AUTOMATED NEGOTIATED DESIGN
INTEGRATION: FORMAL REPRESENTATIONS
AND ALGORITHMS FOR
COLLABORATIVE DESIGN

William N. Robinson

CIS-TR-93-10
April 1993

Department of Computer and Information Science
University of Oregon

AUTOMATING NEGOTIATED DESIGN INTEGRATION:
FORMAL REPRESENTATIONS AND ALGORITHMS
FOR COLLABORATIVE DESIGN

WILLIAM N. ROBINSON'

ABSTRACT

This dissertation presents a methodology and automated algorithms for collaborative design. The
methodology calls for individuals to independently create designs achieving their own goals, and then
collectively derive a single unified design using automated negotiation techniques. From a sofiware engi-
neering perspective, the methodology provides parallelism, simplicity, rationale, and reuse. From a nego-
tiation perspective, the methodology provides multiple agent preference maximization and novel resolu-
tion synthesis. From an artificial intelligence perspective, the algorithms provide automation for the com-
plex processes of conflict detection, resolution synthesis, and resolution selection. This dissertation
describes how the selfish interests of individuals or subgroups can productively aid the derivation of
robust collaborative designs through the automated negotiation of their conflicts.

This dissertation describes formal representations for modeling individual perspectives, design con-
flicts, and subtasks involved in negotiation. Specifically described are representations for: (1) goals and
preferences over domain operators, objects, and relations, (2) categories of design and goal conflicts, and
(3) categories of conflict resolutions. Automated processes can manipulate these representations to aid
group negotiation,

This dissertation describes formal algorithms for deiecting conflicts and synthesizing resolutions.
Specifically described are algorithms for: (1) distinguishing between simple design differences and
design interference, (2) mapping between goals and their supporting design components, (3) detecting
goal conflicts, (4) synthesizing analytic and heuristic resolutions, and (5) reintegrating resolved goals
into a design. Analytic resolution consists of compromise generation using a multiple criteria linear pro-
gramming method. Heuristic resolution consists of search through domain hierarchies to synthesize dis-
solutions and compensations. These methods have been implemented and applied.

This dissertation describes the implementation of our negotiation algorithms and their application
1o library design problems. The design of library systems is a complex, multiple agent, negotiation enter-
prise. We have represented poriions of documented library designs in our implemented collaborative
design tool, Oz, Oz has been used 1o detect conflicts and derive negotiated resolutions similar to those
published by expert librarians. The implementation and its application to the library domain support the
central tenet of this dissertation: processes of negotiated design can be automated through the representa-
tion of a generic domain model and specific representations of individual perspectives.

YThis report is an abbreviated version of the author’s dissertation presented to the Department of Computer
and Information Science and the Graduate School of the University of Oregon in partial fulfiliment of the require-
ments for the degree of Doctor of Philosophy, March 1993, © 1993 William N. Robinson.

i CIS-TR-93-10

ACKNOWLEDGMENTS

This dissertation would not have been possible without the help of my adviser (Stephen Fickas),
committece members (Bob Clemen, Art Farley, Gary Meyer), KATE research group members (John
Anderson, Anne Dardenne, Brian Durney, Rob Helm), and outside researchers (Stephen Easterbrook,
Martin Feather, Anthony Finkelstein, Lewis Johnson). Specifically, I thank Stephen Fickas for his gener-
ous support and guidance; Bob Clemen for his patience in explaining decision theory; Stephen Easter-
brook and Anthony Finkelstein for their insightful discussions comparing our research; and Martin
Feather for his originating research.

CIS-TR-93-10 i

TABLE OF CONTENTS
Chapter Page
I. INTRODUCTION ...cccoiceiirsecrsrsninessassssessesissssesssssssrsossssserasssssssrosssst sesssestnsserasssesssssssnsesssns 1
1. Design NEgOLAtIONScovuiiiniiiiiosiiisiiitissiserasrstseosteseresessaesnesssossssessssssssssssessasses y
2. RESCATCE COMNIEKLovcveerrerenerrncreesneriossssnsnersesarasseseseasssssesssassssrsnsssesssessesssssassassanossasane 4
3. Introduction t0 Automated MPDoeieeeeiirreerieetreseentesseeeeesseseeveasssarnssnsransonnrs 7
4, DisSertation SUIMIMATYccoerecrmsrrersreessssssressssssnssrsssesserssssnsersssssrssassesstessisssnssessasrasssasrs 17
5. Dissertation OULIINGccciccerennincnriecsenssissressarseertssssssessesaseestrsnsentesasessssssssssssassases 17
II. MULTIPLE PERSPECTIVE DESIGNoociiienieccreneereeenscresseesessreesesesssssssssssssansnes 18
1. MEINOGOLOZY ..oceeeeieeeeceeeee et e e et se s sasbe s e stsse e s e s saeseessasssserresnessessesasssossensarnes 19
2. EVAIUALONoeiceeeeerctinseteninaevenaersssnsstnasssaeassrassssessses s sesensssssesnsnsesnsrasssesseressnsssesseres 31
III. MODELING INDIVIDUAL PERSPECTIVESo e cresssesnreessesasrsersossonsores 36
1. MOdE]l CONSLMUCHIONc.oeeeeeeceieeeeeeercee e e sastee e aetessessesneeransessessassessensossonsonnsssarnon 38
2. SUMMNIATY ...ecivveeeraicreereesreseessassiessarsessesessssassessssssersasssarsssssestassassesssassasreassesnsesassesesanssns 51
IV. AUTOMATED DESIGNocoiiiiiieeiieeicaestsisesensestsseesessessessessesasssssssssessssssssastsassmsssessnns 52
Lo A PEISPECLIVE ..eooiiiiiceeiiniintitssie st st e s sn e e seses e ssss st ereesnasaessassnsssnnastsassassnssanes 52
2. Initial State DESCTIPLON ...cciivieriveitiviniierenersiriernsiensessessrsesrsesassesssassasssssssssssassesssonses 52
3. Partial Commitment PIANDINGooiiereeeeecie et e e eree e e stccet e sesae e sesrnsnsesaneranes 54
4. INCOTPOTALION LIMKSocvveerireeerrecericearecserceernsestsanseesesessnssesssssessessorsasosssessssresesssnassanes 55
5. A NOtAtoNal ASIAC ..ccvvvirverirseriiiissiiiisiissisnenissionesionssssissosssnassssassssssssrssssssostssessses 57
6. SUMMINATY ...ooveeeeiieieiiiriennrereeerieserseesesracssssaersnsssessesssassassesesssesssassessssssmasssssassessarssnsnsnssans 61
V. INTEGRATING DESIGNSootiiirirrrnerreerisesrsssessesssessassssssssesssessssssssssssnssssosssnsssasns 62
1. CONMCE DEIECHON ...ooeecvicee e rirrceccrerre e s reesss e sesee s e e s tesee s seesssnsasesssrnsssnsasnesemssrnnsanns 62

2. Interference DetemMINALIONviierrenermneermmsmrsssesrseesseresssrrmssssssssesssssossssssssssssssssssssses 67

iii

VI

VIL

CIS-TR-93-10

3. ReSOIUtion GENETAtIONcocoeeiiiernineiisissssnssssseissssissssssssssssssesessss sassssasssnessasassasnsons
4, Resolution IMPICMENLALION ..o snmssisssssstesssssssssessnes
5. EVAIUALON 1iiviivenicinsrisasssssimssesissssmssenssrssssnesssaisssssnssscssiessstessesssss sasssssssissessessssensosssssnses
6. SUMIMETY ... cereeeeeaetesestessenessessessesessesaessastessasessessessassesssontssssoassesonssensesnansasnsssesneens

A DETAILED EXAMPLEcoviiimitieiinsinsicsniresisssnssnesss s msssssneserssssssseseesssnarons

1. The Library Problemccocenevernee everanmnenn e,
2. THE DEHVALIONS .ooiireeireireeesisscssseesssossesssssessacsonsasssseassrossssssssasessasessssascssasrasas sacases saneses

3. Summary cesansennresnsenan RN

CONCLUSIONScciiiiimminsimsiinsimssissssssssorsssss s s

1. CODNITIDULIONS ovvveeeereeeririerrrssersteersissessrenssesessrosiasesrssssasssbrssssssnsorsssesssssrsssransssss sosesssrnnssns
2. Limitati

w LIMILALONIS rveeeiiiieiiiieimiiiriireersieesreieessesessnesesesssssasssnsans snsssssssssnsssesasssenasessnnsasnssnseannsnnsses
3. FUTUNE RESBATCI .ccovieviviiriiiiiiissiiirrisnissesmsssssssrorissesssrreossrasessssssssserssnnssansesssssssssnssnssronsans
4. Conclusi

. CONCIUSION ..ouviieiiieeiiiiriiriieeteeseissssnessesessssssnssssssesssssrrssseesansssrssssnssssssasatssssasassrsssssnassaes

APPENDIX

A. THE LIBRARY MODELcoviiiiiniieniire s s sesses s sesssassssssssessssnns

B.

A DETAILED MCSM EXAMPLEciimmmiiiniismiesisssessini s

68
78
80
90

91

91
100
121

123

123
124
125
126

127

133

138

Figure

XN h W=

[T S T S T S R N B N L I G R B T N T T T S S A Sy
PSR NS RRON TSR NG RREBRES

CIS-TR-93-10 iv

LIST OF FIGURES

Page
Implicit Stakeholder GOalS, ...t sesrsssanas 9
The MPD Integration ParadifIml.cccececeeenrencercnensncorisssissmnensssssssssssssesssssssssossossonss 10
Providing Automated Support: Dz ...t sseseseanne 12
Some LIbrary OPeralors.cccocvvremreeriieesscressssessesesssnsessssssssnssesssssassessessessessesssessssarsns 13
N L O T] O (]2 S o e e C e e Lar s 14
IMIPD PIOCESSES. coveseiiicesssssissinstisrissississssssssasssssstsssestssssass snassssesesssnssesstiansssssssssssasersssans 20
Operators whiCh Produce ON_LOAN.vcvccenuvnncennni i ssnssssssssssesssassasssassane 23
Initial Issue WEightiNZ.ccciiinimmiiiiiiin s st sssisssssssssassssssssons 27
An Available SpecialiZation. ... e e 28
Issuec Weighting After the Specialization. ... 29
Hypothetical and Available Generalization. ... 30
Issue Weighting after COMPENSALON.ccovieiinneriii i s 30
Methodology ASSUMPLONS. ..ovicieiiniienci et sssesn s sn e saessssest sassasasssnane 31
Novelty Induction from Selfish DCSIEN. .coovrrevireciiiiiiiriinnimsneis s issssisssssisssosssssosss 35
Oz Screen Depiction of Group DESISI. ..c.cceeicecerce et st ssssssssssssrssssaes 37
Perspective AcqQUiSition in OQZ, ..vvviveenmsiiienoisissiiesmimioiemssoses s ssosssns 38
A Library BORROW DPECIAIOL.cccocieceriiniiscsnisnesissinsssssssisnesssssssssssssassesssssesssssesssssssassssssans 38
Operators which Produce ON_LOAN.ccoveiriieniicceererninen et seessesness s seesrenssoesesanas 40
The Operator Generalization AIZOTIRML. ..o s sseiisee 41
The Description of Some Library Object Hierarchies.coeoeiinicoecninecnecencncenens 41
The Description of a Library Relation Hierarchy,ccoveomeeoiiecncnsr e cvessessinnee 42
An Oz Depiction of Library Relation Hierarchies. ... 43
Using IDEA for Preference Weight EXplOralion.oecvceeevcrnvecennerrnerssseccessesonnesess 48
An Oz Depiction OF IDEA.cciicimmnsenmimssmmsmimsisssossosssssisssssisssssasssssasssssssorsssses 49
The Library Design Initial Plan State.cccovieciiieiinnicininnnc s sssssessssnnes 53
Partial Commitment Planning in Oz’s OPIE.cooioenrcrereernereesnseseessennsnnsines 53
Insertion of the First OPCralorn.ccuseommmimsrmiisie s 54
Some LIDrary OPCTALOTS.ccccevvveeererrseesesracsnmeesrssssemsesossasssesssscsssessesseesassssssasseoresssanssores 55
The Completed PIAT. ...vvviiiieiimsisiimenmmimmsmmmsmsm it sess s s essssssassssnss 55
Hierarchical Correspondence AIZOMRM.ocouiverineeer e neconrencr st eerenssseseonsensonnsnen 65

Goal Conflict Detection AIZOTRIM. ..icviiinienienciminiieessseoseiomssnsssosssees 65

32.
33.
34,
35.
36.
37.
38.
39,
40.
41,
42,
43.

45.
46.
47.
48.
49,
50.
Sl
S2.
33.
54.
35.
56.
57.
58.
39.
60.
61.
62.
63.

65.
66.
67.
68.
69.
70.

CIS-TR-93-10

Table 0f Goal Conflict TYPES. ..cceerviinisntiinssisstier s s ssess s e ana s sassessns
Table Negotiated COMPONENLS.ocvvvricimseisisiiiii i s st ssssssssasanss
Interference Determination AIZOTIIM. ...cvvcecceieeeicmnrneoniirsesesrerecssseonsesarenrasssssaressessroneas
An Illustrate of a Conflict/Alternative RecOrd.ooooeinnnieneiriniirecreercrrccnecssesssnes
Oz Initial Screen Depiction the Goal CONMlIiCES.covveeeveerrernrecrereeceersrsenrocaccssorasserens
Interactive Resolution Display IHUStFAtON.c.vmviiniciic s s nsane s
Interactive Resolution Search AIZORAM.c.covviivniniinr e
Dynamics of the Displace Ideal. ... s ss
The Nondominated Search Space of Loan_pERIOD with Risk and Cost.ceenviiiienen
The Specialization/Generalization AIZOTithIm. ..o
Oz Screen Depiction the of Generalizations (2).cceverreerreevermeninveresreersessmesesessosssases
PANDORA's Intra-Agent COMMCLScovivveirrinirmrnnreriessennssrerseresssessesssssssssesssassnsressesssns
PANDORA's Intra- AZent RESOIMLONS ..ocvcveiviiininriniorsennesnarisnsasissrssissrsssssessssssssssssssans
CHEF'S CONMICLS 1u1eovoreriecerrrnensiconsscotsnenmsessmsinssossessmosesseseneessasssorsassonssssassasssensasonsnssssassns
CHEF'S ReSOIULONScovvivrerirmninsitrsesnisse s sassessss s st sssssnssseenssseessssnesanssssesessasses
PURSUADER's Company Goal Beliefs ...t
PURSUADER's Union Goal BEliefS.ccciviiiniimnimimnnmismimmsmmirssnmmosnssssmas
Student Resource UsSage Graph.ccovveicccnienesiicirsrerne s inessreestessssssssssssssssnssssse sesns
Resource Renewal COost Graph,ccciiiiiniiinisnsmmmestsme e sesissssssssisens
Table of Overdue Notice Evaluation. ... sesesseresnssssnessnseneans
Overdue NOtice COSEGraph. ... reccrerree s rmre et e sorseeer e st enecenanesensnsessasasnes
Overdue Nolices Effectiveness Graph. ... erene s seaarns
The Librarian’s PErSPECLVE. ..cceeririccemrecetrrniceceresesnstsrmrersenesorsesmersaesessnane s srsss sasssesones
The Patron’s PEISPECUVE. ..occrcvcrrreinrienicssrnneessssssnecresssssssssassesressssnssssesnssseassassnsssnsraseas
Oz Screen Depiction of the Librarian’s Goals and Design.ccccoceeneveernmcecracrsseenns
Oz Screen Depiction the Library Development. ...
A Library BORROW OPCIAIDL.cccccveeverireereneecrensersessansvessssosersasssessassssstanssssrensssossssssostasasese
A Library GIVE_NOTICE OPEIAIOL ..occerviiicciiiniieisennc s ssesass s ssessss st enssnsesnsassnsssnsssoses
A Library ACCESS OPCIAIOL, ..iieririeersrneroresssriorssasssssssssssssnisssssrsnssrssssesssstarsssasssssnssssssssss
Oz Initial Screen Depiction of the Goal Conflicts.ccceeevivvenrrciesee vt e s seeeeesaeene
Oz Screen Depiction of the Compromised Loan Duration.cccveeervvvenrenencscstnesnans
Table of Loan Period COMPrOmMISES. ...civciiveeininecieserssrssssesseessnesisnsssnesssssssssesasssrasassns
Oz Screen Depiction the Compromised NOtice NUMDEL. .o.coiviiiiniiniiismiessos
Table of Notice Number COMPTOMISES.ccocccveeeerievearreesesresersessisesessrsessssssssssssssssoseass
Oz Screen Depiction the of SpecialiZations.ccoocevveiriiemeinricenennirrereerrner svesesesens
Table of On Loan Specializations. ... csssesnessesnens
Oz Screen Depiction the Expanded Resolution Choice.ooviivnivnininincnnissnissenn
Oz Screen Depiction the of Generalizations (I). ..
Table of On Loan Generalizations.coecivvcericnicn it ssssssssossscnens

66
66
67
68
70
72
73
74
77
78
79
83
83
84
84
85
90
92
93
94
95
95
96
98
99
102
103
103
104
105
107
108
109
110
113
114
115
116
117

CIS-TR-93-10 vi

71. Oz Screen Depiction the Expanded Integrated Model, ..o 119

1 CIS-TR-93-10

CHAPTER 1

INTRODUCTION

This dissertation describes the automation of negotiation processes within the context of group
design. Specifically, it describes: (1) a collaborative design methodology predicated on negotiation, and
(2) supportive algorithms which automate negotiation processes. This dissertation argues for the effec-
tiveness of the methodology and its automated support.

This research lies within the field of group design since it describes how to structure the process of
articulating and formalizing group goals. It lies within the field of artificial intelligence (AI) since it
describes how to automate an aspect of human behavior. Finally, it also lies within the field of decision
science since it describes, formalizes, and supports decision procedures.

This dissertation provides a key link in the automated assistance of group design interaction. Its
most basic assumption is that group members engage in negotiation. Using this, I demonstrate that one
can create a mechanism which automates portions of negotiation. This claim itself has been shown by
others using different mechanisms (e.g., analytic procedures). However, this research departs from oth-
ers in its combination of negotiation mechanisms, Rather than exclusively use numeric compromising or
heuristic modification, it combines compromise, specialization, and generalization via an interactive res-
olution search procedure. I show that this approach can: (1) automate portions of negotiation, and (2)
assist groups in deriving adequate resolutions.

While negotiation automation is the heart of this dissertation, its impact upon group design is of
equal concem. The negotiation algorithms were not designed in a vacuum. Rather, they were developed
to support group design. I argue that the existence of an cffective automated negotiation system for
design will enable a new paradigm for group design. Heretofore, independent design followed by inte-
gration has been intractable, not only because of the bookkeeping involved, but also because of the com-
plexity of the task and the limited number of experts qualified 1o derive resolutions. I present a new
design methodology predicated on the existence of effective negotiation support and use decision science
arguments to show why such a methodology can better the designs of a more centralized design method-
ology.

In this dissenation I consider what qualitative difference may be obtained from a design methodol-
ogy predicated on negotiation. Since this is the early stages of a new paradigm, experimental evidence of
its use cannot presented. Instead, I present my group design methodology, called Multiple Perspective
Design, and argue for its effectiveness using software engineering and decision science arguments. After
establishing the usefulness of a negotiation based methodology, algorithms to support negotiation within
a group design context are presented. 1 argue that given a formal set of goals and preferences, a planning
system can be used to produce satisfactory designs, and more importantly, its derivation can aid in the
negotiated integration of conflicting designs. Finally, I demonstrate the effectiveness of the negotiation
algorithms by applying them to portions of documented library design problemns and compare the results
against documented solutions. Unfortunately, documented designs often leave negotiations implicit;
hence, I have interpreted prior traces with regard to negotiated decisions. Additionally, 1 present the

CIS-TR-93-10 2

critiques of an expert to confirm the cffectiveness of the resolution mechanism.

The remainder of this chapter introduces conflict (§1.1) and resolution synthesis (§1.2) in the con-
text of design negotiations. Next, I argue that negotiation is an appropriate area of study for designers
(§2.1) since its use will provide significant contributes for design (§2.2). Then, such a contribution is
illustrated with a brief automated design negotiation (§3). Finally, this chapter closes with a summary
(8§4) and dissertation outline (§5).

1. Design Negotiations

Design conflict has both positive and negative effects. It can reduce the quality and timeliness of
designs. Conversely, it can increase: (1) problem comprehension, (2) solution altematives, (3) solution
creativity, and (4) solution acceptance[71]. One must manage conflict to reduce its negative impact
while maintaining it virtues. Automated negotiation supports this goal. To provide an intuitive under-
standing of how it can, a library design conflict is presented, followed by a description of my resolution
synthesis method.

1.1. Design Conflicts

Collaboration among multiple, independent agents is a pervasive human activity. In the context of
design, collaboration is used to derive a consensus about issues, goals, and decisions. Unfortunately, col-
laborative design raises difficulties; agents have multiple and conflicting goals; finding an acceptable (not
even optimal) compromise in what can be characterized as a large and complex space of altemnatives is
extremely problematic.

As an example, suppose that a group of designers attempt to design a new artifact, say a university
library. The “designers” might be broken into technical staff, users of the artifact, managers, accountants,
and even lawyers. Each person has his or her own perspective on what the final library should look like
and how it should function. Some people may be in direct conflict with each other, For instance, patrons
may like 24 hour service and extensive on-line search. In contrast, library administrators worry about
holding costs down. Other groups may seem (0 be in accordance — faculty and students both want
access to library resources — but a more detailed analysis may show them also to be in conflict; each has
different uses of resources, and hence different requirements. In essence, libraries, as other real world
artifacts, are ofien encumbered with complex design trade-offs and compromises among interested par-
ties. Tools that support collaborative design should explicitly represent and reason about conflict and
compromise. Perhaps just as important, modem design tools should record the history of compromise
and trade-off that leads to the production version of an artifact, and make this history available to main-
tainers of the antifact.

There have been various attempts to provide computer support for collaborative design. The major-
ity attempt to avoid conflict among participants. They do so by pre-processing the goals or requirements
of a problem to remove conflicts before design begins. In this way, any conilict wrned up later is
assumed to be an error either by one of the participants in carrying out his or her assigned (and non-
conflicting) tasks, or by the pre-processing siep in removing conflicts. Approaches that use this preven-
tive conflict-removal step are silent on a formal basis of the conlflici-removal process itself. However,
even if one could devise a formal method of delecting and removing conflicts in the goals/requirements
that represent the pre-design state of a problem, the preventive strategy can go awry in other ways: (1)
what appear 10 be inherently conflicting goals are not, i.e., the participanis are not aware of all the
designs possible and that a nonconflicting design can be constructed, (2) users change their goals or

3 CIS-TR-93-10

preferences during design, thereby reaching a design which may have been pruned under a preventive
strategy, or (3) individuals who construct their designs may raise or lower their commitments, thereby
becoming less or more agreeable to pre-design compromises among abstract goals.

In contrast, a small set of models eschew the preventive approach, and allow conflicts to occur as
they will. For instance, the gIBIS model of design allows conflicting positions to be stated by partici-
pants in a design team[15]. Arguments can be made for and against each. Eventually one is chosen. The
Persuader system captures conflicts between labor and management negotiation teams[82). While not
linked to design, it illustrates an aliernative to the preventive strategy, that of resolution generation,

From a decision science point of view, unresolved conflict can prevent the satisfaction of goals.
When poorly resolved, dissatisfaction and inferior achievement arise, perhaps even accompanied by
latent conflicts leading to newly manifest conflicts. Despite this antagonistic relation, conflict can
enhance group performance. The early (1930's) traditional view treated conflict as dysfunctional behay-
ior to be avoided. Later (1970°s), the behavioral view saw conflict as natural consequence of member
interactions. Now, the decision science community sees conflict as positive; researchers encourage the
identification and resolution of conflicts, bolstering the generative approach (cf., [71]). The benefits of
this approach are improved productivity, satisfaction and solution quality[5C].

This research is based on the generative approach — the belief that the key to providing effective
support for collaborative design lies not in ignoring or squelching conllict, but in recognizing it as a natu-
ral and even useful part of group activities. It promotes a style of group collaboration that is based on the
views of individual members. My approach is to allow each member to express his or her goals and pref-
erences uninhibited (uncompromised) by what others might want. The outcome is a set of individual
designs or decisions that reflect the selfish views of each member. The challenge, of course, is to inte-
grate selfish designs into a consistent whole.

1.2. Resolution Synthesis

As part of the integration process, one must identify conflicts, characterize conflicis, and synthesize
resolutions. The resolution synthesis method is the major contribution of this dissertation. It does not
simply present pre-enumerated alternatives. Insicad, it synthesizes an altemnative from pre-enumerated
components. The method is simple, general, and widely applicable.

In nutshell, decisions are represented as choices from sets of alternatives, or domains. Conflicts
result from differing choices, The alternatives also form possible resolutions. The representations allows
one to view a single choice from a variety of related domains, thereby enriching one’s view of resolu-
tions. A more concrete discussion will clarify.

1.2.1. Conflict
Any variation of choice is a conflict. For example, the following is an attribute value conflict:
Designer-1:
on_loan(faculty, resource, loan_period.duration=365)

Designer-2:
on_loan{faculty, resource, loan_period.duration=14)

Designer-1 desires to achieve the relation oN_vroan. It describes the state where faculty have a resource
on loan for a specified loan period duration. Designer-1 specifies that faculty should have a loan period

CIS-TR-93-10 4

of 365 days, while designer-2 specifies they should have a loan period of 14 days. (DURATION is an
attribute of the LoaN_PERIOD object.)

1.2.2. Conflict Characterization

After a conflict is identified, it is characterized. For example, the loan period duration conflict can
be characterized as different choices from the domain number_of_days. Altemative resolutions can
also be taken from the numbexr_of_days domain. However, one can also characterize the conflict as a
choice from the domain pair (agent,number_of_days), where one choice was (faculty,365).
Doing so allows us to consider a wider variety of resolutions, e.g., (student,14) and (faculty,365).
By recharacterizing a simple conflict over a domain like number_of_days to other domains and con-
joined domains, one can synthesize a wide varicty of resolutions. Using this as a basis, the algorithms of
chapter V derive negotiation methods of compromise, dissolution, and compensation.

1.2.3. Synthesis

The resolution synthesis process consists of searching through alternative conflict characterizations.
By carefully relating the characterized domains a priori, and with the aid of design preferences, one can
make resolution search simple and efficient. (In the case of design, the algorithms use functional abstrac-
tion to relate domains.) Additionally, the method is general as it only depends on one’s ability to
describe and relaie domains. This framework can be applied everywhere one makes choices and can
characterize items within domains (e.g., individual design, group design, cic.); however, it has only been
applied to resolution generation during design integration.

2. Research Context

As can be seen by the juxtaposition of the previous subsections, the social problem of negotiation
and the technical aspect of resolution generation appear widely separated. However, the two do come
together in the negotiated design context. Here, I argue that negotiation research should be part of design
and give example of benefits that follow naturally from negotiated design.

2.1. Negotiation is Appropriate

Perhaps the most common overarching criticism of this research concemns its appropriateness. In
software engineering circles, it is often implied, if not asked, “Is negotiation automation a relevant and
appropriate research topic?” The answer is affirmative, not only for the benefit of sofiware engineering,
but also for artificial intelligence and decision science.

To understand the obstacles of software development, one must consider its technical and social
context[48, 77]. For example, consider a field study of 17 large projects conducted by Curtis et. al. [17].
They found three major problems which affected the quality or productivity of software development:

(1) the thin spread of application domain knowledge,
(2) fluctuating and conflicting requirements, and
(3) communication and coordination breakdowns.

These problems are endemic to group software design. However, current tools do not address these prob-
lems, Perhaps this explains why they have relatively low impact on productivity or quality[6, 13,94].
Moreover, actual programming is a relatively nonproblematic part of the software life-cycle[58, 84, 85].

5 CIS-TR-93-10

“Writing code isn’t the problem, understanding the problem is the problem.”—p. 1271[17]. Clearly,
major improvements in software engineering will come from assisting group interactions during problem
understanding, goal formation, and confiict resolution. Negotiation methods are shown to help in just
these cases.

Software engineering is difficult because of the varied and interacting demands placed on software.
Software systems involve physical, social, and software sub-sysiems; these sub-systems and their inter-
actions are not well understood[29, 30]. Physical and social sub-systems are quite varied (e.g., weather
and people) and vary their needs dynamically. To maximize system effectiveness, software engineering
must model and reason about system interactions, design systems meecting varied and conflicting needs,
and facilitate the adaptation of sysicms.

The varied and interacting demands on software often arise from the varied goals it must fulfill.
Such goals, or system requirements, are often the result of negotiations between user groups. In fact,
many of the difficulties of requirements engineering can be traced to the goals of: (1) multiple stakehold-
ers and (2) multiple designers. Stakeholders are the source of system requirements; for example, patrons,
administrators, and librarians of a library. Designers are the agents which produce the system specifica-
tion. Designers must communicate, coordinate, and integrate their work. Furthermore, because they rep-
resent the varied needs of stakeholders, conflicts must be resolved. Clearly, software engineering will
benefit from an understanding, if not an automation, of negotiation.

Decision science can assist the negotiations of sofiware engineers and their clients. Decision sci-
ence does not advocate making decisions for individuals, rather it advocates assisting individuals in mak-
ing decisions according to their own values. It provides methods for enumerating: individual goals and
preferences, means of achieving goals, alternatives that result from applying means, and evaluations for
alternatives according to individual preferences. Hence, decision science aids an individual in choosing
actions which result in states which are most desired according to his preferences. This research also
aids groups which interact to satisfy their goals. Such group decision making can include negotiations
over the means by which their goals will be satisfied, as well as what the group goals should be.

This research uses decision science modeling techniques to model stakeholder goals and prefer-
ences. It uses decision science negotiation procedures to integrate the conflicting designs. One of these
procedures is analytic {i.e., compromise gencration) and can be shown to generate nondominated resolu-
tions (i.e., no worse than the best). Other negotiation procedures are derived from characteristics of
experts. Heuristics such as: “give things of value to stakeholders who don’t get what they expect during
negotiation” (i.e., compensation) and *“divide conflicling items into subclasses and renegotiate™ (i.e., dis-
solution) are encoded in algorithms using Al techniques. The methods rely on decision science for pre-
scriptive and descriptive accounts of negotiation methods and use Al techniques as a means (o opera-
tionalize them.

Software engineering must address how the varied desires of stakeholders can be understood and
met via managing software component interactions within a software development process. Such knowl-
edge, particularly conceming design integration, can be codified, represented, and effectively applied.
This research shows that decision science procedures can be an effective means of applying such knowl-
edge to group design.

CIS-TR-93-10 6

2.2, Contributions

Software engineering has promised “power tools” which will reduce the software crisis; these tools
automatically do mundane tasks, thereby, leaving the programmer free to consider complex tasks. Addi-
tionally, power languages have been promised to ease software construction; these languages have con-
structs which ease the composition of software from simpler, independently developed components.
While partially successful, the software crisis is still with us. I believe that some tasks, heretofore con-
sider too complex to automate, or tasks that simply shouldn't be automated, can and should be. Specifi-
cally, group design goals should be up for negotiation throughout the development process. Additionally,
automated tools can simplify the negotiation task making it a common part of software construction. In
fact, power will come from tools which assist common, yet complex, decisions like requirements negoti-
ations that go on throughout the sofiware lifecycle.

My research contributions are derived from an attempt to make power tools powerful. Heeding the
creed, knowledge is power, 1 believe knowledge of negotiation is powerful. The single most important
contribution of this research has been expanding the discourse on group design negotiation. More specif-
ically, however, the collaborative design methodology and integration automation algorithms have made
in-roads into sofiware automation and decision support. These contributions are listed below:

» Methodology: Design in the Large
The methodology is based on design in the large, as opposed to design in the small. It supports
independent distributed design. Design members can actually design components maximizing a
subset of goals independent of others. Inter-designer communication can be kept 10 a minimum,
thereby allowing fully parallel development.

« Methodology: Design via Composition
Design is viewed as composition rather than synthesis. Each designer constructs his design by
selecting from cataloged components. The catalog is arranged in an abstraction hierarchy, thereby
allowing for abstract design. Designers design down to the level of specificity required by their
needs and no lower. In this way, the designer is free from making arbiirary design decisions which
typically undermine conflict detection and resolution.

» Automation: Domain Model
Design decision making requires the identification of goals, identification of means (operators) to
achieve those goals, and application of means to identify various design altematives. The abstrac-
tion hierarchies provide a generic model for decision systems. Goals, means, and their relationships
are automatically abstracted and stored. Similarly, design altematives satisfying multiple goals can
be automatically derived using preferred means.

« Automation: Hybrid Negotiation Search
Negotiation is viewed as a interactive search process. An arbitrator is presented conflicting goals
and is assisted in searching through a complex space of alternatives defined by three generation
methods: compromise, compensation, and dissolution. By weighting goals from each perspective,
the arbitrator can direct search toward better resolutions.

The basis of the approach is to allow unconstrained independent design and then apply knowledge-based
techniques to recover from conilicts. Using abstract planning methods to model component interactions,
design level conflicts are traced up to conflicts between abstract means or even stakeholder goals. Once
characterized, conflicts are resolved by goal modification or replanning. The result is that every differ-
ence between designs is reconsidered during design integration. Conllicts are resolved to maximize

7 CIS-TR-93-10

modeled stakeholder preferences. Finally, records are maintained for possible reuse and renegotiation.

3. Introduction to Automated MPD

This section introduces the design methodology and its automation. It describes how individuals'
design goals and designs are explicitly modeled. It describes how the integration algorithm automates
negotiation to resolve conflicts. However, before presenting specific examples, the overall library domain
is presented.

3.1. The Library Domain

Throughout this dissertation, library examples will be presented to illustrate negotiation automa-
tion. For most readers, the library domain should be familiar; it has provided other researchers with sim-
ple examples[45, 89]. However, the domain does provide some interesting complexity.

Libraries come in many forms (e.g., public, private) and serve a variety of needs. Their charters are
typically broad and demanding; a university library may be responsible for[57]:

. providing a collection of information resources which meet most of the needs of the university
community;

. organizing, maintaining, and controlling collections; and
. providing bibliographic aids in identifying, locating, and using resources.

From such broad charters, more specific policy guidelines are developed {e.g., collection develop-
ment[55], circulation policies[4, 56], interlibrary loan policies[49]). Finally, from such policics, specific
library procedures are designed[65].

Deriving specific library policies and procedures is a process of negotiation, Librarians (desk, cir-
culation, collections), administrators, and patrons all have a stake in library operation. Fees, fines, loan
periods, check-out, and renewal policies all result from placating various stakeholders. Some examples
are:

» loan periods

From a patron’s perspective, loan periods should be as long as possible; this ensures their ability to
enjoy borrowed resources. On the other hand, a circulation librarian desires to ensure equal access
of resources to all patrons; hence, shorter loan periods provide higher tumover which enables
greater access 10 a large population of patrons. A variety of loan periods result (e.g., 7 days to
indefinite); they can vary according to patron type (e.g., child, student, administrator, librarian);
they can be extended (e.g., desk renewal, phone renewal); they can be terminated (e.g., recall,
revoked privileges).

- fines and fees
Patrons do not want fines. Librarians use fines only to encourage the prompt return of undamaged
materials. Administrators may use fines to raise revenues. Like loan periods, fines vary in magni-
tude according to patron and maierial type; fines may also be forgiven, Fees are similar to fines
except fees are levied to restrict access or raise revenues rather than to punish.

« information access
Patrons want information without restriction. Librarians wish to assist patron information retrieval.
However, the administration must protect the privacy of others. A library that allows a patron to
view her own borrowing record, but not that of others is a compromise; it protects privacy, but

CIS-TR-93-10 8

leaves the possibility for illicit access through misrcpresentation {e.g., stolen passwords).

Libraries try to satisfy the conflicting concerns of patrons, staff, and administrators; they employ many
mechanisms to deal with both errorful and irresponsible behavior; they involve complex responsibility
assignments among agenis. Libraries are complex systems which require sophisticated analysis to derive
adequate specifications.

Real libraries arc not simple. They involve more than just people, books, and a database.
They have policies according to who the borrower is, what kind of book it is, what time of
year it is, and, of course, exceptions to all of these policies[89).

In contrast, others view library specification as refinement of a generic database/tracking
schema[68, 69). This paradigm is based on: (1) capture and storage of library forms and (2) retrieval and
modification of such forms for specification. This paradigm appears to be productive for routine situa-
tions; for example, primitive programming tasks such as sorting and searching{70). However, this
paradigm must be extended for more exploratory tasks such as group design, especially for informal
domains such a library science. Even where significant forms can be captured, the bulk of the require-
ments work lies in selection and modification. For tasks such as library design, this means understanding
policies, their derivation via negotiation, and their effects on altemative designs. This negotiation-
oriented paradigm has been combined with the capture-and-modify paradigm for labor negotiations[83];
it illustrates the need for knowledge beyond data schemas for assistance in complex domains,

The library domain illustrates how an artifact’s complexity can result from its environmental inter-
face rather than its intemal processing. The actual algorithms used in an automated circulation and inven-
tory system may be simple, but the policies they implement may be the result of complex negotiations
between system stakeholders. Hence, system complexity may be due to system design, rather than algo-
rithmic derivation; algorithmic enhancements are simple, but sysiem changes must be negotiated with
stakeholders.

3.2. Multiple Perspective Design

Originally, this research on collaborative design was purely practice. It was conceived to automate
the merging of independent specification design states(73). Unlike many specification projects, it did not
to automate functional decomposition since its organizational philosophy is to prevent conflicts. (In func-
tional decomposition, members construct modules by maintaining carcfully defined boundaries[19].)
Early efforts included specification by case-based adaptation[27], gradual elaboration[26], and parallel
elaboration[72]. The integration of these approaches lead to this dissertation[29, 30].

The current group design methodology, called Multiple Perspective Design (MPD), was derived
from Feather’s parallel elaboration modelf23,24]. MPD supports the acquisition of multiple (conflict-
ing) system perspectives, the subsequent derivation of designs, and the final interactive process of design
integration, It exploits group diversity and creativity by addressing conflict recovery.

The methodology captures aspects of negotiation between system stakeholders. Commonly, sys-
tem requirements are developed through client interviews; sometimes the interviewees are potential oper-
ators of system, but often they are presumptuous managers who impose their own requirements without
any user consultation. In any case, multiple agent goals are typically unrepresented in requirements engi-
neering models. Figure 1 illustrates how requirements models typically represent a single consistent
requirements set, while the variation of multiagent goals is unrepresented.

9 CIS-TR-93-10

Explicit \

Process

<D

Figure 1. Implicit Stakcholder Goals.

The MPD approach is more direct; it models system participants who might affect or be affected by
the proposed system. Mumford calls such an approach participative sysiems design.

The argument for a participative approach therefore runs as follows. All change involves
some conflicts of interest. To be resolved, these conflicts need to be recognized, brought out
into the open, negotiated and a solution arrived at which largely meects the interests of all
parties in the situation. Differences of interest will not be confined to management and
subordinates but will occur beiween employees at different hierarchical levels as shown by
grading systems, and in different functions, Therefore successful change strategies require
institutional mechanisms which enable all these interests to be represented, and the partici-
pative design group which consists of representatives of all the different groups in a depart-
ment will fulfill this function.—p. 112[{61].

Mumford applies participative systems design as part of her socio-technical systems design[62). Her
approach is to separately consider social and technical aspecis of a system. The social aspect principly
considered is job satisfaction. By way of five attributes, she diagnoses the fit between an employee's
expectations and his job requirements. Similar analysis is independently applied between technical struc-
tures and their requirements. System altemnatives are then evaluated from the social and technical views.
Finally, compatible views are combined, followed by selection of the “best” system,

CIS-TR-93-10 10

Requlrements Aocquisition

% ! | A

et2) eee (Agmn

¥ ¥ ¥

Individual Design

] ! *

A

L} ¥ ¥

Multl-agent Negotlation (integration)

Figure 2. The MPD Integration Paradigm.

MPD is consistent with soci-technical participative design. Both advocate independent considera-
tion of systems aspects from stakeholder perspectives. However, Mumford'’s approach restricts indepen-
dent consideration along two issues: social and technical; whereas, MPD has no issue restrictions. Multi-
ple requirements and multiple designs are also unique to MPD; it is based on the production of a design
for each stakeholder. Finally, MPD advocates the integration of “incompatible” designs; the process of
their integration reveals the negotiation between stakeholders and can be assisted.

MPD calls for: (1) representing stakeholder beliefs, (2) constructing separate designs for each
stakeholder, and (3) integrating designs using negotiation techniques. Figure 2 illustrates the MPD inte-
gration paradigm, while figure 3 illustrates where automated support is provided.

System support consists of: (1) agent modeling, (2) development “bookkeeping”, and (3) negotia-
tion assistance. A domain model is provided to model available goals, operators, and their interactions.
The domain model is requirements language for MPD,

Requirements acquisition consists of using the domain model to construct stakeholder perspectives.
Perspectives represent the interests of stakeholders in the proposed system; they are individual’s require-
ments. Acquisition is supported via the domain model and tailoring tools aimed at assisting individual
requirements representation.

11 CIS-TR-93-10

Design consists of applying the automated planner to individual perspectives. The planner ensures
that each requirement is mapped (and linked) to some design components. Tools are also provided for
manual editing of designs and managing perspectives and designs.

Design integration consists of conflict detection and resolution generation. For the most part, this
process is automated with a human serving to guide resolution search. Presented with conflicting issues
and preferences of stakeholders, the human arbitrator actively considers alternative (implicit) preference
weightings. Alternatives which appear superior then serve as a focus for incremental improvement by the
negotiation operators (compromise, specialization, and generalization). Choosing a resolution ends this
interactive process. Finally, an integrated design is output,

3.3. A Brief Negotiation

To use the MPD model, Oz is provided to assist individual designers in working independently. Oz
is a computer-based system that provides four languages to a designer:

. A language of domain concepts.
. A language for stating goals. These can be goals local to the designer or global to the group.

. A language for stating goal-achievers or operators. The design process itself is one of selecting par-
ticular operators for achieving goals that meet the designer’s preferences.

. A language for stating preferences. Preferences can be on values (e.g., maximize, minimize),
between goals, or between operators.

Each of these languages is based on an abstraction hierarchy. This allows a designer to state abstract
goals, abstract operators (and hence abstract designs), and abstract preferences,

3.3.1. Two Perspectives

As an example of goals from the library domain, consider the loan period duration goals of a librar-
ian and patron. Each prefer different values for library loan periods: the librarian perceives a short loan
length as beneficial to resource turnover, whereas, the patron perceives a long loan period as a necessity
for research. Their preferences of 14 days and 365 days, respectively, can be described as follows:

Librarian:
on_loan(patron, resource, loan_period.duration=14)

Patron:
on_loan{patron, resource, loan_period.duration=3635)

Each goal states the desire to achieve a design state where a loan period is granted to a patron. Addition-
ally, the library domains contains patron subtypes, (e.g., faculty, graduate student, undergraduate stu-
dent). These goals state that for all library patrons, a specific loan period should be granted. Moreover, if
the goal cannot be achieved, the nearest feasible substitute should be achieved. For the librarian, this
means that designs with loan period durations closer to 14 are preferred over those further away. Simi-
larly, one can state goals in terms of maximizing or minimizing along ordered items (e.g..
ON_LOAN (PATRON, RESOURCE, LOAN_PERIOD.DURATION=MAX)). Such preferences can be applied to all
modeled domain entities (e.g., goals, objects, and operalors).

CIS-TR-93-10 12

((_poman Mo)

Integrated
Pn:g:m
=
........ Ll

Awtomaisd Information Flow | | Supportad

Figure 3. Providing Automated Support: Oz

3.3.2. Two Designs

Given a goal, Oz must find a way 10 achieve it. Oz represents goal achievement methods as opera-
tors. In the library domain, the operalors BORROW, RECALL, RENEW and others that allow library users to
achieve library usage goals are represerted. Given that goals and preferences can be abstract, abstract
operators are represented as well. For example, GET_LoAN is an abstraction of the operaiors BORROW,
RECALL, and reNEw. Figure 4 depicts a portion of a library operator hierarchy.

13 CIS-TR-93-10

[eorrow Lonoan{agdeit reagdoe oen prkd) >
S possses{agent? rescurce loan_period)] w,hulubm.pdbd))
“ioar periodipalron fesolrce] Jen_period1) /
/

Emwmmwwbdﬂl scall Inigpfwmmmm@
fecallod(agenti reecuce loen period)>

§po--(wmbn.whd1|lw [onosn{egent! reecurce losn peod)>
S onJoan(egert] reecuroe foan_peniod) [[Possses(agenti meouros oen_perod]>
[renewed{agerii rectrca loan_period)>

Figure 4, Some Library Operators.

In figure 4, operators are shown as boxes, Each operator has zero or more of the following:

. Consumable preconditions, These are shown directly on the left of an operator. A consumable pre-
condition is one that enables the operator to activate, but is consumed (deleted) in the activation
process.

. Persistent conditions. These arc shown directly below an operator. A persistent condition is one that
must hold to enable a operator. It remains true (it is not consumed) after the operator is activated.

. Produced postconditions. These are shown directly to the right of an operator. A produced post-
condition is one that holds (is added) as the result of operator activation.

One of the operators in figure 5, GET_LOAN, is an abstract version of the two operators below it; lines
between operators denote abstraction. Abstraction is carried out by finding the set of all unique similari-
ties between two operators, abstract or otherwise, and producing a new, more abstract operator that repre-
sents the similarities and eliminates the differences. (This process is carried out automatically in Oz —
as new operators are added to the model, they are automatically compared with existing operators. Simi-
larities are detected, and new operators generated and linked into the hierarchy[2].) As part of this

CIS-TR-93-10 14

process, hierarchies of objects (e.g., patron with subtypes faculty, graduate, and undergraduvate) are cre-
ated. (Additionally, hierarchies of goals can be described manually.)

With such library operators, Oz can begin the process of achieving a participant’s goals. Goals are
achieved by selection of operators. Using a tool called OPIE[28], Oz automates design in the following
way:

(1) The most abstract operator O for achieving goal G is found. In the case of the patron’s goal, this
is the GET_LoaN operator in figure 4.

(2) If there is a preference among the children of O, the most preferred child is chosen next, and step
2 is repeated with the child becoming O. In this example, neither the patron nor librarian
expressed any operator preferences.

(3) If no preference is given among the children of O, or if O has no children, then O is selected.
Hence, a designer only makes design choices when necessary, otherwise leaving designs in an
abstract state. Since the patron wanted the resource for 365 days, the operator GET_LoAN will be
instantiated in the design with LoaN_PERIOD’s duration attribute set at 365 days.

The above presents the planning process from the patron’s perspective. The same process is carried out
independently from the librarian’s perspective. In this case, the same design is created; however, the
GET_LOAN operator is instantiated with Loan_PERIOD’S duration attribute set at 14 days.

3.3.3. A Negotiated Integration

Once the designs are created, one can attempt to integrate them. If there are no difference in the
designs, then no negotiation need take place. Otherwise, as in the example, design differences must be
characterized as goal conflicts and negotiated.

The integration process consists of:

(1) Conflict Detection and Characterization. Designs differences are identified. MPD applies con-
flict detection to designs rather than the initial goals because, among other reasons, different
goals can lead to identical or non-interfering designs, i.e., designs that differ, but are compatible,
In the example, the two GET_roan operators assert different values of loan period duration. This
interfering difference is characterized as an object attribute value conflict, i.e., a conflict over the

1]
posssss{agent! recurce loan périod) >

[y mm\wwp //

Initial [possess(Trary? resowce? loan_pedodi) > ‘Sr}_yr(aouﬂ rescurce1 loan_period) | [mnai
[owniibranyt rescurcel) > S possess(agent] resource! ben_pariod]

o

Figure 5. A Loan Period Design.

15 CIS-TR-93-10

value of LoAN_PERIOD’S DURATION value.

(2) Conilict Resolution. After the goal conflicts are identified, an individual interacts with Oz's
negotiation model to guide the resolution search. First, either value of duration can be chosen,
i.e., 14 or 365. Additionally, at the direction of the user, compromise values can be generated
(e.g., 189.5). Also, the confiict characterization can be transformed. Conflicts can be generalized
or specialized. For example, specializing the conflict characterization suggests the new goal sct
(among others) of:

on_loan{(undergraduate, resource,loan period.duration=14)
on_loan{graduate, resource, loan_period.duration=365)
on_loan(faculty, resource,loan_period.duration=365)

In negotiation terms, this resolution can be considered a dissolution, i.e., a removing of the con-
flict. Moreover, the methods can be combined. Applying compromise to the above specialization
can create the following goals:

on_loan{undergraduate, resource,loan_pericd.duration=14)
on_loan(graduate, resource, loan_period.duration=189.5)
on_}oan(faculty,resource,loan_period.duration-365)

Generalizing conflict characterization is the opposite of specialization. It can be used dissolve
conflicts between two similar objects. For example, an object conflict between graduate and
undergraduate can be dissolve by generalizing the object of conflict. The following:

on_loan{undergraduate, resource, loan_period.duration=14}
on_loan{graduate, resource, lcan period.duration=l14}

can be recharacterized as:

on_;oan(patron,resource,loan_period.duration-14)

to remove the conflict. The same approach can be used to suggest resource renewal to compen-
sate for short loan periods.

(3) Resolution Implementation. After the analyst chooses a resolution, the system conjoins the origi-
nal goals with the resolved goals and reapplies the design process. From the example, the new
goals are:

on_loan (undergraduate, resource,loan_period.duration=14})
on_loan (graduate, resource, loan_period.duration=189.5)
on_loan(faculty, resource, loan_period.duration=365)

Since the original goals were transformed to the above goals, only these goals are reapplied to
the design process. The resulting design contains three borrow operators which apply to the three
different patron subtypes to give three different loan period durations.

The above illustrates how negotiation fits into MPD and the types of negotiations that Oz is capable of
automating. All the automation shown above has been implemented (e.g., conflict detection, compro-
mise, specialization, generalization, resolution implementation). In fact, unless otherwise noted, all
descriptions of automation and example presented have been automated in the implementation, Oz. The

CIS-TR-93-10 16

above example also illustrates the mode of user interaction. An Oz user guides the generation and selec-
tion of resolutions, while Oz does the mundane work of analytic compromise generation and conflict
recharacterization. Oz automates all the tasks presented in addition to providing support for the book-
keeping aspects of independent design and integration.

3.4. Automation Assumptions

To direct the automation efforts, Oz relies on the four assumptions listed below. The first one
describes simplifications which allow us to focus on resolution generation. The second and fourth are
specific 10 the MPD design strategy for interactive design systems. The third is a common decision goal;
however, it is not clearly demonstrated in many automated negotiation reasoning systems.

(1) Common Languages
It is assumed that one language represents all stakeholder perspectives and designs. A stake-
holder’s perspective contains abstractions of operators, objects, and relations associated with stake-
holder goals and preferences. The design language is a specialization of the perspective language.
Both are based on a predicate calculus planning formalism[2]. By using one language, Oz do not
address the process of converting between different perspective ontologies[22,79]. Nor do it
address the process of converting between different design languages[42, 63].

(2) Independent Perspectives and Designs

It is assumed that designers independently describe and maintain perspectives and derived specifi-
cations. These are selfish perspectives, representing uncompromised stakeholder preferences, and
selfish designs, representing uncompromised complete instantiations of stakeholder perspectives.
The process of combining all stakeholder perspectives into a single unified perspective is applied
only after designs are integrated. Resolution consists of weighting stakeholder preferences in the
context of their conflicting designs, and then making a new group perspective, and finally deriving
a design. Only those portions of the perspectives that cause conflicling specifications will be recon-
sidered, and possibly reconciled, during integration.

(3) Optimal Resolution
Within a given search space, it is assumed that an optimal resolution is desired. The arbitrator has
the option to expand the search space via introducing more issues. Such expansion can make a pre-
viously optimal resolution appear dominated by new resolutions. Nevertheless, once the issues are
fixed, an optimal resolution is chosen according to a weighting of stakcholder perspectives.

(4) Interactive Perspectives

It is assumed that stakeholders have bounded rationality[5]. They have limited information and
processing abilities. This implies that the specific problem context can have significant influence on
an stakeholder’s perspective. For example, the stakeholder may become aware of other operators
which can satisfy its goals. Conversely, the stakeholder may become aware of constraints which
limit goal achievement. In either case, the stakeholder may wish to reconsider its perspective, i.e.,
its goals and preferences[25]. It is assumed that search, during design and conflict resolution, may
uncover new information which is feedback into the stakeholder’s decision process which reconsid-
ers designs, constraints, and their effect on goals and preferences[40). Modification of a stake-
holder’s preferences is aided according to context In this way, interactive perspectives are sup-
ported; perspectives which model stakeholders and facilitate their modification by humans.

Using these assumptions, Oz provides languages by which to represent stakeholder perspectives and
algorithms by which to integrate independent designs. The resulting perspective representation language

17 CIS-TR-93-10

consists of preference annotated abstraction hierarchies. The resulting integration algorithms combine
analytic preference maximization with heuristic conflict recharacterization.

4, Dissertation Summary

This dissertation:
(1) presents group design conflict resolution as a problem,
(2) suggests MPD as an appropriate methodology for addressing this problem,
(3) provides a representation and method for describing individual perspectives, and
(4) provides algorithms to integrate designs based on those representations.
This dissertation is evaluated by :
(1) its capacity to represent design goals and preferences,
(2) its ability to generate acceptable resolutions.
Specifically,
(1) the method is applied post-hoc to rederive portions a simple library case-study, and
(2) the resulting case is compared, by an expert, against the original derivation.
This evaluation leads 1o the following conclusions:

(1) preference modeling and process-oriented decision making can be effectively combined (i.e., the
algorithms are effective and gencrate appropriate resolutions),

(2) group software engineering can benefit from this hybrid approach to conflict resclution (i.e., the
post-hoc rederivation did supply adequate resolutions).

5. Dissertation Outline

The remainder of this disseriation is divided into three parts. The first two describe the methodol-
ogy and its automation, while the last presents it use. Throughout parts one and two, I distinguish
between the representational theory, and the current state of the implementation; unfortunately, the con-
fines of this dissertation have not allowed for a complete implementation of the theory. (Everything has
been implemented except methods dealing with operator preferences.) Chapter 11 presents the Multiple
Perspective Design methodology. Chapiers III and V are the heart of the dissertation. They describe
stakeholder modeling representations and negotiation-based integration algorithms. Chapter IV describes
the use of a planner to automatically derive designs from the stakeholder perspectives. Finally, chapters
VI and VII present an example of the system in operation and draw conclusions.

CIS-TR-93-10 18

CHAPTER 11

MULTIPLE PERSPECTIVE DESIGN

While many groups engage in negotiations, to their disadvantage, few are trained in negotiation
techniques. I am interested in making these techniques more widely available. The remaining chapters of
this dissertation detail the MPD methodology and its automation in Qz. Before diving into those details,
I wish to motivate the use of automated negotiation,

This chapter briefly describe the MPD methodology in general terms. It presents: (1) acquisition
and modeling of multiple perspectives, (2) design from multiple perspectives, and (3) integration of mul-
tiple designs. Similarly, the negotiated design paradigm is evaluated in general terms. Benefits per-
ceived by two communities are presented: (1) software enginecring (parallelism, simplicity, design ratio-
nale, reuse) and (2) decision science (preference maximization, technological closure).

This chapter shows that the benefits derived from the MPD methodology can be had by other
methodologies. MPD does not have a lock on the benefils of negotiated design. Indeed, many methodolo-
gies can benefit from incorporating even simple negotiation techniques into their support. Similarly, the
more novel negotiation methods describe here can also be applied in more conventional situations. To
show the general applicability of Oz's negotiation methods, this chapter introduces a few example reso-
lutions which, if represented in Oz, could also be automated.

(1) Dissolution: Law of the Sea

The nations of the world must agree on how to mine the intemnational deepsea floor{67]. These
undeveloped seafloors contain some of the worlds most abundant mineral resources. Unfortunately,
not all nations have the ability to mine the deepsca floor. To resolve this inequality, the nations
tenatively agree 10 a parallel mining system. An intemational Enterprise will mine on behalf of all
nations, while individual nations mine independently and share some of their profits with the Enter-
prise. Unfortunately, a few nations will still be more effective than the Enterprise. How can one
assure the nations that the better sites won't be taken by the more advanced nations? One resolution
is based on dividing the conflicting element, the site, into subelements and rencgotiate: a requester
should pick two sites. Then, the Enterprise can choose which site it will eventually develop while
the requester can immediately develop the remaining site.

(2) Compensation: Library Policy

Library patrons and administrators must be agree on a resource loan period[10]. To fully benefit
from library resources, some patrons need long loan periods. While administrators support patron
resource usage, they must balance the needs of all patrons. With long loan periods, some patrons
will keep resources beyond their useful period. Such “idle resources” can be reduced with a short
Ioan period. How can the administration balance the needs of all patrons against the needs of a few
patrons? One resolution is based on maintaining a short loan period, but providing another compen-
sating mechanism by which patrons may gain access to resources: a patron should be able to renew
their resources. Then, the library reduces idle time, but working patrons can still have access 1o
needed resources.

19 CIS-TR-93-10

(3) Compromise: Group Scheduling
Two people desire to meet for two hours. After consulting their calendars, they realize only one of
them is free for two hours; however, both have 90 minutes of free time, as well as some single hour
slots. How can the two meet for two hours? One resolution is based on simple compromise: the two
should meet for 90 minutes, rather than two hours.

The last example is the most common, and weakest, use of negotiation, The first two illustrate more pow-
erful, yet heuristic, forms of negotiation. They go by a variety of names (e.g., lateral thinking, value-
focused thinking). These types of negotiation focus on fulfilling goals rather relaxing them to remove
conflict. They often include goal reformulation as in the first two examples, but may include lower level
repairs, as in the last. Yet, while I advocate the combined use of compromise, compensation, and dissolu-
tion, it should be recognize that even simple compromise assistance and recording can aid collaborative
design.

1. Methodology

MPD distinguishs between two types of design agents: designers and their chief, Designers create
designs which satisfy a subset of requirements. These subsets are chosen to model individual stake-
holder’s perspectives. Hence, designers have two tasks: (1) modeling individual stakeholder’s require-
ments in terms of goals and preferences, and (2) creating designs fulfilling modeled goals while maxi-
mizing modeled preferences. The chicf designer has three responsibilities: (1) assigning designers the
task of modeling stakeholders, (2) ensuring designers complele their designs, and (3) arbitrating over
design integration.

The integration process itself consists of conflict detection, characterization, resolution, and imple-
mentation, If designers produce identical designs, then integration simply outputs the design. However, if
conflicts are detected, they are characterized in terms of stakeholder goals and preferences. Then, the
chief guides the search for a satisfactory, mutally acceptable, group goals. These are implemented,
thereby creating a design maximally fulfilling all stakeholder perspectives.

Figure 6 illustrates this process. The system depicted works as follows:
(1) The Stakeholders give the Chief a problem description.
(2) The Chief orders Designers to model the requirements of each stakeholder.

(3) Each Designer develops a model of a stakeholder’s goals and preferences. Then, the Design
Assistant (i.e., planner) is applied (o derive a design. Each design represents a finished design.
Designers are allowed to work uninterrupted until completion.

(4) Individual designs are collected by the Collector. MPD currently provides no guidelines for when
this should happen. In fact, I suspect designers may wish to engage in a series of intermediate
integrations before the final integration. That is, the group may work independenty, integrate
their perspectives and designs, and then continue working independently. Others have found
such cross-talk a useful mechanism to control the design divergence.

(5) The Conflict Detector looks for conflicts among the designs. It does this pairwise across all
designs. If no conflicts are found, a design is passed along to the Merger. If conflicts are found,
they are recorded and then passed to the Conflict Resolver.

(6) The Conflict Resolver provides an interface for a human negotiator, the Chief. The interface pro-
vides control over the search process. By weighting individual goals and preferences, the Chief
can direct the application of the heuristic modifier and analytic preference maximizer.

CIS-TR-93-10

20

il
i

..................

Confilct Resolver

= B

/ é Implementor
e N
F0 ® 3

)

®)

Figure 6. MPD Processes.

Once all conflicts are resolved, the results are passed to the Merger. The Merger outputs the sin-
gle, unified design.

Finally, in a complete system, a Notifier would provide feedback to the stakeholder's on how
their goals and preferences were incorporated into the design. (Even better, such feedback would

21 CIS-TR-93-10

be provided to the arbitrator during the resolution process.) Also, an Implementor would take the
design as input and produce a (software) system. Neither of these processes are automated in Oz.

The key components of this process are the inpuis to the resolution process provided by the stakeholder
models, and the algorithms that use these inputs to generate resolutions. These are the topics of chapters
III and V. Now, an overview of stakeholder modeling, design, and design integration is presented.

The example presented is keep simple so that one may focus on the philosophy of the methodology.
From multiple perspectives, concrete designs, and their integration, this section shows how good design
characteristics can be derived.

1.1. Modeling Individual Requirements

» Stakeholder preferences are necessary for effective automated negotiation.
« Preference hierarchies are an effective means of representing stakeholder prefer-
ences.

MPD simply requires that individuals be able to describe goal states which they desire to achieve.
Additionally, it is preferable that they be able to describe altemative goal states, as well as which states
are deemed better than others. An ordering of items is called a preference. Additionally, individuals may
be able to state, on a relative scale, how much they prefer one item over another. For example, a few
goals can be ordered all around the same value, while other goals which bring much less satisfaction are
ordered around much lower values. Such description provides the negotiation system the means to sub-
stitute one item for another. For example, the substitution of one goal achievement for another in the face
of conflict. Design objects and operators may similarly be negotiated.

Reconsider the library loan situation of chapier I. The patron may wish to specify his preference
over several goals. For example, he may have two goals: own and oN_roaN, and prefer ON_LOAN over
owning. To represent this in Oz, the current perspective must first be set (10 distinguish the patron’s pref-
erences from others). The function, in-perspective sets the perspective. Next, the preferences can
be described. This is done by modifying a component from one of the domain hierarchies. In this case,
the relation hierarchy, The following code fragment illustrates this. It uses the :order keyword to
describe access relation preferences. (Relations further down the list, toward the right, are more pre-
ferred.) The relations own and oN_LoaN are children of the AccEss relation in the relation hierarchy,

(in-perspective 'Patron)

{def_mod_relation access(patron,resource)
;order ' (own (patron, resource)
on_loan {patron, resource, loan_period)})

First note that owN (PATRON, RESOURCE) describes a state where a patron has bought a resource; similarly,
ON_LOAN is a state description, or relation. These two relations are specified as specializations of the
access relation. Within the ordered list (defined by the keyword :order) they denole the patron’s desire
to borrow resources, but if that is not available, buy resources. This prefercnce describes the preferred
arder in which goals should be dropped in the face of conflict. Similarly, the patron can order, or scale,
other entities, For example, the patron could specify that his preference for loan periods falls off linearly
from a target value of 180 days:

CIS-TR-93-10 22

{in-perspective ‘Patron)

{(def mod_object loan_period
tattributes ‘' {((duration :min 0 :max 365 :goal 180}))}

This denotes that the patron desires long loan periods (i.e., around six months). Additionally, this prefer-
ence is scaled linearly: 180 days is scaled at 100 percent. Periods above and below 180 days will be
scaled at lower values. The range of which is defined by the min/max arguments; they are not negotiable,
i.e., they must be the same in every perspective.

In addition to goal preferences, individuals may state operator preference. That is, the preferred
means by which goals are to be achieved. For example, the patron could specify his preference over sev-
eral operators:

{in-perspective ‘Patron)

(def_mod_op get_resource
:order ‘' (recall, renew, borrow))

RECALL, RENEW, and BORROW are operalors, each of which can produce the on_roan relation. In this way,
an individual can state BorrROW was the most preferred, while RECALL was the least.!

In fact, Oz supports the description of abstract goals, operators, and object preferences. For goals
Oz provide for two types of abstraction: (1) relation abstraction, and (2) goal aggregation. Relation
abstraction allows one lo arrange a hierarchy of relations where lower relations are deemed more specific
than those above (e.g., AcCESs is more general than on_roan). Goal aggregation allows the conjunction
of multiple relations to be considered as a (composite) goal.

Figure 7 illustrates the hierarchy of operators which produce oN_Loan. Operators, objects, and rela-
tions are stored in such taxonomic abstraction hierarchies. In the operator hierarchy, specialized opera-
tors form the leaves, while abstract operators are formed representing common added (right side), deleted
(left side), or persistent (middle) relations. Such abstraction is the result of pairwise comparison and is
automated[2].

Oz employs a knowledge-based approach. Prior to design, it has a cache of operators, objects, and
goals. As part of stakeholder preference acquisition, a designer makes a copy of these hierarchies and
annotates them with stakeholder preference.

Such hierarchies are effective because stakeholders need only state their preferences down to the
level of specificity at which they are concemed. Without such abstraction, stakeholders must use con-
crete descriptions where they have no vested interest, That is, languages without abstraction may require
one to state preferences at levels more specific than one is interested in stating. Such languages can pro-
duce arbitrary decisions which result in conflict and unnecessary negotiation,

Additionally, hierarchies are effective because they suggest substitute goal achievement in the face
of conflict. When stakeholders prefer an abstract goal achievement, any relation below is satisfactory.
For example, any specialization of PATRON in the goal ON_LOAN(PATRON, RESOURCE,LOAN PERIOD),
would be acceptable. However, if none of the specializations can be achieved, achievement of a related

!Such preferences can be stated, but their use in negotiation algorithms has not been implemented.

23 CIS-TR-93-10

possess(agent] meowve))

= polstaguke ey [pogeBeelegent fosorcs oen_porcc>
Soar_pariod{petron] reecurce Joen_ period) /-

§Mmmmbmmbdi| ol (orogrlagert! resource loen poroc)>

S onJoan{ageri2 reecurce loan_period)] IWW Tesource loan_perod)>

recaled(agent! resource loen_ period)>

EMWWMMIW | onJosn(egent! resource loan_perod) >

S onJoan(agent resource foan_period) possess{agerti resource ioan_perod)>

[renewad{agent] reecurce loan_period)>

Operators RECALL, RENEW, and BORRCW are specializations of the GET _LoaN.
Figure 7. Operators which Produce on_Loan.

relation is a reasonable heuristic substitution. For example, the owN (PATRON, RESOURCE) relation may be
appropriate; it can be had by looking through the operator hierarchy.

Through successive specialization during design, members commit to more detailed design prefer-
ences. Conversely, abstract commitments may be successively undone and reconsidered during integra-
tion, Negotiation methods can use abstraction hierarchies to generate resolution altenatives of varying
generality.

In summary, Oz provides a knowledge-base of operators, objects, and goals relevant to a design
domain, Stakeholder acquisition consists of associating preferences with these entities. While the a priori
knowledge-based simplifies design-time work and the abstraclion hierarchies make negotiation search
more efficient, multiple stakeholder preferences are the essence of negotiated design.

CIS-TR-93-10 24

1.2. Specification Design

» Independent design aids individual preference understanding.
» Independent design allows for maximal parallelism,

Given goals as state descriptions and preferences over operators, objects, and goals, it is (relatively)
simple for an abstract planner to derive a plan (i.e., a behavior description) to achieve the goals. Goals
are mapped to primitive design operators by successively specializing abstract operators, or by inserting
and then specializing operators to satisfy goals[2]. Failure indicales insufficient operators or conflicting
individual goals. Currently, Oz do not address either of these issues; however, in the case of conflicting
goals, it would be simple to apply Oz's resolution mechanism.

Clearly, independent design allows maximal parallelism. Designers need not consult regarding
global constraints nor interface boundaries. Each designer has the flexibility to reconsider requirements
in the context of the developing design and ensure the stakcholder’s preferences are the correct ones and
that such preferences, at least in the ideal independent case, are feasible.

Independent design allows stakeholders to see the consequences of their preferences independent of
others. Each stakeholder derives a complete design from his own selfish perspective. Thus, a perspective
contains a stakeholder’s ideal goals and preferences free of group biases[5,25,40]). Any compromises
will be derived from conflicts within a stakeholder’s preferences, not from conflicts with other stake-
holder perspectives. Therefore, negotiated design aids in the accurate acquisition and recording of stake-
holder perspectives, This process itself can eliminate conllicts over abstract, infeasible goals.

1.3. Integrating Designs

« Design conlflicts are characterized as stakeholder preference conflicts.
+ Preference conflicts are resolved by choosing mutually acceptable compromised
and/or substituted values.

The following discussion presents the integration of two designs. Again, the emphasis here is not
on how integration is done. Instead, just the basic elements are demonsirated. Essentially, integration
consists of characterizing design conflicts as conflicting stakecholder preferences. Then, an automated
procedure assists deriving mutually acceptable group goals and preferences. Finally, the planner is
applied to the integrated perspective to create a single satisfactory design.

The first design is generated from the patron preferences shown previously in section 1.1; they sim-
ply denote the desire for six month loan periods. The second design is generated from similar opposing
preferences of the librarian: The librarian has the goal of loaning resources and prefers shorter loan peri-
ods (since they reduce resource “idle time” and increase resource accessibility). On the other hand, the
librarian adds preferences for library risk and cost, the combination of which must be restricted. The
librarian’s minor variation in scaling loan period is used to indicate his targel value of two weeks (i.e., 14
days); his preference falls off linearly in both directions. The added scales for risk and cost describe the
desire to reduce loss and damage risks and processing cosls associated with borrowed resources. We've
made the simple assumption that both rise linearly with the number of days borrowed. Moreover, their
combination is restricted using a lincar constraint. Unlike goals, constraints are non-negotiable; the final
resolution will have limited risk and cost.

25 CIS-TR-93-10

The following code fragments represent these perspectives. The first perspective describes the
attributes of the Loan_PERIOD object for the generic library model; these are inherited by the patron and
librarian perspectives. Using the keyword :attributes the attributes DURATION, cOST, and RISK are
described in order and have their ranges defined. Below, using the keyword :att_constraints, lin-
ear relations between the attributes are defined. In each case, there are three constants (one for each
attribute) followed by a relation (e.g., <=, =, or >=) followed by another constant. The constants are in
the same order as the attributes and associate multipliers for the attributes. For example, the first con-
straint can be rewritten as:

1 * DURATION + O * COST -1 * RISK = 0

This indicates that risk directly increases with duration.
{in-perspective 'Library-model)

(def_mod_object loan_period
tattributes ’ (("Duration" :min 0 :max 365)
("Cost” min 0 :max 100}
("Risk" :min 0 :max 100)}
:att_constraints ' ((1 0 -1 = 0} ;Direct increase of risk
(L -1 0 =0) ;and cost with duration.
{0 0.6 + 0.8 <= 365)})

The following code fragments describe the patron and librarian preferences. For the patron, they indicate
the desire to maximize loan period duration (e.g., :objective max), while indicating indifference con-
cemning cost and risk.

(in-perspective ‘Patron)

(def_mod_object loan_period
rattributes ' {(duration :min 0 :max 365 :objective max)
{cost :min 0 :max 365 :;objective nil)
{risk :min 0 :max 365 :objective nil)))

(def mod relation access(patron, resource)
:order ‘ {own {patron, rescurce)
on_loan (patron, resource, loan_period}})

{def mod op get_resource
iorder * (recall, renew, borrow})

For the librarian, they indicate the desire to achieve a 14 day loan period duration (e.g., :goal 14), while
minimizing cost and risk.

{in-perspective ‘Library)

{def mod_object loan_period
iattributes * ((duration :min 0 :max 365 :objective 14}
{(coat :min 0 :max 365 :objective min}
(risk :min 0 :max 365 :objective min}}}

CIS-TR-93-10 26

After the two designs are constructed, integration begins. It is divided into four subtasks: (1) identi-
fying correspondences and conflicts, (2) forming issues, (3) resolving conflicts, and (4) implementing
resolutions. While they are not entirely sequential, it’s casiest to consider them so.

1.3.1. Correspondences and Conflicts

In the library example, the stakeholders had corresponding entities. Resources, loan periods, and
the borrowing operation all corresponded. However, as correspondences are made, two distinct *“con-
flicting” loan periods are discovered. Illustrated below is an abbreviated attribute conflict record for the
loan period duration conflict. It describes the conflict as a difference between object attribute values
(LoaN_PERIOD.DURATION) used by corresponding operators (BORROW).

TYPE: OBJECT-ATTRIBUTE
DIFF_OP: BORROW
INTERFERENCE: (RELATIONS:
(LIBRARIAN.LOAN_PERIOD.DURATION: 14,
PATRON.LOAN_PERIOD.DURATION: 180))

The record denotes that two designs differed in a relation asseried by their corresponding BoRROW opera-
tors; both stakeholders used sorrow to fulfill their loan period preferences. The patron’s design contained
a six month loan period while the librarian’s design contained a two week loan period. Hence, the object
LOAN_PERIOD.DURATION is ascribed issue status. (An issue is a descriptor denoting alternative values in
which conflicting values are found.)

1.3.2. Issues

Given the conflict over their loan period values, one could focus entirely on their specific values:
six months vs. two weeks. Such a narrow characterization is ineffective; it limits resolutions to the two
alternatives. Instead, it is better to satisfy the goals from which the designs arose. To do so, one can char-
acterize conflicts using abstractions, in this case, the range of loan period duration values. This conflict
record characterizes the two loan period durations as different choices from the set of loan periods dura-
tions. Hence, LoAN_PERIOD.DURATION is ascribed issue status; thus, it requires resolution. Such charac-
terizations focus on goals, or subgoals, rather than their final means of achievement.

1.3.3. Resolutions

Oz implements three resolution generation methods. These methods are also used by human nego-
tiators[66]. Compromise generation maximizes multiple goals under linear constraints. Specialization
recharacterizes the conflicting relation in terms of more specific relations. Generalization recharacterizes
the conflicting relation in terms of more abstract relations, Both of these method produce resolutions
which can be interpreted as types produced by humans. For example, generalization can produce com-
pensation by giving “losing” perspectives alternative goal satisfaction. Similarly, some conflicts can be
“dissolved” by distributing conflicting values over a number of more specialized cases. Each of these
methods is demonstrated below.

In the example, loan period duration compromises will be generated first. Next, the arbitrator will
pick a duration of 14 days and then choose specialization to recharacterize the conllict. Specialization
will suggest introducing the patron subtypes of graduate and faculty, thereby allowing two different loan
period durations of 14 and 180 days. Finally, compensation will be given to patrons. By generalizing the

27 CIS-TR-93-10

conflict, book selling will be introduced into the library.

Compromise Application. Given the preferences and constraints, compromise generates nondomi-
nated loan durations between 0 and 365 days.

As shown in figure 8, the arbitrator is visually presented with three nondominated alternative loan
period durations: O days, 97, and 365 days. The display shows four preferences for each aliemative; three

are the librarian’s (L.cosT, L.RISK, L.DURATION) and one is the patron’s (p.puraTION).2 The more a
preference is shaded, the higher the satisfaction. For example, rR1sk and cost are at 100% satisfaction
when there are no loans (e.g., 0 days).

The arbitrator considers compromises and attempts to raise the satisfaction of important prefer-
ences. In so doing, the arbitrator can observe the interactions between multiple (conflicting) goals in con-
text {(e.g., raising L.DURATION also raises P.DURATION, L.cosT, and L.RISK). Afier considering various
altemnatives and understanding the relationships between goals, the arbitrator will settle on an alternative.

100%-

80%-

80%-

70%

D= —0X

80%

50%-

40%-

30%-

20%-

10%-]

~Jp30o<®—T0P

L.

o — —
L.Cost L.Risk L.DURATION P.DURATION

0%

0 days. M 14 days. B o7 days. 365 days.

Figure 8. Initial Issue Weighting,

These figures are not generated by Oz. They are provided here as a wtorial simplification of the actual figures
produced by Oz. For example, the patron’s preferences associated with cost and risk are not shown, Actual screen
images are shown in the following chaplers.

CIS-TR-93-10 28

This also indicates an implicit weighting between goals (and between stakeholders); the more satisfac-
tion goals derive from a resolution, the more weighting is implied.

After considering the two extreme solutions and the mean of 97 days, the arbitrator is unsatisfied.
He realizes all loan periods are between 0 and 365 days, where risk and cost increase with loan period.
With 14 days (the librarian’s goal) as the current alternative, he specializes the conflict characterization.

Specialization Application. Figure 9 illustrates a single specialization of the loan period conflict.
Here it is assumes that two subtypes of PATRON (GRADS and FacuLTy) arc alrcady represented. Since,
these are subtypes of PATRON, BoRRoW will still apply.

The alternative is displayed in context with a list of issues, values, add objects, and add operators.
The altemative suggests that GrRaps and FAcuiTY be consumed by Borrow which should distribute
LOAN_PERIOD based on the subtypes. This altemative provides for long loan periods acceptable to
patrons, and shorter loan periods acceptable 10 cost and risk minded librarians. In general, each alterna-
tive is displayed with the relation to which it responds. The loan period conflict is the result of interfer-
ence associated with the oN_r.oaN relation; hence, oN_LoaAN is displayed to provide context.

The figure notes that alternatives are displayed in template form. This is a reminder that the initial
issuefvalue assignments are arbitrary; e.g., the assignment of GRADS = 14 is the result of mapping previ-
ous altemative values or goal values (e.g., 180) to the new objects. Rather than choose among the possi-
ble assignments in the specialization procedure, value search is confined to the interactive compromise
procedure, Hence, the arbitrator may choose the dissolution (GraDS 14) » (FACULTY 180) and modify
this by manipulating a display like that in figure 10.

Figure 10 depicts the new search space. Previous altematives are displayed, giving the search pro-
cedure continuity and context. The preferences for the new issues, GRAD.LOAN _PERIOD and FAc-
ULTY.LOAN_PERIOD, are displayed for the new altemative. Also, since the loan period duration has be
decomposed into GRAD.LOAN_PERIOD and FACULTY.LOAN_PERIOD, DURATION now displays the average
satisfaction for GRAD and FACULTY.

While the arbitrator considers the new resolution, GRAD 14 ~ FACULTY 180, a good resolution, he
wishes to give the patron compensation for the 14 day loan period. Next, he calls for compensation.

Available (template) Specialization
1. Relation: ON_LOAN (PATRON, RESOURCE, LOAN_PERIOD}
Issue: LOAN_PERIOD.DURATION
New Issue/Values: {GRADS, LOAN_PERIOD.DURATION=14)
(FACULTY, LORN_PERIOD.DURATION=180}
Use Operator: BORROW
Consumes: GRADS | FACULTY
Produces: {GRADS, LOAN_PERIOD.DURATION=14)
(FACULTY, LOAN PERIOD.DURATION=180}

Figure 9. An Available Specialization,

In a more complete implementation, feedback from the stakcholders would be used 1o derive consensus. In-
stead, in Oz, this process is outside the automated support.

29 CIS-TR-93-10

100%
90%
80%
70%
60%
50%

40%
30%
20%
10%

0%

D<= =0T
~30J0<—T0P

L.Cost
L.Risk
L.Grad.LP

o o
= =
B o
g =}
Q]
o [T

o

[Grad: 0 days, Grad: O days. Grad: 97 days. Grad: 14 days,
Facully: 0 days. & Faculty 97 days. L Faculty: 0 days. = Faculy: 130y§ays.

L.Facuity.LP

=
Q
=
&
=2
(]
=]

P.DURATION

Figure 10. Issue Weighting After the Specialization.

Generalization Application. Figure 11 illustrates hypothetical and available compensations.
Observing the operator hierarchy of figure 7, one can see that own is a relation added by an operator near
the operator that produced oN_LoaN; i.e., BUY is in the same GET_LOAN subtree as BORROW. Since no opera-
tor produces own in the integration, this aliernative is suggested. This first alternative suggests that the
BUY operator produce own.

The second alternative suggests that a new relation, x, be added as a sibling of oN_roan and a new
operator be added to produce x. Informally, the first altemative suggests selling resources o compensate
for undesirable loan periods, whereas the second suggests the invention of a new type of access mecha-
nism. Currently, only available resolutions are presented in Oz.

The two alternatives can be considered compensation because they achieve a goal similar to one
which is unachieveable. The hierarchies are used to determine relevance, Children of the nth ancestor
may substitute for a relation because they are functionally similar; that is, they are near each other in the
operator hierarchy. However, the greater the » the less relevant the compensation.

Figure 12 depicts the new search space after alternative 1 of figure 11 is chosen. The preferences
r.8uY and p.Buy are displayed for the new alternative. Again, this is a tutorial simplification for prefer-
ences which may be attached to the Buy operator (e.g., cosT, RIsK). (If no preferences were specified,
they could be acquired now.) Regardless of Buy preferences, for all loan period altematives, BuY is
unchanged; selling resources does not depend on loan periods and is regarded as good.

Finally, the arbitrator is satisfied with this resolution. The integrated library will sell resources and
loan resources for periods of 14 and 180 days. In the final step, an integrated perspective must be pro-
duced and then applied to the planner. This is a non-trivial step which involves reasoning about the given

CIS-TR-93-10

Available (template) Generalization
1. Generalize (level 1)

Relation: ON_LOAN (PATRON, RESOURCE, LOAN PERIOD)
Issue: LOAN_PERIOD.DURATION
New Issue/Values: OWN (PATRON, RESOURCE}
Use Operator: BUY
Consumes: PATRON
Produces: OWN (PATRON, RESOURCE)

Hypothetical (template)} Generalization
2. Generalize (level 1)

Relation: ON_LOAN (PATRON, RESOURCE, LOAN_PERTOD)
Issue: LOAN_PERIOD.DURATION
New Issue/Values: X (PATRON, RESOURCE, LOAN_PERIOD)
Add Relation: ACCESS->X
Add Operator: X _ACCESS
Consumes: PATRON, RESOURCE, LOAN_PERICD
Produces: X (PATRON, RESOURCE, LOAN PERICD)

Figure 11. Hypothetical and Available Generalization.

100%
90%
80%-
70%
60%
50%1
40%-1
30%
20%
10%1

0%-

O =~ =0T
~J03JO0o<O~TOD

L.Cost

L.FUNCTION
P.FUNCTION
L.SOLD
P.SOLD

Grad: 0 days, B Grad: 0, days. [Grad: 97 days. [l Grad: 14 days,
Faculty: 0 days. Faculty 97 days. Faculty: 0 days. Faculty; 180 days.

Figure 12. [ssue Weighting after Compensation,

designs to properly transform the goals. This is described in chapter V.

31 CIS-TR-93-10

1.4. Methodology Summary

Above, a methodology for distributed negotiated design was demonstraied. In doing so, the type
and location of automated support provide by Oz was shown. The description of the actual algorithms is
put off until the following three chapters. Now the benefits of such a negotiation-based methodology are
presented.

2, Evaluation

The MPD methodclogy is based on the six basic assumptions summarized in figure 13. The follow-
ing retorical evaluation presents two research perspectives which support these assumptions and the ben-
efits which they derive. Only recently has software engineering research explicitly advocated negotiated
design; however, even moderate positions implicitly support negotiated design. Conversely, decision sci-
ence explicitly provides both methodology and automated means for negotiations; however, their argu-
ments for negotiations also carry over to design. Next, these perspectives are considered in tum.

2.1. A Software Engineering Perspective

Software engineering methodologies are largely concemed with increased productivity and quality.
Solutions are typically based on divide and conquer. The design process is decomposed into smaller,
independent problems, each of which is solved by a designer, and then composed to form the final solu-
tion. Methodologies vary on methods and orderings of their decomposition and compositions. However,
all are intended to (1) increase parallel design activity, (2) simplify individual design. Additionally, some
may include mechanisms which provide for: (3) design rationale, and (4) design recuse. Negotiated
design provides similar benefits.

2.1.1. Parallelism

Functional decomposition and object-oriented design are examples of divide and conquer method-
ologies. First, abstract module interfaces are fixed. Next, designers, in parallel, fulfill the interface

« Stakeholder preferences are necessary for effective automated negotiation.

« Preference hierarchies are an effective means of representing stakeholder preferences.
+ Independent design aids individual preference understanding.

« Independent design allows for maximal parallelism.

« Design conflicts are characterized as stakeholder preference contlicts.

= Preference conflicts are resolved by choosing mutually acceptable compromised and/or substituted val-
ues.,

Figure 13, Methodology Assumptions.

CIS-TR-93-10 32

specifications. Finally, the modules are combined to form the finished sofiware. Such methodologies gain
from the rigid interfaces which allow parallel development and comparimentalizes simple errors and
their fixes 10 a subset of modules.

Negotiated design has the benefit of parallel design. The MPD methodology calls for independent
design based soley on individual perspectives. Clearly, this allows for maximal parallelism between
designers. However, in some cases, designers waste their effort constructing design components which
must be removed during integration.

There is a tradeoff between the a priori fixed interfaces of modular decomposition methods and the
laissez faire style of independent design. Fixed interfaces guaraniece simple module integration at the
expense of design flexibility. Adaptable perspectives allow maximal design flexibility at the expense of
module integration complexity. I choose the latter not only for its flexibility, but also for its superior
rationale modeling (§2.1.3) and decision support (§2.2).

2.1.2. Simplicity

Simplicity is another argument for compositional methodologies. Large problems are decomposed
into smaller problems, each of which is simpler to solve. Experts take advantage of composition. They
are observed retriecving abstract templates, instantiating, composing and modifying them to solve prob-
lems. Similarly, negotiated design can benefit from composition. Designs can be created via composition
of simpler components.

Additionally, negotiated design need only model an individual's perspective. A more traditional
method is not so simple. It requires that all individual perspectives be combined into a single require-
ments model, Subsequently, these global requirements are decomposed into modules for design. In con-
trast, negotiated design explicitly represents multiple requirements perspectives. Hence, it supports two
complementary forms of abstraction: (1) module abstraction, and (2) requirements abstraction. Negoti-
ated design methodologies benefit from the simplicity of compositional design as well as simplified
requirements and assisted requirements integration.

2.1.3. Rationale Record

Design rationale provides the ability to answer “how" a design came 10 exist. Comprehensive
design rationale answers “why” a design exists as it does. Rationale may simply contain the sequence of
operators applied to arrive at a design. More detailed rationale lists alternatives considered for each
design decision along with criteria used to choose among them. The more comprehensive the rationale,
the simpler the task of answering “how™ and *why” questions.

Often, designs are the result of compromises or other negotiation methods. The methods take mul-
tiple, conflicting, perspectives and derive a solution. Often, such solutions make no sense on their own,
but must be understood in the context of the negotiations. For example, many cars only have a driver’s
side air bag. By itself, this makes no sense considering the goal of passenger safety and the associated
components of all passenger seatbelts. However, it is easily explained as a compromise between safety
and costs; all passenger air bags are deemed too expensive for their perceived benefit. Hence, only a
methodology which represents these multiple perspectives and their negotiations will be able to ade-
quately explain such negotiated design components.

33 CIS-TR-93-10

2.1.4. Design Reuse

Design reuse provides the ability to use past efforts to solve current problems. In its simplest form,
problems are characterized according to parameters. Solutions are derived or retrieved according to their
parameters. More sophisticated reuse mixes new goals with past problems, Where applicable, old
derivations are used directly or are modified, otherwise new derivations are constructed. Generally, this
paradigm is based on: (1) capture and storage of design abstractions and (2) retrieval and modification of
such abstractions.

As a design paradigm, reuse has been productive in well understood domains. For example, primi-
tive programming tasks such as sorting and searching[70]. However, this paradigm must be extended for
exploratory design. In exploratory design, overlap between design problems is slight. Also, design goals
change as solution alternatives become apparent. Hence, even where significant design abstractions can
be captured a priori, the bulk of the exploratory design lies in modification. For tasks such as library
design, this means understanding policies, their derivation via negotiation, and their effects on altemative
designs. Therefore, reuse will become more viable as rationale records become more complete, thereby
enabling accurate matching and modification of previous abstractions 10 new situations.

The integration mechanism used in negotiated design provides a possibility for an expanding the
role of reuse. Since negotiated design provides the rationale to understand previous designs, old designs
may be modified to achieve new goals. Additionally, the integration mechanism may provide a way to
combine vastly differing designs (e.g., different domains) to achieve a new goals[74]. This is because in
both design and reuse, one must: (1) analyze current design(s), (2) characterize designs in terms of their
goal achievement, (3) derive a conllict free goal set, and (4) derive a satisfying design. The integration
mechanism of negotiated design provides a single vehicle for both design via integration and reuse via
integration.

2.2, A Decision Science Perspective

Decision science is concerned with describing and perfecting decisionmaking methodologies. From
a decision science perspective, negotiated design has two important decision characteristics: (1) prefer-
ence maximization, and (2) technological closure. From these characleristics, one can rederive the
maxim: “two heads are better than one”. That is, multiple perspectives can produce better decisions than
single perspectives. Unfortunately, the reverse can also be true due to social influences. However, if one
assumes accurate, honest, cooperative stakeholders, one can apply the following decision theoretic argu-
ments to show that MPD can produce better designs than those from a single perspective.

2.2.1. Preference Maximization

MPD is based on the basic assumption of decision theory: individuals that engage in a rational
decision method will produce better results than individuals who do not. A rational decision method for
an individual consists of enumerating goals and preferences, identifying altematives, evaluating alterna-
tives, and choosing the best altemative. Similarly, groups benefit from the enumeration of multiple goals
and preferences followed by assisted trade-off analysis.

Groups benefit from the independent description of individual goals prior to negotiation. Simply
enumerating individual preferences identifys the decision context and prevents compromised goals
before search. That is, adding a perspective can increase the decision context, thereby introducing new
alternatives. For example, given the current goal of a two week loan period, one can expand the decision

CIS-TR-93-10 34

context by introducing a six month loan goal. Even though the two goals may conflict, hence apparently
reducing the mutual feasible altenatives to nil, the decision context contains more alternatives. In such a
situation, it is the task of negoliation to determine if the two goals do indeed conflict. That is, do the
stakeholders really hold mutually exclusive goal, or will they accept both goal states. If the latter is true,
then the group benefited from the indcpendent goal descriptions. New altematives enrich the decision
context by providing more choice and allowing decisionmakers to reconsider their preferences. Once all
goals and preferences are identified, a decision procedure can identify the best alternative.

Unfortunately, preference enumeration followed by maximization is gencrally not part of design.
Few researchers consider a single set of preferences, hardly any consider multiple conflicting prefer-
ences. Such preferences can help explain a design and expand the alternatives, They can also produce
novel alternatives.

2.2.2. Technological Closure

Innovative designs can be derived using the negotiated design paradigm, First, individuals derive
designs from their own goals and preferences. During integration, the group attempts to reconcile con-
flicting components. Rather than simply choosing one component over another in “tit-for-tat” fashion,
individuals demand that their components be included in the final design. To do so, they may be able to
conditionalize the way components conflict (e.g., on a contingency basis) to combine the components. In
the past, this method has been used to predict new technologies[41]. More recently, it has been sug-
gested as a paradigm for introducing novel altematives through “dissolution”[92]. This method can
assist resolution generation as part of negotiated design.

Design novelty is derived from two sources: individuals and the integration of their designs. First,
multiple individuals seeking similar solutions increase the chance that someone will generate a novel
design. Second, individually different design fragments can be joined in an integrated design by condi-
tionalizing conflict occurrence[41,92). Rather than choose one conflicting design fragment over another,
rather than compromise an individual’s satisfaction, one can derive a novel design by combining “con-
flicting” design fragments. Through negotiation, “conflicting” design fragmentis can be combined to form
novel designs.

As an example, consider figure 14. It illustrates perspectives of the patron and librarian. The two
axies each represent their preferences over the loan period; preferred loan periods are toward the top
right comner. The shaded line through the plane represents both stakeholders choosing the same loan
period; hence, it describes obviously feasible alternatives. The remaining unshaded region is infeasible,
since constraints (preconditions) of the loan operator prevent different loan periods from simultaneously
being part of a design. The compromise in part (a) illustrates the patron appeasing the librarian to resolve
the conflict. Alternatively, the librarian could have appeased the patron by redefining his perspective: by
reordering his preferences, the librarian could make six months become the preferred feasible alternative.
Best of all, the stakeholders can create a novel design by conditionalizing their constraints. By predicat-
ing how “conflicting” entities are to be part of a design, conflicts can be dissolved. In the case of two
conflicting loan period, one can predicate their use on the type of patron: faculty patrons receive a longer
loan period while student patrons receive shorter a loan period. Part (b) of figure 14 illustrates such a
dissolution. It represents the integration of the two loan periods.

Multiple preferences aid forming a “technological closure”[41). Each perspective identifies related
criteria associated with an abstract, but apparently infeasible, object. Often, it is a matter of technological
ingenuity before the infeasible object becomes feasible. Jantsch used this observation for technological

35 CIS-TR-93-10

(@) (b}

In part (a}, the patron compromises the preferred six month loan period by accepting the iwo week
period. In part (b}, stakeholders dissolve their conflict by conditionalizing constraints, thereby al-
lowing both six month and two week loan periods in the design.

Figure 14, Novelty Induction from Selfish Design,

predication. For example, given the introduction of the jet engine during WWII and the existence of air-
planes, it became of matter of ingenuity before the flying V2 bomb became feasible. This same method
can be used in a generative fashion. Using operator descriplions, one can analyze constraints and predi-
cates to suggest possible fixes to allow infeasible aliernatives o become feasible. Hence, multiple con-
flicting perspectives can induce innovative designs.

In negotiated design, individuals seck designs before compromising their perspectives. In contrast,
a decomposition methodology compromises perspectives before design construction when perspectives
appear to conflict. MPD ignores such a priori pruning and secks designs in any case. This strategy wins
over the preventive strategy when: (1) the a priori knowledge is wrong (e.g., nonconflicting designs can
be constructed), or (2) the a priori knowledge becomes wrong (e.g., a novel design is invented which sat-
isfies the “conflicting” perspectives), or (3) stakeholders change their preferences during design, thereby
reaching a design which may have been pruned under a preventive strategy[40, 81,92). Moreover, indi-
viduals who construct their designs may raise their commitments, thereby becoming less agreeable to
compromise. However, this may increase the likelihood that they will seek a novel design which satisfies
alf perspectives.

CIS-TR-93-10 36

CHAPTER HII

MODELING INDIVIDUAL PERSPECTIVES

Stakeholder goals and preferences must be formally represented before an automated system can
reason about them. In the Oz representations, a goal is first represented as a choice of an item from a
domain, while a preference is an ordering of items within a domain. Hence, o represent goals and prefer-
ences, one must represent domains of items. In Oz, items are operators, objects, and relations used to
represent the area of concern. A set of such domains used to characterize an arca of study is called a
domain model.

To represent individual perspectives, one: (1) creates a generic perspective, or domain model, (2)
creates copies of the domain model for each individual, and (3) specializes each copy by attaching each
individual's goals and preferences. Afier individual designs arc constructed to satisfy the perspectives,
the designs are integrated. Through the design integration process, the group requirements are created.
Finally, a group design is constructed.

Figure 15 illustrates this Multiple Perspective Design process. The figure shows a screen image of
the Oz design tool. Rectangles containing the five geometric shapes depict domain models. The internal
shapes represent, from left to right, initial conditions, operators, objects, relations, and goals. Circles
linked below a domain model depict a design created from the model. Designs which link into a trape-
zoid depict an integration; the trapezoid contains negotiation information. The small geometric shapes
above domain models, designs, and integrations depict Oz development operations (e.g., Create—
Model CreateDesign); they record the order and application operations used in the development
process.

Figure 16 summarizes the process of perspeclive acquisition. In this process, designers formally
represent the goals and preferences of stakeholders. The desired states are represented as goal states
which the automated planner understands. Model preferences are used to guide the planner when choices
are available (e.g., among alternative operators). Finally, Oz allows the specification of alternative reso-
lution methods. In this chapter, two such methods are described: interactive resolution and a priori reso-
lution. However, Oz currently only supports interactive resolution. (There is a Lisp function interface
for programmers who wish to apply an alternative method.)

Stakeholder perspectives contain the input required by Oz’s automated planner to create designs.
Additionally, these domain models contain the basis for Oz’s resolution generation method. Hence, each
perspective must have the same initial conditions, operators, objects, and relations; furthermore, these
items must be organized in the same hierarchies. That is, the specialized domain models must be the
same except for the preferences. In the face of conlilict, the individuval preferences over the operators,
objects, and relations are used to synthesize resolution alternatives.

In sum, Oz’s perspectives represent:
« a domain model of operators, objects, and relations
« goal states

CIS-TR-93-10

37

uo | 3avIa3ul

LLE 3YEL L4BIyun
JnCART] uauag

@3cjleiu|

[PA00Ey "Yuinada | arving} 200

14ungyrog s | Jesbaquy) | g
LT TR R T
{31705 | 3pou) |18
v 1S yerg) v 1g]
W IRIBIWLTIVN

84004300
Sps0dIY

P07

<0

Figure 15. Oz Screen Depiction of Group Design.

CIS-TR-93-10 38

(1) Describe Goal States
Describe desired states using def_establish and undesirable states using def_avoid. Optionally, order o
scale these goals indicating the preferred order of relaxation in case of conflict.

(3) Describe Model Preferences
Modify the domain maodel 1o reflect individual preferences concerning opsralors, objects, and relations. The
functions, def_mod_XX, where XX is a operator, object, or relation, medify such preferances.

(4) Dascribe Resolution Method
Optionally, define the resolution method using def_resolution_method. Of the two described methods, in-
teractive and a priori, only the intaractive is implemented.

Figure 16. Perspective Acquisition in Oz.

« (optionat) preferences of alternative goal states

« preferences of domain model components

» (optional) resolution method

Next, Oz perspective representations are described.

1. Model Construction

Model construction consists of representing domain operators, objects, and relations. Perspective
acquisition consists of specializing the domain model by attaching goals and preferences. This section
presents model construction, while the following presents perspective acquisition.

Oz model construction is greatly influenced by the the automated designer. Oz uses the abstract
planner developed by Anderson and Farley, called OPIE[2]). OPIE automatically creates a plan (a.k.a.
design) from a domain model and goals. The next subsection summarizes research by Anderson and Far-
ley on the operator hierarchy construction.

1.1. Domain Operators

OPIE domain operators are consistent with STRIPS-style planners(64]. Each operator contains
three lists of add, delete, and persistence relations. The term persistence is used for relation instances
which must exist before, during, and afier operator application. A fourth list, the object list, specifies the
types of objects found in the other lists. Figure 16 illustrates the library borrow operator.

Operators are defined using the def_operator Lisp function. Specializations are automatically
determined by OPIE’s classification algorithm. However, the objects, persistences, deletes, and adds

{def_ operator "Borrow_Resource"
:description "A loanable RESCURCE is LOANED to an AGENT for LOAN PERIOD."
:objects ’ (agentl agent2 resourcel timel time2 placel loan_periodl}
:persistences
* {{loan_period{agentl resourcel placel timel loan periodl})
{time_is({time2)})
:deletes ‘' ({possess{agent2 resourcel placel timel loan_periodl})}
:adds ‘ ((possess (agentl resourcel placel time2 loan_periodl})
{on loan{agent2 agentl resourcel placel time2 lcan periodl})})

Figure 17. A Library sorrow Opcrator.

39 CIS-TR-93-10

must be defined explicitly. The syntax for the system descriplion is:

Syntax:

(def_operator <name>
:description <string>
tobjects (<object>*})
:persistences (<relation>*)
tdeletes (<relation>*}
:adds (<relation>*))

1.2. Operator Hierarchy Construction

OPIE's operators are stored in a taxonomic abstraction hierarchy. Primitive operators form the
leaves, while abstract operators are formed representing common added, deleted, or persisient relations.
Figure 18 illustrates the abstraction of several library operators. Such abstraction is the result of pairwise
comparison and is automated[2].

From individual operator definitions, an operator generalization hierarchy is formed. It is based on
the similarity of operators according to their lists of relations and objects. Operators may differ if they
have: (1) identical relations names but use different objects, (2) identical objects but within different rela-
tions, (2) or have an overlap of relations and objects.

Figure 18 illustrates operators associated with library loaning. The three operators below GET_LOAN
all have on_vroan in their add lists. They are also grouped by common relations on their deletes and per-
sistences lists.

The notation of figure 18 may be intuitive. The relations on the right of an operator are added after
operator application; relations on the left are deleted. Persistence relations are listed below an operator;
they must exist before, during, and afier an operator application.

Figure 19 presents the operator generalization algorithm. It creates a hierarchy of related operators.
However, if operators do not share relations, they will be placed in a separate hierarchy. Hence, Oz's
domain model contains sets of operator hicrarchies. Seef2] for more details.

1.3. Object Hierarchy Construction

The object hierarchy simply classifies objects into categories. For example, a RESOURCE has special-
izations BOOK, PERIODICAL, and sPECIAL. Similarly, GRAD, UNGRAD, and FACULTY are specializations of
parroN. Figure 20 illustrates how such categories are described.

Relationships between objects can be described via the object hierarchy, This hierarchy is used to:
(1) allow the description of abstract objects, and (2) describe altemative objects for conflict resolution.
When an abstract object is part of a goal, it, or any specialization of it, may be established in the design.
In this way, goals containing abstract objects allow multiple acceptable concrete designs.

The object hierarchy is also used during conflict resolution. If a goal cannot be established, gener-
alization attempts to achieve a related goal. One way 1o do this is to use the same relation, but consider
alternative yet similar objects. The object hierarchy provides this information. Objects closer in the hier-
archy are consider more similar than those farther apart. If a goal cannot be established, generalization
initially considers siblings objects. In this fails, more remote objects are considered. This is one way in
which substitute goals are established in the face of goal failure. Hence, the object hierarchy not only

CIS-TR-93-10

40

posaoes(agent] reource) >

S enJoan{agent resotros loan_period]

Figure 18. Operators which Produce ov_voan,

41 CIS-TR-93-10

For each operator NEW in the input set:
Let set S be those leaf oparators of the hierarchy which
shara at least one add relation with NEW,
INSERT(NEW,S).

Define INSERT(NEW,S)
For each operator OP in S, GENERALIZE{NEW,OP).

Define GENERALIZE(NEW,OP)
if NEW is a specialization of OP,
Then LINK_PARENT_CHILD(OP,NEW).
Elself NEW is a generalization of OP,
Then LINK_PARENT_CHILD{NEW,OP) and
INSERT{NEW, parent of OP).
Elself NEW and OP share relations,
Then create TMP with their common relations,
tf TMP matchas existing absiract operator AB,
Then LINK_PARENT_CHILD{AB,NEW) and discard TMF.
Else LINK_PARENT_CHILD(TMP.NEW),
LINK_PARENT_CHILD{TMP,OP), and
INSERT(TMP,parents of OP).
Else {New and OP have no shared relations}.

Figure 19. The Operator Generalization Algorithm.

(def_object “"rescurce"
:description "Resource types."
:specializes ' {"book" "periodical" "special"))

(def_object "patron"
tdescription "Patron types."
tspecializes ' ("grad" "ungrad" "faculty"}}

Figure 20, The Description of Some Library Object Hierarchies.

describes how relations are abstracted, but how generalization is sought.

Using the hierarchies as a basis of similarity, and hence substitution, is a common theme in the Oz
approach, Oz uses the same approach to describe relations and allow for their substitution, Additionally,
one could apply the same approach to operators. If opcrators themselves were allowed as goals (e.g., the
goal is use Borrow) then one could use the operator hierarchy 10 suggest altemative operators both during
individual design and during integration. Insiead, Oz only allows the statcment of goal states, thereby

indirectly specifying operators. Hence, Oz only negotiates over goals, thereby indirectly affecting the
choice of operators.

Objects are defined using the def _object Lisp function. Specializations are defined explicitly
with the : specializes keyword. The syntax for system description is:

Syntax:

(def_object <name>
:description <string>
:speclializes (<object>*})

CIS-TR-93-10 42

1.4. Relation Hierarchy Construction

Relationships between relations can also be described via a hierarchy. The relation hierarchy is
used to: (1) allow the description of abstract relations, and (2) describe alternative relations for conflict
resolution. When an abstract goal is part of a perspective, it, or any specialization of it, may be estab-
lished in the design. Abstract goals allow more operators to be applicable during design.

The relation hierarchy is also used during conflict resolution. If a goal cannot be established, gener-
alization attempts attempts to established a sibling relation. In this fails, parent relations and their sib-
lings are sought. In this way, substitute goals are established in the face of goal failure. Hence, like the
object hierarchy, the relation hierarchy not only describes how relations are abstracted, but how general-
ization is sought.

Figure 21 illustrates two ways in which a relation hierarchy may be specified. In either case, the
relation name and its objects are specified. In the casc of possEss, its specializations are explicitly
described. In the case of LOAN_PERTOD, all relations which can be made from the specialization of the
objects in the object list (as defined by the object hierarchy) are formed into a hierarchy whose root is
LOAN_PERIOD (AGENT RESOURCE PLACE TIME LOAN_PERIOD). Figure 22 illustrates a portion of the
LOAN_PERIOD relation hierarchy.

The significance of an explicit resolution description will become apparent during resolution gener-
ation. However, the choice of explicit, as opposed to implicit, does not effect the design process. The
relation POSSESS (LIBRARY RESOURCE PLACE TIME LOAN_PERIOD) defined in the figure 21 implicitly
also allows relations using the specializations of its objects. An operator using it in a relation list can
always be specialized based on the object hierarchy. However, it does effect resolution. Oz only uses the
explicitly described relations during resolution gencration, Hence, explicit relation description forms the
basis of a simple resolution control mechanism.

Relations are defined using the def_relation and def_relation_all Lisp functions. Spe-
cializations are defined explicitly with the :specializes keyword or through the
def relation_all function. The syntax for system description is:

Syntax:

(def_relation <name>
:description <string>
tobjects (<object>*)})
:specializes (<relation>*}))

(def relation "possess"
:description "Agent physically has resource.”
;objects ‘ ("agent" "resource" "place" "time" "loan_period"}}
:specializes ’' (("possess" (library resource place time loan_pericd))
("possess" (patron resource place time loan_period))))

{def relation_all "loan_period"”
tdescription "A patron can borrow resource for a loan period DURATION"
:objects ‘ ("agent" "resource" "place" "time" "loan period"))

Figure 21, The Description of a Library Relation Hierarchy.

CIS-TR-93-10

43

[TLTCE T WELTY §

LY 346y LyBpyun
AN0AGTF USIIDG

(perzd T ueo) |e2popad dyjnoey)porsad™ b.
{poLIadTuRoe| |Ri3ade MINIe))poliad D

(poL42a-ueD| H00q A3nIes)po

(Poraad TR HOOq pEIS PO Asd” HEO)
(polisd unoy [B2IpaIa2d pedB)pol

(pol47aTueo| |R123ds vuuu_n« ‘v

(potard ueo| 3TIN0sas pesb)poriad™ @

uu.vor_un peadun)poliad "o

»/.._ %00q pe.un)ps

(PO1J20”URO| 2TUN0SIA AV NDBY R
(POLIZd"UBD| 33UN0SIS PEDE

{poadueo] Nobg

{powad ueo] ey

(poraaa™

(pora2d”ueo] 2300332 uoaed)polaad” b.

(PO120TUED| P2IN0FRA WUFOB)POLIFET YO

[essuvis e g’ (wponNiZall|

Figure 22. An Oz Depiction of Library Relation Hierarchies.

CIS-TR-93-10 44

1.5. Domain Preferences

After the hierarchies are specified, they are manually modified to contain the goals and preferences
of stakeholders. In annotating the hierarchies, Oz distinguishs between attributes and preferences. An
ordering of items is a preference. For example, objects can be ordered. However, item themselves can be
annotated with attributes. Attributes are nonfunctional annotations used to differentiate items along mul-
tiple dimensions, or criteria. For example, operators may have different preferred orderings based on dif-
ferent attributes. An ordering based on availability may be the inverse of that based on cost. Next,
attribute definition is described. Preference definition follows.

1.5.1. Attributes

Attribute definition has two parts: name and range, and objective. They can be defined as part of
the generic model definition or as a modification of modeled operators, objects, and relations. For exam-
ple, the loan period relation can be defined with an aitribute in the generic model as follows:

{def object “loan_period"
:description "A period for which loans hold. Duration specifies length.")
:attributes ' (;;Ranges are the same for all models.

{(duration :min 0 :max 365))}

Similarly, the duration attribute could have been defined as the modification of the loan period relation
during perspective acquisition as follows:

{def_mod_object "loan period"
:description "A period for which lecans hold. Duration specifies length."
tattributes ' (;;Ranges are the same for all models.

{(duratien :min 0 :max 365 :objective 14}))

Notice, that during perspective acquisition an attribute prefercnce was also specified. Generally, there’s
no reason to define an attribute in a stakeholder’s perspective unless the stakeholder has some associated
preference,

Attributes (and preferences) are defined using the def XX and def_mod_XX Lisp functions
(where xx is one of operator, object, or relation}). The syntax for system description for including
attributes and preferences are the same as those for def_operator, def_obiject, and def_relation {and
their def_mod’s), except for the addition of the attribute clause which is defined below.

Syntax:
tattribute (<attribute-def>*}

<attribute-def> :: (<name> :min <value> :max <value> :cbjective <objective>}
<objective> 13 <value> | min | max

45 CIS-TR-93-10

1.5.2. Preferences

Preferences are used to create partial orders over operators, objects, and relations. An order can be
direct, as in the following description of access relation preferences, where oN_toan is preferred over
OWN.

(def meod_relation access (patron, resource)
iorder ‘ {own (patron, resource}
on_lcan (patron, resource, loan_period))}

(Items toward the right are preferred over items toward the left.) An altemnative description of this order-
ing is to attach an ordering value 10 cach relation:

{def_mod_relation access(patron, resource)
;order-by-value * ({own (patron, resource) 40}
{on_loan (patron, resource,loan_period) 60})}

It is possible to describe such a preference since own and oN_LoaN are part of the same relation hierarchy,
i.e., they are children of access. In contrast, Oz does not allow the a priori description of preferences
between relations in different hierarchies, For example, assume SECURE_RECORDS and XNOW_RECORDS are
in different relation hierarchies. In Oz, one can not state, a priori, that one prefers secured records over
known records (if the two conflict). However, assuming plans which satisfy the two relations do conflict,
then during conflict resolution one can choose which goal one wishes to achieve.

Preferences can be implied, as in the following description of loan period durations, where longer
durations are preferred over shorter durations,

{def_mod_object "loan_period"
tdescription "A period for which leocans hold. Duration specifies length."”
rattributes ' (;;Ranges are the same for all models.

{duration :min 0 :max 365 :;objective max)})

In Oz, a preference is defined by an order among specializations of an item, or as an objective of an
attribute. By using the : oxder keyword of instead of the : specializes keyword, specialized items
{operators, objects, and relations) are associated with a preference of use. Altemnatively, one can use
attributes to associate multiple orderings of items. An attribute, like duration above, can have a specific
preferred value (.e.g., 14) or a preferred direction of satisfaction (e.g., max or min), Associating maxi-
mize with loan period duration describes the preference for the largest values possible within the range of
values. These are the only ways Oz currently understands preferences.

An direct expansion of Oz’s description of preferences would be to allow the statement of abstract
relations using maximize or minimize. For example, given the following description of resource objects
and their preferred order of use, one could state a goal differently.

{def_object "resource"
tdescription "Resource types."
:order ' {"special” "bhook"™ "periodical"})

Instead of ON_LOAN (PATRON, RESOURCE, LOAN_PERIOD}, one could state
ON_LOAN (PATRON, max, LOAN_PERIOD), thercby implying the desire to maximize the preference for a type
of resource loan. However, while Oz does not understand goals stated in this fashion, ordering resource

CIS-TR-93-10 46

objects has the same effect during resolution.

1.5.3. Preference Consistency in Hierarchies

The interaction of the three hierarchies can be seen in the above example. A preference in one hier-
archy often implies an ordering in another. For example, the above resource ordering implies the follow-
ing relation hierarchy ordering:

{def relation "on_loan"
iobjects ’ ("patron”, "resource”,"loan period")
rorder ‘ (("on_loan" (patron, special, loan_period))
{("on_loan" (patron, book, loan period))
{"on_loan" (patron,periodical, loan_pericd)))}

Similarly, relation orderings can imply operator orderings. Oz does not explicitly check or resolve incon-
sistencies between hierarchy orderings. Instead, as described in chapier V, it applies relation preferences
and object preferences; it currently does not consider operator preferences.

1.6. Functional Goals

Functional goals describe the desired result of the design process. The planning system will attempt
to find a plan which achieves the desired goals. Optionally, one can use relation preferences to describe
alternative ways to “back-off”’ the desired goal state. (As noted in section 1.5.2, such a priori preferences
can only be specified within a relation hierarchy.)

Functional goals are defined using the def_establish Lisp function. The syntax for system
description is:

Syntax:
{(def_establish (<relation>*))

Example :

(def_establish
* ({on_loan(libraryl patronl rescurcel placel time2 loan_periodl})})

Notice, in the above example, objects have numbers appended to their names. These numbers indicate
the desire to achieve the on_LoaN relation with specific instantiations of objects. For example, PATRON1
refers to a specific patron, not the abstract class of patrons.

In addition to specifying the desire to achieve particular goal states, one can specify the desire to
avoid particular states. Such states are specified similar to achievement goals. These avoidance goals are
typically used in conjunction with achievement goals. They indicate to the planner that the goal states
should be achieved, but without the achievement of the avoidance states.

Similar to achievement goals, avoidance goals are defined using the def avoid Lisp function.
The syntax for system description is:

Syntax:
(def_avoid (<relation>*)}

47 CIS-TR-93-10

1.7. Preference Tradeoffs

Preferences are used during design and integration to guide decisions. During design, altemative
component specializations may be available. Preferences are used to choose among them. Similarly, dur-
ing design some functional goals may block the achievement of others. A priori functional goal ordering
can be used to choose among them. If all preferences do not indicate the same aliernative (incompatible
preferences), one could choose at random, have a human make the choice, or apply a predefined proce-
dure to make such choices. One can apply this approach to both design and integration. However, Oz
only provides support for human intervention via an interactive resolution choice aid. To contrast this
with a more conventional approach, a predefined decision procedure using utility analysis is presented.

1.7.1. Interactive

Preference tradeoffs can be acquired during conflict resolution. They describe the relationship
between preferences. For example, cost preferences may have a higher priority than aesthetic prefer-
ences. Rather than specify tradeoffs a priori, they can be acquired when they are needed, i.e., when a
conflict arises. For a particular design, two preferences may never be in conflict. Hence, specification of
their tradeoffs may be wasted effort; similarly, specification of the preferences themselves (the ordering)
may be wasted. However, given a conllict, both preferences and their tradeoffs can be used 1o choose a
resolution. Oz’s interactive resolution method prompis for tradeoffs only during conllict resolution. And,
while Oz allows the specification of preferences (i.e., the ordering of components), these 100 can be put
off until conflict resolution.

When there are alternatives, and preferences are incomplete or incompatible, an interactive aid is
used to derive tradeoffs. Oz implements Zeleny's Interactive Decision Evolution Aid (IDEA)[92]. Fig-
ure 23 illustrates how IDEA graphically represents nondominated altemnatives using bar diagrams.! On
the left is a normalized scale. A set of bars represents an altemative. The shading of a single bar repre-
sents the achievement that an alternative provides to a preference. Other possible degrees of achievement
for a preference are indicated with hashed marks. A group of bars represents all the preferences of an
alternative. The range of a bar represents the range of a preference. (For example, in the first preference,
zero percent is not feasible, while in the second preference 100 percent is not feasible.) The higher all
values are, the better the altemative. The ideal is achieved when all preferences are at the top of their
range. The anti-ideal is achieved when all preference are at the bottom on their range.

Initially, all preference achievements are at zero (the anti-ideal). The decision maker moves toward
the ideal by increasing the weight on particular preferences. Telling IDEA to increase achievement of the
first preference causes the system to search through the alternatives and display an altemnative with
higher achievement of the first preference. By manipulating the preference view of the aliernative set, the
user can consider preferences of various altemnatives. Interactions surface when increasing a preference’s
achievement decreases another. For example, moving from (b) to (c) in figure 24 shows the interaction
between the first and second preference. Such interaction indicates that there does not exist an altemnative
which achieves both preferences at their highest level. Assuming a complete and accurate resolution gen-
eration procedure, this indicates that simultaneous achievement of all preferences is not feasible. Hence,
the user must decide which combination of preference achievement they want.

'While Zeleny outlined IDEA, its details and implementation remain unexplored.

CIS-TR-93-10 48

B s

B e

il

Eanzshoseny
BN

(n) (b) () (d)

Figure 23. Using IDEA for Preference Weight Exploration.

The Oz implementation of IDEA displays:
(1) The relation containing the conflict.
(2) The conflicts within the relation.
(3) The initial preferences for the conflict,
(4) Derived resolutions containing their relations and preferences.
Additionally, other information concering the conflict can be had through queries to the system.

Figure 24 shows an screen dump of Oz's interactive aid. The Oz implementiation differs from
Zeleny’s IDEA in that:

(1) Aliematives are not created through interactive increases in preferences, instead all altematives
(for a given generation method) are displayed at once.

(2) Altemative values for preferences are not hash marked on each preference bar. Instead, different
preference values can be seen by viewing the displayed alternatives.

(3) Muliiple preference perspectives are displayed. Additionally, their average is displayed (preceded
by the “&" symbol).

Also, Oz displays the averaged preferences for: (1) the attributes of the relation (e.g., s0N_Loan), and (2)
the preferences over the relation itself (e.g., PsoN_Lroan). When there are no preferences in these two
cases, the bar for that attribute is shaded at 100 percent (as shown in the figure).

When the decision maker has reached a satisfactory weighting, the associated aliemative is chosen.
One can consider this process in terms of utility analysis. Each preference can be associated with the
numerical value of its percent satisfaction (e.g., 50 for 50 percent). One approach is to maximize the
summation of all preferences. However, some preference may be more important than others. To indicate
this, one can multiply each preference’s numeric value by a weight between zero and one; preferences of
less importance have less weight. Using such a weighting scheme, the “best” alternative can be recog-
nized by its high score. One can interpret the interactive procedure in this light. In choosing an alterna-
tive, the decision maker has implicitly settled on a weighting of preferences; those preferences with less
shading receive less weight. The following section describes how such a weighting scheme may be

CIS-TR-93-10

49

diay

o8y

I3
pao
LT

woy jorasqul

LiH 4By 48 4Ln
qnode usaaag

958 j403U|

[d el b
13Uy Reg fun g yedaqur) [au]

£.407€.4300
Ep4033Y

eutay

W8} |yS 1 yun
PaMULUN 4SS (UBIH
£32NS01D UL YOG UELH
83Ul 32300 B} LYBLH

sUOLINLBEEY Hamy
BUOLINLOSBY HIELYN
a0y uosdua]
ugyIN|oRE |
[LTETT Y. P)
Jayyouy ppy
o yaied
g 4I3ed

_H

(TPOLI2d"uED | TPOLIadTUED| [aWIy T298|d [PINesad Tuo.ed [Aiedq)

|

Ueo| ud

BEE Ak aeow
C manc

vt b
BE repRE

Figure 24, An Oz Depiction of IDEA,

CIS-TR-93-10 50

defined a priori. However, I believe the interactive method is superior since: (1) only necessary prefer-
ences are acquired, and (2) preferences are acquired in the context of the conflict.

1.7.2. A Priori

One can apply an additive utility model to choose a resolution. First, one needs to specify compo-
nent preferences. Next, one needs to specify tradeoffs between those preferences. When a conflict occurs,
one can choose a resolution by picking the resolution whose summed weighted preferences have the
highest value. (In the case of ties, one is chosen at random.)

Here, it is assumed that preferences have been specified as described in the previous sections. Now,
one needs 10 describe: (1) individual tradeoffs, and (2) perspective tradeofTs.

To describe individual tradeoffs, one needs to divide all preferences into subsets which can be
simultaneous involved in a conflict. For example, a model may contain the atiributes cost and risk
throughout the model. Then one can globally specify the tradeoff between cost and risk, e.g., utility = 0.8
* cost + 0.2 * risk. The same can apply to compenent preferences. For example, assume patron special-
izations and resource specializations are ordered. Further, assume they both can be involved in a con-
flict. Then trade-offs need to specified between patron specializations and resource specializations.

For example, consider the following two (simplistic) resolutions of a loan period conflict:

Resolution-1:
on_loan{graduate,book, loan_period.duration=14)

Resolution-2:
on_loan{faculty,periodical,loan pericd.duration=14}

In the first resolution, graduates receive books, while in the second faculty receive periodicals. Assume
books are preferred over periodicals, while faculty are preferred over graduates. Which resolution is bet-
ter? If a trade-off is specified between resources and patrons, the two categories, then a resolution can be
picked automatically. For example, if the tradeoff is defined as: utility = 0.9 * patron + 0.1 resource, then
the second resolution would be picked. Specifying all such tradeoffs for a large hierarchy is time con-
suming, tedious work.

To describe perspective tradeoffs, one can simply use global weights. For example, utility = 0.6 *
perspective-1 + 0.4 * perspective-2. Altematively, one can specify the tradeoff between every preference
in the perspectives. In any case, the general form of the ulility procedure to choose resolutions is:

Max 2P_, Ei“l P b Im e Vome where

p is the number of perspectives,

i is the number of issues (preference domains),

Pn'm is the perspective weight associated with an issue,
Iﬂ'm is the individual weight associated with an issue,

Vn.m is the value of a component.

Depending on how much one relies on global weights, specifying all numbers for this procedure can be
taxing. Instead, Oz simply acquires necded weights during resolution search.

51 CIS-TR-93-10

1.8. An Example

This chapter closes by presenting patron preferences used (o resolve a simple loan period conflict.
{in-perspective ’'Patron)

{def_establish
(en_loan (patronl, resourcel, loan_periodl})
(knows_records (patronl,patzonl, resourcel)})

{def_mod_object lean_period
tattributes ¢ {(duration :min 0 :max 365 :goal max)})

{def_mod_relation on_loan(patron,resource, loan_period)
rorder ’ ((on_loan({patron, special, loan period)}
{on_loan(patron,bock, loan_period})
{on_loan(patron,periodical, loan_period)))
tobjective ‘min)

This patron perspective states that the patron: (1) wanis to achieve patron loaning and patron knowledge
of individual borrowing records, (2) prefers longer loan period durations, and (3) if necessary, prefers
special resources over books, and prefers books over periodicals.

2. Summary

In sum, Oz perspectives represent:
« a domain model of operators, objects, and relations
= goal states
= (optional) preferences of alternative goal states
« preferences of domain model components
= (optionat) resolution method

Using such perspectives, the Oz planner can automatically create designs and the resolution methods can
automatically generate resolutions.

CIS-TR-93-10 52

CHAPTER 1V

AUTOMATED DESIGN

The purpose of design is to show that, given the operator set, it is possible to derive a design which
achieves a goal. For us, design is a sufficiency consideration. Is the current domain model sufficient to
satisfy the goals of each stakeholder’s perspectives? If the answer is yes, then is the current domain
model sufficient to satisfy the goals of all stakeholder’s perspectives simultaneously? The integration
process determines this by checking for design interference. If there is interference, Oz first seeks alter-
native (sub)designs via replanning. If the perspectives inherently lead to conflicting designs, Oz aids the
negotiation of a group perspective free of conflict.

This chapter presents Anderson and Farley’s automated planner. Since the design process itself is
not the main focus, this presentation is brief. First, the design process is presented by way of an illustra-
tive example. Next, incorporation links are described. This part of this design record is required by the
automated conflict detection method (described in chapter V).

1. A Perspective

Below is a simple perspective of a library patron.
{in-perspective ‘Patron)

(def establish
* (zenewed (agentl resourcel loan_periodl)))

The patron has the goal of renewing a resource. To make the example slightly more interesting, assume
that the patron has not yet borrowed any resources. (Perhaps, an analyst wanis to test the results of a
pathological case.)

2. Initial State Description

Below is the initial state given to the planner.
{in-perspective ’'Library-Model)

{def_initial state
' { {possess (libraryl resourcel loan_pericdl})
{own (libraryl resourcel))
{loan_period(patronl resourcel loan periodl)})}

It describes the initial state of the library system as having: (1) one resource which is possessed and
owned by the library, and (2) one patron loan period. The number appended 10 the object categories sim-
ply indicate that these are specific instances of those objects.

53 CIS-TR-93-10

This initial state is represented in the OPIE planning system as being added by an initial operator,
called the INITIAL PRODUCER. The goal from the patron’s perspective will be represented similarly. A
operator, called the FINAL CcONSUMER is placed in the system; it will delete the goal RENEWED (AGENT1
RESOURCE1 LoAN PERIOD1)}. The task of planner is to insert and connect operators between the initial
producer and the final consumer. Such operators constitute a plan to achieve the goal given the current
state of the library.

Figure 25 illustrates the initial and final goal states. On the left, the INITIAL PRODUCER Operator
produces the three initial relation instances. On the right is the single goal state desired by the patron.
Anderson and Farley describe how their abstract partial commitment planner, OPIE, can efficiently pro-
duce plans from such input[2]. Their algorithm, slightly modified, is reproduced in figure 26. The first
modification is to change the success criteria (2b). OPIE must produce a plan containing only concreie
(leaf) operators. 1 have modified OPIE w0 allow the use of abstract operators. If an abstract operator
achieves the required relations within a plan, it will not be refined. This reduces conflicts over objects
which stakeholders have no preference; that is, what they consider implementation details. Additionally,
I have modified the OPIE algorithm to take advantage of prefercnces when there is a choice among com-
ponent specializations (2¢). Rather than arbitrarily work on alternative subplans, the modified OPIE
(will) work on the most preferred plans first. I say will, because only modification 2b is currently imple-
mented. Modification 2b was chosen because it is critical to the resolution process, while 2c is more of a
design concem (albeit possibility effecting resolution).

| possess(library! resourcet loan_periodt) >
e o || foen_pefod{petron tesourced loan_period) > S renawed{agent! resource)
[own{Tborery1 resourcet) >

Figure 25. The Library Design Initial Plan State.

(1) Create a node containing the initial producar and final consumer and place it in the search queue.

{2) Select a node from the queue:
(a) if the search queue is empty, fail;
(b) if the node satisfies the success criteria, report success and return the node;
(c} choose the node based on the preferences.

{3) Refine the noda:
{a) ganerate a child node for each possible refinement;
{b) complete each new node by propagating constraints.

{4) Evaluate each new node:
(a) if any constraint is violated, reject the node;
{b) else, add the node to the search queue.

{5) Gotostep2.

Figure 26. Partial Commitment Planning in Oz’s OPIE.

CIS-TR-93-10 54

3. Partial Commitment Planning

Anderson and Farley’s abstract planner, called OPIE, searches plan states. Operators are inserted
into the plan based on the relations they add and delete. For example, figure 27 illustrates how RENEW
RESOURCE can be inserted to add the final goal instantiation. RENEW REsourck's added relations are
depicted to the right; they will be deleted by the final operator (FINAL_CONSUMER). RENEW RESOURCE'S
required relations are depicted to the left; they must be added earlier in the plan. Finally, as stated in
chapter I (§3.3.2), there may be persistent relations which must be true before, during, and after the exe-
cution of an operator. (RENEw has no persistent relations.)

OPIE uses a simple best first search strategy augmented with heuristics to guide search. In addition,
OPIE’s operator absiract hicrarchy is used to reduce search complexity[2]. Abstract operaiors are
inserted into plans where two (or more) operators may apply; hence, a commitment is made to a subset
of operators. As planning continues, constrainis may naturally eliminaie some operators. Unification of
an operator’s add list against delete lists determines if an operator is applicable.

Figure 28 illustrates the hierarchy from which the renew and Borrow operators were drawn. CPIE
automates design in the following way:

(1) The most abstract operator (RENEW) for achieving a goal (RENEWED(AGENT1 RESOURCEL
LOAN_PERIOD1}) is found.

(2) Ifthere is a preference among the children of O, the most preferred child is chosen next, and step
2 is repeated with the child becoming O. In this example, there are no operator preferences.

(3) If no preference is given among the children of an operator, or if an operator has no children,
then it is selected. Hence, OPIE only specializes when necessary, otherwise leaving designs in
their abstract state.

In this same manner, the rest of the design is completed. Next, the delete {goal) relations of RENEW
become the focus of OPIE’s attention. An operator is found (Borrow) and inserted into the plan. When
finally there are no ununified relation instances, the planner is successful.

Design is completed when all goals are established. Figure 29 illustrates the completed renewal
plan. The two operators, BoRROW and RENEW, are illustrated with their relation unifications (depicted as
shaded links). In this particular case, the patron’s goal created a plan with only concrete operators,

[poesesa(ibraryl resource! loenperiodt) >
Itel | e proapeont mecuce! Bariperod) > S renewed{agent] reouce] loen_period1) |Fhﬂlé
[ownflibrary! resource?) >
renawed(agent! resource] loan periodt) >
possses(egeni! rescurce boan_period) 1
g s || Renew I on joan(agent! resourcel loan_perod1) ~>
possess{agent! reeourcel loan_perodt) >

Figure 27, Insertion of the First Operator.

55 CIS-TR-93-10

poesess{agent] resourcaT)

Get |lorJoan(agent! resourcet loan_periad}}
: Loan |possess{agent! resourcel) >

JorJoan(agent1 resourcel loan_porigd}) ¢ | Buy [own(egent1 resource1)
:ILIPOWBQWH resourcel) > 2 | [possess{agent] resourcel)

[onJoan{agent1 resource loan_periog})
[possess{agent! resourcei}>

E%IIReca]l

Figure 28. Some Library Operators.

However, as shown in chapter I (§3.3.3) plans can be created which contain abstract operators.

4. Incorporation Links

After a design is completed, it will be necessary to understand its derivation. To aid this, Oz keep
incorporation links during plan refinement. An incorporation link (=) is placed in the design record

1 resource] loen_perod| [onJoan{agent! rescurcet WLD;WD'
-posseaa(ageni2 resource] loan_period1 fpossess{agert reecurat-ioin_period1) >

;]mﬂﬂ rescurce bul_pulon‘nz% >
||hmyhd(pmm1 rescurce| l:qu‘bdif)
{own(lorary! mecurcet)

I Rensw | on_jcen{agent! resource! loar_perked1) >
possses{agent! reeourced loan_period1)

Figure 29. The Compleled Plan,

CIS-TR-93-10 56

when a goal, G, requires the establishment of an abstract component, C°, which is then refined through a
series of components (c!, ¢2, ... ¢") to the plan component, c"*’.

Incorporation Link (initial)

GoCocds. o
FUNCTIONAL_GOAL(G) & ESTABLISHED(CC) A
ESTABLISHED(C®) = ES‘TABUSHED(C})/ c} <A

ESTABLISHED(c}) & ESTABLISHED(c]*!) | & & f*!
where 6, = 6, means that given 6, the system inferred and produced 8.

Incorporation links allow one to trace from a plan component, ¢, 10 the functional goal, G, from which it
was derived, Without such links, the multiple inhetitance of the hierarchy would make tracing more diffi-
cult.

The above description of incorporation links allows the trace from a goal, G, through abstract oper-
ator refinement, 10 a primitive operator, c. However, typically the establishment of a goal requires multi-
ple operators at each level of abstraction. So, goals are linked to sets of operators rather than a single
operator.

Incorporation Link (final)

Go{C.)o{d . jo. (. })=>

FUNCTIONAL_GOAL(G) 5% ESTABLISHED({C®...}) A
ESTABLISHED({C®...}) w= ESTABUSHED({,:}...))/ {cj...} o {C.)A

ESTABLISHED({c},...}) = ESTABLISHED({c}*..}) | {c}...} & {c]*!...}

where 6, = % means that given 6. the system inferred and produced BJ

At the most abstract level, a component C‘f is linked to a goal G if:
» €7 produces a relation which unifies with G, or

. Cf produces a relation which is deleted {(consumed) by Cj.’. where Cf is linked to goal G.
All components at abstraction level i linked to goal G form an incorporation link set.

Incorporation links can represent function sharing. In planning for goal G, goal G, may be oppor-
tunistically established. Even when operators €€ incorporated to establish G, coincidentally establish
Gz' incorporation links are formed linking the components to both goals.

57 CIS-TR-93-10

5. A Notational Aside

This section introduces a compact notation for describing the preference hierarchies described in
the previous chapter. Combined with the notion of incorporation links, this notation is used to expand on
the relationship between the hierarchies and the automated planner.

5.1. Component Set Notation

Let C be a set of components (operators, objects, or relations) at abstraction level i, C' = {c), ¢, ...,
c:'}. (C’s will be issues; they will define a domains of conflict.) I'l, the hierarchies, is the set of all C's; it
defines how components may be related to each other via abstraction. Members of o cp are linked to

their parent(s) (c_::ﬂ)C"). A parent, in tun, may be part of a another component set, C*/ = (C’, ... }.
Hence, one can follow links from the root to the leaves of the hierarchies,

5.2. Basic Constraints

Component sets can be constrained. Given a component set C, let ¢, € C, then
Elimination C - {c,, c,, ..., ¢,}

constrains the set by eliminating ¢, ... ¢_from C. Since the hierarchy iiself remains unchanged, it has the
effect of dividing a set into a partial order: C - {c, c,, ..., ¢} is preferred over (¢, ¢,, ..., ¢,}. 1f members
of C are numerical (¢ € C/ ¢ € R), C may be numerically constrained:

Numeric Elimination C - {fc: k<c < l)
The application of a set constraints is written:

NPy o 8,
where ‘" means ¢, - UL, ¢ ¢, € D, the universc of sets.

Finally, component sets can be ordered arbitrarily.
Arbitrary Order C = (c|, c,, ... ¢) [V ¢, ¢ e C, p(cl..cj). where p is a lisp predicate.

In fact, Oz relies on the notations of the previous chapler to derive all orders and eliminations. Again,
this set notation is simply a means of conceptualizing preference descriptions.

Applying constraints to the component sets annotates the hierarchy IT. If ¢ is the set of all con-
straints then, IT\¢ denotes the remainder of IT after constraint application. Also, as an abbreviation, C\
refers the component set, C, after all constraints have been applied.

CIS-TR-93-10 58

5.3. Ordering

One can use the set notation to describe orders. Let fbe a function which orders the members of a
set and ¢, € C then:

Ordering f(S) = (¢, Cps s C,)

Sets can also be partially ordered. Let f be a function which partially orders the members of a set and
€ C,or . = [c, C,, ... cj] where C)C; € C, (The brackets ([]) denole an equivalence class in a partial
order.) then:

Partial Ordering f(S) = (¥, ¥, ..., ¥,)

All orderings will be considered preference orderings. Define P as a preference function; it derives a par-
tial crder:

PC)=(y, <y, <..<y)
where a < b, means b is preferred or indifferent to a.

5.4. Scaling

Component sets can be mapped onto a range. Let m be an onto mapping function m(g) = ({g.1)]-
Mapping m(C) = {(¢,r)}, wherer; e R
Define S as a scaling function which maps issues onto the range [s,aw..sh'.gh], e.g.:

S(C? = {(c,u5,), (€35,), ... (€08,)} where s; & [s,ow..sm.gh]
S(CY) = {(c,,0), (c,,5), .., (¢, 100)} where s; & [0..100]

For example, let C9 define relations, where C = {owN, oN_LoaN}.

S(C9) = 5% = ((D.0), ({own} 40), ({oN_LOAN},60)}

5.5. Relation Constraints

Relation constrainis are arbitrary mappings used to constrain relationships, R(¢, ,,é; PO J =
{ ¢; 1"’}.2' weer qz} - Relations constraints are defined in the following form:

NAME(§; 1, ..., 8,) = (¢, ¢;) where 6

where ¢'s are sets and @is a logical formula when applied to ¢, results in the sets # Vk ¢, %20 Hence,
any relation constraint can be reduced to constraint form:

59 CIS-TR-93-10

NAME(qJ, s ¢i.L) = (¢j.1' weer ¢;k) where 8
=20,)\ e B0 = (8 0 8))

The second set of arguments can be left off if they are the same as the first, e.g.:

NAM£(¢'.J, vy ¢M) = (¢u, ¢'.'k) where 8
= NAME(¢‘.J. . ¢i.k) where 0

In this case, NAME expresses the constraining of ¢, rather than the relation between two sets; such rela-
tions constrain the hierarchy IT.

5.6. Component Goals

Let’s consider the establishment of a component. A component is a operator, object, or relation.
(Currently, Oz only allows the description of relations as goals; however, the following holds even when
objects and operators can be directly specified for achievement.) A component goal, cp is simply a mem-

ber of a set, c; € C. There are two types of component goals, cstablish and avoid:

Establish Component Goal

E.S‘TABUSH(cj) = {cl. o ¢} =(c; ...c,l. cj)
Avoid Component Goal

AVOID(cj) = {cl,Ej, e Cl={c, Ej, . C,}\{"})

Goal establishment is annotated (e.g., ESTABLISH(C)), as ¢, and goal avoidance (e.g., AVOID(C)) as
c.

The intent to establish only a specific goal means that all related goal formulations are lesser pre-
ferred: ([cI, ves € n], cl.). In this formulation, lesser goals may suill be obtained. (Replanning after goal
achievement failure is controlled by the resolution algorithms; hence, goal achievement is never all or
nothing.) AVOID relations can be represented as constraints: C\{ci}: hence, the goal seeking of C = {c)}
can be rewritten as avoiding of the complement: C\{C - c!.}.

Goals are established if they are represented in the plan, i.e., IN_.PLAN(c). Goals are avoided if they
are not present in the plan, i.e., = IN_PLAN(c). The following ESTABLISH and AVOID mappings map goals
onto {2, ¢}, where & indicates the falsehood of the mapping name and ¢ indicates the set of components
which fulfill the mapping name. IN_PLAN(¢.) returns ¢J if ¢ is achieved in the plan using the more specific

components 4.

Established Goal
ES'I‘ABLISHED(C}) = '
IN_PLAN(C}) v
AciH: c;f e cit! A3 ESTABLISHED(cEH)
Avoided Goal .
AVOIDED(cp => ~ESTABLISHED(c})

CIS-TR-93-10 60

The link between levels of abstraction (cj. & ci*!) indicates the abstraction of components, (e.g., cJ‘: is spe-

cialized into ci*’). One can modify the above relations to require all establishments (plans) to be at the
lowest level:

Established Lowest Goal
ESTABLISHED_LOWEST(c}) =

(IN_PLAN(cJ".) A -3 c} edt)y

Jcit: c;: e cit! A3 ESTABLISHED_LOWEST(c'*!)
Avoided Lowest Goal '
AVOIDED_LOWEST(¢}) => ~ESTABLISHED_LOWEST(c)

Similarly, one can require that all establishments be to some level, [:

Established Level Goal
1_ESTABLISHED(c}‘.) = ‘
(IN_PMN(C}) Ai=sl)v
3. cjﬁ o cit! A 3 LESTABLISHED(CiH)
1_Avoided Goal)
1 AVOIDED(c}) => —_ESTABLISHED(c})

Such propositions are part of the design process and not normally associated with the domain model.

5.7. Policies and Objectives

A preference simply indicates that desire to cstablish components according to an order; it specifies
how a goal may be partially satisfied. Let ¢’ denote a goal at abstraction level {. ¢ will be fully satisfied if
cj.” is established, where -3 ¢i*! A €, <6

Max Established Goal
MAX_ESTABLISHED(c)) =

(IN_PIAN(CJ‘:) A3 r:i.' €;<C, v

Ao a3 gt <ot A3 MAX_ESTABLISHED(c})
Min Established Goal
MW_ESTABUSHED(C}) =

(IN PLAN(c) A -3 e 3c, v

- '§ k ' k
3cH: c; e o AT) et <t A3 MIN_ESTABLISHED(C,)

Policies are global preferences. They describe the desired to maximize or minimize components
according to orders. For example, let members of P(C), y, represent costs; y; € C, or classes of equiva-

lent costs, y; = [C; |, €, 5 -..r ¢;). The policy of minimizing costs can be described as:

61 CIS-TR-93-10

minfcosT) = (yr}, ¥ar oer yrn), where ;2 V.,
ify= [e; ey] thenZy,=Zc,,

That is, smaller costs are preferred. Such policies can be specified in Oz. The above cost preference is:

(def_mod_operator_all "ALL_ROOTS"
rattributes ‘! {(cost :objective min}))

{def_mod_object_all "ALL_ROOTS"
tattributes ' {(cost :objective min}))

(def_mod relation_all "ALL ROOTS"
tattributes * {(cost :objective min)))

ALL _ROOTS is a reserved component name to indicate that the function should be applied to all roots. The
cost minimization object will be attached to all system components. After these functions are applied,
one can override this global policy with invocations of def_mod_ XX for specific abstractions.

6. Summary

In sum, the design process consists of:
« hierarchical search for operators producing required predicates
« selection of operators
» refinement of operators

Such partial commitment planning relies on the relations and constraints contained in the operator
descriptions to guide search; preferences are only applied when multiple alternatives are applicable.

CIS-TR-93-10 62

CHAPTER V

INTEGRATING DESIGNS

This chapter presents the integration algorithms. First, goal conflicts are detected. Next, their
design level interference is determined. All goals with interference must be resolved before an integrated
design can be derived. To do so, the negotiation algorithms gencrate possible resolutions from which an
user interactively chooses for inclusion in the final design. After the user determines the resolutions, the
original goals must be transformed before being passed onto the automated planner. Finally, the planner
derives a design.

In this chapter the algorithms arc applicd to two perspectives; however, the algorithms are easily
scaled to n perspectives. Unfortunately, Oz docs not do a-way integrations. As an alternative, one can
applied cascaded integration to integratc more than two perspectives.

1. Conflict Detection

Conflict detection attempts to identify like concepts occurring in multiple designs. Concepts which
differ will be considered conflicts. Generally, this is an instantiation of the concept recognition problem:
minor variations in instantiations must be recognized as being the same concept. Rather than tackle this
problem, assumptions have been applied to narrow the problem. One can rely on a human 1o derive cor-
respondences. (Even in this case some automated support has been supplied.) However, since human cor-
respondence detection is error prone, Oz uses an automated approach. Derivation records are used to
identify functionally corresponding components.

This section introduces the problem with the interactive detection method. Next, an automated
conflict detection is presented. Finally, the more limited algorithm, actually used in Oz, is presented.

1.1. Interactive Correspondence Identification

Previously, Oz automatically generated an initial correspondence structure and then allowed a user
to edit it. Using the assumptions that correspondences can be created based on identical names and
types, correspondences were created. Any perceived errors in this structure could then be edited. The two
assumptions were:

Names Identical Assumption
Components ¢, and ¢, will be considered for correspondence if ¢,.NAME = ¢

where c.NAME is a string and “=" is a string comparator.

NAME,

Types Identical Assumption
Components ¢, and ¢, will be considered for correspondence if ¢,.TYPE = ¢

where C.TYPE € {OBJECT OPERATOR RELATION}.

.TYPE,

63 CIS-TR-93-10

Also, Oz allowed the user to define equivalence functions based on component aitributes.

User Tags Identical Assumption
Components ¢, and ¢, will be considered for correspondence if ¢,.USER_TAG = C,.US-~

ER_TAG, where c.USER_TAG is a lisp value and "'=" is the lisp equal function.

These three assumptions were included in the correspondence identification algorithm. (A user checked
the desired assumptions in a dialogue box before integration.)

Below is a description of the interactive correspondence algorithm. Notice that components in
design one will be linked to the first like component in design two. This is an intended side-effect of
looping. This First Component Match heuristic was a simple consideration of the overall structure of the
design.

creale_eq_structure(designi,design2, &optional (name 1) (type t) (u_tag 1)} ::
let components_1 = design1.componants
lst components_2 = dasign2.components
for component1 in components_1
for component2 in components_2

if and{(if name (= component1.name component2.name) t), ;Names are equivalent.
{if type (= component1.type component2.type)), :Types are equivalent.
(if u_tag (= component1.u_tag component2.u_tag))} ;User tags are squivalent,
then add_to{component1 = component2), eq_structure)
remove_from{component2,components_2) ;Don't link twice.

alse add_to(singles,companent1,componeni2)
return (eq_structure,singles)

Of course, such a simple algorithm will creatc erroncous correspondences. The algorithm below allowed
the user to edit the correspondence structure,

user_edit{eq_structure) ::
loop for mouse_click = get_mouse()
case: mouse_click = delete_caorrespondence
remove(correspondencs, q_structure)
add(corraspondence.componanti, singles)
add(correspondence.component2, singles)
case: mouse_click = add_corraspondence
add(correspondence, eq_structure)
remove(component1, singles)
remove{component2, singles)
until mouse_click = exit
return eq_structure

The use of the automated planner has reduced the cffectiveness of this interactive approach. On the
other hand, it has simplified the automatic detection of conflicts. Because the planner automatically
derives a set of components from a goal, its record of derivation can be used to determine correspon-
dence. Once goals can be found to correspondence, it can be inferred that the derived components corre-
spondence. Since Oz uses an automated planner, it can simply determine if two goals correspond based
on their place in the relation hierarchy. However, since many relations look quite similar, this has been an
error prone for humans. So, Oz no uses a simpler, yet fully automated, detection method.

CI5-TR-93-10 64

1.2. Automatic Correspondence Identification (Complete)

Rather than rely on the intuition of a user, Oz can apply an automatic correspondence algorithm. It
is based on a simple assumption:

Derived Components Correspond Assumption
Components ¢, and ¢, will be considered corresponding if they were derived from a

common functional goal, G.

A correspondence structure will be built if: (1) two goals, G, and G,, are held by two different agents

and (2) the goals are of the same type, and (3) the goal are the best match compared to the other goals in
the designs. The closeness of maich is determined by the attributes associated with goals. If goals G, and

G, are of the same type, but have different attributes, and a third goal, G, is of the same type and has the
same attributes as G, then G, and G will be paired.

The actual conflict detection algorithm simply marks goals and their derived components as corre-
sponding. A more robust algorithm would derive a hierarchical correspondence structure. The structure
would consists of the goals, a common abstract operator, possibly shared derivation, and possibly a
derivation divergence.

To create a hierarchical correspondence structure, first the common root is identified. Next, opera-
tor refinements (i.e., incorporation links) are traced down the hicrarchy. Where the derivation is identical,
no correspondence structure is needed. Where the derivation diverges, the structure notes correspondence
between operators at each abstract level, i. Eventually, different sets of primitive operators are said to
correspond.

Figure 30 presents a hierarchical correspondence algorithm. First, derivation_difference
determines where the two derivations diverge. Next, derived_correspondences constructs a
hierarchical correspondence list.

1.3. Automatic Correspondence Detection (Actual)

To date, I have not found the hierarchical correspondence algorithm necessary. Instead, Oz uses a
simpler method. First, goals are matched by their most specific conflict type. This determines goal corre-
spondence, Next, their derived components are found. This determines design level correspondence.
Finally, these correspondences are passed onto the interference algorithm described in the next section.

Figure 31 shows the goal conflict detection algorithm. Find—-conflicts first gathers all goals
in the second design which have been established.! Next, find-most-specific-conflict—
type compares each goal in the first design against all the goals in the second. It returns a goal and con-
flict type. The conflict type returned is the most specific way the goals conflict as defined by six conflict
types. Figure 32 summarizes these types.

The six conflict types range from no (apparent) conflict to completely dissimilar goals. A possible
means conflict denotes that two goals are identical. An object attribute conflict denotes that iwo goals are

'Goals which have not been established in a design cannot create design conflicts,

65 CIS-TR-93-10

derivation_difference{goall,goal2) :
it =(derived_op(goal1),derived_op{goal2)) then
return derivation_difl{derived_op(goal1),derived_op(goal2),goall)
alse return :No common derivation.
{defun derivation_ﬂiff {opl, op2,parent_op)
(cond ({and {(eg opl op2) (null opl})
null) ;No difference.
{(eq opl op2}
(derivation_diff (derived op opl) (derived op op2) opl))

{(t (list parent_op opl op2}}}}
derived_correspondences(diff_ap_op,goali,goal2) ::
raturn correspondences(({derived_op op1) (derived_op op2)
:2: Returns a list of correspondences: {({oplz . op2z} {(oply . op2y) ...
::;: {(opla . op2a} (opl . op2}) such that opl correspondences to op2, opla is
;:: derived from opl and correspondences to op2a which was derived from op2 ...
(defun correspondences (opl,op2)

{if (or (type opl ‘primitive) (type opl ’'primitive})
(cons opl op2}
(cons (cons opl op2)
{correapondences (derived op opl) (darived op op2})))))

Figure 30. Hierarchical Cormrespondence Algorithm.

(defun find-conflicts (goalsl goals2)
{locop with other-gocals = (loop for g in goals2
when (established-goal-p g)
collect g}
for goall in goalsl
when (established-goal-p geoall)
for ctype = {find-most-specific-conflict-type goall other-goals)
collect {make-conflict-record goall ctype)))

(defun find-most-specific-conflict-type (goal other-goals)

(let ((ctypes {(find-conflict-types goal other-goals}})
{(or {assoc :POSSIBLE-MEANS ctypes)

{assoc :0BJECT-ATTS ctypes)

{assoc :GOAL-ATTS ctypes)

{assoc :0BJECTS ctypes)

{assoc :ABSTRACTIONS ctypes)

{assoc :GOALS ctypes)}))

Figure 31. Goal Conflict Detection Algorithm.

identical, except that at least one object varies in its attribute value. A goal attribute conflict denotes that
two goals are identical, except that at least one relation attribule varies in value, A goal attribute conflict
may also have object attribute conflicts. (The conflict types are subsuming.) An object conflict denotes
that two goals have at least one relation object that is different. (In OPIE, these are actually different rela-
tions, but with the same names.) An abstraction conflict denotes that two goals have different name, but
share a common ancestor in the relation hierarchy, Finally, a goal conflict denotes that two goals have
nothing in common.

At this point, it may be useful to introduce the specific components that are negotiated. Figure 33
presents a table of components and the ability of the implementation to negotiate with them. For

CIS-TR-93-10 66

Type Description

Goal No similarity.

Abstraction Only similarity is a common ancestor in the relation hierarchy.
Object Same goal name, but diffcrent objects.

Goal Atts. Differences in the attribute(s) of the goals.

Object Atts. Differences in object(s) attributes of the goals.

Means No goal differences, but interfering plans.

Possible Means | No goal differences. Still check for interference.

Figure 32. Table of Goal Conflict Types.

example, Oz detects object attribute conflicts, displays their preferences, and generates their resolutions.

Relations auribute conflicts are detected and displayed, but Oz does not gencrate resolutions for
them. This is simply because they have not been needed for design construction.

Relation conflicts are detected and displayed, but only object conflicts are negotiated. This corre-
sponds to the object conflict type of figure 32. In contrast, one could use the link distance between goals
in the relation hierarchy to negotiate about a range of rclated goals. (In fact, the specialization and gener-
alization methods of section 3.4 do use this technique.) However, there is no means to specify prefer-
ences between relations at varied abstraction levels. Instead, only ordering of sibling relations can be
used to define relaton preferences. Hence, relation negotiations concem only the objects within the rela-
tion.

As indicated in figure 33, not all the negotiations available in the representations are implemented
in the algorithms. However, this is due 1o the limitations the project and not of the algorithms, For exam-
ple, operator conflicts are detected only through their interference. If two goals are established using dif-
ferent operators, and those operators interfere, then the operaior differences will be detected. However, if
there is no interference then the operator conflict will not be detected. Operator preferences as a whole
have not been implemented in Oz.

Component Detected | Displayed | Negotiated
operators some no no
operator attributes no no no
relations yes yes objects
relation attributes yes yes no
objects yes yes yes
object attributes yes yes yes

Figure 33. Table Negotiated Componcns,

67 CIS-TR-93-10

2. Interference Determination

After the goal level conflicts have been detected, design level interference is determined. Interfer-
ence analysis enables one to determine: (1) design level differences from identical goals, and (2) non-
interference from “conflicting” goals. It allows the algorithms opportunity to negotiate over the deriva-
tion of identical goals and to inform the user that “conflicting” goals can be established in an integrated
design without further processing.

Figure 34 presents the interference determination algorithm. It is applied 10 each goal conflict pair.
The function goal-interference back propagates each of the conflicting goals through the design
level operators which achieve them. An interference structure is created when the design componenis of
the two goals have consuming interference. That is, when at least one scarce relation instance is con-
sumed by each plan.

Interference depends on the state of scarce relation instances. Since it is assumed that both designs
have identical initial states, the integrated initial state is identical to cither of the given designs.? Hence, a
simple copy operation is used 1o derive the initial integrated design state. All interference tests are con-
ducted in this initial integrated state. This allows the interference of two goal implementations to be con-
sidered in isolation; however, it will not reveal other interference that may occur in the complete design
(e.g., other goals may also consume scarce relation instances).

The interference algorithm only considers two-way interference based on the detect direct interfer-
ence assumption:

Detect Direct Interference Assumption

Direct interference between pairs of goals is: (1) easier to detect, (2) ofien easier to re-
solve, and (3) may resolve more dependent exogenous interference than interference
between n goals, for a given n. (If n = number of goals, all interference may be re-
solved, but no exogenous interference will be resolved; that is, no interference is op-
portunistically removed.)

{defun goal-interference(initial-state,goall,primitivesl,gcall, primitives2)
(loop with preconditionsl = (back-propagate-preconditions goall,primitivesl)
with preconditions2 = (back-propagate-preconditions goal2,primitives2)
for relationl in preconditionsl
when (loop for relation2 in preconditions?2
thereis (and {unify relationl relation2) ;Using the same relation.
{consumed-relation? relationl) ;Consume as opposed to
{consumed-relation? relation2) ;just using.
{consume-conflict? relationl relation2 initial-state})
collect {make-—-interference-record relationl relation2)}))
Figure 34. Interference Determination Algorithm.

2Jf the states were not identical, the initial state would have to be negotiated just as the goals are negotiated. In
fact, Oz does apply the goal conflict detection algorithm to the initial design states to check if they are indeed the
same,

CIS-TR-93-10 68

Two-way interference is easier to detect, because only pairs rather than n goals need be applied to the
goal interference function. Two-way interference is ofien easier to resolve, because only the interference
of the pair nced be considered. Finally, resolving one two-way interference can resolve the of other
(exogenous) interference. For example, climinating one goal which “hogs™ n items a resource can
remove n other interferences which simply use one item.

While interference determination only considers two-way interference, a resolution process can
also consider n-way interference; hence, the direct interference assumption is applied to reduce effort
during conflict detection. Conlflict resolution may opportunistically resolve conflicts (due to conflict
dependencies) as well as further analyze given conflicts, so the interference detection effort should be
minimal, I believe two-way inierference is an appropriate balance beiween an “cager” n-way and “lazy”
0-way detection methods.

While the Oz interference algorithm only reveals all two-way interferences, it can easily be modi-
fied to consider n-way interference. When n equals the number of goals, complete interference is consid-
ered. In fact, such n-way interference is determined when the design process is applied to the integrated
perspective,

Figure 35 illustrates the type of records produced by Oz’s conflict and interference algorithms. It
simply records the goals in conflict, the type of conflict, their derived operators, and any resulting inter-
ference, These records are also used by the resolution algorithms; hence, they contain a few more slots.
In addition to the original conflicting goals, the current alternative is recorded. Initially, it is set to one of
the goals in conflict. Afier resolution generalion, it can be any relation in the relation hierarchy, Finally,
the record may also have a plan. This records the a plan that can be used to achieve both goals, if there
exists such a plan.

3. Resolution Generation

Conflict resolution attempts to find acceptable aliernatives, given some initial conflicts and perspec-
tives. The Oz resolution approach consists of three major generation methods: compromise, specializa-
tion and generation. Additionally, Oz applys replanning to determine if a two-way conflict can be
resolved by simply choosing altemative operalors.

The replanning method is present next. Then, the interactive framework in which the other three
methods are applied, is presented. The actual resolution methods follow.

3.1. Replanning
TYPE: MEANS | OBJECT-ATTS | GOAL-ATTS | OBJECTS | ABSTRACTIONS | GOALS
GOALS: (G,,G,)
DESIGN-OPERATORS: (Ops,, Ops,)
INTERFERENCE: (Relationsl, Relationsz}
ALTERNATIVE: G,
PLAN: Plan,

Figure 35. An Hllustrate of a Conflict/Allernative Record.

69 CIS-TR-93-10

Before the conflicts are presented to the user, one final analysis of goal conflict is applied. Given
two goals with interference, it may be possible to derive a plan which achieves both goals. To check this,
each interfering goal pair is passed to the planner. Given two goals and the initial integrated state, the
planner attempts to achieve the conjoined goal state. If it can, the goals need not be negotiated. Instead,
they can simply be included in the integrated perspective. When the integrated design is derived, both
goals may be achieved.

Like interference determination, replanning only considers two-way interaction. This simplification
allows the user to quickly determine if is at all possible for the conflicting goals to be simultaneously
achieved. If is not, they are deemed inherently conflicting goals (relative to the initial state). On the other
hand, if their pair-wise conflict can be resolved through replanning, then the final derivation of a design
from the integrated perspective will determine if, in fact, the replanned goals can be achieved in the
greater context of all design goals. If not, the goals can be negotiated, a new iniegrated perspective can
be generated, and new integrated design can be derived.

3.2. Interactive Resolution

The interactive resolution framework allows the user to determine which conflict to work on, which
resolution method to apply and in which order, and which resolutions are to be accepted. Initially, the
user is dispiayed icons depicting the conflicts. The goal relations are displayed along with any conflicting
components. Additionally, all relevant preferences and displayed. The user then applics resolution meth-
ods to any of the conflicts to generate altematives. Those altematives can, in tum, give rise to still other
alternatives via the application of other resolutions methods. Hence, the resolution methods can be inter-
leaved both between different conflicts and within the derivation of a single conflict resolution.

Figure 36 shows an Oz depiction of the initial issues from a conllict in chapter VI. The relations
oN_roaN and GIVE_NOTICE are shown with special attention to the conflicting objects. For example, the

oN_1oaN conflict is displayed as:
on_locan(libraryl studentl resourcel placel timel loan_periodl#loan_periodl)

This indicates that the corresponding objects Loan_PERIOD1 from the two perspectives are in conflict. (In
this case, the two perspectives use the same name; however, it is possible for goals to match even though

they use different object names.)?

Preference satisfaction is displayed below the relations. In each case, preferences are displayed in
the following left to right order: relation preferences, relation atribute preferences, and object attribute
preferences (if they exist). For each of these preference types, first the average of the perspectives is dis-
played, and then preferences from each perspective is displayed (if they exist).

Reading from right to left, consider the preferences associated with on_voan. The three rightmost
are the librarian’s object attribute preferences for Loan_perropi, The loan period attribute preferences
are: resource cost, usage, and duration. The next three preferences toward the left are the patron’s object
atiribute preferences for Loan _PERIODL. Again, the loan period attribute preferences are: resource cost,
usage, and duration. The next preference indicaies the average satisfaction of all the LoAN_PERIOD
attribute preferences, i.e., resource cost, usage, and duration from both perspectives. This averaged

3In the case of conflicting relations or relation attributes, the relations would be displayed as conflicting, For
example, GIVE NOTICExGIVE NoTict. (Refer to section 1.3.)

70

CIS-TR-93-10

[+JE T

ELT]

NG
pse?
aneg

L _weasss)|

ug L 33eLRquU]

LY 36 LySryun
04GR usaIag

CELIREEN

{PI0S8y TJusude | snag) Y|

10904300
spJaaay

<0

101}

(1221704 2nPIA0E [221100 NRIZA0 [22UN06I [Uapms —E ¢

e
PESEL swdssieas
asures
Lt XL)
L TRtV

Oy e T N T
JELTs
T IO WL S—UE

uame Jrarsrmac
EPEAE- ATHLSE

B T
eare smauceL=eg
rrmeBUEmy &swesa
B Sl e S

{[potiadTuRo|pTpoLsadTuRD| WY T208|d T20.N063d JIU2pMIE TAJRIGI[UGO| Uo

FIUU——&CO&HOU-BO—HE“UHG- un—dh

Figure 36. Oz Initial Screen Depiction the Goal Conflicts,

71 CIS-TR-93-10

preference is named sLOAN_PERIOD DURATION. Loan period is the object and duration is the attribute
whose value differed in the two designs. The next preference to the left is the averaged oN_Loan attribute
preference. Since there are no attribute preferences associated with the on_roan relation, no individual
preferences are displayed. However, notice that its satisfaction is at 100 percent. Whenever there is no
preferred ordering associated with a range, its satisfaction is displayed at 100 percent, thereby allowing
the arbitrator to effectively ignore ils contribution to an alternative’s overall achievement. Finally, the
last preference to the left is the averaged on_zoan relation preference. Since there are no relation prefer-
ences associated with on_zoaN, no individual preferences are displayed. The GIvE_NoTICE preferences
are displayed in similar fashion.

Each displayed relation represents an altemmative. Hence, an initial relation represents two conceplts.
It represents the initial conflict, where the display noles the conflicting components with the = symbol.
And, it represents an alternative where the conflict is resolved. In the case of the initial relation, this con-
flict is resolved by choosing the values from the first perspective given to the integration; the value from
the patron’s perspective. Hence, the first relations displays the conflicis and the aliernatives where the
first perspective’s values are chosen. Subsequent alternatives will be generated and displayed using the
same format. However, they will only represent resolutions; hence, no conflict will be displayed.

For each relation (alternative) displayed, preference satisfaction is displayed in the form of a bar
graph. The more satisfied a preference, the higher the bar graph. Hence, one can see from the initial rela-
tions displayed the preferences from the two perspectives on the proposed resolution of simply one of the
conflicting values. Thus, one set of preferences are higher than the other for each relation.

3.2.1. Resolution Display

The resolution display may be simple enough that observation may be sufficient to understand it.
However, it may help 1o expand on the interaction of preferences during search. Here, is a simple exam-
ple.

Below are two preferences from two perspectives (per-1 and per-2).

(in-perspective 'per-1)
(def_mod_relation I.1l
torder-by-value * ({(A 20} (B 30) (C 100))}

{in-perspective ’'per-2)
(def_mod_relation I.2
rorder-by-value " ({A S50} (B 5} (C 100})))

Alternative a' = {A)
Alternative a? = (B)
Alternative a® = {(C)

Also, the initial alternative, a' is A. Each altemative is evaluated by the preferences from each perspec-
tive: (I.1(a"),I1.2(a'}) = (20,50). Figure 37 illustrates these preferences. All allernatives are shown in both
parts, with the altemative being considered in the foreground. Part (a) of figure 37 displays al= (A). Part
(b) displays a* = (B).

CIS-TR-93-10 72

TISTIINNEE

13 12 11 12
Issues Issues

Figure 37, Inicractive Resolution Display Illustration.

Parts (a) and (b) of figure 37 are snapshots of an interactive search. Initially, allemative a! and its
preferences are displayed. Next, the user attempts to increase the satisfaction of preference 1.2 from 5%
1o 50% by moving it to the foreground. Unfortunately, that alternative decreases the satisfaction of L.1. If

the user continues on to a° = (C), the ideal is reached; i.e., the best value from each perspective.

This search for the ideal was introduced in Chapler I, section 1.7. Unlike Zeleny’s ideal, or the
above example, Oz resolution search does not have a mechanism to track the user’s focus on alternatives.
Instead, all alternatives for a given resolution method are displayed at once. User's can then continue
search by choosing an altemnative to be further negotiated, or end search by choosing the final alternative.

3.2.2. Preference Modification

Preferences can be modified during the resolution search process. To do so, the user selects an
altemative, modifies the preferences, and the display of that aliernative is redrawn based on the new

preferences.® However, preferences are global, Hence, changing preflerences during resolution may result
in inconsistent decisions: the initial design process imposing one set of preferences while resolution pro-
cess derives another. Such inconsistency will be overcome during the resolution implementation process.
During that process, all the current preferences, as determined during the negotiations, will be used to
derive an integrated design.

3.3. Resolutions Search

Afier an initial nondominated space is created, the user participates in resolution search. Figure 38
presents interactive_search; it'’s simply a loop enabling five mousable commands. The user is
assisted in search via graphic depiction of the search space and the current altemnative. This guides the
user’s choice of accepting the current alternative, altering preferences, or generating resolutions. After
any modification, a new display is rendered.

“This modification method is very primitive,

73 CIS-TR-93-10

interactive_search{)
loop
for mouse_click = get_mouss()
case: mouse_click = compromise
compromise(curreni_alternative)
case: mouse_click = specialize
laval = get_lavsl()
specialize(curreni_alternative,level)
casa; mouse_click = generalize
level = gel_laval()
geaneralize{current_alternativs,level)
case: mouse_click = select_alternative
current_altarnative = select_alternative
case: mouse_click = preference_edit
preference_edit(current_alternative)
casa: mouse_click = choose_alternative
mark_resolved{current_alternative)
until mouse_click = accept
return marked_alternatives()

Figure 38. Intcractive Resolution Search Algorithm.,

3.3.1. Choosing a Resolution

While Oz does provide a interactive search framework, it does not provide a strategy. Zeleny's dis-
placed ideal does suggest one strategy. It uses the current alternative to define a search space and a goal
to obtain. The goal is the (infeasible) composite of each preference’s maximum achievable value within
the feasible alternatives, i.e., the best known value for every preference without any of the negative inter-
actions.

As all altematives are compared with the ideal, those farthest away are removed from fur-
ther consideration, There are many important consequences of such partial decisions, First,
whenever an altemnative is removed from consideration there could be a shift in a maximum
attainable score to the next lower feasible level. Thus, the ideal aliernative can be displaced
closer 10 the feasible set. Similarly, addition of a new alternative could displace the ideal
Sarther away by raising the attainable levels of attributes. Such displacements induce
changes in evaluations, attribute importance, and ultimately in the preference ordering of
the remaining altenatives. — p. 143[92].

Figure 39 illustrates the displaced ideal model> Altematives x°, x™*, and x*™* are consecutive instances
of the ideal alternative. Initially, x” is the ideal defined from the extreme positions along each preference.
However, as x! and x? are removed from consideration, the ideal changes 1o be x** and x***,

Zeleny's interactive search procedure is comprised of three basic tasks (cf[92].). Based on the dis-
placed ideal theory, it makes use of an interactive display to guide search.

(1) Seek Ideal
Initially, the worst alternative is displayed—the anti-ideal. Next, the user secks the ideal by

SDerived from figure 3-1 in[92].

CIS-TR-93-10 74

Jc™
o X2 5
. -
®
.
. ™
. ¢ . ol

Figure 39, Dynamics of the Displace Ideal.

considering increased satisfaction of important preferences. As the ideal is sought, dependencies
between preferences can be observed. Eventually preferred alternatives will become familiar,

(2) Identify Cycle
The user considers various altemnatives, several will reoceur; a cycle is observed. Members of this
cycle depict a narrow sct of altcmatives, onc of which may be chosen.

(3) Apply Tests
Test conducted exterior to the search procedure can be used to aid choice. Additionally, prefer-
ences can be modified.

(4) Apply Heuristics
If the current altematives reveal no acceptable allernative, new altematives must be sought. The
generalization and specialization methods assist this process. Next, the user begins again at step
one, until a satisfactory resolution is obtained.

While these four steps form the basis of displaced ideal strategy, one can use several variations; however,
any strategy may be applied—strategies are not enforced during interactive search. A variation of step 3
allows users 10 skip tests and immediately apply heuristics (step 4). Another variation allows users to
start at the closest alternative to the one displayed when moving from steps 3 10 4, rather than starting at
the anti-ideal again,

3.4. Generation Methods

Given a conflict, alternative generation finds possible resolutions. Using preferences and goal hier-
archy to characterize conflicts, Oz is able 10 use three methods of conflict generation. Compromise gen-
eration maximizes multiple criteria given linear constraints. Specialization generation presents more spe-
cialized resolutions from the relation over which the conflicting values can be distributed; thereby,
removing the conflict. Finally, Generalization generation presents more abstract relations from the rela-
tion hierarchy to: (1) remove the conflict through abstraction, or (2) provide alternative compensation for
the “loser” of a negotiation. Next, the three generation algorithms are presented.

75 CIS-TR-93-10

3.4.1. Compromise Algorithm

The compromisc algorithm is a lincar multi-function maximization solver. One can define [finear
functions or criteria to be maximized as f(x) = Z}‘ﬂ Ci%y:

f(xy=c, X +C)pX, + . + C X
fl(x) =C X+ CpXy + o+ 6 X
The linear criteria can be subjeciced to m linear constraints gr(x) = Z;L] a.X; = b,r=1..m, X, z0:

gl(x) =2, X, +a,X,+... +3, X = br

B0 = ayx, +apx, + .. +ax =b,

Constrained objectives defined in this way are amenable to lincar programming methods. Specifically,
the linear simplex method can expanded to account for multiple objectives. It will terminate after finding
all nondominated extreme point solutions, i.e., afier maximizing (or minimizing) each function, f..

Converting the represented preferences to the simplex notation is simple. The preference objectives

become the functions 1o be maximized or minimized.® Preference orders becomes the ranges over which
the functions are to maximized. If each component is not given a specific value {using :order-value),
then values are assigned in even increments between 0 and 100. For any preference, all perspectives must
use the same range of values. For example, if onc perspeclive represents loan period duration from O to
365, all perspective must use the same range.” Hence, ranges, and constrainis in general, are not subject
to negotiation. This limitation is due to the use of the simplex method. Discrete values is another short-
coming of the method. The simplex method only searches on continuous ranges. Given a discrete alter-
native, one must truncate it to the nearest discrete value.

Next, the compromise algorithm is illustrated with a simple library cxample. A more complete
example is available in appendix B.

The object Loan_pERIOD has three attributes: duration, cost, and risk. Both cost and risk each rise
linearly with duration. Also, the combined value of cost and risk must not be above 100; however, their
they are combined according to the constraint: 0.5 * cosT + 0.8 * r1sk < 100. Given these constraints,
the librarian wants to maximize duration, while minimizing cost and risk. In contrast, the patron simply
wants to maximize duration. The following two perspective represent this problem.

$Goal seeking is also implemented. Then, the objective is to minimize the distance from a specific value.

"Varied ranges would not cause an error for the system. However, it would use the smallest range to define the
search space.

CIS-TR-93-10 76

{(in-perspective ’'Librarian)

(def_mod object "loan period"
rattributes ‘ {(("Duration” :min 0 :max 365 :0bj max)
{("Cost" min 0 :max 100 :obj min}
{("Risk" :min 0 :max 100 :obj min})
tratt_constraints ’(
(0 0.5 0.8 <= 100) ; Limit risk & cost
(1 -10=20) ; Cost = Duration
(1 0 -1 =20}})) ; Risk = Duration

{in-perspective ’'Patron)

{def_mod_object "loan period"”
rattributes ‘ (("Duration” :min 0 :max 365 :o0bj max)
{"Cost” min 0 :max 100 :eobj nil)
{("Risk"” :min O :max 100 :obj nil})
satt_censtraints * (
(0 0.5 0.8 <= 100) ; Limit risk & cost
{1 -1 0= 20) » Cost = Duration
(1 0-1=20))}) ; Risk = Duration

This problem can be represented in simplex notation as:

Max DURATION, .
Max DURATION, .. .
Min COST, i
Min RISK .00

+ 0.5COST + 0.8 RISK £ 100

DURATION + + < 100

+ COST + < 100

+ + RISK S 100

DURATION 2 0

cosT 2 0

RISK 2 0

Figure 40 illustrates the search space for loan period durations. Cost and risk depend linearly on duration.
This results in the line described by x = y = z; however, it is constrained to a height of 76.92%. Compro-
mise resolutions are real values triples running from O to 76.92: (0,0,0), (1,1,1), ... {(76.92,76.92,76.92);
the arbitrator must balance the conflicting objectives to determine which resolution will be chosen. The
multiple criteria simplex method (MCSM) only generates the extreme points of search spaces (e.g.,
(0,0,0) and (76.92,76.92,76.92); however, all compromise points can be obtained from the extreme
points[92].

77 CIS-TR-93-10

0.5 Cost + 0.8 Risk <= 100

Figure 40. The Nondominated Search Space of Loan_per1cop wilth Risk and Cost.

3.4.2, Specialization and Generalization Algorithms

The specialization and generalization algorithms find similar relations to one under consideration.
They are complimentary algorithms which search down and up both the relation and operators hierar-
chies. New specialized relations can used to create a dissolution of a conflict: each conflicting value can
be distributed over some specializations. New generalized relations can be used to create a dissolution of
a conflict, or create a compensation for poorly satisfied preferences. A dissolution is created by replacing
the conflict over values with a single abstraction. A compensation is created by adding a new goal to the
integrated design which achieves some satisfaction for preferences which loose out in the original con-
flict negotiation.

The specialization and generalization algorithms are directly complimentary. Their major differ-
ence is the direction of their search. Specialization search down the hierarchies, while generalization
searches up.

The relation and operator hierarchies serve as the basis for determining similar relations. Both hier-
archies are based on the abstractions of components. Components higher in the hierarchies are more
abstract than those below. For the relations hierarchy, abstraction is based on object. For the operator
hierarchy, abstraction is based on operator add and delete lists, i.e., functionality.

Given a relation which is the focus of resolution, one can find closely related relations by moving a
few links up and down the relation hierarchy, Similarly, one can find operators which produce a given
relation and then move up and down the operator hierarchy and find similar relations on the add lists of
the operators. These operator relations are not so directly related to the given relation as those found in
the relation hierarchy. That is, they may not be directly related through object abstraction. Instead, they
are related through functionality. Operators which produce similar relations are near each other in the
hierarchy. Hence, relations found by searching indirectly through the operator hierarchy may be related
functionally, but not through object abstraction.

The algorithms use these two hierarchics as the basis for generating resolutions. The given relation
is the entry into the relation hierarchy. The operators which produce the given relation are the entry
points into the operator hierarchy. (For specialization, the root of this tree is the entry point; for

CIS-TR-93-10 78

generalization, the leaves of the tree are the entry points.) Once, these entry points arc established, the
two methods diverge. Specialization moves down the hierarchies, while generalization moves up. Both
algorithms are parameiterized by the number of links they traverse.

Figure 41 presents both algorithms as one where the direction of movement is also taken as an
parameter. The function sg-resolutions applies the two functions relation-hierarchy-
relations and operator-hierarchy-relations and then packages those relations into alter-
native resolutions. The function relation~hierarchy-relations simply retumns related rela-
tions. However, the function operator-hierarchy-relations return sets of relations, These
relation sets are all those relations on the a related operator’s add list minus all those relations added by
the operator which added the given relation. Hence, each set indicales the new relations which will be
produced if the given resolution is accepted. That is, if the new relations are accepted, then the new oper-
ator will assert new relations listed. For example, given the onN_Loan relation, the OWN(AGENT1
RESODRCE1) relation is suggested through the BUY_RESOURCE operalor. However, OWN (AGENT1 MONEY1)
is also part of that relation set, since oWwN (AGENT1 MONEY1) iS not a member of BORROW_RESOURCE's add
list (the operator which asseried the given on_Loan relation). Figure 42 shows an Oz depiction of this
generalization.

4, Resolution Implementation

Resolution implementation derives an integrated perspective and design from given perspectives
and resclutions. The basic approach is to copy one of the perspectives and transform it using the resolved
goals. The resulting perspective is then given to the planner, which then derives the integrated design.

In the simplest case, the original goals from one perspective can be simply transformed to produce
the integrated goals. The simple formula for this is:

initial goals - conflicting goals + resolved goals

This transformation replaces the conflicting goals with the resolved goals. All nonconflicting goals are
also carried into the integrated perspective.

To make matter more difficult, each goal contains specific referents. For example, the following

goal refers to specific objects.
on_lean{libraryl studentl resourcel placel timel leoan_periodl)

(defun sg-resolutions (relationl n directiocon)
(resolution-groups relationl n direction
§'relation-hierarchy-relations
#' operator~hierarchy-relations))

(defun relation-hierarchy-relations (relationl n direction}
{nth—-ancestor relationl n directiocn))

(defun operator-hierarchy-relations (relationl n direction}
{mapcan #’ (lambda (operator) {(nth-ancestor operator n direction})
{(all-added-by-ops relaticnl direction)))

Figure 41. The Specialization/Generalization Algorithm,

79

Development

CIS-TR-93-10

A

Records

Operators

Windows

1)

od1)
)

gent] moneyl t

ntl resourcel timel)

placel timel losn

1 Jrkegt st hon, GoslCond) 1
[0z {Beveloprent, Record]

-
e
ST c
.8
TED -
Ayl £8L =
o [Pt sox §
u o g
Juds
h"'ﬂ
ol 5 E =
5 Bk
2 e
c

Help

ents moneyl placel timel loan_periodl)

[i“
t2
A
$d

esourcel placel timei loan,

]]

LETE L P o

LT L LT
Tuete SrGndueg
—"

-
-
b
2

T
o
e

1 lo:

me

el placel 1

v - (BT B b S
——
, s

puses & s

DT

= e— RV ."é‘-.'
anees smavgS=act
(WD Bt B g W s
£ Iudm ﬁqlb.

P
(9onsmmes aolivoas
J— 4
TN
o
wnan E & ecumveny oman
wan woem 5 | mere s-snaves
— -t .E [BOnderdl srOnd
o ¥ ¥ ecomuens mAmL
2 o suswe arener
!
[= o dress wauen
-

B
e

(R T S

e ma e
BRI
L

-
oy

s place
H

CEQUrCE,
»
n

[Pusrs J—Busu-ac
L e e LT]
LeCeIubne Adwnds
nery asvuec
Dt

B e 8
BE (BN —

[L I TS

asmnyun

Figure 42. Oz Screen Depiction the of Generalizations (2).

CIS-TR-93-10 80

Hence, when new relations are introduced during resolution, they must use the proper referents. For com-
promise and relation specialization, referents can easily be obtained from the given relation. For exam-

ple, if the above relation is specialized (0.
on_lean (libraryl graduatel resourcel placel timel loan_periocdl)

the student] referent can be replaced with the graduatel referent. However, any other relation instances
which refers to this referent must also transformed. This means that the initial state must have its refer-

ents updated. For example, the following transformation must take place:

loan_period(studentl resourcel placel timel loan_periodl)
o

loan_period (graduatel resourcel placel timel loan_periodl)

When generalized relations are introduced during resolution generation, the transformation process
must use heuristics to determine the proper referent. Hence, sometimes the transformed perspective must
be manually modified before being passed to the planner. For example, if two own relations are intro-
duced as a generalization of oN_LoaN to indicale resource selling (i.e., ownership of the buyer’s money
and ownership of the seller’s resource), then the transformation process must guess to determine which
referent will provide the money (student!) and which referent will provide the resource (libraryl). How-
ever, if the relation instances matching the preconditions of the given relation’s operator are unified with
the preconditions of the suggested rclation’s operator, onc may obtain a good substitution of referents.
Oz does not use this method. Instead, it uses simpler heuristics and the aid of a human,

Once the referent substitution are propagated through the copied perspective, it can be given 10 the
planner. The planner then attempts to achieve the integrated goals. When each goal interference is con-
fined to corresponding goal conflicts (e.g., two-way interference) and the integrated goals are specializa-
tions of the original goals, the planner is guaranteed to derived an integrated design. However, if two
corresponding goals not only interfere with each other, but with other conllicting goals (e.g., they all con-
sume a single relation instance), then the planner may not be able to achieve an integrated design. Addi-
tionally, if the goals were transformed through generalization, then the planner may not be able to
achieve an integrated design. (There may be no available operator, or the goal may interfere with other
goals.)

This section evaluates the integration methods. Evaluations consists of (1} assumptions, (2) compu-
tational analysis, (3) and related research. First, conflict detection is evaluated. The three resolution gen-
eration methods follow.

5.1. Conflict Detection

Recall conflict detection characterizes design differences. The following evaluation considers the
complexity of the method. Comparison to others research illustrates the lack of research in this area.

81 CIS-TR-93-10

5.1.1. Analysis

Any variation in goals or their derivation is a goal conflict. Goal conflicts are characterized by cor-
respondences, component conflicts, and interference; only two-way inter-design poal interference is con-
sidered.

The issue formation algorithm relies on twe key assumptions: (1) derived components correspond
and (2) only detect direct (two-way) interference. Within the confines of Oz, assumption 1 cannot be
incorrect. (If it is, it implies that the planner is malfunctioning.) When assumption 2 is invalid, aggre-
gated multi-goal interference goes undetected; however, its conflict is known. The resolution process is
given goals as conflicting, but has knowledge only of two-way interference. n-way interference detection
is deferred until integration time.

In some cases, deferring n-way interference detection will be more efficient. However, if every goal
interferes with every other goal, it will be more cfficient to aggregate all goals before designing. If every
goal is independent (planning’s linearity assumption), then it is more cfficient to construct independent
designs and combine them. No doubt, many problems are somewhere between. Multiple Perspective
Design (MPD) methodology calls for independent designs, mainly on grounds of individual preferences
accuracy and parallel efficiency; however, if every goal interferes with cvery other, it will be less effi-
cient,

Given the assumptions, conllict detection tums on the number of conflicts. Figure 30 presented the
issue formation algorithm. Its main routine consists to two loops which compare the goals of two per-
spectives. This results in an overall complexity of O(m*n); where m and #n are the number of goals in the
two perspectives. After the goals group into conflict pairs, the goal-interference function is
applied. It must back propagate preconditions of the goals in conflict. One can assume this is some con-
stant p linearly associated with the maximum subplan length. However, each interfering pair is also
given as input to the planner to determine if the conflict can be solved by replanning. Hence, this expo-
nential process adds considerable complexity to the interference determination process. Since Oz does
not have control over the number of conflicts, it can best reduce compuiation through by using an effi-
cient replanning method.

5.1.2. Related Research

This section presents software engineering and artificial intelligence methods for issue formation.
In both case, but especially SE, conflict detection and resolution and hardly separable. These approaches
do not have conceptual distance between interference and its characterization; hence, they only implicitly
address issue formation.

5.1.2.1. Software Engineering

The simplest way to conduct interaction analysis is to make it unnecessary; this is common in pro-
gramming methodology. Prior to building a large program, interfaces between components are specified.
After the components are designed, they can be “merged” without ill affects[19]. Unfortunately, such a
method does not address how the initial interface specifications are derived; presumably, it entails trial
and error involving conflict resolution.

Other methods are based syntactic differences and their implied behaviors. The simplest method is

CIS-TR-93-10 82

the Unix diff program;? it outputs differences based on string comparisons. This method can be improved
by a semantic program model or knowledge of difference relationships. Such knowledge is beyond typi-
cal language-oriented module combining techniques which prevent conflict or specify resolution wsing
syntax-based rules[11, 33, 34,43, 75]. For example, Horwitz et. al. use data and control relations to guide
their merging of modifications of a simple base program[38]. Similarly, Berzins uses a general model of
program semantics to merge applicative programs(7]. However, both methods assume behavior aggre-
gation (i.e., the merge must include all behaviors specified) and neither address conflicts once found.
These methods are not able 10 resolve conflicts because the intentions of the designers are not available.
For example, consider the merge of program A with behaviors g, and a, and program B with behavior b;
the designer may wish to merge the programs while excluding a,. Both methods could handie this merge

if such merge relations could be expressed. However, more explicit conflicts such as Merge(b,~b)
require an understanding of the goals from which the behaviors were derived and understanding of the
intent of the merge.

The above software methods do not address issue formation because (at most) they only consider
the program semantics; these do not consider programmer intent (i.e., the program specification). Issues
formation requires conceptual distance between conflicts and issues. Al planning is a computational
paradigm which does allow some separation between issues (goals) and programs (plans).

5.1.2.2. Planning

Al planners link behaviors to poals, if only implicitly. Most planners do so through simple
goal/operator representations; however, other Al systems represent goal interaciions as explicit knowl-
edge.

For Al planning systems, interaction analysis is simplificd through representational assumptions.
Goals are simple state descriptions. Operators can modify states when their preconditions (state descrip-
tions) are met; when applied, predicates are added and deleted to/from a state description. Goal interac-
tions are completely described by the available operators. The closed world assumption makes this possi-
ble: all effects of an operator application are described in the effects list of an operator[64]. Hence, goal
interactions are implicitly specified in the effects of operator combinations that can achieve them. If all
possible operators (and their effects) could be completely specified such that their combined effects
could be predicted, then one would have a complete model of goal interactions. Instead, planners rely on
approximations and prepare for exceptional executions[1,60]. In most cases, they resolve interference
between operators during plan formation[14].

Some planners use relationships between operators 1o aid modeling. Alierman uses category, par-
tomic, causal, and role knowledge to describe plans[1]. Anderson’s CPIE derives such hierarchies from
operator descriptions[2]. Given a plan, operators and objects are abstracted and added to operator and
object hierarchies, respectively. Again, goals are identified with preconditions on operators. However,
abstract goals can match with abstract operators; morcover, the operator hierarchy implicidy represents
the interactions between abstract goals in the abstracted cffects of operators. Such abstract goal interac-
tions can be made explicit[37). Hammond's CHEF infers and generalizes negative interactions which
lead to plan failure; they form demons which anticipate plan failures[36].

8Unix is a Trademark of Bell Laboratories.

83 CIS-TR-93-10

Despite such planning successes, Wilensky's criticism still holds.

...most Al planning systems do little reasoning about goals and emphasize instead the pro-
duction of plans.— p. 13[87].

To see this, simply compare the languages of Wilensky's PANDORA (figures 43 and 44) and Ham-
mond’s CHEF (figures 45 and 46). CHEF's understanding of conflict, like most planners, is based on
plan modification operators: (1) alternative operators, (2) reordering, (3) reestablishment, and (4) separa-
tion (i.e., alternative unification)[14]. Issue formation is tied directly to the current plan; plan interfer-
ence is the issue. Hence, coniflicts and resolutions are described in terms of enablement of operators. The
larger context of goal importance, goal relaxation, and the intent of the planner is lost. In contrast, PAN-
DORA’s conflict descriptions contain causes behind operator enablement, e.g., resources, goal entail-
ment; PANDORA'’s resolution descriptions not only consider plan alieration, but environment and goal
alteration. Hence, conflicts and resolutions consider more than just the plan, but the attributes of the envi-
ronment and the overall attitude of the planner.

Negative Goal Relationships

Resource Limimtions Cawsing Preservation Goal Mutually Exclusive States
Time Nonconsumable Consumable Ability Undesirable ﬁut
Functional Functional State Conﬂ.ict a:duded gnaghn plan for a goal
/ \ Objec\t Object \ for other excludes other goak
ty / ;:l Conftinuous
\ Enablement

Capacity Ownenship

Figure 43. PANDORA's Intra-Agent Conflicts

Positive Geoal Relationships
Goal Overlap Goal Concord
Mutial Pool
Py b‘um uon\ En‘;l‘
Identity Entailment Functional Functonal Streams
Enowledge Object R:]m:inmhip Ow:rlap
Merge
/ g
Partial
Plan
Merging

Figure 44. PANDORA's Intra-Agent Resolutions

CIS-TR-93-10 84

Problems

N
/\ N w/[\ //

Precondition Condition Precondition Viclation Violations Bad Preconditon Candilian Pml:nndidm“oh&on
/ \\ Gonditon / I \
Conowrrent Serial Balance Concurrent Serial Balance

Figure 45, CHEF's Conlflicts

Most planning systems are concemned with efficiently constructing a plan to achicve a goal; search
combined with delayed commitment to operator sequence, object selection, and operator selection is the
basic method[2]. Unfortunately, most real world planning calls for the achievement of multiple goals;
moreover, such goals fulfill higher goals. Wilensky’s theory of meta-planning attempted to address such
common-sense planning[87]. However, while PANDORA does have notions of goal importance, partial
fulfillment, and abandonment, its reasoning about goal trade-offs is unspecified. In fact, only recently
have its basic ideas been brought to fruition {e¢.g., reasoning about conflict between episodic goals and
long term goals)[59].

Others are linking agent intent to planning and plan modification. In her modeling of a labor media-
tor, Sycara combines models of goal interaction and agent belief[83]. Figure 47 illustrates PUR-
SUADER s model of a company’s goals and their relationships. Goals lower in the hierarchy are support-
ing or detracting factors to goals higher up. For example, pPROFITS are affected by PRODUCTION COSTS
and saLEs. The company wishes to increase profits (indicated with a “4+”); the company believes profits
can be increased by decreasing probucTION cosTs and increasing saLes. The graph models agent goals
and how the agent believes the goals support or detract from each other.

Graphs like that of figure 47 have been used by organizational[76], decision[90], and negotiation
researchers[20]. They typically contain causal relations, markings of importance, and sometimes proba-
bilities. The graphs are drawn from an agent’s beliefs, hence the causality may be faulty. Such goal
knowledge can be used to prevent the pursuit of incompatible goals, explain why multiple goals cannot
be met, or persuade an agent to accept relaxed goals.

/lut:uns\
lh:cover Reorder Splitle Remove
k Reform Feamre
;hl\ / Item Feamre Balar{
Side h’eeondition Bd'orr. After Up Down Sidc Precondition Up Down
Effect Effect

Figure 46. CHEF’s Resolutions

85 CIS-TR-93-10

rofits(+}
/producdun cost{-) salea{+)
lan terials(- labor(- i i X
l:7i':cucy(+) - @ / r“\q ty(+) prices(-)
cm.playee. employment(-) economic(-}
satisfaction {+)

economic (+) non-econoemic(+) automaton(+) subcongact(+) wages(-} fringea(-)

wages(+)

Figure 47. PURSUADER's Company Goal Beliels

Analogy researchers also consider goal level knowledge. In particular, they are concemed with
linking lower level language interactions to higher Ievel goal relationships; this facilitates the determina-
tion of a pood analogy[12,31,35,44]. Analogical reasoners must resolve conflicts between domains.
They decide which structures should be transferred between domains. Untike planners, most analogical
reasoners have some measure of fit; analogies can be made despite constraint violations. Better analogies
are achieved by reducing constraint violations. Similar to planning, operators pick altemative structures,
alternative unifications, and reorder structures. Analogical reasoners do not use goal interaction knowl-
edge, such as in figure 47, 10 guide their analogies. Typically, syntactic fit guides this process[31]; how-
ever, functional knowledge is also used[44].

In sum, research has focused on plan formation while neglecting issue formation. This focus stems
from a single agent view with few fixed (presumably achievable) goals. Such myopia naturally focuses
on plan patching. When one’s planning view is expanded, low level interference must characterized and
associated with a subset of the many goals. Similarly, plan patch failure leads to expanded consideration
of resolution. Resolution must include goal relaxation and dropping; moreover, preferences must be
available to make such decisions.

5.2. Resolution Evaluation

This section presents a broad view of the complexity of the three generation methods. For resolu-
tion, computation depends on the issues, perspectives, heuristics, and hierarchy depths. However, the
central most determiners are the number of conflicts and the size of the domain hierarchies.

5.2.1. Compromise: Multi-Criteria Simplex

Unlike the other search methods, the compromise algorithm is simply the adaptation of another’s
research. Hence, this section simply summarizes the analysis of the multi-criteria simplex method. See
the references for future details.

Consider a linear programming problem with 10 variables each with a range of 10 integers (e.g., 0

.. 9); the solution space would be 10'°. A simplex tableau with # nonnegative unknowns and m depen-
dent variables (constraints) has n!/m!{n-m)! basic solutions; however, most of these “solutions” do not

CIS-TR-93-10 86

exist[78].

While the simplex method is exponential, computation time is nearly proportional to the number of
iterations. The number of iterations depends on the topology of the extreme points, If one only considers
extreme points of the feasible set, then the maximum number of extreme point solutions is X_ =m(n - m

-1) + 2[46]. Once an extreme point is identified, others can be easily identified by transforming the
tableau; this means m{n - m -1) + 1 is the worst case number of simplex iterations.

The multi-criteria simplex method has essentially the same complexity as the single criteria sim-
plex method. However, it limits itself to considering only nondominated extreme points; the nondomi-
nated set of extreme points is usually less than the feasible extreme points, N < Xu. To test for domi-

nance, it must execute phase II of a two phase simplex method on the criteria row; see Zeleny for the
exceptions and a way around this[93]. Also, the MCSM has more overhead associated with finding and
executing pivoting procedures. Moreover, it must visit all nondominated extreme points, whereas the
simplex attempts to maximize one objective by [inding one optimal point. See Zeleny or Yu for proofs of
completeness and termination{91, 93].

While the MCSM is exponential, Zeleny does point to a polynomial algorithm (Appendix B[92],).
In practice, the MCSM is adequate for most problems. The following table gives the possible solution
space, nondominated extreme point solutions, and CPU non-system run times for several problems
appearing in[92]; and[93] the (nonoptimized) algorithm was on a Sun4 in Allegro common lisp.

" Year | Page | (n,m) Space | Nex | Time (sec)

1982 | 233 ¢,3) 10 2 0.034
1982 | 244 (7, 4) 35 6 0.366
1974 | 116 | (16,8) | 1,2870 3 0.183
1974 | 117 | (16,8) | 1,2870 | 281 11.866

Despite the computation adequacy of the MCSM it lacks several important features. In general, a
good constraint system which has the following features:

Qualitative
In addition 1o discontinuous ranges, discrete ranges should be expressible[8].

Multiple (Altemnative) Constraints
Alternative sets of constraints should be expressed and efficiently searched. This means expanding
search to constraint spaces rather than a single constraint space. (Yu does extend it to consider mul-
tiple constraint sets[91].)

Fuzzy Constraints and Objects
Constraints, like goals, should not be discrete; rather, they should describe a range of desirable
restrictions. Fuzzy constraints should be expressible[39, 80].

Conditional Constraints and Objectives
Constraints and objectives that depend on other conditions should be expressible. Constraints and
objectives may depend on: (1) the design state, (2) agent state, (3) other agent siate, or (4) other
agent behavior.

87 CIS-TR-93-10

While such a complete system remains future research, these features have been demonstrated individu-
ally. If available, such a constraint system would efficiently combine the three individual search methods
(i.e., compromise, specialization, and generalization). Intuitively, I believe that numeric based methods,
like MCSM, cannot effectively address such expressiveness. Future research will attempt to exploit sim-
plex search notions in a qualitative search framework.

5.2.2. Specialization and Generalization

Recall that specialization derives more specialized relations, whereas generalization derived more
general refation. Both methods are applied within the interactive search procedure. Hence, their depth
and repetition of application are under user control. In the worst case, the resolution generation methods
completely cover the representation space. However, its is more likely that some subsct of the relations
will be considered.

5.2.2.1. Analysis

Assume interactive search contains m conflicts involving p perspectives. Typically, specialization
replaces some subset of relations, n | n £ m, with 5 new specialized relations, s > n; however, s is typi-
cally equal to p which is often fewer than the possible 5. The s new issues are found through cither the
relation or operator hierarchies.

For each application of specialization, the search space is limited by the branching factors of the
operator and relation hierarchies. In the worst case where the root of the relation hicrarchy is in conflict,
all relations will be considered.

The analysis of generalization parallels that of specialization. Again, assume interactive search con-
tains m conflicts involving p perspectives. Generalization adds some g relations. The g new relations are
found through either the relation or operator hierarchies,

For each application of specialization, the search space is limited by the the branching factors of
the operator and relation hierarchies. In the worst case where a leaf of the relation hierarchy is in conflict,
all relations will be between it and the root will be considered. However, the relations suggested indi-
rectly through the operator hierarchy must also be considered. In the worst case, one of them will add the
root of the relation hierarchy, and again, all relations will be considered.

Finally, the interactive search method is not guaranteed to converge nor avoid local minima; neither
are under program control. Given conflicts, a user is presented with nondominated compromises. Most
decision support systems end search here; however, Oz gives the user specialization and generalization.
Both introduce new relations.Since they reformulate the conflict, they may move out of local minima.
Using the three methods, the user explores the search space and the group’s contextual preferences. Con-
vergence emerges as the user cycles through several aliernatives, and eventually narrows the choice to
one.

CIS-TR-93-10 88

5.2.2.2. Related Dissolution Research

Generating resolutions is a creative task. Oz advocates an issue expansion approach. It atiempts to
generate alternatives which dissolve conflict. In conirast, planning systems typically use plan modifica-
tion.

Conflicts are dissolved through plan modification, resource expansion, and bridging. Plan modifica-
tion removes conflicts by considering different objects, operators, and their relationships. Some planners
consider the availability of resources, but they typically do not dissolve conflicts by resource expan-
sion[88]. This is mainly because resource expansion is expensive. However, in design, where resocurces
are being defined, resource expansion is a good method of dissolution. Bridging may also be expensive;
moreover, it is difficult to derive.

Bridging is type of replanning in that agent goals are reconsidered. Bridging attempts to dissolve
conflict or reduce it by creating: (1) new relationships or (2) new technology. For example, time conflicts
can be resolved by alteration or contingent sequence; consumable resource conflicts can be resolved by
inventing renewable resources. The key diffcrence between bridging and replanning is their focus:
replanning resolves conflicts of an agent, while bridging resolves conflicis between apents. Using the
planning paradigm, multi-agent conflict can be resolved by aggregating agent goals and then creating a
plan[32]; bridging takes existing plans and repairs their negative interference. The Oz mechanism is a
combination of the two. It aggregales goals to derive an integrated plan; however, it analyzes plans to
derive new compatible goals. 1 speculate that for combining large plans with relatively little interfer-
ence, bridging may be more efficient. Moreover, this is a common method of negotiators[66]. Also, typi-
cal planners are unable to resolve goal conllicts {e.g., ACHIEVE(X) & ACHIEVE(-X)) which result from goal
aggregation. There can also be methodological reasons for independent plan formation (chapter III).

Bridging, like planning, uses inierference analysis to guide dissolution. For example, time multi-
plexing users of a resource falls naturally from the mutual consumplion of relation instances[3]; relation
instances can be used to describe resource usage over multiple states. Hence, planning methods can pro-
duce bridging relations. However, inventing new operators (technology) is not a typical planning
method.

Sometimes, when multiple agents describe behaviors, objects or processes interfere. One method of
resolving such conflicts is to substitute the incompatible entitics with a new subsuming entity. For exam-
ple consider two alternative proposals for library record keeping: (1) a manual card file, and (2) a com-
puter database; due to costs, both systems cannot be used. One dissolution is to include both and expand
the money supply (or altematively reduce the costs). A morc appealing solution is to create a new system
satisfying the desired attributes of both systems. For example, the computer system may be desired for
speed, remote access, and archiving; the manual system may be desired for familiarity, simplicity, and
reduced eye strain. A solution may be a modified computer system: its operations use a manual system
metaphor for familiarity and simplicity; its monitor is high resolution with large fonts for reduced eye
strain.

New technology dissolution is accomplished by decoupling and combining the desired attributes.
Zwicky has used this technique to predict new technologies[41]. Lenat combined this technique with
pruning heuristics to discover new game strategies and math concepts[51-53]. It works best when: (1)
the representational forms used are structurally similar to the abstract concepts, (2) there is a small set of
combining operators, and (3) humans aid the concept evaluation. However, this method only finds con-
cepts already defined implicitly in the representation language([54]. Yet, the method is effective in that it
efficiently produces interesting concepts for human consideration. In the search for resolutions, this is a

89 CIS-TR-93-10

valuable technique.

When a conflict is similar to one previously considered, stored resolutions can help. Previous cases
which have resulted in a satisfactory resolution, as well as those which resulted in an impasse, arc useful.
Successful cases can be instantiated and modified for the current context. Unsuccessful cases can prune
resolutions from consideration. A case-base serves as a cache of uncnunciated negotiation knowledge. It
can contain resolutions which combine or individually embody dissolution, compensation, and compro-
mise negotiation. However, case-based resolution can limit solution creativity. Reliance on cased-based
resolution limits the creation of new resolution prototypes; it is an example of the anchor and adjust
judgmental bias[5]). To provide for creative resolutions, case-based resolution systems must include a
synthesis component.

5.2.2.3. Related Compensation Research

Most planning systems do not consider compensation because cither: (1) they do not consider mul-
tiple agents, or (2) they do not consider a significant number of agent goals. Clearly, in multiple agent
negotiations, one agent can be compensated by another. However, agents with complex goal structures
can also try to compensate for their own unsatisfied goals; for example, a working agent unsatisfied with
its salary can plan to gain other benefits.

Compensation depends on the goal structure of the “loging” agents. To determine how to compen-
sate an agent, one can use a model of its goals. Previously, goal modeling has been used to construct per-
suasive arguments. Such arguments use the same tradeoff analysis used 1o determine compensation.

Sycara used graphs like that in figure 48 to construct persuasive arguments[83]. For example, if
employees pushed for higher wages, PERSUADER would show that the company would have to reduce
employment to keep labor costs down. Figure 47 illustrates how labor expenses are increased by both
employment and economic increases. The company believes that to maintain market position, labor costs
must be kept down; any increase in economic costs must be offset by a decrease in employment. PER-
SUADER uses a union belief model (figure 48) to understand that the union wants to increase employ-
ment; hence, the argument will influence the union since it points out the loss of desired goals,

PERSUADER uses goal relationships 10 construct persuasive arguments; it shows how an agent
may respond to change based on its goal beliefs. An agent’s goal beliefs can also be used to determine
compensation. For example, the company may not agree to better union wages or benefits, but it may
agree to better seniority wage and promotion policies. Compensation can be found by increasing satisfac-
tion of sibling goals (NON-ECONOMIC of figure 48). When this fails, more general compensation may be
had by moving up the union hierarchy to consider higher goals (e.g., UNION-SECURITY). By modeling
agent beliefs of goals and their intcractions, one can derive compensation from specific to general.

Oz’s operator, object, and relation hicrarchies are analogous to Sycra'’s goal belief tree These hier-
archies are searched for compensation like Sycra searches her goal tree for persuasive arguments.
Sycara’s trees are manually constructed; this allows them to accurately reflect the designer intent. Oz''s
hierarchies are automatically constructed; this allows them 10 accurately reflect the functional relation-
ships represented in the system.

Sycara’s trees can be viewed as an abstract summary of the operator hierarchies. Such simplifica-
tion focuses the generation of arguments (or compensations), but implicitly excludes intermediate goals
and more concrete goals. Automated hierarchies support greater of depth and breadth in abstractions.
Large hierarchies may require us to skip some abstractions during compensation to prevent thrashing in
minute details. Such compensation scarch control is still future research.

CIS-TR-93-10 o0

management rights (-} employee smatisfaction (+) union security (+)
Wmmt +) economic (+)
seniority (+) Job seaxmity (+) subcontact () wages (+) fringes (+)

Figure 48. PURSUADER’s Union Goal Beliefs.

Oz, like Sycara’s PERSUADER, has analytic and heuristic components[82]; however, the analytic
component is based on process-oriented decision theory rather than strictly multiple attribute utility the-
ory[9]. Oz’s heuristic component is divided into dissolution and compensation, whereas these are
implicitly combined in Sycara’s case-base. Like Sycara, Klein uses a cased-based approach[47].

The above view of negotiation contrasts with DAI’s view. For the most part, DAI views negotiation
as a coordination problem. Message contents are simple task requests and accepis; the contract net illus-
trates this[18]. However, “multistage negotiation” illustrates how DAI negotiation can make more of the
decision process collaborative[16]. Similarly, Werkman emphasizes message passing to engage in col-
laborative group resolution search{86].

This dissertation contributes to Al by applying and automating process-oriented decision theory for
group design. The general search framework is not entirely novel; it is derived from Zeleny’s IDEA.
However, the use of specialization and generation is novel. Moreover, the domain model is a novel com-
bination of decision theory and abstract planning([2].

6. Summary

Robust conflict analysis combines syntactic difference analysis with goal relationship
knowledge[21,29, 30]. Design Janguage level analysis serves as a general mechanism for conflict detec-
tion, while goal knowledge serves to (re)characterize conllicts. Such characterization can be used to
resolve conflicts and avoid conflicting behaviors. The two process are interdependent: goal interaction
knowledge must be applied to goal conllicts; conversely, design conflicts must be detected to be
resolved.

Determining the linkage between behaviors and goals is a problem. Resolving negative interactions
is another. Most systems rely on basic plan modifications: (1) alternative operators, (2) reordering, (3)
reestablishment, and (4) altemative unification. Few attempt 1o modify the underlying causes of the con-
flict; for example, resource shortages, or unrealistic expectations. When plan modifications fail, modifi-
cation of environmental or agent constraints can be helpful.

The conflict detection method combines a top-down model of goal interactions with simple lan-
guage level analysis. Conflict resolution is achieved through plan and goal modification. My research
goal is not to introduce new plan modification operators, but to combine such operators with design and
goal modification in a negotiation framework.

91 CIS-TR-93-10

CHAPTER VI

A DETAILED EXAMPLE

The representations and algorithms presenied in this dissertation provide negotiation aid for design-
ers. Additionally, records of their use provide rationale for the design. This chapter demonstrates the suf-
ficiency of the methods to generate useful resolutions and aptly record negotiated decisions, It is done so
by rederiving a portion of a simple library system. In fact, the library system is rederived twice. First, to
demonstrate that Oz can derive a negotiated design described in a case study. Second, to demonstrate that
Oz can suggest still more resolutions. In the end, I conclude that the representations and algorithms do
support negotiated design. However, before the derivations, the library case study is presented.

1. The Library Problem

In 1968, Burkhalter and Race analyzed the charge-out (loan) period for the University of Michigan
General Library[10]. Here is how they perceived their problem.

Library administration asked, “Should the length of the two-week charge-out period for
student book loans be changed?” Initially, the question arose in response 1o increasing pres-
sure on the circulation staff. Lengthening the charge-out period might reduce the time the
staff must devote to activities such as processing overdues and rencwals. On the other hand,
a shortening of the charge-out period might lead to greater book availability for the patrons.
The purpose of this study is to identify the factors affected by a change in the charge-out
period which lead to a change in cost or patron service, and then to attempt to assess the
relative degree of change so that a decision can be made as to the optimal charge-out peri-
od.— p. 11[10]

To begin their analysis, they described a portion of the initial library state: (1) a loan period of two
weeks, (2) renewal at the desk, and (3) overdue notices every week for three weeks. Next, they analyzed
the cost and effectiveness of this arrangement, with particular attention to renewal and overdue notice
procedures, Finally, they redesigned the library to include: (1) a loan period of three weeks, and (2) over-

due notices every week for two weeks.!
This study appears as an example of the type of implicit negotiations that occur during design, As

is typical, a central designer (Burkhalter and Race) analyze group needs, and then implements a solution.
However, the varied views of the group, and their negotiations, go unrepresented. In contrast, Oz

IBurkhalter and Race did also consider some subprocesses of these operations. For example, they analyzed the
cost effectiveness of the notice copy mechanism. Their analysis revealed that Xerox copying of notices would be
more efficient than their current ditto procedure. Hence, the modified library implemented this change. However, I
did not conduct the study at this level of detail. Since, Burkhalter and Race mainly focused on loan period and over-
due, sodid L.

CIS-TR-93-10 92

explicitly represents and reasons about stakeholder perspectives and their negotiations. To represent the
library perspectives for this case study, I have had to infer the original rationale.

I have rationalized the library design as a negotiation between the librarians® group and the patrons’
group. This is common in library design[55,57]. Decisions are ofien described as trade-offs between the
goals of a representative librarian and a representative patron. Additionally, Burkhalter and Race explic-
itly referred to such trade-offs. When they did, I formally represented them explicitly and accurately.
Hence, I believe that if they had the same representations to use, they would have derived perspectives
similar to those that follow.

Before presenting the two library perspectives, the results of the Burkhalter and Race’s analysis are
described. From user surveys and analysis of circulation pattems, they derived tables and graphs describ-
ing the initial library conditions. These analyses are represented in Oz. They are used to guide resolution
search, Next, their analysis of the library’s loan period and overdue notice procedures are summarized.

1.1. Loan Period

Burkhalter and Race divided loan period into two parts: useful time and idle time. During use,
patrons actually avail themselves of their resources. However, the time before resource return and afier
resource use is idle time, Librarians explicitly have the goals of increasing resource usage while reduc-
ing idle time. In an ideal world, upon completion of usage, each patron would immediately return their
resources. Instead, resources are often idle before their return. Librarians can attempt to control this situ-
ation through loan period duration. By reducing loan period duration, patrons are encouraged to at least
renew resources, if not return them, after a period of time. Loan period determines the time frame, while

Student Resource Usage

100% 1

90% T
80% T
.01 X + y <= 96.29

70% T

60% T
50% 236 X +y <=0

40% +
30% + \
20% 1 571 %X +y <=0

10% T

0% t t + y } } t + + t } } t } t 3 t |

Days

Figure 49. Student Resource Usage Graph.

93 CIS-TR-93-10

late fees determine the amount of encouragement. By analyzing rencwal patterns and surveying patrons,
Burkhalter and Race described how resource usage varied with loan duration.

Figure 49 illusirates the representation of Burkhalter an Race’s usage graphs. I have combined their
graduate and undergraduate graphs into a single one since they did not consider distinct loan periods for
graduates and undergraduates. Also, unlike the graph, theirs are smooth non-linear curves. In contrast,
Oz graphs are formally represented by a set of linear constraints. Such linearity allows us to apply linear
programming methods to analyze the graphs.

Figure 49 shows how student resource usage varies with time. In the first few days, student’s only
partially complete their use. However, after 20 days, students are ncarly completely finished using
resources. According to the graph, loan periods longer than 20 days will encourage resource idle time.
However, such graphs must be interpreted in proper context. The 14 day loan period coupled with the 7
day overdue notice may have caused students to return resources near 21 days. On the other hand, the
user surveys indicate that students would retum resources afier 21 days even with a longer loan period.
That is, 21 days is often sufficient for student borrowing.

As Burkhalter and Race state, the circulation work load was one of the factors which initiated their
case study. Circulation staff were being overrun by patron renewal requests. Hence, longer loan periods
were posed as a means to reduce renewal requests. While Burkhalter and Race did not explicitly repre-
sent reduced renewal cost as a function of loan period duration, I have. Figure 50 shows how I interpret
their perception of renewal cost. The main element of the figure is simply that cost decreases as loan
period duration increases. Eventually, (around 45 day by my estimate) rencwal costs are negligible.

Renawal Cost

100% 1
80% T
80% T
70% 1
60% T
50% T
40% T
30% T
20% T
10% T

0% t } t t } } } t—d t + u t t t . t {

259 x + 1 <= 100

142 x +y <= 50

Days
Figure 50. Resource Renewal Cost Graph.

CIS-TR-93-10 94

1.2. Overdue Notice

Burkhalter and Race applied the same sort of analysis to overdue notices. Librarians desire to aid
patrons in remembering to return their resources. However, three other issues mitigate this goal: (1)
costs, (2) responsibility, and (3) availability. Burkhalter and Race measured the effectiveness and cost of
the overdue notices. (Initially, three notices were sent: one every week after a resource was due.). Figure
51 shows a table of their results. They concluded that:

...the second notices entail one-fourth of the cost while producing less than one-seventh of
the returns; and the third notices entail one-sixth of the cost while producing one fiftieth of
the returns. This low return for the dollar, coupled with the philosophy that it is the patron’s
responsibility to retum books, led to the recommendation that the third notice should be
considered for elimination.— p. 20[10).

Figures 52 and 53 show the graphs for overdue costs and effectiveness. The graphs illustrate the reduc-
tion of costs and effectiveness associated with later notices.

Burkhalter and Race use their analysis to rationalize the reduction of overdue notices from three to
two. Similarly, Oz uses the analysis in its perspectives to model attribute relationships. Such relations are
useful in constraining the space of resolutions and depicting stakcholder preferences. Next, two perspec-
tives based on the above analysis are presented.

1.3. Two Perspectives

The librarian and patron perspectives are quite similar. They both modify the generic library model
by attaching preferences associated with loan period and overdue notices. The both use the Burkhalter
and Race's analysis of loan period usage and cost, and overdue notice effectiveness and cost. However,
they differ in their preferences. The librarian is focused on reducing costs while maintaining high
resource usage. In contrast, the patron only cares about long loan periods and multiple overdue notices.
Figures 54 and 55 illustrate the librarian and patron perspectives. (Note, they only contain preference
modifications to the library model. See Appendix A the complete library model, including the initial rela-
tion instances.)

Figure 55 shows the librarian’s perspective. It represents the librarian’s desire to: (1) loan student
resources (ON_LOaN), (2) notify students of overdue resources (GIVE_NOTICE), and (3) allows students to

Notice 1 2 3

Number sent 1600 750 530
Resulting returns 850 | 220 30
Percent effectiveness 53% | 29% 6%
Percent of total overdues returned 54% | 14% 2%
Relative cost per book 100 181 940
Percent of total overdue notice cost | 56% | 26% | 18%

Figure 51. Table of Overdue Notice Evaluation.

95

CIS-TR-93-10

100% 1
90% -
80% -
70% -
60% -
50% -
40% A
30% A

20% T
10% +

Overdue Notice Cost

0%

Number of Notices

Figure 52. Overdue Notice Cost Graph.

100%
90%
80%
70%

60% T

50%
40%
30%
20%
10%

Overdue Notlce Effectivensess

0%

Number of Notices

Figure 53. Overdue Notices Effectiveness Graph.

CIS-TR-93-10 96

(in-perspective ’Librarian)

(def_establish
{on_loan{studentl, resourcel, loan_periodl})
{knows_records (studentl, studentl, resourcel))
{give_notice(iibraryl,studentl, overdue_ noticel)})

{def_mod object "loan period”
tatts ' (
{"Duration” :val 14 :min 0 :max 365 :cbj min)
{"Usage" :val 100 :min 0 :max 100 :obj max)
{"RenewCost" :val 0 :min 0 :max 100 :obj min)
}
tatt_constraints ' (
;: Usage
(-5.71 1 0 <= 0)
(-2.36 1 0 <= 47)
{(=0.01 1 0 <= 96.29)
:: RenewCost
(2.5882 0 1 >= 100}
{1.1429 0 1 >= 50)})

{def_mod otyp "overdue_notice"
atts |
{("Number" :val 3 :min 0 :max 5 :obj min)
{("Cost" :val 100 :min 0 :max 100 :obj min)
{"$Wasted Effort" :val 100 :min 0 :max 100 :obj min)
)
tatt_constraints ’ (
;i Cost
(44 1 >= 100}
(810 >= 42)
;+ Wasted Effort
{(=2 01 >= 0)
(=23 0 1 >= —-40)
(=47 0 1 >= -135})}

Figure 54. The Librarian’s Perspective.

access their loan records (kNows_REcORrDs). These arc only a few of the many goals associated with a
library system.

My focus on loaning and notifying reflects Burkhalter and Race’s case study. The addition of the
access goal is to demonstrate that the following negotiation can be part of a larger design cffort. Since the
access goal is shared (i.c., the same) for both the librarian and the patron, it will be determined not to be
in conflict, and hence, not part of the negotiations. This will demonstrate how the integration methods
only focus on the conflicting parts of the design, and allow the other parts 10 be combined without nego-
tiation.

In addition to goals, figure 54 also shows the preferences of the librarian. The librarian desires to
maximize resource usage, yet maintain resource availability. Decreases in loan period duration increase
resource availability. Hence, the librarian’s preferences are represented as maximizing usage, minimizing
duration, and also minimizing renewal cost. The relationship between duration, usage, and cost as
depicted in the previous section is represented by the atiribule constraints. Additionally, the librarian’s
overdue notices are represented. The librarian prefers to minimize costs associated with the notices,

97 CIS-TR-93-10

while maximizing their effectiveness. Rather than model cffectiveness, I choose to model wasted
effort—the inverse of effectiveness. Hence, the librarian prefers to minimize wasted effort. These prefer-
ences and the associated relationship between them and overdue number {from the previous section) are
represented as the modification of the oVERDUE_NOTICE object.

Figure 54 also illustrates how Oz can derive a design using specific values for attributes, while hav-
ing seemingly conflicting preferences. In the figure, the librarian has the objectives of minimizing loan
period duration and overdue notice number, yet the values are set at 14 and 3, respectively. This mecha-
nism is used to allow the derivation of a previously negotiated design. For example, in the Burkhalter
and Race case study, their librarian’s own availability preferences would suggest minimal duration, while
their librarian’s (and student’s) usage preferences suggest longer duration. Apparently, previously they
negotiated a 14 day duration and three overdue notices. Rather than rederive that earlier negotiation, I set
up the librarian’s perspective to derive the initial library described in Burkhalier and Race’s case study,
and then integrate that design with a conflicting design derived from the patron’s perspective.

Figure 55 illustrates the patron perspective. It is nearly identical to that of the librarian. Like the
librarian, the patron desires that the library: (1) loan student resources (0N_LOAN), (2) notify students of
overdue resources (GIVE_NOTICE), and (3) allow students to access their loan records (RNOWS_RECORDS),
Additionally, the patron desires 10 maximize resource usage, and unlike the library, maximize loan period
duration. Moreover, the patron does not care about library renewal costs. Figure 55 also represents the
patron’s overdue notice preferences. The patron prefers to maximize the number of notices. Unlike the
librarian, the patron does not carc about notice costs. Again, the associated relationship between
attributes are represented as linear constraints.

1.4. Two Designs

Given the two perspectives, the planner is able to automatically derive a design achieving the goals.
Figure 56 shows Oz’s depiction of the librarian’s goals and derived design. The design in the figure illus-
trates how the initial library conditions enable students to access their loan records after they have bor-
rowed a resource. It also illustrates the Borrow and GIVE_NOTICE operators. The initial library conditions
enable students to borrow resources and then receive overdue notices.

Notice that the design does not use abstract operators. To most closely simulate the case study, I
have instructed the planner to use concrete operators. Hence, the operator GET_RESOURCE was specialized
10 BORROW 10 reflect the previous design. To derive a design from scratch, one would run the planner in
abstract mode. Then, operators are specialized only if required by the design or preferences.

The patron's goals and design look identical 1o that depicted in figure 56. What is not shown are
the differing preferences in the object hicrarchies and the differing relation instances produced in the
design. In each perspective, the objects do contain the preferences described above. Those preferences
cause the planner to create instances of relations which have the appropriate attributes. Hence, while not
shown in figure 56, the design for the librarian has a loan period duration of 14 days and an overdue
notice number of 3. In contrast, the patron’s design has a loan period duration of 365 days and an over-
due notice number of 5.

CIS-TR-93-10

93

{in-perspective ‘Patron}

{def_establish
(on_loan(studentl, resourcel, loan_periodl))
(knows_;ecords(studentl,studentl,resourcel))
(give_potice(libraryl,studentl,overdue_poticel)))

(def_mod_object "loan period"
tatts ’ (
;;While patron’s only care about usage.
::All preferences are included so constraints c¢an reference them.
{"Usage" :val 100 :min O :max 100 :obj max)
{("Duration" :val 365 :min 0 :max 365 :obj nil)
{"RenewCost” :val 0 :min 0 :max 100 :obj nil)
}
:att_constraints ’ (
y: Usage
{(-5.71 1 0 <= 0}
{(-2.36 1 0 <= 47}
(-0.01 1 0 <= 96,29)
;7 RenewCost
{2.5882 0 1 >= 100)
{1.1429 0 1 >= 50})})

(def mod object "overdue notice"”
ratts ‘{
{"Number" :val 5 :min 0 :max 5 :obj max)
;; Patron's don't care about effectiveness or cost

)

satt_constraints ‘ (

;; Cost
{44 1 >= 100}
(81 0 >= 42)

:: Wasted Effort
(=2 01 >= 0)

(=23 0 1 >= -40)
(-47 0 1 >»>= -135}))

Figure 55. The Patron’s Perspeciive.

CIS-TR-93-10

diag

Jusey

g
peot
aneg

PLIRETNETT g

L1y 346y uBiyun
2N0ARTY UsaIIg

}207

22n053Y~moseg 13

TR UETERI) 11

(53030y "Wk | andg) RO
IR SO0 13RI) Thd)
—nnsc_gs [* 11}
1g9nubyeag) i

240104300
apaosay

" juowdajanog|
e

{ipolsad ueo} Tawi) (ade|d [30un0sad TIUIPMS ﬁEEa..::nn@

(127120U"2NPUPA0 TAUNOS3L JIUIpMS u;..m.._n_:uu.bucné

{122mo24 TIVIpMS ﬁa:un....&uu...ouu..né

z0 001}

LI ML T s

Figure 56, Oz Screen Depiction of the Librarian’s Goals and Design.

CIS-TR-93-10 100

1.5. Original Perceived Conflict

Based on their understanding of patron goals in general and analysis of the initial library in particu-
lar, Burkhalter and Race determined the following conflicis:

(1) Loan period duration. The initial loan period did not achieve the proper balance of availability,
renewal cost, and usage. Specifically, the patron’s desire for longer loan period duration was in
conflict with the library’s initial desire for a shorter loan period duration. This conflict was first
noted after using the initial library system and observing the circulation staff spending too much
time handling renewal requests.

(2) Overdue notice number. The initial overdue notice number did not achieve the proper balance of
cost and effectiveness. Specifically, the patron’s desire for more notices was in conflict with the
library’s initial desire for fewer notices. This conflict was first noted after attending to the loan
period duration conflict. During their loan period analysis, Burkhalier and Race also considered
overdue notices. From their analysis they uncovered that overdue notices were not as cost effec-
tive as desired.

Given these conflicts, Burkhalter and Race derived a resolution.
1.6. Original Resolution

Using their analysis, Burkhalter and Race may well have considered many allernative loan period
and overdue notice resolutions. However, they may have been directly drawn to the 21 day altemative
due to its prominence. It is: (1) near the top of the usage curve, and (2) has some reduction in cost. Simi-
larly, they state (see section 1.2) they were drawn to a two notice policy given the extremely low effec-
tiveness of the three notice policy. Hence, rather than consider all available aliernatives, 1 speculate they
were drawn to consider the status quo, or a 21 day loan period with a two overdue notices. After weigh-
ing the alternatives, they choose the 21 day student loan period and two overdue notices.

1.7. Original Rationale

Burkhalter and Race rationalized their resolution based on trade-offs between the patron and library
goals. (See the quote in section 1.2.) First, they felt the increase in loan period duration was justified by:
(1) reduced rencwal costs, {2) increased resource usage, (3) increased satisfaction of patron preferences.
They felt this despite the decrease in resource availability. Second, they felt the decrease in overdue
notices was justified by reduced notice costs. They felt this despite the slight decrease in overall notice
effectiveness and patron preferences to the contrary. Hence, the net effect on the status quo was to
increase the effect of patron loan period preferences on the one had, while reducing the effect of patron
overdue notice preferences on the other. Such reciprocity is common in negotiations.

2, The Derivations

The following two sections present derivations based on the Burkhalter and Race case study. In
both sections, the design derived from the librarian’s perspective is used to represent the initial library
analyzed by Burkhalter and Race. However, the librarian’s perspective represents more idealized
(extreme) goals than the librarian’s design implements, i.e., the duration goal is to be minimized while
the design reflects the initial loan period duration of 14 days. On the other hand, the patron perspective
represents idealized patron goals and a design implementing those goals, i.,c., the design has a 365 day

101 CIS-TR-93-10

loan period.

The following two derivations will detect the loan period and overdue notice conflicts, suggest
altemative resolutions, and derive a new perspective and design reflecting the resolved goals. The first
derivation will strictly follow the case study, while the second will present other resolutions. In each sec-
tion, only directly relevant aspects of the algorithms are presented. Refer to chapter V for their complete
description.

Figure 57 illustrates a trace of the library development. First, perspectives representing the library
and patron are created (called Library and Patron). Next, designs are automatically created, thereby
achieving the goals for each perspective. Next, the designs are integrated and their conlflicts are noted
(and resolved) in the integration record named P&L. Next, a perspective is automatically generated rep-
resenting the resolved goals of the two perspectives. Finally, an integrated design the automatically
derived.

To begin integration, an Oz user selects the integrate operator from the development popup menu,
selects the designs, and then hiis the go button. Each derivation description picks up the moment afier
the two designs have been selected for integration.,

2.1. Strict Rederivation

In this derivation, Oz integrates the perspectives and designs of the previous sections. First, goal
correspondences are identified and their surface conflicts are noted. Next, plan interference between the
goals is identified. Then, the conflicts are presented o the arbiter. Next, compromises are generated and
a resolution is selected. Finally, a new perspective and design are derived representing the negotiations.

2.1.1. Correspondences and Conflicts

Conflict detection begins by finding the best correspondences between the goals of the two perspec-
tives. Since the two perspectives have identical goals, correspondence identification is simple. In this
case, goals with the same names, but in differcnt perspectives are marked as corresponding.

Any difference in the goals are noted as part of the matching process. In this case, differences are
noted between the correspondences of the oN_LoaN, and GIVE_NOTICE, and KNOW_RECORDS goals. In the
first two cases, differences are classified as object attribute conflicts. For the on_roan goal, the value of
the LOAN_PERIOD attribute DURATION is different. It is 365 in the patron perspective while 14 in the
library perspective. For the 6IVE_noTICE goal, the value of the OVERDUE_NOTICE attribute NUMBER is dif-
ferent. It is 5 in the patron perspective while 3 in the library perspective. In contrast, the KNOW_RECORDS
is identical; however, it is still marked as a possible means conflict. The interference procedure will
determine if the two kNow_RECORDS have interfering plans.

2.1.2. Interference

Interference detection begins by determining how a goal has been implemented in a plan. Next, it
back propagates pre-conditions. Corresponding goals have their pre-conditions compared. If they delete
(consume) each other’s resources, then they are said 1o interfere. However, if they simply use the same
relation instances, then they do not interfere,

102

CIS-TR-93-10

di3y

1959y

IPN3
pto?
2h8g

TLTR T, FEES

LY 4B LyEiyun
Jn0de] uIIIog

CELIPEE

(P00 i | b} 20
AT 1R00 10 | R0) TR
(51900 " | aprta) T

S0 s2d))
$pJcaay

%207

[TLINT. .Y

Z] |

Figure 57. Oz Screen Depiction the Library Development.

103 CIS-TR-93-10

2.1.2.1. Loan Period

The on_Loan goals of the two perspectives are implemented identically in their respective plans. In
each plan, the operator BORROW_RESOURCE is the single operator that implements the goal. Figure 58 illus-
trates the borrow operator. Note that the only relation it deletes is the possession relation. However, back
propagating the two oN_LoaN goals through their respeclive BORROW_RESOURCE operators leads to the
same relation instance. Hence, these two goal implementations interfcre.

When two goals are found to interfere, an attempt is made to replan to achieve them. Using the ini-
tial conditions and the conjoined goals (i.c., not considering intcractions with other goals), the planner is
applied to determine if the conflict can be resolved by replanning. If so, both goals may be included in
the final plan if the arbitrator agrees that both goals and their replanned implementation are acceptable.
Given the on_noan conflict and the library operators, the planner cannot resolve the conflict through
replanning.

2.1.2.2, Late Notice

The GIve_noricke goals of the two perspectives are implemented identically in their respective
plans. In each plan, the operators BORROW_RESOURCE and GIVE_NOTICE are the operators that implement
the goal. Figure 59 illustrates the notice operator. Note that it does not delete any relation. Hence, these
two goal implementations do not interfere through the GIVE_NoTICE operalor; however, they do interfere
through the BORROW_RESOURCE operator. Again, the goal is back propagated through all operators imple-
menting it, and then those consuming pre-conditions are compared for conflict. Hence, the GIVE_NOTICE
goals do interfere. Given the c1ve_noTIcE conflict and the library operators, the planner cannot resolve
the conflict through replanning.

(def_operator "Borrow_Resource”
tdescription "A locanablie RESCURCE is LOANED to an AGENT for LOAN FERIOD."
iobjects ' (agentl agent2 resourcel timel timeZ placel loan_periodl)
:preconditions
* {{loan_period (agentl resourcel placel timel loan_periodl))
{time_is(time2}})
trdeletes ' {(possess{agent2 resourcel placel timel loan periodl}))
radds ' ((possess{agentl resourcel placel time2 loan_periodl))
{on loan{agent?2 agentl rescurcel placel time2 loan periodl))})

Figure 58. A Library sorrow Operator.

(def_ operator “"Give_Notice"

:description "The LIBRARY gives PATRONs OVERDUE NOTICEs for RESOURCEs."
:objects

' {1ibraryl patronl resourcel placel timel loan_periodl overdue npoticel)
:preconditions

* {{on_loan(libraryl patronl resourcel placel timel loan_periodl}})

ideletes ‘()
tadds ' {(give notice(libraryl patronl resourcel overdue noticel))))

Figure 59, A Library cive_norice Operator.

CIS-TR-93-10 104

2.1.2.3. Record Access

The KNow_RECORDS goals of the two perspectives are implemented identically in their respective
plans. In each plan, the operator ACCESS_RECORD is the single operator that implements the goa].2 Figure
60 illustrates the access operator. Note that it does not delete any relation. Hence, these two goal imple-
mentations do not interfere.

Note there is a distinction between goal conflict and goal interference. Goals which conflict achieve
different states. Goals which interfere use each other’s resources. Goals which conflict may or may not
interfere. However, in either case, one must negotiate, If they interfere, one can negotiate about which
goal will be included into the design. If they do not interfere, one can negotiate about whether one wants
to include both achieved states in the design.

When two goals do not interfere, no replanning cffort is made. Hence, the planner is not invoked to
attempt to resolve the AccEss_RECORD *‘conflict”.

2.1.3. Initial Issues

Figure 61 shows an Oz depiction of the initial issues. The relations oN_LoaN and GIVE_NOTICE are

shown with special attention 1o the conflicting objects. For example, the on_vzoan conlflict is displayed as:
on_loan {library} studentl resourcel placel timel loan_periodl#loan periedl)

This indicates that the corresponding objects LoaN_PERI0D1 from the two perspectives are in conflict. (In
this case, the two perspectives use the same name; however, it is possible for goals to match even though

they use different object names.)?

Preference satisfaction is displayed below the relations. In each case, preferences are displayed in
the following left to right order: relation preferences, relation attribute preferences, and object attribute
preferences (if they exist). For each of these preference types, first the average of the perspectives is dis-
played, and then preferences from cach perspective is displayed (if they exist).

Reading from right to left, consider the preferences associated with oN_zoan. The three rightmost
are the librarian’s object attribute preferences for Loan_pERIOD1. The loan period attribute preferences

(def_operator "RAccess_Record"
:description "An AGENT can read the library loan records."
tobjects ' (agentl agent2 resourcel}
:nots ' ({secure_records(agentl agent2 resourcel})}
:preconditions ‘ {(access_records (agent]l agent2 resourcel)))
ideletes ' {)
tadds ‘ ((know records(agentl agent2 resourcel)))}

Figure 60. A Library access Operalor.

20ne may notice the directed link between cive_norice and access_REcoRD in the plan of figure 57. That link
does not indicate a pre-condition dependency as can be seen if figure 60. Instead, it is simply OPIE’s way of indi-
cating a possible ordering for unordered operators,

In the case of conflicting relations or relation altributes, the relations would be displayed as confiicting. For
example, cIVE_NoTICEzGIVE_NoTIcCE. Reler to Chapter V, section 1.3).

CIS-TR-93-10

105

diay

1989y

31%3
puot
gﬂm

uo13904a3u3

Ly w61 yGyun
aAnode uas.ag

CELINEETTN

R4y "uauda | asag) mo)
| 1)y #09 “un | e B

240395300

epJoDaYy

PSP
suser s—ardeas
evEse. sueise
£1144
SSae covaus
- i Berue
av—pe iEnmmur

it L I St 1]

Bl o SvSE

emanas

g
w
;
i
]
i

Puree smadr=dd
PLeuses SmaLsLmeE
LearBUsHE ATCvEE
puwee poeces
Peserey amwnds

e gese

(12310UTINPUFA0E TINIOUTINPIINC [I2IN0ERI [UIPMS —E I

(1Porad uRe|p [poLsadTuURY| [WN) 130U|d [234N0834 JIUIPME [AIRIGI|)UED]

_.nuo__b_:ou_uom_-:o_uﬂ..mnu:;._dn__

Figure 61. Oz Initial Screen Depiction of the Goal Conflicts.

CIS-TR-93-10 106

are: resource cost, usage, and duration. The next three preferences toward the left are the patron’s object
attribute preferences for Loan_PERIOD1. Again, the loan period attribule preferences are: resource cost,
usage, and duration. The next preference indicates the average satisfaction of all the LOAN_PERIOD
attribute preferences, i.e., resource cost, usage, and duration from both perspectives. This averaged pref-
erence is named ¢LOAN_PERIOD DURATION. Loan period is the object and duration is the attribute whose
value differed in the two designs. The next preference to the left is the averaged oN_Loaw attribute prefer-
ence, Since there are no attribute preferences associated with the on_vroan relation, no individual prefer-
ences are displayed. However, notice that its satisfaction is at 100 percent. Whenever there is no pre-
ferred ordering associated with a range, its satisfaction is displayed at 100 percent, thereby allowing the
arbitrator to effectively ignore its contribution to an altemative’s overall achievement. Finally, the last
preference to the left is the averaged oN_roaw relation preference. Since there are no relation preferences
associated with oN_Loan, no individual preferences are displayed. The cIve_norice preferences are dis-
played in similar fashion.

Each displayed relation represents an altemative. Hence, an initial relation represents two conceplts.
It represents the initial conflict, where the display notes the conflicting components with the = symbol.
And, it represents an altemative where the conflict is resolved. In the case of the initial relation, this con-
flict is resolved by choosing the values from the first perspective given to the integration; the value from
the patron’s perspective. Hence, the first relations displays the conflicts and the alternatives where the
first perspective’s values are chosen. Subsequent aliernatives will be generated and displayed using the
same format. However, they will only represent resolutions; hence, no conllicts will be displayed.

For each relation (altemative) displayed, preference satisfaction is displayed in the form of a bar
graph. The more satisfied a preference, the higher the bar graph. These first relations display the alterna-
tive of a 365 day loan period duration and 5 overdue notices. Hence, one can see from the initial relations
displayed, preferences from the two perspectives conceming the patron’s proposed values. Thus, the
patron’s preferences are higher (equal or) than the librarian’s for each relation.

From these initial issues, the arbitrator considers the preferences of the two perspectives and con-
siders whether to: (1) accept the initial alternative, i.e., the values from the patron perspective, or (2)
apply a resolution method. For this case study, the arbitrator applies the compromise method.

2.1.4, Generated Compromises

The arbitrator applies the compromise method to each of the conflicts in um. First, loan period
duration compromises are generated. Next, late notice number compromises are generated. Such com-
promises are generated by simply choosing the compromise method from a popup menu and then click-
ing on one of the relations. In this way, the three methods can be interleaved. That is, first compromises
can be generated. Then, those relations can be generalized or specialized. Such an approach is shown in
the expanded example. However, here only compromise is applied.

2.1.4.1. Loan Period

Figure 62 shows an Oz depiction of the loan period duration compromises. The compromises are
linked to the to initial relation via an icon depicting the compromise operation.

Figure 63 shows the table of compromise solutions depicled in figure 62. Each row indicates a res-
olution. The first column lists the duration values for loan period. The next two indicate the derived
resource usage and cost associated with a particular duration. To determine the satisfaction a perspective

107

CIS-TR-93-10

[F&i{integration,CoalConflictsl

-
—

-

Q

T

o

=%

5l

2

-

B) g
e L] =

—

B cagesvens aswued @&
= [}
o ANIPT AW uEE 2
H LEL s TS T T a
9 ' -
— w
e wac maac
< bhven —oaa
I

2

-

-

[

[

3

i

o

oswdubus srdnSures

Lo o MY PO T

Ele el TN T

le3usw—ac J-aunv=ac

e PEWIUBne RIS ESE

on_lganilibraryl studentl resourcel placel timel loan_periodi2loan_pericdl)

Iners hevmbE

) -
=
2 9 Sz ¢
0 k]
H:5 |WE ! =s .
:: W:. 553 |@e3e 3 oo
£ A ;é o sox % 7y
3 ¢ =§= ¢ % GBI ¥ £
0 zé ! < o fxr
G 5 : T 55
= S RS
2 353 2 I
©
5 LAR =
[
Al -
o'y
g
§ 3
-3
-~ n
-3
g‘-‘
R}
- B
o~
-y
s83
34 [
T B saaee —avai—vE
£y Y A
]
=
B Y S
- Alanbeand o BN S] 1 3
- ¥ N
- gl

Figure 62. Oz Screen Depiction of the Compromised Loan Duration.

CIS-TR-93-10 108

derives from such resolutions, one must consider the goals. For example, the resolution of zero duration,
zero usage, and 100 percent cost is an extreme resolution which only satisfies the librarian’s goal to mini-
mize loan period duration (to achieve resource availability). In contrast, the resolution (20.9, 96.5, 45.7)
appears to be a more balance nondominated resolution. It nearly achieves 100 percent satisfaction of
resource usage and has lower renewal costs, which are both important 1o both perspectives. On the other
hand, it achieves some balance betwecen a short and long loan period duration. If this resolution were
chosen (as it was), it would indicate that the librarian’s duration preference is regarded more important
than the patron's opposing preference. Yet, one preference was not simply chosen over the other. Instead,

their preferences were combined.

The resolutions of figure 63 were generated by the multi-criteria simplex method. All solutions are
intended to be extreme nondominated points. However, due to rounding errors inherent is such methods,
some dominated compromises may be generated. However, it always generates feasible resolutions. Fur-
ther, it would be a simple matier to prune such dominated solutions by comparison with the goals.

After considering the various alternatives, the arbitrator can select a resolution. Instead, I assume
that Burkhalter and Race continued on, leaving resolution selection until after both conilicts had their
compromises generated.

2.1.4.2. Late Notice

Figure 64 shows an Oz depiction of the overdue notice number compromises. Figure 65 shows the
table of compromise resolutions depicted in figure 64. Again, these resolutions are generated by the
multi-criteria simplex method. All solutions in the table are extreme nondominated points.

2.1.5. Resolution Choice

After considering the compromised resolutions for the two conllicts, Burkhalter and Race choose a
resolution. They picked the 21 day loan period and the 2 overdue notices. The 21 day loan period

| Duration | Usage | Renew Cost
1| 365 100 0

2 43.75 96.73 0

3 34.60 96.64 10.46

4 2097 96.50 45.71

5 14.03 80.11 63.69

6 0.0 0.0 100.0

Figure 63. Table of Loan Period Compromises.

4 Analytically, one can determine that the librarian’s duration received a weight of 94 percent, while the patron
received a weight of six percent. Hence, an analytical utility function would choose the same resolution if these
weights were associated with the librarian’s and patron’s duration preference.

109

Oz

CIS-TR-93-10

3 =

D
L 2T €
.7 W 808
h-N-] oL o
8| [303
UL |5 te L
o L]
; H 5E &
-

u “*S5

giyntnm

Bave
Load
Exit

Reset

Help

PAL{Integration,GoalConflicts}

Lock

1 studentl resourcel overdue_noticel#overdue_noticel)

Usue mgracmac

T Y
one wenesc

zarase asesec
£2528850 cnvemue

e saserus

Lot o LTIy

R TE TR T
cocoee mavac=ar
L e e
[T e T

Scase asveec

SEAL
SeverY wBr—ue

—pu ifmerue

A ISR v

cPEDen
BivawIv BemUY

e I =
29nuew M ts UmgeIn=TE
BHEses maLmemad B
Sy dmdA—aC
LTV R OV e
T
Veer asmneE
IYMET P ban Rdedd
23tare wounoc
.. : vons navese

EJCase aswveec

CIEAEE
v U

e tmerus

ive not

er—re IER vy

Figure 64. Oz Screen Depiction the Compromised Notice Number.

CIS-TR-93-10 110

| Number Cost Wasted Effect
1 5.00 2.00 100.00
2 3.96 10.33 51.04
3 1.91 26.77 3.81
4 1.61 29.11 3.22
5 0.00 | 100.00 0.00

Figure 65. Table of Notice Number Compromises.

(rounded) also happens to be an extreme point, 5o it is easily accessible from the set of displayed resolu-
tions. In figure, 62 the arbitrator can simply choose the 21 day resolutions. After doing, so it is high-
lighted (the image is inverse of the others).

Similarly, the overdue notice number of 1.91 is rounded to 2. Figure 63 illustrates the overdue reso-
lution as highlighted. While the extremes 5 and 0 are shown, all infinite compromises between are not.
Instead the arbitrator must do the rounding 1o 2 overdue notices. The arbitrator does so by selected the
relation and setting its value. After doing so, the preference bars are updated. In this way, non-extreme
nondominated compromises can be chosen.

2.1.6. Resolution Implementation

Once, the resolutions are chosen, they can be implemented. To do so, the arbitrator selects create
integrated model from a menu, selects the the integration object in the development graph of figure 57,
and hits the go button. First, a new perspective containing the resolved goals is automatically generated.
Second, a design is automatically created satisfying those integrated goals.

The integrated model is a copy of one of the initial perspective’s hierarchies, a (possibly trans-
formed) initial state, and transformed goals. Since, it is assumed that all perspectives have the same ini-
tial conditions and hierarchies, the integrated perspective is the same as the original perspectives, but
with the resolved goals. Only, hierarchy preferences go unnegotiated. However, since operator prefer-
ences are not a working part of the implementation, they will not effect the derived design. Hence, the
integrated perspective represents the negotiated goals of the original perspectives and the generic library
model.

The integrated goals are created by transforming each resolved relation based on the conflicting
relation from which it was derived. In this example, the transformations arc simple substitutions. This is
because only the object attributes of the conflicting relations have changed. Hence, the two conflicting
goals:

on_loan (studentl, rescurcel,loan_periodl.duration=14) =
on_loan (studentl, rescurcel, loan_periodl.duration=365)

give_notice(libraryl, studentl, overdue_noticel.number=3)
gilve_notice(libraryl, studentl, overdue_noticel.number=5}

are transformed to the resolved goals of:

111 CIS-TR-93-10

on_loan (studentl, resourcel, loan_pericdl.duration=21})

give_notice{libraryl, studentl, overdue_noticel.number=2)

Once the integrated perspective is constructed, the planner can attempt 10 create a design achieving
the integrated goals. When each goal interference is confined to corresponding goal conflicts (e.g., two-
way interference) and the integrated goals are simple substitutions of the original goals, the planner is
guaranteed to derived an integrated design. However, if two corresponding goals not only interference
with each other, but with other conflicting goals (e.g., they all consume a single relation instance), then
the planner may not be able to achieve an integrated design. Additionally, if the goals were transformed
in ways other than simple substitution, as shown in the expanded example, then the planner may not be
able 10 achieve an integrated design. However, in this simple example, neither of these cases hold, so the
planner does derive a design. In fact, the integrated perspective and design look identical to that of figure
56.

2.1.7. Summary

In sum, in the strict rederivation:
(1) Oz detected two conflicts. Loan period duration and overdue notice number had different values
in the librarian’s and patron’s designs.
(2) The arbitrator choose the compromise method. For each conllict, the arbitrator chooses to apply
the compromise generation method.

(3) Oz generated compromises. Several compromise resolutions were generated for each conflict.

(4) The arbitrator choose two resolutions. Considering the satisfaction each perspective derived from
the alternative resolutions, the arbitrator chooses one resolution for each conflict.

(5) Oz derived an integrated perspective and design. Given the choice of resolutions, Oz trans-
formed the conflicting perspectives to create an integrated perspective, and then used the inte-
grated perspective to derive an integrated design.

2.2, Expanded Derivation

In this expanded derivation, Oz again integrates the perspectives and designs of the librarian and
patron. The first few events are identical to the previous derivation. First, goal correspondences are iden-
tified and their surface conflicts are noted. Next, plan interference between the goals is identified. Then,
the conflicts are presented to the arbitrator. Nexi, compromises are gencrated.

Afier compromises are generated, this expanded derivation diverges from the strict derivation.
While this derivation still picks the two overdue notice resolution, it continues the resolution process for
loan period duration. Rather than simply choosing one of the compromises, the arbitrator applies the res-
olution specialization and generalization methods. While demonstrating these method, this expanded
derivation also corresponds to: (1) the analysis of Burkhalter and Race, and (2) comments provided by an
expert librarian, Specifically, the loan period for students will be specialized into two classes: undergrad-
uates and graduates. Then, two different loan period durations will be given to each class. Finally, a new
perspective and design are derived representing these expanded negotiations.

Rather than repeat the first few steps, this derivation will begin after the compromises are generated
in section 2.1.4, and after the arbitrator has already chosen the 2 overdue notice resolution. Hence, the

CIS-TR-93-10 112

following derivation only considers the specialization and generalizations of the loan period duration
relation.

2.2.1. Generated Specializations

The specialization method is based on the premise that a conflict over values associated with an
abstraction can be resolved by assigning some of the conflicting values to some specializations of the
abstraction. For the loan period conflict, specializations include subclasses of resource and student
objects. One resolution, then, is to assign diffcrent loan period duration values to graduate and under-
graduate students.

Figure 66 shows an Oz depiction of oN_Loan specialized relations. These relations are based on
specializations of the objects within the on_LoaN relation. According to library model, the only objects in
the on_roan relation with specializations are student and resource. Student has specializations undergrad-
uate and graduate, while resource has specializations book, periodical, and special. Figure 66 illustrates
the specialization of the conflicting relation by each of these objects along with the annotation Spec (1).
This indicates that these specialization are a distance of one specialization link away from the conflicting
relation. Combinations of the two objects are two links away. To apply the specialization method, the
arbitrator must supply the depth of specializations requested; the default is all specializations.

For the most part, the specialized relations have the same preferences as the original relaton. For
example, the loan period duration preference for undergraduates is the same in both perspectives as that
for students. However, to illustrate how specialized preferences can appear during negotiations, we have
attached opposing resource preferences to the on_vroan relation. One may notice from figure 66 that some
oN_LoaN relation preferences have been specified. Those preferences are:

(in-perspective "Librarian}

(def_mod_relation on_loan(library patron resource place time loan_pericd)
sorder ' {on_leoan(library patron special place time loan_period)
on_loan(library patron book place time loan_period)
on_leoan(library patron periodical place time loan_period))
:objective ’'max)

{in-perspective 'Patron)

{def mod relation on_leoan(library patron rescurce place time loan period)
iorder ’ (on_lean(library patron special place time loan_period)
on_loan (library patron book place time loan_period)
on_loan(library patron periodical place time loan period))
tobjective 'min)

They indicate that, given an exclusive choice of among the subclasses of resource, which resource sub-
classes are most preferred. For example, the patron prefers special resources over the other two, while
the librarian prefers to loan periodicals over the other two. Given these preferences and a resource sub-
class conflict, one could automatically generate the compromise of books. Additionally, these prefer-
ences could have been used in an even more specialized resolution concerning trade-offs between librar-
ian resource preferences and patron duration preferences. However, in this example, the arbitrator is not
interested is such specialized resolutions. Instcad, the focus will be on resource preferences for under-
graduates and graduates.

113

CIS-TR-93-10

[PEL{ Intagration,GoalContilcts}

Oz

gec{l).rel

on_loan{libraryl studentl resourcel placel timel loan_periodlsloan_periodl)

L

I
=]

—
-
oE
258 =
| S =
g9 g]
] -
[~ i
§23 2
K-t]
- -
— Ay a
[}
EEN K]
=3 Hpnnme pommss B
] i 9 ™ 3
-:-.-.--s - £ 2
e e TS I5
o I | b
A Sl lee —aap -]
-t og it esvdvesg w5 -"'au.” -
O g -§ ERTL T T T
o ——Juars—ec wa
ane Sase - ol Mescozuens ae
Hstoruavs wmmeenmet o 5) sunes ssvesc
anane s=orsrnac] 5 Heovaeros now
seamres moeancer 5y 8 20
FEVSEL mEULBE == i T

alllos mouE e

Fuasy asubsE

8 M - ASM-BN 3

[Herusimea asuoa==g = =) o e asre
35 i T
g2 e I ——_ W
o i 3 RN
.—“ e ——amec =eac R
f—

— -
"'..... e zi weCEIUIUN mawve

'-C:.!vom []
72 oo [}

£

o)
f—
© (I

sng mpac

i -
=
b b FL N
] 2 o
qsk [WE ¢ 3T 5
e o 5 iy)] T @ 8
on 3] -~ n G
H25 |f:3: ezt [WssE & 2
SEEW |5 553 &
° i SEE
g § RE™
3 SE5 =
&) -,
a
&
"
=
v
u
g
%d
= %
- ctvome rave-sa & 4
51 . s p———— &%
£
o F e
B o5
- S S -5
[Dedeir L A U—‘
Ey
“n
':'8 s wceave
U
n
=Y
-
=
Q

Figure 66, Oz Screen Depiction the of Specializations.

CIS-TR-93-10 114

3

Level Relation

on_loan(library1,undergraduatel,resource1,loan_period1)
on_loan(libraryl,graduate1,resourcel,loan_period1)
on_loan(libraryl,student1,book1,loan_period1)
on_loan(library1,student1,periodical 1,loan_period1)
on_loan(library1,studentl,speciall,loan_period1)
on_loan(libraryl,undergraduate1,book1,loan_period1)
on_loan(library1l,undergraduatel,periodical1,loan_period1}
on_loan(library1,undergraduatel,special1,loan_period1)
on_loan(libraryl,graduate1,book1,loan_period1)
on_loan{library1,graduate1,periodicail loan_period1)
on_loan(libraryl,graduate1,speciall,loan_period1)

PR B DN B B e bt e ek e

[y

Figure §7. Table of On Loan Specializations.

Figure 67 presents a table of all the specializations derived from the oN_toan conflict. The arbitra-
tor is most interested in continuing the exploration of resolutions along the lines of parameterizing loan
period duration based on student subclasses. Hence, resolutions numbered one and two in figure 67 are
the targets of the next resolution operator.

At this point, the arbitrator chooses to apply the compromise operator 1o both resolutions one and
two. This results in the same compromises as shown in figure 63, but for student subclasses undergradu-
ate and gradvate. Once these resolutions are generated, the arbitrator chooses the 14 day duration for
undergraduates and the 21 day duration for graduates. Figure 68 shows an Oz depiction of these resolu-
tions, (The chosen resolutions are highlighted by inverting their images.)

2.2.2, Generated Generalizations

The generalization method is based on the premise that a conflict over values can be resolved by
cither: (1) abstracting the conflicting object, or (2) choosing one of the conflicting objects and giving
something else to the “loser” of the negotiated conflict. For the loan period conflict, generalizations
include parent relations of oN_roan relation, and relations asserted by operators similar (nearby) to the
BORROW_RESOURCE operator. One resolution, then, is to suggest that agents recall resources that have been
granted 1o other agents.

Figure 69 shows Oz depictions of oN_Loan generalized relations. These relations are based on gen-
eralizing objects within the oN_roan relation. According to library model, the only objects in the
ON_LoAN relation with generalizations are student and library. Student has generalizations patron and
agent, while library has the generalization agent. Figure 69 illustrate the generalizations of the conllicting
relation by each of these objects along with the annotation Gen (1}. This indicates that these relations are
a distance of one generalization from the conflicting relation. Combinations of the two objects are two
links away. To apply the generalization method, the arbitrator must supply the depth of generalizations
requested; the default is all generalizations.

Figure 70 presents a table of all the generalizations derived from the on_r.oan conflict. The first two
resolutions are derived from the generalizations of the student and library. The remaining resolutions are
derived through the operator hierarchy. In some cases, relations besides the key relation are shown. For
example, the resolution suggesting that agents should renew their resources, generalization 4, is shown

CIS-TR-93-10

115

diay

3980y

I
pusy
aneg

uay30ea33u]

Le s LyByun
AN0ART UISITG

0DE JJOIU]|

(PeRay “Jaada |) 2D
) jueryyeag fuo | 3eaBayul) iy

[SL.TUNEL]

[BLEL

Lil

20] [auny

i

B Lt

NSRS
J wu..-m.."_
S
ol .r,,,f 3t

Undm-u ,—UUL-KDDL Jenpe.x

T

| 12w [990)d [22.m0524 |

1 4

‘1-.1—— [7]

COEPIUNm BSwE

(19257

ST

Pid.]

L 4 @

MR ERY £

#I”h. ”"

ikl
._uu..:ouE uS-:vn..P.ov:—h“ £ _—.\._nn._ o

u\. u\h m mamwomcmnucnu wwm:...» u_n.
ey
g o

(119257

Z00) [

 CEE TP AT M I E L L L N |

Figure 68, Oz Screen Depiction the Expanded Resolution Choice.

CIS-TR-93-10 116

E Be
s ¥ ST c
] e .6
38| o .
£ [P - @y 4L v &8
- g oz v
D s ‘.‘5" £k Saw ¥ O
g5 iz £33
EEE_ £2E
£
= €
H £
ada
]
) .
3 ¢
= :
§|
- -
- -
o v
E
g =
— —
—-— ™ (']
= 9
i]
¥, 'E -9
= -
= m E
L
a 9 3
=3 @
- a o
2 ¢
ET -
55 ecorons rareee §
2 sases omsesncac by
hd -
F] b~
= B —RCoavENT asvLOE g
§ -
=~ar]
‘T o,
u ° 7
2 C
c 5
8 |
9 =
N [
A a -
=
3 = g
£ oY E
¥ = E -
-4 T = -
g T o2
H g Ef
-3] =8
S 9 - S £
- E = -y
E g 2~ o
- -) s meac he
= v 3 [i 8
)
L tE o on e amcsss n
[*) o= »]
H C ane menc ~ | P—
e - F
e o h ST ITT Ly T) a e
= " Foare amdnsc—ag 6 E
5 =
g]
g k
- s
>
3
v
k-]
5 3
Ct
-

PAL{Intagration,GoalConfFlicts}
on_loan(libr

e

Figure 69. Oz Screen Depiction the of Generalizations (1).

with the other relations that the renew operator asserts. Such resolutions arc found by first finding similar

117 CIS-TR-93-10

operators to that which asserted the conflicting relation (i.e., BORROW_RESOURCE), and then presenting
those asseried relations. In this way, alternative functionality is suggested as compensation to the con-
flicing goal.

2.2.3. Resolution Choice

At this point, the arbitrator determines that the generalized resolutions are not satisfactory, Instead,
based on all the alternatives considered thus far, the arbitrator stops the resolution process by choosing
the specializations of the previous section (figure 67).

2.2.4. Resolution Implementation

Like in the first derivation, once the resolutions are chosen, they can be implemented. The inte-
grated model is a copy of one of the initial perspective’s hierarchics, a transformed initial state, and
transformed goals. The integrated goals are created by transforming each resolved relation based on the
conflicting relation from which it was derived. In this example, the transformations are object substitu-
tions. This is because the initial conflicting goals have been specialized. The two conflicting goals:

on_loan (studentl, rescurcel, loan_perjiodl.duration=14) =
on_loan{studentl, rescurcel,loan_periodl.duration=365)

give_notice(libraryl, studentl, overdue noticel.number=3}) %
give_notice (libraryl, studentl, overdue noticel.number=5)

are transformed to the resolved goals of:

| Level Relation

1 1 | on_loan(library1,patronl,resourcel,loan_periodi)
2 1 | on_loan(agentl,patronl,resourcel loan_periodl)

3 1 | on_loan(libraryl,patronl,bookl.loan_period1)

4 1 | on_loan(libraryl,patronl,periodicall,loan_periodl)
5 1 | on_loanlibrary1,patronl,speciall,loan_period1)

6 1 | on_loan(library1,facultyl,resourcel,loan_periodl)
2 1 | own(agentl,resourcel)

3 1 | recalled(agentl,resourcel)

4 1 | renewed(agentl,resourcel)

Figure 70. Table of On Loan Generalizations.

CIS-TR-93-10 118

on_loan(undergraduatel,resourcel,loan_periodl.duration-Zl)
on_loan({graduatel, resourcel, loan_periodl.duration=14)

give_notice(libraryl,undergraduatel, overdue noticel.number=2)
give_notice(libraryl,graduatel,overdue_| noticel. number=2)

Additionally, the initial library staie is transformed. For each reference to studentl, two new relation
instances are created which refer to undergraduatel and graduatel. When the transforming relations to
use undergraduate rather than student, any references to loan period duration will also be set to 14. Simi-
larly, graduate relations will have their duration’s set to 21.

Once the integrated perspective is constructed, the planner can attempt 1o create a design achieving
the integrated goals. Figure 71 shows an Oz depiction of the integrated perspective including the initial
state. From this description the planner can derive the design also shown in figure 71. Notice the use of a
different BoRROW_RESOURCE operator for each of the two student types. This is because of the planner’s
operator representation. For each different relation, an single operator is used; hence, the different stu-
dent loan periods are asserted by different operators.

2.2.5. Summary

In sum, in the expanded derivation:

(1) Oz detected two conflicts. Loan period duration and overdue notice number had different values
in the librarian’s and patron’s designs.

(2) The arbitrator choose the compromise method. For each conflict, the arbitrator choice to apply
the compromise generation method.

(3) Oz generated compromises. Several compromise resolutions were generated for each conflict.
(4) The arbitrator choose the specialization method.

(5) Oz generated specializations.

(6) The arbitrator focused on two resolutions.

(7) The arbitrator choose the compromise method. For each resolution, the arbitrator choice to apply
the compromise generation method.

(8) Oz generated compromises. Scveral compromise resolutions were generated for each resolution.
(9) The arbitrator choose the generalization method.
(10) Oz generated generalizations.

(11) The arbitrator choose three resolutions. Considering the satisfaction each perspective derived
from the alternative resolutions, the arbitrator choose the two loan period resolutions and the one
overdue notice resolution.

(12) Oz derived an integrated perspective and design. Given the chosen of resolutions, Oz trans-
formed the conflicting perspectives to create an integrated perspective, and then used the inte-
grated perspective to derive an integrated design.

CIS-TR-93-10

119

diay

383y

IR
peoy

aneg

U0 390 I33U]
LY 4B (48 pgun

IN04AGT u3I3JI3g

uu..:ouuszo..ﬁ.uu _
L R
2anop" 24} .ﬁ\l\\l\b&«ﬂi&ﬂ. #640g'23

w

{00 d Usesq]0- 154

(TpojuadTueo| Tyt 127e(d Tadunosas [aenpesd q?ﬂsa_::an@

(233400834 21ENPRIGIZPUN -Snaun._mgancz_av._ou?.sé

{12910U72NpUaA0 2334n0sas T2IEnpesbiapun _E_:uu_aecné
(2popizdTusol TN [298(d 23ounosaus (2enpeabaapin [Aueuql)ueo

{T224n0s24 T71enpest |enpesl)spiodad™
(127190u™anpusA0 30uN0SaS [2IBnPesE |AIBIG1|)a20U”

xuo.__

T=TeoT T3p5ay Td|

(i My j haag) 20/
{1m13ut * soou)

(J2Wr Zaounossa —?a.j_:@ (T2wp Ta3unosas 3.5.55@

(12w)3 j27e|d 2224n0sal JAJe.G)))FER _

(Ipots2d~ueg) |2 [29e|d (324n0sEd "u..u_._n.r_u:.n_..unl@

,-us_:u_-u@
(2e3nasa. [21enpesSaspun qoau:vfeugvafeuuuluuu.@

(2924n0894 TiEnpesbJapun ;.a.x..__:mn..ouu._lmmu@ {1224n083.0 [29RNPRIG [AIRIG)|)SPI0I2I” 85273

nu“u"m_wmo {ZP0liad™ueo| Tauny [82E|d Z22N092a T2IEnpesS spun)potsad™ ﬁ..

29410834 [PIENPES [MIENPEJ5)apIoDns” s (19w 199e(d 133400534 TAueiq)|)8535900

%ﬂ_ e 1enpess menpes)paosna”ssng, o
[ISTIT U] [5P0a) 15

Figure 71, Oz Screen Depiction the Expanded Integrated Model.

CIS-TR-93-10 120

2.3. Comparative Evaluation

In evaluating the above derivations, I consider four aspects:

(1) Conflict Perception Comparison

Conflict detection by Oz was identical to that of the actual Burkhalter and Race study. The loan
period and overdue notice convicts were detected while the rest of the library was ignored. How-
ever, this assumes that the rest of the polices in the original case study were non-conflicting. Not
doubt, this is not true. It is more likely that some polices were conflicting, but Burkhalter and Race
simply ignored them and focused on what they felt were relevant issues. Moreover, it appears that
Burkhalter and Race did not initially detect the overdue notice conflict. Instead, analysis of the rela-
tionship between renewal and loan period duration led them to overdue notice number. From this I
conclude that Oz is more likely 10 detect all conilicts, but not be able to determine which can be
ignored and which should be resolved. Note that such detection does not require that Oz have the
cost effectiveness relationships of section one. Only the goal relationships, indirectly determined
through the planner, are necessary for conflict detection. Hence, while Oz appears to be an effective
functional conflict detector, it does not have knowledge to determined which are relevant. This is
typical of the philosophy of its decision support. Oz presents information, but does not attempt to
make decisions. However, Oz does allow the arbitrator to ignore conflicts. To do so, an arbitrator
can simply choose one perspective’s values without engaging the negotiation methods.

(2) Resolution Generation Comparison

Compromise generation by Oz was identical to that of the actual Burkhalter and Race study. This
was mainly due to the encoding of the analysis made in the original study. (Oz has no means to
derive the various cost and effectiveness graphs from a initial designs.) However, the expanded
example suggested resolutions not found in the original study. While Burkhalter and Race did con-
duct analysis of resource usage for undergraduate and graduate subclasses, they combined the anal-
ysis when they derived their resolution. No reason was given for this, however, it is likely that the
similarity of the specialized graphs led them to coalesce there analysis. The additional resolutions
suggesied may also have been consider by Burkhalter and Race; however, it is likely that they rec-
ognized that most of the other resolutions were currently in the library (e.g., recall, renewal) or
should not be part of an academic library (¢.g., selling resources).

(3) Resolution Choice Comparison
Resolution choice in the strict derivation was identical to that of the actual Burkhalter and Race
study. This was not a parameterized part of the automaled study. The resolution was chosen to sim-
ulate the original study. The expanded derivation included the parameterized student loan periods.
This choice was made to simulate the University of Oregon’s library policy.

{4) Rationale Record Comparison
The rationale record of Oz is obviously much richer than that of Burkhalter and Race. While their
study has provided an exception description of their redesign (one of the reasons for choosing it),
they did leave much out. In contrast, Oz provides records of: (1) the initial perspectives, designs,
and conflicts, (2) the altemnatives considered, (2) the order they were considered, (3) the resolutions
chosen, and (4) the new design.

Based on this comparative analysis, I conclude that the representations and algorithms do indeed support
both the negotiation design process, but also records of its occurrence.

121 CIS-TR-93-10

2.4, A Librarian’s Observations

To confirm my intuition about the case study, I consulied a librarian. This consultation consisted of:
(1) presentation of the Burkhalter and Race case study, and (2) presentation of the rederivation, The
librarian was not informed of the expanded derivation. For the librarian’s part, she considered the origi-
nal study and its rederivation, but did not directly analyze the rederivation step by step. Generally, the
librarian agreed with above conclusions. Additionally, she made the following observations:

(1) The quantitative analysis conducted by Burkhalter and Race is gencrally not done. It is time con-
suming and error prone. However, when such studies are available, librarians use them to: (1)
make choices, and (2) rationalize their choice to others, Hence, if Oz could generate some of the
analysis, even qualitatively, it would be of great assistance.

(2) Conflict detection is of lesser concem. Librarian’s believe they understand how policies conflict

through the feedback from their palrons.5 However, the resolution procedure was of greater inter-
est. Specifically, the generation of analytic compromises seemed appealing. Not so much as a
decision aid, but as a means of convincing others that their policies were correct.

(3) Qualitative conflict generation appearced more appealing. In considering the case study, the librar-
ian suggested that Burkhalier and Race should have considered dividing students into to sub-
classes, particularly, graduates and undergraduates. She suggested this altemative without
prompting, perhaps, partly because the University of Oregon’s library has such a policy. Addi-
tionally, she was slightly surprised that Burkhalter and Race did implement the three week loan
period. (In fact, the University of Oregon's six month faculty and graduate student loan policy is
currently under consideration for reduction.) One reason she cited against longer loan periods
was that patrons can simply rencw their resources (once) to obtain twice the duration. However,
this was just the process that Burkhalter and Race were trying to reduce. While it is true that their
study was some years before library automation (1968), it is still the true today that the renewal
process uses circulation staff resources. Any reduction in renewatls is bound to free up some cir-
culation resources.

In sum, the librarian found the (experimental) system appealing. She suggested that such a system might
readily fit into current efforts aimed at automating a library. For cxample, she suggested that some of the
quantitative analysis conducted by Burkhalter and Race could be retricved directly using existing library
software, In the original case study, the circulation records and surveys were used to determine the rela-
tionships between loan period, renewal, and resource usage. Some of these relationships can be inferred
from the recorded circulation data (¢.g., reduced loan periods increases renewals, and increased renewals
increases reduces circulation staff resources.)

3. Summary

The evaluation of the two derivations suggest that the representations and algorithms presented in
this dissertation can provide automated assistance for negotiated design. Specifically, the algorithms

This may or may not be true. As noted previously, Burkhalter and Race did not initially realize the ineffec-
tiveness of the third overdue notice. Only after the loan period conflict was analyzed, did overdue notice number
become an issue,

CIS-TR-93-10
automate:
(1) Conflict detection.
(2) Resolution generation.
(3) Resolution implementation.

@

Negotiation rationale.

122

123 CIS-TR-93-10

CHAPTER VII

CONCLUSIONS

This dissertation presented a methodology and automated algorithms for collaborative design. The
methodology called for individuals 10 independently create designs achieving their own goals, and then
collectively derive a single unified design using automated negotiation techniques. From a software engi-
neering perspective, the methodology provides parallelism, simplicity, rationale, and reuse. From a nego-
tiation perspective, the methodology provides multiple agent preference maximization and novel resolu-
tion synthesis. From an artificial intelligence perspective, the algorithms provide automation for the com-
plex processes of conflict detection, resolution synthesis, and resolution selection. This dissertation
described how interests of individuals or subgroups can productively aid the derivation of robust collabo-
rative designs through the automated negotiation of their conflicis.

This dissertation described formal representations for modeling individual perspectives, design
conflicts, and subtasks involved in negotiation. Specifically described were representations for: (1) goals
and preferences over domain operators, objects, and relations, (2) categories of design and goal conflicts,
and (3) categories of conflict resolutions. Automated processes can manipulate these representations 1o
aid group negotiation.

This disseriation described formal algorithms for detecting conflicts and synthesizing resolutions.
Specifically described were algorithms for: (1) distinguishing between simple design differences and
design interference, (2) mapping between goals and their supporting design components, (3) detecting
goal conflicts, (4) synthesizing analytic and heuristic resolutions, and (5) reintegrating resolved goals
into a design. Analytic resolution consists of compromise generation using a multiple criteria linear pro-
gramming method. Heuristic resolution consists of search through domain hierarchies to synthesize dis-
solutions and compensations. These methods have been implemented and applied.

This dissertation describes the implementation of negotiation algorithms and their application to
library design problems. The design of library systems is a complex, multiple agent, negotiation enter-
prise. I have represented portions of documented library designs in the collaborative design tool, Oz. Oz
has been used to detect conflicts and derive ncgotiated resolutions similar to those published by expert
librarians. The implementation and its application to the library domain support the central tenet of this
dissertation: processes of negotiated design can be automated through the representation of a generic
domain model and specific representations of individual perspectives.

1. Contributions

Research presented in this dissertation has contributed new ideas concerning design methodology
and automated negotiation. It argues for independent design followed by negotiated integration. It
describes how automated support can be provided for this methodology and presents a case-study as
demonstration. Most importantly, this dissertation illustrates how, heretofore implicit, negotiation pro-
cesses can be made explicit and supported.

CIS-TR-93-10 124

Oz is a product of this dissertation. It demonstrates how negotiated design can be supported
through computer automation. Oz has successfully combined the following subsysiems to form a negoti-
ation design tool.

(1) Perspective modeling.

(2) Automated design derivation.

(3) Design integration using conflict detection, resolution generation, and resolution implementation.
Oz has been successful because of the following:

s Hierarchical Generic Domain Model
The use of domain hierarchies has: (1) simplified preference description, and (2) provided a basis
for resolution search by interrclating domains so conflicts can be transformed meaningfully. Most
importantly, the automatically constructed operator hierarchy provides a way to find functionally
similar, yet syntactically different, goals.

» Interactive Resolution Procedure
Allowing the user to control the search for resolutions has unburdened the system from codifying,
complex and abundant, domain and contextual dependent, knowledge conceming individual and
group preference trade-offs. Instcad, Oz gencrates possible resolutions while the user guides the
search and chooses resolutions. This has proved to be a key decision, both for tool acceptance, and
making the problem tractable.

» Simplifying Assumptions
The simplifying assumptions concerning commeon representation languages, simplified design lan-
guage, and consistent terminology have cased the implementation task. However, they have not
crippled the basic ideas. The negotiated design algorithms will scale up even where these assump-
tions do not hold as long as the input to the algorithms obey these assumptions. Moreover, the algo-
rithms can be extended to multiple, more expressive, languages by describing how conflicts are
defined in the languages and how goals are linked to designs. The basic ideas of conflict detection,
characterization, and resolution do not depend on these assumptions.

2. Limitations

Some of the reasons that Oz has been successful are also limitations. This is mainly due to the lim-
ited resources of a dissertation. However, others are more fundamental problems.

= Simplified Languages

Problems of expressibility can be overcome by using more expressive perspective and design lan-
guages. For perspectives, non-linear and conditional constraints will help. Also, initial preference
trade-offs should be recorded when they exist. For designs, incorporating time and recursive pro-
cesses will help. In any case, Oz must be updated to: (1) detect meaningful goal differences, (2)
understand the derivation of design components from goals, (3) detect meaningful design language
interference. Once these can be defined for perspective modeling and design language, the Oz
approach can be applied.

» Knowledge Engineering Bottleneck
Oz relies on the domain model to generale heuristic resolutions. Only the resolutions that can be
synthesized by combining domain modecl components can be generated. Hence, the system is lim-
ited by the knowledge initially placed into it. Unfortunately, constructing the domain modet can be
a difficult and time consuming process. However, Oz may assist in this process, as suggested in

125

CIS-TR-93-10

chapter I, by posing hypothetical componenis which, if acquired, could resolve a conflict.

= Resolution Explosion

Oz has no way of controlling the resolution search process. While the user currently controls this
process by choosing conlflicts to work on and setting the resolution generation level, the user can
still be overcome by the number of resolutions generated. To control heuristic search, Oz must use
the individual preferences represented, infer or enquire about group preferences, and incorporate
domain control heuristics.

3. Future Research

Future research entails expanding rationale capture, expanding automation, applying the methods

to new domains.

« Expanding Rationale Capiure

Since Oz is based on an interactive approach, some a prior knowledge is not captured. Currently,
Oz only tracts initial goals and preferences through negotiations, but does not capture initial prefer-
ence trade-offs, Individual’s may wish to state their initial preference trade-offs, or even, define
group trade-offs, Such a utility based approach is not supported, but would be useful even with the
interactive approach, One could state initial trade-offs and tract them as they changed during design
and group integration. In doing so, one could observe how the design and integration processes
effected individual perspectives and how group trade-offs were derived from them. Additionally,
utility analysis could be used 10 resolve unimportant conflicts, while a human directed the resolu-
tion of more important conflicts.

+ Expanding Automation: Resolution Search Control

Currently, Oz is weak in two areas of automation: controlling resolution search and constructing
domain models. During heuristic resolution generation, aliernative relations are sought in the
domain hierarchies. Constraining the resolutions considered, especially with an interactive
approach, is essential. One approach is to use preferences attached to the relations to limit consid-
eration: those relations which are dominated by more preferred relations can be thrown out.
Domain dependent heuristics can also be used, e.g., resource selling should not be part of an aca-
demic library. Finally, distance measures and trade-off analysis can also be used: the user can spec-
ify that relations which reduce achievement of some criteria not be presented, or relations greater
than some distance from the current (or ideal) aliemative should not be presented.

« Expanding Automation: Domain Model Development

Domain model construction is also a problem, Currently, there is no aid to detect or resolve incon-
sistent preferences among the operator, object, and relation hierarchies. Attribute relationships must
be manually defined (e.g., reduced loan period duration increases renewal costs). However, some of
these relationships may be determined through simulation of plans involving such operators.
Finally, the resolution process can require the description of previously undefined preferences or
suggest the inclusion of new operators, objects, and relations, The role of the resolution process in
modifying the domain model should be explored.

» New Domains

While Oz has only been applied to the library domain, its underlying domain model has been
shown to capture knowledge from other domains[2]. However, it should be applied to other con-
texts besides design. For example, decision support for librarians or group scheduling. Oz can be
applied to any domain where: (1) a domain model can be construcied, (2) goal conflict can be

CIS-TR-93-10 126

detected, (3) linkage between goals and designs can be established, and (4) design interference can
be determined. Library decision support appears promising on these grounds. Moreover, some rela-
tionships of the domain model may be inferred from running library software systems. Librarians
appear receptive to a negotiation aid, especially since their policies are continually be reconsidered
and renegotiated. For similar reasons, group meeting scheduling appears promising. Individuals can
categorize scheduled events into various operator types and describe criteria for good schedules
(e.g., no time conflicts, no back-to-back meetings). However, in group scheduling, individual’s
meeting goals must be negotiated. For simple conflicts, an expanded Oz could run automatically,
whereas, group resolution of more important conflicts could be interactively assisted.

4. Conclusion

This dissertation has presented a methodology for independent design and algorithms for its auto-
mated support. It has demonstrated that an implemenied system can indeed provide users with support
sufficient to generate previously negotiated designs. Its basic approach of knowledge-based interactive
resolution shows promise. Both in design support, but also in other domains of group negotiation.

127 CIS-TR-93-10

APPENDIX A

THE LIBRARY MODEL
(open_new_kb "Library")

(def_otyp "rescurce"
tsb * ("book" "periodical" "special"})

(def_otyp "thing"
:sb ' ("money" "resource"})

(def_otyp "time"
:d "Actual time, some day count from 0."

)
(def otyp "place")

(def_mod_otyp "overdue_notice"
tat /' (("Number" :val 3 :min 0 :max 5)
{("Cost" :val 0 :min O :max 100}
("Wasted Effort" :val O :min 0 :max 100)}
:att_constraints ‘ {
:: Cost
(44 1 0 >= 100}
(810 >= 42)
2 Wasted Effort
(-2 01 >=0)
(23 0 1 >= -40)
(=47 0 1 >= -135)}))

(def mod otyp "loan_period"

:at ' ({;;Ranges should be same for all models!
("Duration® :val 14 :min 0 :max 365)
{("Usage"” :val 100 :min 0 :max 100)
{("RenewCost" :val 0 :min 0 :max 100))

;:; These columns must be in the order of the above variables.

:att_constraints * (

;: Usage

{(-5.71 1 0 <= 0}
(-2.36 1 0 <= 47)
(-0.01 1 0 <= 96.29}

CIS-TR-93-10

;: RenewCost
{(2.5882 0 1 >= 100)
{1.1429 0 1 >= 50)))

(def otyp "student”
:d "Student patron types."
tab ’ {"undergraduate" "graduate"}))

(def otyp "patron"
:id "Patron types."
:sb * ("student" "faculty"}}

(def_otyp "agent”
:d “Active system agents."
:sh ’ {"patron" “"library"})

(def_ptyp "time is"
:d "The time is some_integer."
0 ' ("time"})

(def ptyp all "own"
to ' ("patron" "resource'" "time"))

;12 Simplified own.
(def_ptyp "own"
0 ’ ("agent” "thing"” "time"}
:sb " {{"own" {library resource time))
("own" (patron resource time)}))

(def ptyp "renewed"
:0 ' {"agent" “"resource" "place" "time"})

(def_ptyp "recalled"
to ' ("agent" "resource" "place" "time"))

(def_ptyp_all “"loan_peried"
:d "A patron can borrow resource for a loan period DURATION"
o ' ("patron" "resource"” "place" "time" "loan_ pericd”))

; (def_ptyp all "possess”
o :d "Agent physcially has resource.,"
H o *("agent" "resource" "place" "time" "loan_period")})

;2 Simplify possess relation.
(def_ptyp "possess"

129 CIS-TR-93-10

:d "Agent physcially has resource."

:o0 ’ ("agent" "resource" "place" "time")

:sb ’ (("possess” (library resource place time)}
{("possess" (patron rescurce place time)}))

(def_ptyp all "“on_loan"
:d "Resource on loan from TIME until TIME+ LOAN_PERIOD."
0 ' ("library" "patron" “resource" “place” "time" "loan_period")}

:7: Simplify give_notice relation.

; (def_ptyp_all "give_potice"

; :d "LIBRARIANs give PATRONs a NOTICE."

; to " ("library"” "patron" "resource" "overdue notice")}

(def_ptyp_all "give_notice"
:d "LIBRARIANs give PATRONs a NOTICE."
o ' ("library™ "student" "resource" “overdue_notice")}

{def_ptyp "give notice"”

:d "LIBRARIANs give PATRONs a NOTICE."

to ! ("library" “patron" "resource" "overdue_notice")

:sh * (("give_potice" (library student resource overdue notice)}
{("give_notice"” (library faculty resource overdue notice)}))}

{def ptyp “read"
:d LR}
1o ' ("agent” “resource" "place" "time" "loan_pericd")}

{def_ptyp_all "access_records"
:d LR
to f ("agent™ "patron" "resource"}))

{def ptyp_all "know_records"
:d "
to f ("agent" "patron" “resource"})

{def ptyp "secure_records"
:d LAl
to f ("agent" "agent" "resource"))

::: These operators describe simply how two agents can carry out transactions
;:: for buying, borrowing, renewing, and recalling resocurces.

;:: Future developments include: subtypes of these operators, e.g. recall by
::: phone or desk.

CIS-TR-93-10 130

(def_etyp "Read Resource"
:d "An AGENT can read a RESOURCE at PLACE from a PERIQOD from TIME."
;0 ' {agentl resourcel timel placel loan_periodl)
t= f {{possess (agentl rescurcel placel timel)})
=0
s+ * ((read(agentl resourcel placel timel loan_periodl))
))

{def_etyp "Recall Rescurce"
;d "A loaned RESOURCE is given up by an AGENT."
:0 " {agentl agent2 agent3 resourcel timel time2 placel place2
loan_periodl loan period2)
1= " {(time_is(time2))
(loan_period{agent3 resourcel placel timel loan periodl)}}
:= ' (({possess{agentl resourcel placel timel})
{on_loan (agent2 agentl rescurcel placel time2 leocan_period2)))
i+ * ({possess(agent3 resourcel placel time2})
{(on_loan (agent2 agent3 resourcel placel time2 lcan_periodl))
{recalled(agent3 rescurcel placel time2))

B

(def_etyp "Renew Resource"

td "An AGENT is given a new due date for a loaned RESOURCE."

o ' (agentl agent2 resourcel placel loan_periecdl timel time2)

tm ' ({loan_period(agentl resourcel placel timel loan_perjedl))
(time_is(time2)))

:= "{{on_loan(agent2 agentl resourcel placel timel loan_periodl})
(possess {agentl resourcel placel timel}))

:+ ' ({on_loan(agent2 agentl resourcel placel time2 locan_periodl})
(possess {(agentl rescurcel placel time2})
(renewed {agentl resocurcel placel time2})
)

(def etyp "Borow_Resource”
:d "A lonable RESOURCE is LOANED to an AGENT for LOAN_PERIOD."
to ‘' (agentl agent2 resourcel timel placel loan_periodl)

;= " ({loan_period(agentl rescurcel placel timel loan_periodl})}
:= ' {({possess(agent2 resourcel placel timel}))
:+ ' {((possess(agentl resourcel placel timel}))

(on_loan (agent2 agentl rescurcel placel timel loan_periodl))

3]

(def_etyp "Buy_ Resource"”
:d "Agents exchanges MONEY for RESOURCE."

131 CIS-TR-93-10

1o ' (timel time2 time3 agentl agent2 resourcel moneyl
placel loan_periodl loan_period2)
1= f ({time_is(time3)})
i= * ({own(agentl resourcel timel})
{possess (agentl resourcel placel timel)}
(own (agent2 moneyl time2))
(possess (agent2 moneyl placel time2)))
:+ ' ({possess{agent2 resourcel placel time3d)}
(own (agent2 resourcel time3l))
(own {agentl moneyl time3})
(possess (agentl moneyl placel time3))
)’}

(def_etyp "Access_Record"

:d "An AGENT can read the library leoan records."

10 ' (agentl agent2 resourcel)

:” ' ({secure_records (agentl agent2 resourcel}})
= ' ((access_records (agentl agent2 resourcel}}))
=70
:+ * {{know_records (agentl agent2 resourcel})

M)

(def_etyp "Secure Other_Records"
:td "A PATRON can not read the library lean records.®
:0 ' (patronl patron2 resourcel)
:7 ' {{know_records (patronl patron2 resourcel}})
:= ' {(access_records(patronl patron2 resourcel})}
=
:+ 7 ((secure_records (patronl patron2 resourcel))

1B

(def_etyp "Secure_Self Records”
:d "A PATRON can not read their own library locan records.”
io f {patronl resocurcel}
:* " {{know_records (patronl patrenl resourcel}))
:= ’ {(access_records (patronl patronl resourcel)))
= ()
s+ ’ ((secure_records (patronl patronl resourcel))

N

{def_etyp "Give Notice"
:d "The LIBRARY gives PATRONs OVERDUE NOTICEs for RESOURCEs."
0 *(libraryl patronl resourcel placel timel loan_periodl overdue noticel)
:= * {(on_loan(libraryl patronl resourcel placel timel loan_periodl}))

=)

CIS-TR-93-10 132

:+ * ((give_notice(libraryl patrenl resourcel overdue_noticel))

M)

(def oz prob ‘loan-and-records
io * ((libraryl library)
(studentl student)
(resourcel rescurce)
{resocurcel resource)
(timel time)
{placel place)
(overdue noticel overdue_notice)
(lecan_periodl loan_period))
i * ({possess(libraryl resourcel placel timel))
(lean_period{studentl resocurcel placel timel loan_periodl)}
(own (libraryl resourcel timel))
(access_records (libraryl studentl resourcel))
(access_records(studentl studentl resourcel)})
(time_is(timel})}
1g’ |
(give_notice{libraryl studentl resocurcel overdue noticel})
(know_records (studentl studentl resourcel))
{(on_loan{libraryl studentl resourcel placel timel loan_periodl))

)

(set_default_ strategy)

133 CIS-TR-93-10

APPENDIX B

A DETAILED MCSM EXAMPLE

While the loan period examples illustrates the interface between design space and compromise
space, the following example focuses on compromise search. Below, is a production mix example; two
widgets x, and x, are to be produced subject to three resouce constrainis. Two objectives o, and 0, are (0

be maximized, and one, 05, is 10 be minimized.

Example :

(def_ order X, VALUES (0 ... 2500} #'identity_ order)
{def_ scale x, VALUES (x, VALUES} #'identity scale)
(def_order x, VALUES (0 ... 2500) #'identity order)
(def_scale x, VALUES (xz VALUES) #'identity_scale)

(def_constraint €, {10 x + [X, < 2500))
<

(def_constraint c, {5 x + 10 x, 2500))

(def_constraint c, (7 x, + 7 x, £ 2050))

(def_establish o max (10 x, + 20 x,))
(def_establish o, max (23 x, + 32 x,))
(def_establish o, min (x, + x,})

The example consists of scales x; and x,, constraints ¢,, C,, and c,, and objectives o, and o0,

Even with our scale, constraint, and objectlive representation, some converion is required to begin
the Multi-criteria Simplex Method (MSM). First, inequalities cxpressed in constraints must be expressed
as equalities by appending slack variables. For example, 10x, + 20x, < 30 would be transformed to 10x,
+20x, +x, =30, where x, is a slack variable. Slack variables are distinct from decision variables which
occur in the original problem description. A multi-criteria simplex tableau is constructed using the coef-
ficients and values found from the problem criteria and constraints, Variable coefficients are divided into
basic and nonbasic groups. In an initial MSM tableau, nonbasic variables will represent decision vari-
ables, basic variables will represeni slack variables. Basic variables form the current “*basis” of a solu-
tion, their values will be represented in the last column of the tableau. The last row represents the objec-
tives; in the case of maximization, their coeficents are negated.

Below, the general MSM tableau is illustrated. Basic variables are named x, ... X_, nonbasic vari-
ables x__, ... x , cooefficients of the nonbasic constraints Y coefficients of the nonbasic objectives z.
Values are named x m" where m is the refers to the variables and k refers the the kth tableau, or solution
set,

CIS-TR-93-10 134

Current | Basic variables | Nonbasic variables | Values of basic
Basis L S t S ...xj...xn variables
0
X 1...0 Yigmery YijYin 2l
0
xm 0 - 1 ym(mi-l) ymj o ymn xm
Criteria 1..0 2y ety %5 Zn £,(x%
Rows . .
0..0 Yims1y Y5 %o £(x%

Our problem can be formulated as the following multi-objective lincar programing problem:

Max 10 X, + 20 X,
Max 23 X, + 32 X,
10 X, o+ 6x, < 2500
5x, + 10x, = 2500
7%, + 7%, < 2050
X, 2 0
X, 2 0
It’s MSM tableau is:
Current | Nonbasic variables Basic variables Values of basic
Basis X, X, X, X, Xs variables
Xg 10 6 1 0 0 2500
X, 5 10 0 1 0 2000
Xg 7 7 0 0 1 2050
Criteria -10 -20 0 0 0 0
Rows 23 -32 0 0 0 0

Once a problem is represented in the MSM 1ableau, we apply a series of matrix transformations to find
objective maximizations. In the criteria row, z; <0 indicates that we can improve on the ith objective if

we introduce the X, into the basis; we improve z for each unit increase in X A basic variable X; is intro-
duced into the basis by pivoting about some Yy With such knowledge, we can search through MSM
tableaus to generate all extreme points which maximize one or more criteria. Below is the MSM tableau

135 CIS-TR-93-10

after two transformations. Both criteria are maximized, since none of the z; are negative. Generally,
some criteria are maximized while others are at suboptimal values. Thus, several (extreme point) solu-
tions are typically required to represent all objective maximizations.

Current | Nonbasic variables | Basic variables | Values of basic
Basis X, X, X, X, X5 | variables
X, 1 0 0.143 -0.086 0 185.714
X, 0 1 -0.071 0.143 © 107.143
Xs 0 0 -0.5 -0.4 1 0
Criteria 0 0 0 2 0 4000
Rows 0 0 1 2.6 0 7700

The basic algorithm is a depth first search of multi-criteria simplex matricies containing unique
bases. We atternpt to derive a nondominate matrix by pivoting about all Z, columns < 0, i.e., those which
could lead to a nondominate maiix. Once a unique nondominated matix is found, we introduce all z,
columns which are not dominated by another z, column. In the previous two sentences “all” is computed
depth first, i.e., we visit the first and store the rest. As we visit each matix (basis) we remove it from the
list of bases to be visited. If several columns may serve as the pivot, we prefer the one which has the Min
Ezj; further, each new set of bases gencrated by the “all” staicments are first sorted by Min sz and then
pushed onto the unexplored_bases list. Zeleny proves that the set of nondominated extreme points is
finite and shows the algorithm will complete after a finitc number ilerations[93]. Below, we sketch out
the general algorithm as we have implemenied it.

CIS-TR-93-10 136

(defun MCSM ()
{if {feasible_solution}
{loop do (create_new_tableau xi unexplore bases)
(if {(unique xi)
{progn
(save_solution xi)
(MCSM_search_aux))

(if (less_than_ 0 zjas) ;xi is dominated!
{add to zjs unexplore_bases);Pivot may lead to new basis.
{progn

(if (nondominated xi) (save_solution xi))
(MCSM_search_aux))})
until empty (unexplored_bases)}))

(defun MCSM search_aux ()
(if (nondominated pivot Rzjs)

;;Exist pivots leading to a2 xi+l which dominate all other xi+l1?

{add_to @zjs unexplore bases)

{(if (and not_all_0s_zj (nondominated xi))
;:Store those bases which might lead to nondominated xi.
;2 columns which are not zero and lead to unexplored bases.
(add_to not_all_0Os_zj unexplored bases))))

Below, we also show the algorithms for determining dominance and uniqueness. The nondomi-
nance algorithm applys the simplex method to the z; subtableau. It will acquaint the reader with the gen-

eral simplex pivot method; a more complex form is used to pivot the MCSM tableau during cre-
ate_new_tableau, The uniqueness algorithm is supplied for completeness. (See[92] for further details.)
To determine dominance, we apply the single ciriteria linear simplex method to the Z subtableau. If the

tableau can be maximized, then our x, is nondominated. Phase I of two phase simplex method is unnec-
essary because the value column is all 0, i.e., there is no need to check if there is a negative value.

(defun NonDominated (2_tableau)
{loop for pivet = (find pivot Z_tableau)
until (null pivot)
(if reached_max(pivot)
{return t})
{pivot Z_tableau pivot})))

To find a pivot, we search through the objective (w) row for negative elements (since we are maximiz-
ing). When one is found, search that column for the largest positive value in the nonbasic variables, If
one is found, we have our pivot; otherwisc, we must continue searching the objective row. If no pivot is
found and there was a negative element in the objective row, then we have reached a maximun.

{defun Find Pivot (tableau}
{loop column = from 1 to nonbasics (tableau)
for negative = (or negative (< tableau[W_row,column] 0})
for row = (and negative (row_of max column_value column)}
do (if row (return (list row column})) ;Early termination
finally (return negative)})

To pivot, replace each element in the pivot row (except the pivot) by itself divided by the pivot.. Every
other element e, where e = tableau[r,c], is replaced by: -1 * (e - (pivot_row{r] * pivot_column[c]) /

137 CIS-TR-93-10

pivot).

{defun Pivot (tableau row column)
{loop with pivot = tableau[row,column] ;compute key row
for col from 1 to columns(tableau)
tableau[pivot_row,cel] = (/ tableau[pivot_row,col] pivot})
(loop for r from 1 to rows{tableau) ;subtract & multiply rows
for key_value = tableau[r,column]
unless r = row
{loop for ¢ in columns
{if {= e column)
tableau[r,cl = 0
tableau[r,cl = tableau[r,c] -
(* key_value tableau[row,c])}})}

A unique tableau conatains a maximized objective and no other adjacent tableaus which also maximize
it. This is determined by verifying the objective row, say j, has all values zjz 0 and any values Z; = 0

have columns zj 20,

(defun Unique (tableau)
(loop for r in objective_rows
thereis (loop for ¢ from 1 to columns (tableau)
always (and tableau[r,c] 2 0
(if tableau[r,c] = 0
(loop for rr in objective_rows
for val = tableaurr,c]
for minus = {(or minus val < 0)
;:Early termination if positive val.
do {(if val 2 0) (return t)
finally {(return minus})
Tl

10.

.

CIS-TR-93-10

BIBLIOGRAPHY

R. Alierman, “Adaptive planning,” Cognitive Science 12 (1988) 393-421.

1.S. Anderson and A.M. Farley, “Plan abstraction based on operator generalization,” Pro-
ceedings of AAAI, (August 21-26 1988) 100-104.

1.S. Anderson and A.M. Farley, “Partial commitment in plan composition,” CIS-
TR-90-11, Univerisity of Oregon (1990).

American Library Association, Circulation policies of academic libraries in the United
States, 1968, American Library Association(1970).

M.H. Bazerman, Judgment in managerial decision making, John Wiley & Sons(1986).

L. Beck and T. Perkins, “A survey of software engineering practice: tools, methods, and
results,” Transactions on Software Engineering SE-9 (Sepiember 1983) 541-561.

V. Berzins, “On merging software extensions,” Acta Information 23 (1986) 607-619.

D.G. Bobrow, Qualitative reasoning about physical systems, The MIT Press, Cambridge,
Massachusetts(1985).

T.X. Bui, Co-oP: A group decision support system for cooperative multiple criteria group
decision making, Springer-Verlag(1987).

B.R. Burkhalter and P.A. Race, “An analysis of renewals, overdues, and other factors in-
fluencing the optimal charge-out period,” in: Eds. B.R. Burkhalier, Case studies in systems
analysis in a university library, The Scarccrow Press, Inc. , Metuchen, N.J. (1968)
11-33.

R.M. Burstall and J.A. Goguen, “Putting theories together to make specifications,” Pro-
ceedings of the 5th IJCAI, (1977) 1045-1058.

138

139

12

13.

14,

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

CIS-TR-93-10

M.H. Burstein, “Concept formation by incremental analogical reasoning and debugging,”
in: Eds. R.S. Michalski, J.G. Carbonell, TM. Mitchell, Machine learning: an artificial in-
tellipence approach, Tioga Publishing (1986) 351-369.

D.N. Card, FE. McGarry, and G.T. Page, “Evaluating software engincering technologies,”
Transactions on software engineering SE-13 (July 1987) 845-851.

D, Chapman, “Planning for conjunctive goals,” Artificial Intelligence 32 (1987) 333-377.
I. Conklin, “Interissue dependencies in gIBIS,” STP-091-8%, MCC (February 10, 1989).

S.E. Conry, R.A. Meyer, and V.R. Lesser, “Muliistage negotiation in distributed planning,”
in: Eds. A.H. Bond, L. Gasser, Readings in distributed artificial intelligence, Morgan
Kaufmann, San Meteo, California (1988) 367-384.

B. Curtis, H. Krasner, and N. Iscoe, “A ficld study of the software design process for large
systems,” CACM 31 (November 1988) 1268-1287.

Randall Davis and Reid G. Smith, “Negotiation as a metaphor for distributed problem
solving,” Artificial Intelligence 20 (1983) 63-109.

T. DeMarco, Structured analysis and system specification, Yourdon(1978).

M. Deutsch, The resolution of conflict: constructive and destructive processes, Yale Uni-
versity, New Haven(1973).

K. Downing and S. Fickas, “Specification criticism via policy-direcled envisionment,”
CIS-TR-90-05, University of Oregon (February 27, 1990).

S. Easterbrook, Elicitation of requirements from multiple perspectives, Imperial College of
Science, Technology and Medicine, London(May 1991).

M.S. Feather, “Language support for the specification and development of composite sys-
tems,” Transactions on Programming Languages and Systems 9 (April 1987) 198-234.

M. S. Feather, “Constructing specifications by combining parallel elaborations,” Transac-
tions on Software Engineering 15 (February 1989) To appear (Also available as
RS-88-216 from ISI).

L. Festinger, Conflict, Decision, and Dissonance, Tavistock Publications, Ltd., Lon-
don{1964).

26.

27.

28.

25.

30.

31

32.

33,

34.

35.

36.

37.

38.

CIS-TR-93-10

S. Fickas, “Automating the transformational development of software,” Transactions on
Software Engineering SE-11 (November 1985) 1268-1277.

S. Fickas, “A knowledge-based approach to specification acquisition and construction,”
CIS-TR-85-13, University of Oregon (November 1985).

S. Fickas and John Anderson, “A proposed perspective shift: viewing specification design
as a planning problem,” Fifth international workshop on software specification and de-
sign, (May 19-20, 1989) 177-184.

S. Fickas, J. Anderson, and W.N. Robinson, “Formalizing and automating requirements
engineering,” CIS-TR-90-03, University of Oregon (April 6, 1990).

S. Fickas, J. Anderson, and W. Robinson, “The KATE project: supponting specification
construction,” CIS-TR-90-24, University of Oregon (December, 1990).

D. Genmer, “The mechanisms of analogical leaming,” in: {772}, (1987) 199-241,

Michael P. Georgeff, “Communication and interaction in mulliagent planning,” Proceed-
ings of 1983 conference of the AAAI, (1983) 125-129.

LA, Goguen, “Reusing and interconnecting sofiware components,” Computer 19 (Febru-
ary 1986) 16-28,

R. Greiner and D.B. Lenat, “A representation language language,” Proceedings,
(1980) 165-169.

R.P. Hall, “Understanding analogical reasoning: computational approaches,” 86-11, Uni-
versity of Califomnia, Irvine (Junc 4, 1986).

K.J. Hammond, “Leaming to anticipate and avoid planning problems through the explana-
tion of failures,” AAAI, (1986) 556-560.

C. Hayes, “Using goal interactions to guide planning,” AAAI-87, (1987) 224-228.

S. Horwitz, J. Prins, and T. Reps, “Integraling non-interfering versions of programs,”
#690, University of Wisconsin-Madison (March 1987).

140

141

39.

40.

41.

42,

43.

45.

46.

47.

48.

49,

50.

51.

CIS-TR-93-10

M. Inuiguchi, H. Ichihashi, and H. Tanaka, “Fuzzy programming: a survey of recent de-
velopment,” in: Eds. R. Slowinski, J. Teghem, Stochastic versus fuzzy approaches to mul-
tiobjective mathematical programming under uncertainty, Kluwer academic publishers
(1991) 45-68.

LL. Janis and L. Mann, Decision making : a psychological analysis of conflict, choice,
and commitment, The Free Press, New York(1979).

E. Jantsch, Technological Forecasting in Perspective, Organization for Economic Co-
operation and Development, Paris(1967).

W.L. Johnson, “Specification as formalization and transformating domain knowledge,” in:
Eds. M. Lowry, R. McCarney, D. Smith, Proceedings of the workshop on automating
software design, AAAI (August 25, 1988) 48-55.

G. Kaiser, “Composing sofiware sysiems from reusable building blocks,” Twentieth
Hawaii International Conference on Systems Sciences, (January 1987)

S. Kedar-Cabelli, “Purpose-dirccted analogy,” in: Proceedings of the International Con-
ference of the Cognitive Society, (1985) 150-159.

R. Kemmerer, “Testing formal specifications 1o detect design errors,” Transactions on
Software Engineering SE-11 (January 1985) 32-43,

Klee, “Unknown???,” in; Eds. G.B. Dantzig, A.F. Veinout, Ir., Mathematics of the decision
sciences: part I, American mathematical Soceity , Providence, RI (1968)

M. Klein and S. C-Y Lu, “Run-time conflict resolution in cooperalive design,” Al and De-
sign Workshop, (1988) To appear.

R. Kling and W. Scacchi, “The web of computing: computer technology as social organi-
zation,” in: Eds. M. Yovits, Advances in Computing, Academic Press, Inc. (1982) 1-90.

D.E. Kohl, Circulation, interlibrary loan, patron use, and collection maintenance: A hand-
book for library management, ABC-Clio Inc.(1986).

K.L. Kraemer and J.L. King, “Computer-based systems for cooperative work and group
decision making,” Computing Surveys 20 (June 1988) 115-146.

D.B. Lenat, “The nature of heurislics,” Artificial Intelligence 19 (1982) 189-249,

52.

53.

54.

35.

56.

57.

58.

59.

60.

61.

62.

63.

63.

66.

CIS-TR-93-10

D.B. Lenat, “EURISKO: A program that leams new heuristics and domain concepts: the
nature of heuristics III,” Artificial Intelligence 21 (1983) 61-98.

D.B. Lenat, “Theory formation by heuristic search: the nature of heuristics I1,” Artificial
Intelligence 21 (1983} 31-59.

D.B. Lenat and J.S. Brown, “Why AM and Eurisko appear to work,” Proceedings of
AAAI, (1985) 236-240.

Association of Research Libraries, “Collection development policies 1977,” Systems and
Procedures Exchange Center, (November 1977)

Association of Research Libraries, “*Automated circulation,” Systems and Procedures Ex-
change Center, (April 1978)

Association of Research Libraries, “SPEC kit on goals and objeclives 1979, Systems and
Procedures Exchange Center, (October 1979)

B.P. Lientz, “Issues in software mainienance,” Computing Surveys 15 (September
1983) 271-278.

Marc Luria, “Goal conflict concerns,” IJCAI-87, (1987) 1025-1031,
D. McDemmott, “‘Planning and acting,” Cognitive Science 2 (1978) 71-109.

E. Mumford and D. Henshall, Aparticipative approach to computer systems design, Halst-
ed Press, New York(1979).

E. Mumford and M. Weir, Computer systems in work design—the ETHICS method, Asso-
ciated Business Press, London(1979).

J. M. Neighbors, “The Draco approach to constructing software from reusable compo-
nents,” Transactions on Software Engineering SE-10 (Seplember 1984) 564-574.

N.J. Nilsson, Principles of artificial intelligence, Tioga, Palo Alto, CA(1980).

J.W. Perkins and PN, Clingen, /nglewood public library circulation procedures, Ingle-
wood public library(1972).

D.G. Pniitt, Negotiation Behavior, Academic Press Inc.(1981).

142

143

67.

68.

69.

70.

71,

72.

73.

74.

75.

76.

71.

78.

79.

CIS-TR-93-10

Howard Raiffa, The art and science of negotiation, Harvard University Press(1982).

C. Rich, R.C. Waters, and H.B. Reubenstein, “Toward a requircments apprentice,” 4tk In-
ternational workshop on software specification and design, (April 3-4, 1987) 79-86.

C. Rich and R.C. Waters, “The programmer's apprentice: a research overview,” Computer,
(November 1988) 10-25.

C. Rich and R.C. Waters, The programmer’s apprentice, ACM press, New York(1990).

S.P. Robbins, Organizational behavior: concepts, controversies, and applications, Pren-
tice Hall, NJ(1983).

W.N. Robinson, Towards formalization of specification design, Masters thesis, University
of Oregon(June 1987).

W.N. Robinson, “Automating the parallel elaboration of specifications: preliminary find-
ings,” Technical Report CIS-TR-89-02, University of Oregon (February 1989).

W.N. Robinson, “Integrating multiple specifications using domain goals,” 5th Internation-
al workshop on software specification and design, (1989) 219-226 (Also available as CIS-
TR-89-03 from the University of Oregon).

D.T. Ross and K.E. Schoman Jr., “*Structurcd analysis for requirements definition,” Trans-
actions on Software Engineering SE-3 (January 1977) 6-15.

G.R. Salanick and J.E Porac, “Distilled ideologies: values derived from causal reasoning
in complex environments,” in: Eds. H.P. Sims, Jr., D.A. Gioia, and Associates, The think-
ing organization: dynamics of organizational social cognition, Josscy-Bass Publishers
(1986) 75-101.

W. Scacchi, “Managing software enginecring projects: a social analysis,” Transactions on
software engineering SE-10 (January 1984) 49-59.

H.R. Schwarz, Numberical analysis: a comprehensive introduction, John Wiley &
Sons(1989).

M.L.G. Shaw and B.R. Gaines, A melthdology for recognizing consensus, correspon-
dence, conflict and contrast in a knowledge acquisition system,” in: Workshop on knowl-
edge acquisition for knowledge-based systems, , Ban{f (November 7-11, 1988)

80.

81.

82.

83.

84.

8s5.

86.

87.

88.

89.

90.

o1.

92.

93.

CIS-TR-93-10

R. Slowinski and I. Teghem, Stochastic versus fuzzy approaches to multiobjective mathe-
matical programming under uncertainty, Kluwer academic publishers{1991).

W. Swartout and R. Balzer, “On the inevitable intertwining of specification and implemen-
tation,” CACM 25 (1982) 438-440.

Katia Sycara, “Resolving goal conflicts via negoliation,” Proceedings of the AAAI-88,
(1988) 245-250.

K.P. Sycara, “Resolving adversarial conflicts: an approach integrating case-based and ana-
lytic methods,” GIT-ICS-87/26, Georgia Institute of Technology (1987).

L. Vessey and R. Weber, “*Some factors affecting program repair mainienance: an empirical
study,” CACM 26 (February 1983) 128-134.

D.M. Weiss and V.R. Basili, “Evaluating software developments by analysis of changes:
some data from the software enginecring laboratory,” Transactions on Software Engineer-
ing SE-11 (February 1985) 157-168.

K.J. Werkman, “Knowledge-based model of using shareable perspectives,” Proceedings
tenth international conference on distributed artificial intelligence, (October 1990) 1-23.

R. Wilensky, Planning and understanding, Addison-Wesley(1983).

D.E. Wilkins, “‘Domain-independent planning: representation and plan generation,” Artifi-
cial Intelligence 22 (1984) 269-301.

JM. Wing, “A study of 12 specifications of the library problem,” Software, (July,
1988) 66-76.

D. von Winterfeldt and W. Edwards, Decision analysis and behavioral research, Cam-
bridge Univerisity Press(1986).

PL. Yu, Multiple-criteria decision making, Plenum Press, New York(1985).
Milan Zeleny, Multiple criteria decision making, McGraw-Hill{1982}.

M. Zeleny, Linear multiobjective programming, Springer-Verlag, New York(1974).

144

145 CIS-TR-93-10

94, M. Zelkowitz, R. Yeh, R. Hamlet, J. Gannon, and V. Basili, “‘Software engineering prac-
tices in the U.S. and Japan,” Computer 17 (Junc 1984) 57-66.

	CIS-TR-93-10_1
	CIS-TR-93-10_2

