 4 assuming that Costy(n) is given at runtime as W,,.
In other words, assuming that clause { is invoked at runtime, we approximate Costc,(n)
as W, and solve Equation 4 for n. Let n = F(W,) be the symbolic solution (i.e.,
F = Cost;!), which depends on the runtime value of Cost,(n) (i.e., W,). Denoting the
cost distribution function for m** body goal as Cost{™)(W,), we can derive Cost(™)(W,)
by substituting n with F(W,) in Cost,,,, (fim(n)) for m* body goal. This gives rise to
the cost-distribution functions that we need to evaluate at runtime.

As an example, let’s reconsider the nrev/2 procedure. The cost equations are
derived as follows:

COStnrw(U) = d

12



Costpren(n) = dz + Costyren(n — 1) + Costoppena(n)
Costappend(0) ds
Costappend(n) = dq + Costoppend(n — 1)

where d; are constant reduction costs. We derive the closed forms for these two cost
functions as Costappenda(n) = nds+ds = ndy and Costrrew(n) = dy 4+ (da+d3)n+dyn(n—
1)/2 = d4n?/2. Now, given that Costpres(n) = W, we solve for n = \/3%:. Hence, we
have Cost()(W,) = d4(\/%"- —1)?/2 for the first body goal nrev, and Cost?}(W,) =
dq/%':—’ﬁ for the second body goal append. These are the desired cost-distribution

functions. As mentioned in Section 3, intuitively, the recursive call encompasses most
of the work, and the append only a small fraction (square-root of total work).

It should be pointed out that in some cases, it is not necessary to first derive the
cost functions and then derive the cost-distribution functions. Instead we can simply
derive the cost distribution scheme directly from the cost recurrence equations. For
example, consider the Fibonacci function, where the cost equations are

CDSt;;(,(O) = d
Costyip(n) = da + 2Costyp(n/2)

Without actually deriving the cost functions of Costyi(n), we can simply derive the
cost-distribution function from the second equation as Cost{)(W) = Cost®)(W) =
(W - d3)/2.

Also note that at compile time, the cost distribution functions should be simplified
as much as possible to reduce the runtime overhead. It is even worthwhile sacrificing
precision to get a simpler function. Therefore, a conservative approach should be used
to derive the upper bound of the cost functions. In fact, we can further simplify the
cost function derived in the following way. If the cost function is of a polynomial form
such as con® + ¢;nf~1 + ...ck, we simplify it as keon* and if the cost function is of
several exponential components such as ¢ya,"™ + c2a2™ + ...+ crar™ where ay > .. .a;,
we simplify it as (¢; + e2+ ...+ ¢x)eq™. This will simplify the solution of the iteration
parameter and the cost-distribution function and hence lessen the runtime evaluation
cost.

5.1 Quicksort Example Revisited

The qsort cost function, Costyseri(n) = dy + dzlogn + (dy + ds)nlogn, is too com-
plicated to solve for its inverse function. Therefore we conservatively approximate
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qsort{_,[]1,5) :- 5=(].
qsort(¥w, MIT1,S) :~
DD := W//2,
WS := sqrt{DD),
W1 := DD-WS,
split(Ws,T,M,S,L),
qsort(w1,S,58),
qsort(¥Wi,L,LS),
append (WS, SS,L5,S).

noa

Bplit(_,[], M,s,L) :- s=[1, L=0.
split(w, [(HiT),M,S5,L) :-H <M |

Wi :=¥w-1,

s=[H|Ts], split(Wi,T,M,TS,L).
split(W,[HIT],M,S,L) :- B >= M |

Wi := W-1,

L=[H|TL], split(wi,T,M,S,TL).

Figure 3: Quick Sort: Annotated FGHC Source Code

Costgaors(n) = (d4 + ds)n?. Furthermore, assuming unit constant costs, d4y = ds =
1, gives Costyeore(n) = 2n2. Assuming that Costgeri(n) = W at runtime, then
the gsort cost-distribution functions (for body goal 1 split, body goal 2 and 3
gsort and body goal 4 append) can be derived as Cost{)(W)=Cost!(W) = /W/2,
Cost(W)=Cost®NW) = W/2 - Cost)(W) = W/2 - \/W]2.

In this derivation, the sum of the body goal weights equals the parent weight. For
consistency, we wish to preserve this work-distribution invariant. With conservative
estimation, if we simply substitute the iteration parameter n with the inverse of the
cost function (in this case, /W/2), the invariant is not guaranteed. Therefore we obtain
all but the last body goal cost-distribution functions by substitution. The last goal is
solved by explicitly satisfying the invariant.?

After deriving the cost-distribution functions, the functions can be inserted into
the program to be exploited by a runtime scheduler. For example, we can annotate
each procedure in the source program by including a new input argument holding the
granularity cost, i.e., the runtime weight of that procedure. The corresponding runtime
weights of the procedure’s body goals are generated by evaluating the cost-distribution
functions at runtime. For example, Figure 3 shows the annotated FGHC Quick Sort
source code. In this program, the weights are included as a new first argument of
each procedure, and the cost-distribution functions are inserted in each clause body.
Predicate :=/2 performs arithmetic evaluation and assignment.

4 Preserving the invariant exactly is not critical for the scheme’s effectiveness — approximations can
be tolerated here as in other steps of the algorithm. Note however that by conservative estimation of
body goal weights, we will never derive negative weights with this method.
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5.2 Runtime Goal Management

The above cost relationship estimation is well suited for a runtime scheduler which
adopts an on-demand scheduling policy (e.g., {13]), where processors (PEs) maintain a
local queue for active goals and once a PE becomes idle, it requests a goal from other
PEs. A simple way to distribute a goal to a requesting PE is to migrate an active goal
in the queue. The scheduler should adopt a policy to decide which goal is going to be
sent. It is obvious that the candidate goal should have the maximal grain size among
those goals in the queue. Hence, we can use a priority queue where weights of goals
are their grain sizes (or costs). The priority is that the bigger the costs are, the higher
priority they get. Based on an initial cost (discussed below) and the cost-distribution
functions derived at compile time, every time a new clause is invoked, the scheduler
derives the relative costs of body goals, The body goals are then enqueued into the
priority queue based on their costs.

Some bookkeeping problems arise from our scheme. First, even though we can
simplify the cost-distribution functions at compile time to some extent, this may not
be sufficient. In some cases, the runtime overhead of evaluating the cost-distribution
functions may offset the advantage of scheduling based on granularity information.
This is especially undesirable for trivial procedures, i.e., procedures that execute little
computation. On the other hand, we expect an overall benefit from this analysis for
nontrivial procedures. Furthermore, in a parallel machine organization that has higher
overhead for goal migration (message passing) than goal reduction, runtime weight
evaluation may be well-worth the induced savings in reduced messages.

One solution to this potential problem is to let the scheduler keep track of a module
counter and when the content of the counter is not zero, the scheduler simply lets the
costs of the body goals be the same as that of their parent. Once the content of the
counter becomes zero, the cost-distribution functions are used. If we can choose an
appropriate counting period, this method is reasonable (one counter increment has less
overhead than the evaluation of the cost estimate).

Another prablem in this approach is that for long-running programs, costs may
become zero, i.e., the initial weight is not large enough. One solution is to ignore the
problem, i.e., bottom-out at zero. Since we require only relative costs, another solution
is to reset all costs (including those in the queue, and in suspended goals), when some
cost becomes too small. Cost resetting requires the incremental overhead of testing to
determine when to reset.

How should we choose the initial cost, i.e., the cost of the query? Choosing an
arbitrary value can introduce an anomaly for our relative cost scheme. To see this,
consider the nrev example again. Suppose that the initial query is nrev({1,...,501).
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The correct query cost is approximately 50 x 50 = 2500. The correct cost of its
immediate append goal is approximately 49, and the correct cost of one of its leaf
descendant goals nrev([]) is one (the head unification cost). If we choose the initial
cost as a big number, say 108, then the corresponding iteration parameter is 10%. This
will give the cost of nrev([1) as (10% — 50)? which is bigger than the estimated cost
of the initial append goal (only around 103). In other words, this gives an incorrect
relationship between goals near the very top and near the very bottom of the proof
tree.

For this particular example, the problem could be finessed by precomputing the
“correct” initial value of the iteration parameter: exactly equal to the weight of the
query. However, in general, a correct initial estimation is not always possible, and when
it is possible, its computation incurs too much overhead. All compile-time granularity
estimation schemes must make this tradeoff. Fortunately, in our scheme, the problem is
not as serious as it first appears. For initial goals with sufficiently large cost, choosing
the initial weights as big as possible (e.g., the maximum representable integer) is able
to give correct relative cost estimation for sufficiently large goals which are not close
to leaves of the execution call graph. This can be seen in the nrev example, where the
relative costs among nrev([2,...,50] through nrev([42,...,50]), and the initial
append are still correct in our scheme. Correct estimation for the large goals (those
near the root of the proof tree) is more important than that for small goals (those near
the leaves) because the load balance of the system is largely dependent on those big
goals, and so is performance.

6 Empirical Results

In this section we present empirical data collected by hand-analysis and multiproces-
sor simulation, to demonstrate the performance potential of the granularity-analysis
method.

6.1 Justifying the Heuristics

We applied our three heuristics and the cost-estimation functions to two classes of pro-
grams. The first class includes nine widely-used benchmark programs [17], containing
32 procedures. The second class consists of 111 procedures comprising the front-end
of the Monaco FGHC compiler. The results are summarized in Table 1 and Table 2.
For each heuristic, the tables show the number of procedures for which the heuristic is
applicable (by the syntactic rules given in Section 4.2), and the number for which the
heuristic correctly estimates complexity. The row labeled “all” gives the total number
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Heuristic Applicable Correct Percentage
§1 24 21 87.5%
§2 29 26 89.6%
§3 4 2 50.0%
all 32 27 84.7%

Table 1: Statistics for Benchmark Programs

Heuristic Applicable Correct Percentage
§1 64 57 89.1%
§2 49 55 87.3%
83 6 4 66.7%
all 111 101 91.0%

Table 2: Statistics for a Compiler Front End

of procedures analyzed. Since more than one heuristic may be applicable in a single
procedure, the total number of procedures may be less than the sum of the previous
FOWS.

From the tables, we see that heuristics §1 and §2 apply most frequently. This indi-
cates that most procedures are linear recursive (i.e., have a single recursive body goal)
which can be estimated correctly by our scheme. The relatively low percentage of §3
correctness is because the benchmarks are biased towards procedures with exponential
time complexity, whereas §3 usually gives polynomial time complexity.

Analysis of the benchmarks indicated two major anomalies in the heuristics. Al-
though §1 may apply, a procedure may distribute a little work (say, the head of a list)
to one body goal and the rest of the work (say, the tail of the list) to another goal.
This cannot be captured by §1, which essentially treats the head and tail of the list as
equal, i.e., a binary tree. This might be corrected by accounting for the type of data
structures, or as in Debray’s scheme [3], exploring the size of data structures.

For recursive procedures, §3 can capture only the fixed-degree divide and conquer
programming paradigm. However, the compiler benchmark contained procedures which
recursively traverse a list (or vector) and the degree of the divide and conquer dynam-
ically depends on the number of top level elements in the list {or vector). In this
situation, the procedure may have to loop on the top level while recursively travers-
ing down for each element (which again may be tree structures). Again, this presents
inherent difficulty for our scheme hecause we take the call graph as the sole input
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information for the program to be analyzed.

6.2 Performance Analysis

To demonstrate the utility of the granularity-estimation scheme, we simulated a multi-
processor which exploited the weights for on-demand scheduling purposes. The param-
eterized simulator is a high-level model of the parallel execution of fine-grain FGHC
processes [18). The base time-step, called a cycle, is the time needed to commit a pro-
cedure invocation to a clause or suspend the process. The model is controlled by three
main input parameters: the number of PEs, the cost (in cycles) of a reduction, and the
idle delay, i.e., the cost of switching in a remote task when a PE becomes idle. It is
assumed that switching in a local task, when suspension occurs, is free. In the simula-
tions presented here, the default value of reduction time is a number of cycles equal to
the number of user-defined body goals in the matching clause — a realistic assumption.
The input parameters allow us to tune the model across the range of tightly-coupled
shared-memory to loosely-coupled distributed-memory multiprocessors. For instance,
a large ratio of idle delay over reduction cost models a distributed system. As a perfor-
mance metric, we define Copt/Croopt, the number of cycles executed by the program
exploiting granularity divided by the number of cycles executed by the program with
no granularity information.

The simulation proceeds on a cycle-by-cycle basis, keeping ready and suspended
process queues for each individual PE. At the beginning of each cycle, all idle PEs steal
goals from busy PEs. Our intention is not to explore load-balancing methods here,
and so we distribute the goals according to one, realistic rule: the most busy (most
goals in ready queue) PEs offload goals at the top of their queues to the idle PEs.
Any PE with only a single ready goal does not offload. The offloaded goals are tagged
with the fixed idle penalty, causing the receiving PE to subsequently spin (modeling
transmission delay) for that many cycles. The naive scheduler pushes body goals onto
the ready queue in the program-defined order. In the granularity scheduler, the ready
queue is prioritized by goal weight, so that the top-most goal is heaviest.

Six benchmarks were chosen to allow comparison with Debray’s results 3], and to
illustrate characteristics particular to on-demand scheduling with relative weights. De-
bray’s experiment involved two actual parallel Prolog systems: ROLOG and &-Prolog
executing on four PEs. These systems explicitly spawned goals that were determined
to be independent, i.e., no data dependencies. Of the benchmarks, four were measured
on both systems, and of those four, Fibonacci was the only program to achieve consis-
tent results: speedup of 28%. Qur experiment differs most significantly in three ways.
First, we use weights to decide which goal should be sent to a requesting (idle) PE,
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not which goals should be eagerly spawned. Second, we exploit relative weights, and
therefore have no ability to cutoff recursive decent at an absolute threshold weight, e.g.,
fib(5). Third, the FGHC architecture exploits communicating processes, and therefore
processes may suspend due to lack of data inputs. Thus if granularity information
contradicts data dependencies, exploiting granularity without regard for dependencies
may induce extra suspensions.

Extensive simulations of the benchmarks were conducted, a partial summary of
which is given here. Sufficiently large input data was supplied in all of the runs to
avoid starvation problems. All of the benchmarks retained positive weights throughout
execution.

Figure 4 plots the performance data by varying PEs, keeping the idle delay = 16
cycles. The utility of the analysis is seen to be highest for eight or more PEs, but
doesn’t increase much beyond this. For 1-4 PEs, the naive scheduler can do reasonably
well because the limited PEs have sufficient large-grain parallelism to exploit in the
program. As the number of PEs increases, competition for work exhausts the large
grains, and small grains are inadvertently exploited. At this point, the granularity
scheduler, differentiating grain size, achieves a performance advantage.

Figure 5 replots benchmark performance with varying idle delay, keeping PE=16
(the default reduction time is used). The benchmarks again fall into roughly two
groups. The lower plots represent programs that display a trend towards performance
improvement with increasing idle delay. These programs illustrate that granularity
information has its highest utility when interprocessor communication is slow, e.g.,
distributed multiprocessors. The higher plots represent programs that do not improve
significantly with increasing idle delay. These programs are “accidentally” scheduled
properly even without granularity information because of the program structure. For
example, Matrix multiply with 30-element fixnum vectors cannot be misscheduled:
the self-recursive inner-product loop comprises a large-enough granule of work that
previous scheduling decisions do not much matter. Compare this to Bmatrix, a 5x5
matrix multiply with bignum elements. Here the process-tree branches are thicker,
because the inner-product now entails nontrivial bignum multiplication. As a result,
superior scheduling decisions can be made based on granularity information.

Figures 6 and 7 show the Fibonacci benchmark for varying PEs and idle delays.
Fibonacei was chosen because of its consistent results in Debray’s work, and its typical
characteristics as displayed in the previous graphs. The linear relationship between
performance improvement and idle time is again displayed here. The jump in perfor-
mance between 4 and 8 PEs is clearly seen. In fact, granularity scheduling slows down
the program for few PEs.
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This anomaly is due to the increase in suspensions caused by deferring small-grain
processes. As seen in Fib (for small numbers of PEs) and Bmatrix (for larger numbers of
PEs), certain simulations show degraded performance with increasing idle delay. One
factor is nondeterministic scheduling effects. Another factor is that the granularity
scheduler makes the wrong decision, favoring the execution of large-grain tasks that
depend on smaller-grain lasks. The naive scheduler also makes these mistakes, but on
the whole is more true to the programmer-intended execution order: the static program
order usually has producers before (to the left of) consumers.

To summarize, our statistics show that our scheme achieves a fairly high percent-
age of correct estimation. However, we need to apply multiply-recursive heuristics §2
and §3 with more finesse. Simulation results illustrate the potential for the analysis
to produce speedups in distributed multiprocessors where the penalty for remote task
switching is medium to high.> Programs with “thick” branches in their process trees
achieve the highest utility from granularity information because naive schedulers can-
not distinguish between fine-grain work (twigs) and large-grain work (sub-branches).
The experiments also uncovered a potential scheduler pitfall that must be avoided:
granularity information should not be favored over data-dependency information in a
dependent-AND parallel environment.

7 Conclusions and Future Work

We have proposed a new method to estimate the relative costs of procedure execution
for a concurrent language. The method is similar to Tick’s static scheme [16], but gives
a more accurate estimation and reflects runtime weight changes. This is achieved by
the introduction of an iteration parameter which is used to model recursions.

Our method is based on the idea that it is not the absclute cost, but rather the
relative cost that matters for an on-demand goal scheduling policy. Our method is
also amenable to implementation. First, our method can be applied to any program.
Second, the resultant recurrence equations can be solved systematically. In comparison,
it is unclear how to fully mechanically implement the schemes proposed by Debray et
al. [3, 2, 6]. In addition, we believe that, compared to the above methods, the runtime
overhead incurred in exploiting the granularity is reduced.

Empirical results showed that the method (with the three heuristics proposed)
correctly estimates time complexity for 85%-91% of all procedures analyzed. These
iteration-parameter function heuristics estimate a child procedure’s work as a function

5Considering that an average reduction takes 3-4 cycles {(as defined in our model), an idle delay of
16 cycles represents a communication/computation speed ratio of about 5:1.
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of the parent’s work. Simulation studies indicate performance improvements can be
attained for an on-demand scheduler exploiting the granularity information vs. a naive
scheduler. The most utility was gained when interprocessor communication time was
high, e.g., modeling a distributed-memory multiprocessor.

Nonetheless, our method may result in an inaccurate estimation for some programs.
This is because we use only the call graph to model the program structure, not the
data or dependencies. The majority of cases we have observed where our heuristics
break down are tree computations, abstractly of multiway branching nodes, however
the committed-choice program hides this composition by recursing on intermediate lists
or structures. Furthermore, even if the heuristics are correct estimates of complexity,
runtime execution may diverge from the estimates, e.g., an unbalanced OR-parallel
search tree. An open problem is how to incorporate further information to derive more
precise estimations, keeping analysis costs and runtime costs low,

Future work in our granularity analysis includes developing additional heuristics for
iteration-parameter functions, to capture a broader class of programs. Development
of a more systematic and precise method to solve the derived recurrence equations
is needed. It is also necessary to examine the method for more practical programs,
performing benchmark testing on a multiprocessor to conclusively demonstrate the
method’s utility.
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Appendix: Solving the Recurrence Equations

This appendix discusses how to solve the recurrence equations derived in Section 4. Sys-
tematic methods are given to solve for equations derived based on different heuristics.
In particular, a method is proposed to solve the equations where iteration-parameter
functions are derived based on heuristic §3, by converting the recurrence equations into
a system of standard linear recurrence equations with multiple indices. These can be
solved with standard methods, e.g., generating functions.

To solve for the cost function of p from the recurrence equations derived above, we
first simplify the equations by substituting those cost functions whose goals are not
mutually recursive with p with their solutions. This is possible since we start from the
leaves of G’ and move upward. In general, the system of recurrence equations is of the
following form for: = 1,...,m,

m
Ciln) = Y wi;Ci(Lij{n)) + ai(n) (5)
i=1
where ¢;(n) is a function of n which is derived from goals which are not mutually
recursive with p. If we use heuristic §3, we assume that I;;(n) = n/k;;. In general,
there is no systematic way to solve an arbitrary system of recurrence equations [8, 11].
However, for these particular recurrence equations, although they are not standard
linear recurrence equations, we can convert them into the standard ones by sampling
the functions C;(n). More precisely, let b be the least common multiplier (LCM) of
all k;; for all 4,7 = 1,...,m. Furthermore, we factorize b into its prime factors as
b= qi‘ ...g!» where ¢;,i = 1,...,u are all primes. Let k;; = q:;J e .qff" (remember
that b js the LCM of all k;;) where l;;j < lp. Let n = qp*...q"* where ny > I for
h=1,...,u, Equation 5 becomes

. .
= 1
Cia .. .a2) = wiiCilar " oo q?* ) + ai(q]” .. .ql) (6)
=t

Denoting Ci(qf" - ..qi* ) as Cl(my,...,ny), and a;(q* .. .q3* ) as al(ny,. .., ny), Equa-
tion 6 becomes

Ci(ny,...,n) = Zu.-ij(nl - lij,. I Iff)a:(nl,...,nu] (7)
J=1
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Equation 7 is a standard linear recurrence equation with multiple indices [8]. To
solve these equations, we first need to obtain boundary conditions: values of Ci(n,,...,n,)
for np =0,...,ly,and h = 1,...,u. Such values can be obtained by directly iterating
Eguations 5 from n = 0,1,...,b This is feasible since in practice, b is usually not very
big.

After the boundary conditions have been cbtained, we can use the generating func-
tion technique to solve for C!. Formally, let Z;,...,Z, be the symbolic parameters,
define the generating function D{Z,,..., Z,) of an arbitrary function D(ny,...,n,) as
follows,

oo
D(Zy,...,2.)= Y.  D(ny,...n)ZM... 20

ny=0,...,i4=0

Multiplying Z7" ... Z}* and summing both sides of Equation 7 for n; > [;, we obtain

m ij Iy
CUZ1. 1 Zu) — Bi(Z1y-. s Za) = w2yt .. 28 (CUZ1---2) — Bi(Z1y- -1 Z4))

=1

+AUZ: ... Za) - AlZ,. ., 2)

Where Bi{(Z2,,...,2,),A¥(2,,...,Z,) can be obtained from the boundary values
of C! and AY respectively. This results in a system of linear equations for generating
functions. Such generating functions can be solved by linear algebra techniques. Fur-
thermore, the solutions to these generating functions will have forms as P(Z,,...,Z,)/
Q(Z,,...,2Z,) where both P and @ are polynomial functions of Z,,...,7Z,. Closed
forms of C] can be obtained by standard techniques [4, 11, 8].

After we obtain Ci(ny,...,n,), we can obtain C;(n) for any n by approximation.
First, notice an important property for Ci(n): Ci(n) is a monotonically nondecreasing
function. Since all we need is a conservative upper bound for Ci(n), any Cl(n1,...,ny)
such that v = ¢ ...¢3* > n is fine as an approximation of Ci(n). Obviously, the best
approximation is to find C¥(ny,...,n,) such that v = g*...¢™ > n is the closest to
n. However, since there is no a simple way to find those n4,...,n,, we sacrifice some
precision and approximate C;(n) by C!(m,0,...,0} where n; = [log,, (n}] (assuming
that ¢ < g2 < ... < qu).

If we adopt our conservative principle and assume that I(r) = n—1, we get a system
of linear recurrence equations. A system of linear equations of generating functions can
be directly obtained from Equation 5. Closed forms for C;(r) can be derived much
more easily.
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