Evaluation of Parallel Copying
Garbage Collection on a
Shared-Memory Multiprocessor

Akira Imai Evan Tick
ICOT! University of Oregon
CIS-TR-93-09
April 1993
Abstract

A parallel copying garbage collection algorithm for symbolic languages execut-
ing on shared-memory multiprocessors is proposed. The algorithm is an extension
of Baker’s sequential algorithm with a novel method of heap allocation to prevent
fragmentation and facilitate load distribution during garbage collection. An imple-
mentation of the algorithm within a concurrent logic programming system, VPIM,
has been evaluated and the results, for a wide selection of benchmarks, are ana-
lyzed here. We show (1) how much the algorithm reduces the contention for critical
sections during garbage collection, (2) how well the load-balancing strategy works
and its expected overheads, and (3) the expected speedup achieved by the algorithm.

This article appears in the JEEE Transeclions on Parallel and Distributed Com-
puling, 1993,

Hnstitute for New Generation Computer Technology, 1-4-28 Mita, Minato-ku Tokyo
108, Japan.

DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE
UNIVERSITY OF OREGON

1 Introduction

Efficient methods of garbage collection are especially crucial for the performance of
so-called “fifth generation” multiprocessors. These machines are designed to execute
high-level, symbolic languages such as parallel Lisp and concurrent logic programming.
Because these languages are based on dynamic structure creation, garbage collection
is critical for reclaiming storage during computation. Moreover, logic programming
languages are applicative, so that destructive update cannot effectively reduce garbage
production. On top of that, the family of concurrent logic programming languages do
not backtrack, and as a result cannot automatically recover storage due to failed proofs.

This article introduces a new parallel garbage collection (GC) algorithm for these
symbolic languages. Based on Baker’s sequential stop-and-copy algorithm [2], our
method is also invoked when one half of available memory has been exhausted. The
processors (PEs) suspend execution and cooperate performing GC by copying active
data objects to the other half of available memory. The innovative ideas in our algo-
rithm are the methods with which to reduce contention and distribute work among
the PEs during cooperative GC. We concentrate on shared-memory multiprocessors
because they constitute the clusters around which several high-performance machines
have been designed (e.g., PIM [6] and DASH [8]).

We have chosen KL1 [18], a concurrent logic programming language based on flat
GHC [17], as a testbed on which to experiment with this GC algorithm. A naive
implementation of KL1 on a multiprocessor consumes memory area rapidly since KL1
has neither destructive update nor backtracking. For example, an entire array must
be copied when only a single element is updated. As a result, GC occurs so frequently
that system performance is seriously jeopardized.

There have been several schemes proposed to deal with this excessive memory
consumption problem. Chikayama and Kimura [3, 11] invented an incremental GC
method based on a single reference bit. Saraswat et al. [14] proposed a logic language
constrained to have single-consumer streams, thus allowing local reuse of memory.
Ueda and Morita [19] outlined a mode-analysis technique that uncovers single-consumer
streams, also allowing reuse. Abstract interpretation is another method that can be
used, e.g., [9]. These schemes are all promising, yet in general they do not preclude
the necessity of periodically doing a general garbage collection. Unless the scheme can
guarantee to recover 100% of all garbage on-the-fly, global GC is needed.

The purpose of this article is to introduce a parallel, global garbage collection
algorithm based on Baker's semi-space algorithm. A complete, detailed description
of the algorithm is given. The performance characteristics of the algorithm executing
with KL1 benchmark programs is also given. These results indicate that the algorithm

effectively avoids critical sections, achieving parallel efficiency of 51% to 97% on eight
PEs. The article is organized as follows. Section 2 reviews Baker’s sequential GC
algorithm. Section 3 explains our parailel algorithm. Section 4 analyzes the empirical
performance characteristics of the algorithm. Conclusions are summarized in Section

5.

2 Baker’s Sequential Algorithm

In this section, Baker’s sequential GC algorithm is reviewed. Two heaps are allocated
although only one heap is actively used during program execution. When one heap is
exhausted, all of its active data objects are copied to the other heap during GC. The
advantages of this algorithm are that it is simple and fast because only active objects
are accessed.

Figure 1 illustrates the algorithm, in C-like pseudo-code. Arrays newheap and
oldheap represent the heaps as linear storage areas. In this and subsequent algorithms,
heaps grow from low to high addresses, described as growing “downwards.” Pointer S
represents the scanning point and B points to the bottom of the new heap. Copying
is initiated from roof pointer(s} into the old heap that are guaranteed to reference,
through some number of indirections, every active object in the program state. The
active structures referenced by the root(s) are traversed and copied to B. A tag per
heap cell can be used to indicate if an old-heap cell has been copied into the new heap,
as described below.

As shown in Figure 1, the scanning function, defined in main(), examines the next
new-heap cell addressed by S. If the cell addressed by S holds a pointer to the old heap,
the referenced structure is copied to the new heap at B. Each cell' in old heap that
is copied is overwritten with a forwarding address, i.e., a pointer to the new heap cell
where the copy is made. This mark operation prevents any cell from being copied more
than once. This procedure continues until S meets B, at which time all cells in old
elements have been traversed in a breadth-first manner and copied to the new heap.

3 Parallel Extensions to Baker’s Algorithm

There is potential parallelism inherent in Baker’s algorithm in the copying and scanning
actions, i.e., accessing S and B. We limit our view to shared-memory execution models

'In reality, and as specified in the algorithm, one need not overwrite forwarding addresses for argu-
ments of a complex structure. For example, when f(A, B) is copied, a forwarding address is written
over functor f, but need not be written over the two arguments of f. Note of course that if A and B
point to nested structures, overwriting will be done when they are copied.

copy(P) {
— P is ptr into old heap —
Temp := oldheap[P];
if (Temp is forwarding address)
newheap[S] := Temp;
else {
newheap[S] := B;
Arity := arity(Temp);
— mark old heap with forwarding address —
oldheap[P] := B;
for (i = 1; i < Arity ; i++)
— copy contents of old element to new heap —
newheap[B++] := oldheap[P++};

}
}
main() {
S := B := base of new heap;
for (i := 1;i < # roots; i++)
copy(root(i));
while (S < B} do {
P := newheaplS];
if (P points into old heap)
copy(P);
S :=5+1;
}
}

Figure 1: Sketch of Baker’s Sequential Algorithm

in this article. In this section, we develop a parallel algorithm by stepwise refinement.
This clarifies both the motivations and mechanisms of the scheme.

3.1 How to Exploit Parallelism

A naive method of exploiting this parallelism is to allow multiple processors (PEs) to
scan successive cells at S, and copy into B. Such a scheme is bottlenecked by the PEs
vying to atomically read and increment S by one cell and atomically write B by many
cells. The contention would be unacceptable.

One way to alleviate this bottleneck is to create multiple heaps corresponding to the
multiple PEs. For example, this is the structure of both the Concert Multilisp [7] and
JAM Parlog [4] garbage collectors. Consider a model wherein each PE(?) is allocated
private sections of the new heap, managed with private S; and B; pointers. Copying

from the old space could proceed in parallel with each PE copying into its private new
sections. As long as the mark operation in the old space is atomic, there will be no
erroneous duplication of cells, When copying is complete, all private sections of the new
heap are treated as a single shared heap, and the old and new heaps are exchanged.
Managing private heaps during copying presents some significant design problems:

¢ Allocating multiple heaps within the fixed space must be done with minimal loss,
i.e., fragmentation. For example, if for n PEs, each of n heaps is allocated to 1/n
of the total space, and the heaps grow nonuniformly, then some heaps will exceed
their allocation whereas other heaps will not. Thus a mechanism for dynamically
reallocating new heap space during GC is necessary.

e If a PE finishes scanning the cells in its private heap, i.e., § = B, then the PE
becomes idle. There must be a mechanism to distribute the work among the PEs
throughout the GC.

To efficiently allocate the heaps, two criteria must be met. First, the dynamic
allocation must be invoked as infrequently as possible, because it is overhead that
does not contribute anything to the computation. Second, the allocation must not
leave unusable fragments or create a situation wherein no single fragment can hold the
next structure to be copied. Given a shared-memory model, a scheme that achieves a
balanced trade-off between these criteria, is to incrementally grow each heap in chunks.

Definition: A chunk is defined to be a unit of contiguous space, a constant
HEU cells in size (HEU = Heap Extension Unit). o

We first consider a simple model, wherein each PE operates on its own heap, which
it manages by its own pair of S and B pointers. Initially, a single empty chunk is
allocated for each heap, with the S and B pairs pointing into the top (empty) element
of the initial chunk. The By, pointer is a state variable pointing to the global
bottom of the new allocated space. Initially, Bgsar points to the entry one below the
bottom-most initial chunk. Allocation of new chunks is always performed at Byiopat-

When a chunk has been completely copied into, the B pointer reaches the top of
the next chunk (possibly not its own!). At this point a new chunk must be allocated to
allow copying to continue. As mentioned, new chunks are always allocated at Bpa1,
i.e., there is only one locale for heap growth.

There are two cases of B overflowing: either it overflowed from the same chunk as S,
or it overflowed from a discontiguous chunk. In both cases, a new chunk is allocated. In
the former case, nothing more need be done because S points into B’s previous chunk,
permitting its full scan. However, in the latter case, B’s previous chunk will be lost if
separated from §’s by extraneous chunks (of other PEs for instance).

l S bottom

. N N 7/

top IB

The shaded portions of the heap are owned by a PE(i) which manages S and B in
the picture. Other portions are owned by any PE(j) where j # i. The two chunks
shaded as '/’ are referenced by PE({) via § and B. The other chunks belonging to
PE(i), shaded as ‘\’, are not referenced. To avoid losing these, they are registered
in the global pool.

Figure 2: Chunk Management in Simple Heap Model

The problem of how to “link” the discontiguous areas, to allow S to freely scan
the heap, is finessed in the following manner. In fact, the discontiguous areas are not
linked at all. When a new chunk is allocated, the B’s previous chunk is simply added
to a global pool. This pool holds chunks for load distribution, to balance the garbage
collection among the PEs. Unscanned chunks in the pool are scanned by idle PEs which
resume work (see Figure 2).

We now extend the previous simple model into a more sophisticated scheme that
reduces the fragmentation caused by dividing the heap into chunks of uniform size.
Data objects (also called “structures”) come in various sizes, large and small (Section
5.4 gives a full characterization for KL1). Imprudent packing of objects into chunks
might cause fragmentation, leaving useless area in the bottom of chunks. To avoid
this problem, each object is allocated the closest quantum of 2" cells (for integer n <
log(HEU)) that will contain it. Otherwise, larger objects are allocated the smallest
multiple of HEU chunks that can contain them. When copying objects, with sizes less
than HEU, into the new heap, the following rule is observed: “All objects in a chunk
are always uniform in size.” If HEU is an integral power of two, then no portion of any
chunk is wasted. When allocating heap space for objects of size greater than one HEU,
contiguous chunks are used.

In this refined model, chunks are categorized by the size of the objects they contain.
To effectively manage this added complexity, a PE manipulates multiple {5, B} pairs
(called {51, B1}, {S2, B2}, {Sa4, B4}, ..., and {Sypy. Bggpy)}). Initially, each PE allo-
cates multiple chunks? with S; and B; set to the top of each chunk. Objects with size
HEU and greater are managed by {Sygy, Bggy}- Since it is impossible to initially

2Since HEU = 2", n chunks are allocated.

allocate contiguous chunks for these large structures (because their sizes are unknown
befare GC), they are allocated on demand. Effectively, the pointer pairs reference sub-
heaps. We refer to the {Sypy, Bgpy)} pair, which serves much the same function as
{5, B} in Baker’s algorithm, as an overflow heap.

Note that allocating structures in this manner trades off unused space within struc-
tures vs. fragmenting space during GC. A degenerate case of allocation can waste up to
half of available memory; however, this does not happen in practice since most struc-
tures are small. To further reduce unused space, the algorithms described here can be
modified to include {S3, Ba}, {S5, Bs}, etc. heaps for small structure sizes. There are
various implementation advantages of “knowing where your wasted space is located,”
such as facilitating the free-list management required by incremental GC schemes, e.g.,
MRB.

Referring back to Figure 2, recall that shaded chunks of the heap are owned by
PE(i) and non-shaded chunks are owned by other PEs. The chunks shaded as ‘/’, in
the extended model, contain objects of some fixed size k, and are managed with pointer
pair {Sk, Bi}. Chunks shaded as ‘\’ are either directly referenced by other pointer pairs
of PE(?) (if they hold objects of size m # k), or are kept in the global pool.

3.2 Parallel Algorithm

The parallel algorithm is summarized in detail in Figures 3, 4, and 5. The pseudo-
code represents the program executed by a single PE during garbage collection (all
PEs follow this routine). In the code, P(var) and V{(var) represent mutual exclusion
primitives ensuring that only one process can modify var within that region at any one
time.

Initially, PE(7) copies objects, referenced by its own GC root pointer(s), to some
heap at B,{ for appropriate size k.2 PE(j) then scans the allocated unit of size & (in our
design, k is a power of two). Figure 3 specifies the top-level scan-all{) procedure that
continually scans each private heap owned by PE(j). For each heap of size ¢ that has
as-yet-unscanned cells, scan(i) is invoked. If PE(7) becomes idle, under the condition
that Vk(Sj = B,J;), then it grabs work from the global pool, and begins scanning again.
Thus the load is distributed between PEs which have many cells to be scanned and
PEs which do not. The algorithm terminates when Y7, k(.S'j s Bi), and the global pool
is empty.

Procedure scan(n) differs from that in Baker’s algorithm, primarily because the

3We do not explicitly indicate the PE superscript j in the pseudo-code presented. It should be
understood that the code given is executed on a single PE, which references its own private heaps, via
its own set of heap pointers. Physically, all the heaps are intertwined in shared memory.

scanning heap and the copying heap may differ. The cell scanned at 5, may point into
the old heap to an object with a size other than n. Procedure copy(P,S5,) copies the
old structure pointed to by P, leaving a forwarding pointer at the new heap location
indicated by S, and returns the size (up to HEU) of the object copied. At this point,
both the B and S pointers involved must be checked for chunk overflow. If no copying
was necessary (when the size m is either zero or HEU), then no B pointer can overflow.
Otherwise, B, and S, are both checked for overflow (described in detail below).

Figure 4 lists the copy(P,5) procedure. There are three main cases buried in this
specification: (1) P points to a forwarding address, obviating the need for copying, (2)
P points to a structure of size less than HEU, and (3) P points to a large structure of
size HEU or greater. In latter case, the overflow heap is used. In both copying cases,
the scanned cell in the new heap and the head of the structure in the old heap, are over-
written with a forwarding address (4). This forwarding address is the new-heap location
where the structure is now copied into (5).* Large structures must be allocated directly
at Byiobar, copied into a multiple of chunks. These chunks are immediately linked into
the global pool (6) with procedure add-to-pool (described below).

Figure 5 lists the procedures for checking § and B pointers for chunk overflow, as
well as managing the global pool of chunks. Four shorthand macros are used here:

is-at-top-of-HEU(x) = ((x mod HEU) = 0)
Top-of-HEU(x) = (x div HEU) - HEU
Bottom-of-HEU(x) = (Top-of-HEU(x) + HEU — 1)
Top-of-prev-HEU(x) = (Top-of-HEU(x) — HEU)
Bottom-of-prev-HEU(x) = (Top-of-HEU(x) — 1)

When B, points to the top of a chunk, an overflow from the previous chunk has
occurred. Two actions are performed to service this overflow. As described in the
overview given previously, first the previous chunk must be added to the pool if not
referenced by S,,, to prevent loss (7). Next, a new chunk is allocated at the global
heap bottom, and B,, is reassigned there (8). Servicing an S, overflow is simpler: the
pointer is reassigned to the top of the chunk referenced by B, (9). This effectively skips
over intervening chunks of size n, that have been explicitly added to the pool.

The global chunk pool is managed as a stack, Pool, that grows upwards from a base
address, Bottom-of-Pool. The top of stack pointer is PoolPtr. In our model, chunks
from all heaps share a single pool (this can be extended to muitiple pools in obvious

* Each data structure has a true size, for example f(a,b,c,d) has arity five, and a power-of-iwo
allocated size, in this case, eight. In the pseudo-code, Arity is the allocated size. The cells allocated
beyond the true size, which need never be initialized, also need not be copied or scanned by virtue of
a simple optimization. This optimization is not described in the psendo-code.

scan-all() {
repeat {
— scan each size heap for given PE —
repeat {
Scanning ;= False;
for (i :=HEU; i > 1;i:=i/2;)
if(Si<Bi){
scan(i);
Scanning := True;

} until not(Scanning);

— try to get a new chunk from pool —
if (get-from-pool(Sgru, Bugu)) {
— Success getting a new chunk from pool —
— Sggu and Bygy is used to scan the chunk —
} else
declare that I'm idle;
} until (all PEs idle);
— GC has terminated here —

}

scan(n) {
— scan heap size n for given PE —
while (S, < B,) do {
P := newheap[S,];
if (P points into old heap) {
— m is the updated size —
m = copy(P,5,);
if ((m #0) and (m # HEU))
checkB(m);
}
Sn =5+ 1;
checkS(n);

Figure 3: Parallel GC Algorithm: Scanning All the Heaps

copy(P,S.) {
— P is ptir into old heap —
— S, is current scanning point —
P(oldheap|P]);
Temp := oldheap[P];
if (Temp is forwarding address) { {1)
V(oldheap[P]);
newheap[S,] := Temp;
return(0);
} else {
Arity := arity(Temp),
if (Arity < HEU)
m := Arity; (2)
else {
m := HEU; (3)
P (Bglobal);
from := BREy = Bglobal;
Bglobal = Bgiobn]‘ + Arity;
V (Bgiobat);

}
newheap[S,] := Bmn; (4}
— mark old heap with forwarding address —
oldheap[P] := Bp;
V(oldheap{P]);
for (i := 1; i < Arity; i+4)
— copy contents of old element to new heap —
newheap(By, ++)] := oldheap[P++]; (5)
if (Arity > HEU } {
— add the chunks to pool immediately —
add-to-pool(from, Bygy); (6)

return{m);

Figure 4: Parallel GC Algorithm: Copying Cells

ways — we comment about single-pool utility in Section 5.3). Full chunks are added
to the pool with the intention of offloading them, at a future time, to idle PEs for
scanning. The scanning operation is independent of the size of the objects within the
chunk, so these offloaded chunks can be added to any of the empty heaps owned by
the idle PE. In procedure scan-all() (Figure 3), we arbitrarily offload the chunks to the
overflow heap.

3.3 Optimization for Load Balancing

In the previous algorithm, selecting an optimal HEU, the heap extension unit, is a
difficult choice. As HEU increases, Byt accesses become less frequent (which is
desirable, since contention is reduced); however, the average distance between S and B
(in units of chunks) decreases. This means that the chance of load balancing decreases
with increasing HEU.

One solution to this dilemma is to intreduce an independent, constant size unit for
load balancing,

Definition: The load distribution unit (LDU) is this predefined constant,
distinct from HEU, enabling more frequent load balancing during GC. We
assume HEU = kLDU, for integer k£ > 0. O

In general, the optimized algorithm incorporates a new rule in procedure checkS,
wherein if (Bf; - S,’; > LDU), then the region between the two pointers (i.e., the region
to be scanned later) is pushed onto the global pool. The new procedure is summarized
in Figure 6.

The optimized procedure checkS is split into three conditions concerning the object
size n of the chunk referenced by the scan pointer: (1) n is not greater than LDU,
(2) if = is between LDU and HEU, and (3) n not less than HEU. The latter two cases
comprise the same function as does the unoptimized version of checkS (Figure 5).° The
first condition is where the optimization is occurs, for two cases when 5, and B, either
share the same chunk, or reference different chunks (see Figure 7). In the former case,
all the integral LDUs between 5,, and B, can be added to the pool. In the Jatter case,
all the LDUs remaining in S,’s chunk, and the integral LDUs preceding B,, can be
added to the pool.

5 The condition of (LDU < n < HEU) prevents exploitation of the load balancing optimization
because of a conflicting optimization we are using to avoid extra memory references (Footnote 4). Es-
sentially, for a structure with an allocated size larger than its true size, we must prevent the distribution
of LDUs filled with only garbage cells.

10

checkB(m) {
— check if By, has overflowed chunk —
if (is-at-top-of-HEU(Bp,)) {
if { Top-of-HEU(Sm) # Top-of-prev-HEU(B,,,))
add-to-pool(Top-of-prev-HEU({ B,),
Bottom-of-prev-HEU(B,,));
— allocate a new chunk at bottom of heap —
P (Bglobal);
B = globals
Bylobal = Bglabal + HEU;
|14 (Byfobal);
Pl

checkS{(n) {
— check if S, has overflowed chunk —
if (n # HEU)
if (is-at-top-of-HEU(S,))
Sn 1= Top-of-HEU(B,);
}

add-to-pool(from, to) {
— add unscanned chunk to pool (stack) —
P (PoolPtr);
Pool[PoolPtr] := from;
Pool[PoolPtr+1] := to;
PoolPtr := PoolPtr 4 2;
V (PoolPtr);

}

get-from-pool(from, to) {
— get unscanned chunk from pool (stack) —
P { PoolPtr);
if (PoolPtr > Bottom-of-Pool) {
to := Pool[PoolPtr — 1j;
from := Pool[PoolPtr — Z];
PoolPtr := PoolPtr — 2;
V (PoolPtr);
return(True);
} else { — pool is empty, fail in getting a chunk —
V (PoolPtr);
return(False);

Figure 5: Parallel GC Algorithm: Load Distribution

11

(7)

(8)

(9)

Top-of-LDU(x) = (x div LDU) - LDU
Bottom-of-prev-LDU(x) = (Top-of-LDU(x) — 1)
is-at-top-of-LDU(x) = ((x mod LDU} = 0)

checkS(n) {
— check if S, has overflowed subchunk —
if { is-at-top-of-LDU(S,} } {
if (n< LDU) {
switch (distance(S,,B,)) {
case (within same chunk): {
add-1du-to-pool(S,,Bottom-of-prev-LDU(B,));

case (in different chunks): {
add-ldu-to-pool(S,,Bottom-of-HEU(S,,));
add-]du-to-pool(Top-of-HEU(B,),
Bottom-of-prev-LDU{B,});
}

8, = Top-of-LDU(B,);
} else
if (LDU < n < HEU)
— see Footnote 5 —
if (is-at-top-of-HEU(S,))
Sp = Top-of-HEU(B,);
— else (HEU > n) do nothing —

}

add-ldu-to-pool(from, to) {
if (from # to)
add-to-pool(from, to);

Figure 6: Optimized GC Algorithm: Load Distribution When S Overflows

12

S, LDV

Sa 4

Case 1: {84, Bn} within same chunk. A portion between S, and

Bottom-of-prev-LDU(By) is pushed into global pool.

'
'
.

5, LDU

LD Sn %

B, B,

rr—————] PR

Case 2: {Sn,Bn]} in diffcrent chunks. Two portions between Sn
and Bottom-of-HEU(S,), and between Bottom-of-HEU{B,) and

Top-of-prev-LDU(By} are pushed into global pool.

% haded porti
shaded portion
HEU added to pool

Figure 7: Chunk Management in Optimized Heap Model

13

4 Relationship to Previously-Published Algorithms

As memory size increases, we desire that the ratio of GC time to total time will decrease.
If the ratio increases, future memory sizes would cause intolerable GC overheads. With
a copying algorithm, GC time depends on the number of active objects and does not
depend on the size of memory, so the ratio decreases. With a compaction algorithm
(e.g., mark and sweep), GC time depends on the size of memory and is independent
of the number of active objects, thus the ratio remains constant. Reference-counting
algorithms avoid this problem by incremental collection and thus retain higher local-
ity of reference than copying algorithms. In summary, the main drawbacks of the
copying algorithm proposed is 1) that twice as much heap memory is needed than in
the alternative methods; 2) reference locality is lower than in free-list management-
based algorithms, such as reference counting, and 3) collection is not done in real time.
However, we use copying because we believe that for non-real time environments, its
efficiency advantages outweigh these disadvantages.

We now compare our parallel algorithm to three previously-published garbage col-
lectors for Concert Multilisp [7] and JAM Parlog [4], and for shared-memory multipro-
cessors [1].

Appel et al. [1] is unique in that it operates in real time with no customized
hardware. For a Lisp benchmark executing on a five processor DEC Firefly, the GC
system latency was 80 times shorter than a sequential stop & copy algorithm. GC
speedup (as defined in the next section) is not relevant, whereas overlap of GC with
user execution is: they achieved 62% overlap for the benchmark.

Both Halstead’s and Crammond’s garbage collectors [7, 4] statically divide the entire
heap area by the number of PEs, and each PE copies active objects onto its private
(new heap) area. The main difference between the two algorithms is in their handling
of remote cbjects, which are objects not in the private area of the old heap.

In Halstead’s algorithm, remote objects are copied by the PE which first encounters
the object, which means that GC changes the “ownership” of an object. On the other
hand, in Crammond’s algorithm, remote objects remain remote, even after GC. This is
implemented by asking the owner to copy objects. For this purpose, an indirect pointer
stack area is statically allocated, and a global remote object counter is maintained.

In our algorithm, we do not distinguish between remote and local cells because
automatic load distribution among PEs is implemented by the mechanisms previously
described. Therefore the distinction between remote and local cells serves no purpose.
Thus we must lock any cell when writing a forwarding address to that cell.® Halstead’s

8 However, if the MRB of a list is off, we copy the list without writing a forwarding address.

14

algorithm also requires this, but interestingly, Crammond’s algorithm need lock only
“asked™ cells. Locking, however, is cheap on the shared-memory machines we are
targeting, such as PIM. On a NUMA (Non Uniform Memory Access) shared-memory
multiprocessor, we believe Crammond’s scheme may work better.

We do not attempt to improve spatial locality with our algorithm. The global pool
balances the load, and may indirectly improve locality (compared to Baker’s algorithm)
because S and B pointers stay closer together, but we have not examined this. In
Section 5.3 we discuss a variant of the algorithm that may improve locality further.

The advantages of our algorithm, over these alternatives, are clarified by the fol-
lowing points.

Load Distribution: No dynamic load distribution mechanisms among PEs is given
in Halstead’s or Crammond’s algorithms. We believe that load distribution must
be done not only during normal execution but also during GC. Otherwise, the
performance of GC largely depends upon the performance of the standard sched-
uler (for user-program execution), which determines the initial load distribution
of GC.

Private Heap Overflow: Halstead comments that Concert Multilisp does exhibit
instances when a single PE exhausts its allocated heap space, requiring realloca-
tion of space from either a global pool or another PE. He claims this is “only a
minor extension of the basic garbage collection algorithm,” however, we tend to
disagree. QOur philosophy is to exploit the shared-memory model, incrementally
growing all heaps by chunks, during GC. This guarantees that fragmentation can-
not occur during GC, obviating the need to devise a fair heap reallocation policy
among PEs.

Size of Extra Spaces: Since GC is invoked when memory is full, the extra memory
space required by the algorithms should be as small as possible. In Crammond’s
algorithm, whenever a PE scans a cell holding a remote pointer, a pointer to this
cell (equivalent to the value of our § pointer) is pushed onto the indirect-pointer
stack of the owner of the remote object. It is difficult to statically determine the
necessary size of the indirect-pointer stack area. Crammond concluded (for small
benchmarks) that the space required for this stack is relatively small, less than
1% of the heap space. However, considering the worst case when all data objects
consist of all remote reference pointers, the indirect-pointer stack requires the
samne size as the heap to guarantee that GC will terminate. In our algorithm, to
guarantee the termination of GC, the global-pool stack needs only 2x (HeapSize
/ LDU) words.

15

Heap| # |#Red.|#Susp.
Benchmark| (Kw)|GCs| x1000| x1000|comments
BestPath 192 6 394 57 | shortest-path problem (30x30 nodes)
Boyer 128 4 529 18 |toy theorem prover
Cube 128 5 291 6 |logical constraints (7 cubes) §
Life 128 4 353 236 | life game simulation (38x38 nodes)
MasterMind 128 8| 1525 5| game-playing program
MaxFlow 128 3 80 35| max. flow in network (80 nodes,123 links)
Pascal 64| 13 285 1| Pascal’s triangle (row 250)
Pentomino 64 7 188 9|2-D puzzle packing (5x5 square,6 pieces) t
Puzzle 128 19; 1254 145 3-D puzzle packing (7 pieces) §
SemiGroup 448 6 732 12| calculation of Brandt semigroup (5 tuples)
TP 64 23 564 47 | theorem prover {4-Cook’s wif)
Turtles 320 1 1178 62|logical constraints (12 cards) {
Waltz 128 61 1207 19| 3-D drawing constraints (38 nodes) t
Zebra 320 9 405 2 |logical constraints {extended version) {

t all solutions search

Table 1: Summary of the Benchmarks

5 Evaluation

The parallel GC algorithm was evaluated for a large set of medium-sized benchmark
programs (from [16, 15] and other sources), executing on VPIM, a parallel KL1 emula-
tor. The measurements presented in this article were collected on a Sequent Symmetry
with 16 processors, althcugh we used at most eight. Because of the parallel execu-
tion, slight scheduling differences affect the number of GCs, reductions, suspensions,
etc. Statistics in the tables were measured on eight PEs with HEU=256 words and
LDU=32 words, unless specified otherwise.

The evaluation of all benchmarks was done with the MRB (Multiple Reference
Bit [3]) optimization enabled, facilitated by support from the VPIM system. MRB, a
method of incremental garbage collection, gives us a realistic characterization of the
garbage produced by the programs. Other methods of local memory reuse, as mentioned
in Section 1, differ mainly in their execution overheads, and we believe that the results
presented here are informative with respect to those schemes as well.

The benchmarks are summarized in Table 1, where “heap size” is the statically
allocated, maximum size of the old heap (which equals the size of the new heap). Note
that the measurements presented here represent a single execution of each benchmark.
Averages are calculated among the multiple GCs within a benchmark. In the next
sections we analyze, with respect to varying LDU and HEU sizes, various algorithm

16

characteristics: load balancing effectiveness and overhead, speedup, global-heap-bottom
access frequency, global-pool access frequency, and active data cell distribution by type.

VPIM is an appropriate system upon which to test garbage collection because its
storage management is not naive. For a group of nine programs similar to our bench-
marks, the number of words generated per reduction was measured. Without MRB,
this metric ranged from 1.4-21, with six of the programs generating less than 1.8
words/reduction. With MRB, the reduced range was 0.26-12. The benefit of MRB
ranged from none to 1100% reduction in words generated. For in-depth analysis of
MRB performance, see Nishida et al. [11].

5.1 Load Balancing and Speedup

To evaluate load balancing during GC, we define the workload of a PE, and the speedup
of a system, as follows:

workload(PE) = number of cells copied + number of cells scanned
speedup = Y~ workloads
p p = maz(workload of PEs)

The workliocad value approximates the GC time, which cannot be accurately mea-
sured because it is affected by DYNIX scheduling on Symmetry [12]. Workload is
measured in units of cells referenced.” Speedup is calculated assuming that the PE
with the mazimum workload determines the total GC time. Note that speedup repre-
sents only how well load balancing is performed, and does not take into account any
extra overheads of load balancing (which are tackled separately in Section 5.3). We
also define the ideal speedup of a system:

Y~ workloads
mazx(workload for one object)

ideal speedup = min (s #PES)

Ideal speedup is meant to be an approximate measure of the fastest that n PEs can
perform GC. Given a perfect load distribution where 1/n of the sum of the workloads
is performed on each PL, the ideal speedup is n. This perfect distribution is rarely
achievable in practice. There is an obvious case when in fact an ideal speedup of n
cannot be achieved: when a single data object is so large that its workload is greater
than 1/n of the sum of the workloads. In this case, GC can complete only after the
workload for this object has completed. These intuitions are formulated in the above
definition.

Table 2 summarizes the average workload and speedup metrics for the benchmarks.

"We roughly estimate two memory accesses per cell referenced. A scan operation requires one read
(if the object is atomic) or one read and one lock-and-read otherwise. A copy operation requires one
read and one write, per cell. Additionally, one write and one write-and-unlock is required per object.

17

average speedup
workload size of LDU
Benchmark x1000f 32w | 64w | 128w | 256w | ideal
BestPath 165} 7.156 | 7.06 | 6.46 | 6.36 | 8.00
Boyer 47| 567 | 583 | 4.38 | 4.12 | 8.00
Cube 139| 7.74 | 7.67 | 7.35 6.83 8.00
Life 101 7.10 | 6.86 | 6.31 | 6.29 { 8.00
MasterMind 4| 250 | 248 | 258 | 2.48 2.87
MaxFlow 95| 4.06 | 3.84 3.70 2.86 8.00
Pascal bl 2.67 | 291 | 345 | 2.77 7.25
Pentomino 3] 434 | 3.34 | 3.67 | 4.21 8.00
Puzzle 17| 2.63 | 2.84 | 2.58 2.61 2.92
SemiGroup 496 7.75 | 7.28 | T7.49 7.02 8.00
TP 17| 2.49 | 2.39 | 2.43 2.33 2.79
Turtles 203| 7.79 | 744 | 7.20 | 7.22 | 8.00
Waltz 32| 4.38 | 2.92 | 231 1.64 8.00
Zebra 167| 6.27 | 6.04 | 6.42 6.28 8.00

Table 2: Average Workload and Speedup {on eight Symmetry PEs, HEU=256 words)

Workload is listed as thousands of cells referenced. Averages are arithmetic means
calculated over the GCs executed. The table shows that benchmarks with larger work-
loads display higher speedups. For instance, benchmarks with workloads over 100,000
cells referenced, achieved speedups greater than six, for any size LDU. This illustrates
that the algorithm is quite practical.

In some benchmarks, such as MasterMind, Puzzle and TP, ideal speedup is limited
(2-3). As explained above, this limitation is due to inability of cooperation among
the PEs in accessing a single large structure. The biggest structure in each of the
benchmark programs is the program module. A program module is actually a first-class
structure and therefore subject to garbage collection (necessary for a “self-contained”
KL1 system, including a debugger and incremental compiler). In practice, application
programs consist of many modules, opposed to the benchmarks measured here, with
only a single module per program. Thus the limitation of ideal speedup in MasterMind
and Puzzle is peculiar to these toy programs.

In benchmarks such as Pascal and Waltz, the achieved speedup is significantly less
than the ideal speedup. These programs create many long, flat lists. When copying
such lists, S and B are incremented at the same rate. The proposed load distribution
mechanism does not work well in this degenerate case. Qur method works best for
deeper structures, so that B is incremented at a faster rate than S (especially in the
early stage of GC). In this case, ample work is uncovered and added to the global pool

18

Size of LDU (words)

32w 64w | 128w | 256w
Benchmark | Naive | Smart | N/S|N/S| N/S| N/S
BestPath 124,569 | 2,306| 54| 60 56 57
Boyer 22,779 687| 39| 44 31 38
Cube 158,923 1,686 94| 90 83 93
Life 68,687 1,326| 52| 52 52 52
MasterMind 3,427 522 7 6 6 7
MaxFlow 55,639 699 | 80| 73 72 62
Pascal 14,437 9171 16| 15 16 16
Pentomino 9,480 3051 31| 32 29 30
Puzzle 38,831 1,486] 26| 29 27 27
SemiGroup 708,1831 6,229 114| 114| 114| 115
TP 40455| 1,738 23| 23 23 22
Turtles 28,209 566| 50| 49 49 55
Waltz 39,476 715| 56| 62 56 60
Zebra 126,761 3,885| 33| 32 33 32

Table 3: Total Number of Updates of By over all GCs (8 PEs, HEU=256 words).
“Naive” assumes all objects copied to Bysa, N/S is ratio of naive updates to updates
made by chunked algorithm.

for distribution.

5.2 Reducing Contention at the Global Heap Bottom

In this section we analyze the frequency with which the global heap-bottom pointer,
Byioat, is updated (for allocation of new chunks). This action is important because
Bglosat is shared by all the PEs, which must lock each other out of critical sections
that manage the pointer. We show that the algorithm described significantly reduces
contention for these critical sections.

The update frequency of By depends on the value of the heap extension unit
(HEU) and the average size of active objects, but is not affected by the size of LDU. For
instance, in Zebra (given HEU = 256 words and LDU = 32 words), By,s. is updated
3,885 times within all GCs. If B3 were updated whenever a single object was copied
to the new heap, the value would be updated 126,761 times. Thus update frequency is
reduced by over 32 times compared to this naive update scheme.

General results for all the benchmarks are summarized in Table 3. For each LDU
size measured, we show the ratio of the naive updates to the (smart) updates made by
our algorithm. Note that MasterMind achieved the least reduction in update frequency

19

avg # pool access/GC avg workload/pool access {x1000)
Size of LDU {words) Size of LDU (words)

Benchmark| 32w 64w 128w 256w 32w 64w 128w 256w

BestPath 421.0) 139.6 84.4 45.8 0.4 1.2 2.0 3.6
Boyer 208.8] 131.3 24.3 12.8 02 04 1.9 3.7
Cube 609.4| 241.6 96.3 55.5 0.2 0.6 14 2.5
Life 145.8] 66.5 29.8 14.8 0.7 1.5 34 6.9
MasterMind 3.9 1.5 1.1 1.0 1.1 2.8 3.7 4.2
MaxFlow 211.3| 75.0 37.0 10.0 0.4 1.3 2.6 9.5
Pascal 1.6 1.0 1.0 1.0 3.5 5.6 5.6 5.6
Pentomino 134.3 656.3 21.0 7.5 0.2 0.5 1.5 4.1
Puzzle 51.6| 306 10.5 4.9 0.3 0.6 1.7 3.6
SemiGroup 1700.7| 910.8| 439.3 29.6 0.3 0.5 1.1 16.8
TP 444 198 8.8 4.6 0.3 0.8 1.9 7
Turtles 1427.0(640.0(314.0{ 136.0 0.1 0.3 0.6 15
Waltz 76.0(36.0 11.5 14 04 0.9 2.8 22.7
Zebra 2127.9| 920.2| 467.7] 2224 0.1 0.2 04 0.8

Table 4: Access Characteristics of the Global Pool (8 PEs, HEU=256 words). Left
side shows pool accessed most frequently when LDU is small. Right side shows work
delivered per access is largest when LDU is large.

— only a factor of seven, significantly below that of the other benchmarks. This can be
explained by the small workloads involved. As described in section 3.2, log(HEU) initial
chunks are allocated per PE before GC starts. Thus MasterMind initially allocates 8
(PEs) x 8 (chunks/PE) x 8 (GCs) = 512 chunks, or 98% of all chunks allocated. In
other words, the program is doing the minimum required allocation and so reduction in
updates is limited. Excluding this benchmark, the ratios of the other programs range
from 15-114.

5.3 Global-Pool Access Behavior

Table 4 shows the average number of global-pool accesses made by the benchmarks, and
the average number of cells referenced (in thousands) by the benchmarks per global-
pool access. These statistics are shown with varying LDU size. The data confirms that,
except for Pascal and MasterMind, the smaller LDU, the more chances to distribute
unscanned regions, as we hypothesized. Grossly, the amount of distribution overhead
is at least two orders of magnitude below the useful GC work, and in most cases, three
orders of magnitude (this observation is made more accurate below).

Table 5 shows the difference in the average number of global-pool accesses made

20

Size of LDU | Size of LDU
Benchmark 32w| 64w|128w|256w || Benchmark 32w| 64w|128w| 256w
BestPath max| 85 7.0/ 2.2| 14.0||Pentomino |max| 8.3| 13.0] 5.3 3.0
min [—2.7| —4.8| —-3.2| —6.5 min | -0.3|-4.0| -2.0| -2.5
Boyer max| 0.5(-1.3] 1.5| 1.3[Puzzle max| 1.7 0.9 1.1 0.8
min | —4.3| 1.3| -1.5| -0.5 min [—-1.9(-2.6] —0.9] —0.2
Cube max|{—2.2|-1.4| -1.3| 0.8|[SemiGroup |[max| 1.8| 4.8| 11.3] -3.4
min{—1.7|-0.8| —-1.6] 0.0 min | —4.5(-5.8| —0.2 3.4
Life max| 1.0 3.5] 25| 13|TP max| 1.7 1.5 1.6 1.2
min| 0.8] 3.5(-3.0]-0.5 min |-1.5(-0.5] =0.5] —-0.1
MasterMind (max| 1.0 0.9 1.0 1.0f Turtles max|-9.0(7.0 1.0(-17.0
min| 0.1| 0.0 0.0|-0.1 min|-7.0(1.0/ 7.0] —-1.0
maxFlow max| 4.3] 2.0 4.0 3.5| Waltz max| 1.5 1.0 1.2 0.2
min |—4.3] 1.5]| -2.5| —-1.5 min | -1.2(-1.01 —0.2 0.0
Pascal max| 0.00 03| 03| 0.3| Zebra max| 46.1| 44.9| 43.2{ 47.8
min [-0.2{-0.2| =0.3| =0.1 min | -8.7|-9.4| —5.7 —6.1

Table 5: Difference in the Average Number of Global-Pool Accesses Between the Max-
Workload PE and Min-Workload PE (among 8 PEs, HEU=256 words)

by PEs with the maximum and minimum workloads. For example in Zebra, with LDU
= 32, the maximum-workload PE pushed 142 chunks into the pool, and popped 96
chunks, on average (differential is 142—96 = 46). The minimum-workload PE pushed
293 chunks and popped 302 chunks, on average (differential is 293—302 = —9). The
general trends in Table 5 show that the global pool functioned effectively to move work
from heavily loaded PEs to lightly loaded PEs, i.e., to balance the workload.

The global pool plays two roles. One is for chunk “registration” to avoid losing
unscanned regions, and the other is to enable load distribution among PEs. These
two roles can be separated by the introduction of a local pool for registration, but not
distribution (e.g., the JAM Parlog scheduler {5]). The advantage of a local pool is
that it retains spatial locality. A disadvantage illustrated in our measurements is that
maximum-workload PEs also get unscanned regions from the global pool. If local pools
were available, the max-workload PE could conceivably fetch all work locally. However,
it is difficult to optimally determine when to contribute to the local pool and when to
contribute to the global pool. This is an area for further research.

To estimate the price of load balancing, consider Zebra, the benchmark that accessed
the global pool most frequently. The average workload size, per PE, is 20,900 cells
referenced (from Table 2). The average number of global-pool accesses, per PE, ranges
from 2128/8 = 266 (LDU=32) to 222/8 = 28 (LDU=256) (from Table 4). Thus on

21

GP Access Speedup
Benchmark | LDU = 32w/256w |LDU = 32w /256w
BestPath 9.2 1.12
Boyer 16.4 1.38
Cube 11.0 1.13
Life 9.9 1.12
MasterMind 3.9 1.01
MaxFlow 21.1 1.42
Pascal 1.6 0.96
Pentomino 17.9 1.03
Puzzle 10.6 1.01
SemiGroup 57.5 1.10
TP 9.7 1.07
Turtles 10.5 1.08
Waltz 54.3 2.67
Zebra 9.6 1.00

Table 6: Increases in Global-Pool Access Frequency and GC Speedup, for LDU=32
words vs. LDU=256 words (8 PEs, HEU=256 words)

average (for LDU=32), a PE pushes into (and pops from) the global pool once every
20,900/266 = 78 cells referenced. Since one cell reference requires two memory accesses
on average, and one global-pool access also requires two memory accesses, this rate is
acceptable overhead. Hence our previous estimation of at worst about two orders of
magnitude difference is justified.

Table 6 shows the speedup improvement afforded by decreasing LDU size, with re-
spect to the associated increase in global-pool access frequency. Although not entirely
correlated, the top three speedup improvements (Waltz, MaxFlow, Boyer) correspond to
high frequency increases. Benchmarks showing speedup improvements of 8-13% corre-
spond to moderate frequency increases.® The anomaly in these statistics is Pentomino,
which does not improve in speedup with successfully increasing pool-access frequency.
This might be due merely to the smaller workloads.

5.4 Active Data Characteristics

The active data characteristics of the VPIM architecture offer insights into why the
parallel garbage collection algorithm performs as it does. Table 7 shows the frequency
of data type for each active cell during the execution of the benchmarks. The object

®With the exception of SemiGroup, which has such high (absolule) speedup even for LDU=256,
that improvement is limited.

22

Object Size Object Type (%)
Benchmarkl| Avg| 02| VRI! [L872| vTT3| GLT4[MD5 | MSTe
BestPath 4.13 569 ! 11.3(6.4} 15.9] 44.6| 14.3 7.5
Boyer 4,26] 4,056 1.8/ 0.1 69.0{ 12.6] 164 0.1
Cube 2.19 34 1.0] 86.7 14} 94 1.5 0.0
Life 2.94 87| 14.5] 32.9 0.3| 50.1 2.1 0.1
MasterMind || 6.50(3,488 1.3] 21.5] 6.2| 16.8] 523 1.9
MaxFlow 2.68] 2,271 1.2] 24.1] 17.9| 10.6] 13.8] 324
Pascal 2.86) 1,326 0.8| 65.3 08| 7.6 238 1.7
Pentomino 5.78) 4,639 3.3| 12.0f 17.3| 22.2(33.4| 11.8
Puzzle 5.60(16,786 0.9| 23.2] 14.6| 8.9 52.0 04
SemiGroup 2.10 57 0.7 91.3 3.1 4.0 0.9 0.0
TP 6.60f 56,583 0.8] 22.3| 15.7| 6.9 53.9 0.4
Turtles 3.54 172 5.6 32.9 3.2| 56.2 2.0 0.1
Waltz 2.56 366 1.1] 72.6 1.5] 11.6) 12.7 0.5
Zebra 5.64 582 0.1| 69| 883 0.7 3.9 0.1

11 VaRiable 1 word, represents unbound variable
12 LiSt 2 words, represents list

13 VecTor 1-N words, represents array

14 GoaL 16 or 32 words, holds goal environment with arguments
15 MoDule 1-N words {usually big), program code module

16 MiSc 1-N words, other control, merger records

Table 7: Active Cells Distribution by Type

size given here is true size, as opposed to allocated size (see Footnote 4). In general,
benchmarks achieving high-performance GC have structures with high average size and
low variance. For example, types GL and VT are large and therefore good for the load
distribution because they contain multiple pointers. However, type MD significantly
affects the variance because the size is outstandingly large compared to other structures.
Since copying of one structure is always done by a single PE, too-large structures tend
to adversely affect load distribution.

To illustrate these observations, we classify the benchmarks into four groups. The
boundaries of these groups are delimited at 3.0 (average) and 1000 (variance), as shown
in Figure 8. For each program, the maximum and minimum speedups are listed. In
general, GC speedup is influenced more by the variance in object size than by the
average object size.

23

object low high

size variance variance
Cube (7.7-6.8) | Pascal (3.5-2.7)
low Life (7.2-6.3) | MaxFlow (4.1-2.9)

average | SemiGroup (7.8-7.0)
Waltz (4.4-1.6) (worst group)

BestPath (7.2-6.4)] Boyer (5.8-4.1)
high Turtles (7.8=7.2) | MasterMind (2.6-2.5)
average| Zebra (6.4-6.0)| Pentomino {4.3-3.3)

Puzzle (2.8-2.6)
(best group) TP (2.5-2.3)

Table 8: GC Performance Groups, Categorized by Object Size (eight PEs, HEU=256
words, LDU=32 words). (max-min) speedup given for each benchmark.

5.5 Characteristics with Varying HEU

In this section we examine the relationship between the GC algorithm characteristics
and the size of the Heap Extension Unit, HEU. Table 9 shows the average speedup
(as defined in Section 5.1) with respect to varying HEU and LDU, for a subset of the
benchmarks.

We find that speedup is affected not by the size of HEU, but by the size of LDU. If
the LDU optimization were not supported, we would get the rightmost speedups in the
table (emphasized). Except for Zebra, this emphasized value decreases with increasing
HEU. These results imply that the LDU optimization works effectively.

Table 10 shows the average number of updates of Bgispa per GC, with varying
HEU. At the bottom of the table is the number of updates needed for initial chunk
allocation. In general, increasing HEU reduces the frequency of Byopar access. Pascal
displays the opposite characteristics because of its small workloads (i.e., most updates
are done during initialization). These results indicate that the size of HEU should be
set proportional to the average workload. Large applications will likely require tuning
HEU and LDU, using the measurements presented here for smaller benchmarks as a
guideline.

6 Conclusions and Future Work

This article introduced and analyzed the performance characteristics of a parallel copy-
ing garbage collector on a shared-memory multiprocessor. The system we examined
is a parallel implementation of KL1, a committed-choice logic programming language.
The host multiprocessor was a Sequent Symmetry, with our GC experiments limited

24

Size Speedup
of Size of LDU
Benchmark | HEU| 32w { 64w | 128w | 256w | 512w
128w | 5.93] 5.73| 4.80 —_ —
Boyer 256w | 5.67| 5.83| 4.38] 4.12 —
512w | 5.82| 5.81| 5.88] 4.88] 3.90
128w | 3.12| 2.70(4.23 — —
MaxFlow 256w | 4.06| 3.84| 3.70| 2.86 —
512w | 4.47| 2.42| 4.11| 250| 2.18
128w | 3.31(2.78(3.19 — —
Pascal 256w | 2.67 291| 3.45| 2.77 —
512w | 3.02| 2.93| 2.82(263| 2.68
128w | T7.18| 7.76| 7.46 — —
SemiGroup | 256w | T7.75| 7.28(7.49(7.02 am
512w | 7.77| 7.61| 7.53| 6.31| 6.88
128w | 6.07| 6.66| 6.65 — —_
Zebra 256w | 6.27| 6.04| 6.421 6.28 —
512w 6.44] 6.18 6.44 6.49| 6.49

Table 9: Average Speedup Varying HEU (eight PEs)

Number of Updates of Bgpai

Size of HEU

Benchmark 128w 256w 512w

Boyer 293 146 121
MaxFlow 262 233 143
Pascal 69 70 73
SemiGroup 2140 1049 600
Zebra 713 428 244
(for initial allocation) (56) (64) (72)

25

Table 10: Average Number of Updates of Byopai Varying HEU (LDU=32 words)

to eight of the available processors.

The advantage of the proposed GC algorithm is that all memory accesses, except
for marking the old heap and accessing the global pool, are performed without mutual
exclusion. This avoids the necessity for costly locking when copying cells. In addition,
a load-balancing mechanism is described that is shown to be quite effective in spreading
the work among a limited number of PEs. Speedups ranging from 2.5 (MasterMind)
to 7.8 (Cube) on eight PEs were achieved by the GC algorithm for the benchmarks
studied. Accounting for limitations in ideal speedup, the parallel GC efficiency of these
benchmarks ranged from 51% (MaxFlow) to 97% (Cube). The overheads of this load
distribution method were shown to be low: Zebra, the program with the most load-
distribution traffic, accessed the global pool on average once every 78 cells referenced,
an acceptable overhead.

Future areas of research include examining the utility of local pools, and devising
overall systems that can avoid copying program modules. One potential solution is
to separate program modules onto their own heap, thereby reducing interference with
other data types. A more general solution is to apply our algorithm to a generation-
type garbage collector (e.g., [10, 13}). Generation-type GC is based on the lifetimes of
data, and since program modules have long lives, copying is avoided.

Acknowledgements

A. Imai’s research was kindly supported by ICOT Director, Dr. Kazuhiro Fuchi, and
first research laboratory chief, Dr. Kazuo Taki. Thanks go to Dr. Atsuhiro Goto
of NTT, Mr. Katsuto Nakajima of Mitsubishi Electric Corp., Dr. Keiji Hirata of
ICOT, and the VPIM staffs of ICOT and cooperative companies. We also thank Mark
Korsloot of the Delft University of Technology, and Dr. Ian Foster of Argonne National
Laboratories for help with the benchmarks.

References

[1] A. W. Appel, J. R. Ellis, and K. Li. Real-Time Concurrent Collection on Stock
Multiprocessors. In SIGPLAN Conference on Programming Language Design and
Implementation, pages 11-20, Atlanta, June 1988. ACM Press.

[2] H. G. Baker. List Processing in Real Time on a Serial Computer. Communications
of the ACM, 21(4):280-294, 1978.

[3] T. Chikayama and Y. Kimura. Multiple Reference Management in Flat GHC.
In International Conference on Logic Programming, pages 276-293. University of

26

[4]

[5]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

Melbourne, MIT Press, May 1987.

J. A. Crammond. A Garbage Collection Algorithm for Shared Memory Parallel
Processors. International Journal of Parallel Programming, 17(6):497-522, 1988.

J. A. Crammond. Scheduling and Variable Assignment in the Parallel Parlog
Implementation. In North American Conference on Logic Programming, pages
642-657. Austin, MIT Press, October 1990.

A. Goto et al. Overview of the Parallel Inference Machine Architecture (PIM). In
International Conference on Fifth Generation Computer Systems, pages 208-229,
Tokyo, November 1988. ICOT.

R. H. Halstead Jr. Maultilisp: A Language for Concurrent Symbolic Computa-
tion. ACM Transactions on Programming Languages and Systems, 7(4):501-538,
October 1985.

D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J. Hennessy. The
Directory-Based Cache Coherence Protocol for the DASH Multiprocessor. In In-
ternational Symposium on Computer Architecture, pages 148-159. Seattle, IEEE
Computer Society Press, May 1990.

A. Mulkers, W. Winsborough, and M. Bruynooghe. Analysis of Shared Data Struc-
tures for Compile-Time Garbage Collection in Logic Programs. In International

Conference on Logic Programming, pages 747-762. Jerusalem, MIT Press, June
1990.

K. Nakajima. Piling GC: Efficient Garbage Collection for AI Languages. In IFIP
Working Conference on Parallel Processing, pages 201-204. Pisa, North Holland,
May 1988.

K. Nishida, Y. Kimura, A. Matsumoto, and A. Goto. Evaluation of MRB Garbage
Collection on Parallel Logic Programming Architectures. In International Confer-
ence on Logic Programming, pages 83-95. Jerusalem, MIT Press, June 1990.

A. Osterhaug, editor. Guide to Parallel Programming on Sequent Computer Sys-
tems. Prentice Hall, Englewood Cliffs, NJ, 2nd edition, 1989.

T. Ozawa, A. Hosoi, and A. Hattori. Generation Type Garbage Collection for
Parallel Logic Languages. In North American Conference on Logic Programming,
pages 291-305. Austin, MIT Press, October 1990.

27

[14] V. A. Saraswat, K. Kahn, and J. Levy. Janus: A Step Towards Distributed
Constraint Programming. In North American Conference on Logic Programming,
pages 431-446. Austin, MIT Press, October 1990.

f15] S. Takagi. A Collection of KL1 Programs — Part 1. Technical Memo TM-311,
ICOT, 1-4-28 Mita, Minato-ku Tokyo 108, Japan, May 1987.

(16] E. Tick. Parallel Logic Programming. MIT Press, Cambridge MA., 1991.

[17] K. Ueda. Guarded Horn Clauses. In E. Y. Shapiro, editor, Concurrent Prolog:
Collected Papers, volume 1, pages 140-156. MIT Press, Cambridge MA., 1987.

{18] K. Ueda and T. Chikayama. Design of the Kernal Language for the Parallel
Inference Machine. The Computer Journal, 33(6):494-500, December 1990.

{19] K. Ueda and M. Morita. A New Implementation Technique for Flat GHC. In [n-
ternational Conference on Logic Programming, pages 3-17. Jerusalem, MIT Press,
June 1990.

28

