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Abstract

This paper describes and compares two compile-time analysis algorithms for
deriving the path modes of a moded concurrent logic program. A path describes a
subterm of a procedure argument. Deriving all path modes is a way to perform cer-
tain valuable optimizations, such as sequentialization of too-fine concurrent tasks,
and scheduling to reduce suspension. We describe our own variation of Ueda and
Morita'’s original constraint propagation scheme, which includes our novel circu-
lar unification algorithm. We also describe an alternative method of finite domain
analysis that we developed. The two methods are critiqued and we show the rela-
tionship between them:.
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1 Introduction

Mode information has been shown to be quite useful in the efficient compilation of logic pro-
gramming languages. In general, possible variable modes are “in” (meaning that a variable
will not be bound by the current goal) and “out” (meaning that a variable will not be bound
outside of the current goal). Traditionally, mode information facilitates the strength reduction
of unification operators into matches and assignments. There are numerous methods for auto-
matic derivation of mode information from logic programs, e.g., [1, 2, 3, 7]. In concurrent logic
programs, the logic variable is overloaded to perform synchronization. Mode information can
thus be used to optimize code generated for argument matching.

We are interested in concurrent logic programs in the FCP(:, | ) language family [8] that
include ask (passive unification for input matching) and tell (active unification for exporting
bindings) guards. This represents a broad class of flat committed-choice programs. Figure 1
shows a sample program used throughout the paper to illustrate the analysis techniques discussed
herein. A sample query would be: 7- ¢([2,1,3], Y, []), returning ¥ = [3,2,1].

Ueda and Morita [11] proposed a mode analysis scheme for such programs, based on the
representation of procedure paths and their relationships as rooted graphs (“rational trees”).
Unification over rational trees combines the mode information obtainable from the various pro-
cedures. For example, in a procedure that manipulates a list data stream, we might know that
the mode of the car of the list (that is the current message) is the same mode as the cadr (sec-
ond message), caddr (third message), etc. This potentially infinite set of “paths” is represented
as a concise graph. Furthermore, a caller of this procedure may constrain the car to be input
mode. By unifying the caller and callee path graphs, modes can be propagated. The analysis is
restricted to “moded” flat committed-choice logic programs. These are programs in which the
mode of each path in a program is constant, rather than a function of the occurrences of the
path. This is not regarded as a major drawback, since most non-moded flat committed-choice
logic programs may be transformed to moded form in a straightforward fashion.

As an alternative algorithm, we developed a projection of the previous work to a finite
domain of paths. This has the nice property of obviating the need for unification over circular
terms, thereby gaining some efficiency. We represent the relationships of a finite set of paths
in such a way that all mode information directly available about this set of paths in a program
may be efficiently derived. Again, moded programs are required.

The purpose of this paper is to describe and compare both algorithms in detail. As far as we
know, this is the first document describing practical implementations for these mode analysis
schemes. Section 2 describes our implementation of the constraint propagation algorithm. Sec-
tion 3 describes our finite domain algorithm. In both sections we present examples to illustrate
the concepts. The algorithms are compared in Section 4 and conclusions are summarized in
Section 5.

2 Constraint Propagation Algorithm

Ueda and Morita’s notion of “path” is adopted as follows: A path p “derives” a subterm s within
a term ¢ (written p(t) F ) iff for some predicate f and some functors a, b, . .. the subterm denoted
by descending into ¢ along the sequence {< f,i >,< a,j >,< b,k >,...} (where < f,i > is the
i*h argument of the functor f) is s. A path thus corresponds to a descent through the structure
of some object being passed as an argument to a function call. f is referred to as the “principal
functor™ of p. A program is “moded” if the modes of all possible paths in the program are
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Figure 1: Quicksort FCP(:, | ) Program: Normalized Form (Clauses 1-5)

consistent, where each path may have one of two modes: in or out (for a precise definition, see
Ueda and Morita [11]).

Frample: Considering the quicksort example, the cadr of the first argument of pro-
cedure ¢/3 has an input mode specified as: m({< ¢/3,1 >,< *‘/2,2>,< /2,1 >})
= in, ]

Both analyses presented in this paper exploit the rules cutlined by Ueda and Morita. Their
axioms are clarified and reformulated in Figure 2 (m(p) means the mode of path p). In the
constraint propagation algorithm, a graph is constructed representing the entire program. Hi-
erarchically, we compute and combine graphs at three levels: modules, procedures, and clauses.
Top-down, we envision first constructing such a graph for each module of the program, and
then connecting the graphs via imported/exported procedures. Within a module, we utilize
this same strategy of first constructing procedure graphs (“local” analysis) and then combining
graphs via inter-procedure call sites. Within a procedure, we first construct clause graphs, and
then combine them via the heads.

Graph combination is formally unification, as described in Section 2.3. The methodology is
guaranteed to terminate because graph unification can only reduce the structural complexity.
Termination occurs when no further reduction is possible. However, the scheme is not guaranteed
to terminate in the minimum number of graph reductions. In the future we intend to experiment
with heuristics to guide graph reduction to quicker termination (see Section 2.3).

2.1 Data Structures

A program graph is a directed, multi-rooted, (possibly) cyclic graph composed of two types of
nodes. To clearly illustrate the following definitions, Figure 3 presents a portion of the quicksort
program graph. This portion corresponds to the initial graph for procedure ¢/3 (clause 2).

Definition: A structure node (drawn as a square) represents a functor with zero or
more exit-ports corresponding to the functor’s arity. If the node corresponds to a
procedure name (for clause heads and body goals), there are no associated entry-
ports (i.e., it is a root). If the node corresponds to a data structure, there is a



§1. For some path p in a clause, m(p) = in, if either

1. p leads to a non-variable in the head or body, or
2. p leads to a variable which occurs more than once in the head, or
3. p leads to a variable which also occurs in the guard at path ps and m{p,;) = in
§2. Two arguments of a unification body goal have opposite modes, for all possible p, or more
formally: {Vp m(<=,1> p) #m(<=,2 > p)}.

§3. If there are exactly two “occurrences,” we have two possibilities:

1. If both occurrences are in the body, the modes of their paths are inverted.

2. If there is one (or more) occurrence in the head and one in the body, the modes of
their paths are the same.

§4. If there are more than two “occurrences” of a shared variable (i.e., at least two occurrences
in the body), the situation is even more complex:

1. If the body contains more than two occurrences of the shared variable and the head
has no occurrences, then one of the modes is ‘out,” and the others are ‘in.” This means
that one of the occurrences is designated as the producer of this varizble.

2. If the head contains one {or more) occurrences of the shared variable (so the body
has two or more occurrences), then the modes are as follows:
(a) If the mode of the head occurrence is ‘in,’ the modes of all body occurrences are
‘in” as well.

(b) I the mode of the head occurrence is ‘out,’ then one of the body occurrences is
‘out,’ and the other body occurrences are ‘in.’

Figure 2: Ueda and Morita’s Mode Derivation Axioms (for Moded FGHC)

single entry-port linked to a variable node unified with that term. A structure node
contains the following information: a unique identifier, functor, and arity. a

Fzample: Consider node 8 in Figure 3 holding the list functor of arity two. The
entry-port connects to variable node 6 (U;) and the two exit-ports connect to variable
nodes 9 and 15 (X; and Vs, respectively). o

Definition: A variable node (drawn as a circle) represents a subset S of (unified)
variables in a clause. Intuitively we think of these variables as aliases, and upon initial
construction of the graph, S is a singleton (i.e., each unique variable in the clause
has its own variable node initially). A node contains & > 1 entry-ports and 7 > 0
exit-ports, upon which directed edges are incident. A unique entry-port corresponds
to each clause instance of each variable in §. An exit-port corresponds to a possible
unification of the variable(s) to a term (exit-ports connect to structure nodes).!

A variable node contains the following information: a unique identifier and a mode
set M. An element of M is a vector of length k containing self-consistent modes for

'An invariant preserved by unification is that no two child (structure) nodes of the same parent (variable)
node can have the same functor/arity (see discussion in Section 2.3).
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Figure 3: Initial Graph of Procedure ¢/3 (Clause 2), After Phases I-I

the variable instances of §. To facilitate the implementation, each entry-port has a
name: the identifier and exit-port number of its source node. Elements of M are
alternalive mode interpretations of the program. Initially M is computed by Ueda
and Morita's rules.? Intuitively, graph reduction results in removing elements from
M as more constraints are applied by local and global unifications. A fully-reduced
graph, for a fully-moded program, has a singleton M in each variable node. (m}

Erample: Consider node 15 in Figure 3 with entry-ports named (8/2,4/2). Node
15 holds variable Vs; with mode set {(in,out),(out,in)}. This set derives from rule
§3.1 in Figure 2. o

In general, initial graphs, like that in Figure 3, will be multi-rooted directed acyclic graphs.
The initial roots correspond to clause head functors, body goal functors, and body unification
operators. In addition to the program graph, a partitioned node set is kept. Initially, each node
is a singleton member of its own partition (disjoint set).

The mode analysis consists of three phases: I) creating a normalized form and initial graph;
IT) removing unification operators from the graph, and III) reducing the graph to a minimal
form. These are described in the following sections.

2The size of M increases with the complexity of the rules, e.g., rule §4 (Figure 2) can produce several vectors,
By explicitly enumerating all possible modes initially, we simplify the analysis immeasurably.



2.2 Graph Creation

Phase I converts a flat committed-choice program into normalized form, an example of which
is shown in Figure 1. Normalized form ensures that all variables are renamed apart among
clauses within the same procedure and that each clause is flattened, i.e., all head structures
and body goal structures are moved into ask and tell guards, respectively. An initial program
graph is created from the normalized form, including mode sets for each variable node. The
normalization implies a graph invariant that structure nodes cannot point to structure nodes
(and variable nodes cannot point to variable nodes): the graph is a “layered network” (with
cycles).

There is a minor trick required to deal with certain unification operators in phase I. Naively, a
goal X = f(Y') would result in a structure node (= /2) pointing to another structure node ( f/1).
To avoid this exception thereby facilitating the next phase, we introduce a dummy variable node
as an intermediary between these two structure nodes. This is effectively a nameless placeholder
that will be removed in phase II.

In phase IT we remove all root nodes corresponding to builtin predicates. Intuitively, these
predicates have fixed modes and thus their reduction acts as the boundary conditions anchoring
subsequent constraint propagation by unification. Here we describe only reduction of (both
active and passive) unification operators because they are the most frequent.

First consider a (passive) unify operator in the ask guard (all head unifications have been
normalized into the guard). The structure node corresponding to the operator has two exit-
ports indicating the operands of the unification. The two variable nodes attached to these
exit-ports can be merged as follows. A cross-product of two mode sets is taken, resulting in
a set of vector pairs. We retain those pairs that have in mode for both entry-ports arriving
from the unification node, and discard all other pairs. The two vectors in each remaining pair
are concatenated, forming a new mode set. The two variable nodes are fused into one node
containing the new mode set just computed. The entry-ports and modes corresponding to the
unify operator are removed.

Now consider a tell (active) unification goal. A similar merging operation is performed,
keeping only those vector pairs that have opposite modes at the positions corresponding to the
entry-ports arriving from the unification node (rule §2 in Figure 2). After phase II, builtin
predicate nodes are no longer present in the graph. The resulting graph contains roots named
only by clause heads and user-defined body goals.

Ezample: Phase II analysis of ¢/3 clause 1 is illustrated in Figure 4. The modes
of the tell unification operator must be opposite. Thus we remove the unification
operator node, combining its operands, resulting in the graph shown in Figure 4b.
That concludes the analysis for clause 1 because there are no body goals.

Another example is shown in Figure 3, where the topology of node groups {5,7,9,10}
and {6,8,9,15} result from the introduction of dummy nodes in phase I, followed by
phase II analysis. m]

2.3 Abstract Unification

Phase I11 of the analysis is to reduce the graph to a minimal form by successive node unifications.
We perform “local” reduction first by collapsing recursive call sites (by abstract unification)
with associated clause heads. Next we perform “global” reduction by unifying root nodes from
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Figure 4: Builtin Tell Unification of Quicksort (g/3, clause 1)

different procedures. The abstract unification algorithm is the same, however, for any two (node)
arguments, local or global.

I'igure 5 gives the graph unification algorithm. We use the notation that a variable node v
has the fields: v.in (vector of entry-ports, each of the form id/index, where id is the parent’s
node identifier and indez is the parent’s exit-port index), v.out (set of exit-ports), and v.modes
(set of mode vectors). A structure node s has the fields: s.out (vector of exit-ports), and s.fun
(functor/arity).

Unification is invoked as unify(a,b) of two nodes a and b (necessarily root structure nodes).
The result is either failure, or success and a new graph (including the node partitioning) that
represents the most general unification (mgu) of the two operands. Implied data structures used
by the algorithm include the graph, the disjoint sets (i.e., node partitioning), and a mark table
associated with pairs of nodes.?

Procedures sunify (structure node unification) and vunify (variable node unification) follow
recursive descents. Initially all marks are cleared (1). Circular structures that represent infinite
paths are handled properly by marking node pairs at first visit (2). If a given node pair has been
previously marked, revisiting them immediately succeeds. Note that we mark pairs instead of
individual nodes to handle the case of unifying cyclic terms of unequal periodicity.

Ezample: Consider two graphs representing m({< *./2,2 >,p}) = m(p) and

m({<‘.'/2,2>,<".4/2,2>,p}) = m(p). The former has a 1-period cycle and the
latter a 2-period cycle. Suppose that node 1 corresponds to the structure node in
the shorter cycle, and nodes 2 and 3 are in the longer cycle. Unifying the roots, we
first mark pair {1,2}, then mark {1,3}, then terminate when pair {1,2} is found to
already be marked. o

Two important operations for the disjoint sets data structure are union(z,y}) and find_set(z).
Function union(z,y) unites two disjoint sets, where z belongs to the first disjoint set and y

*Note that the new graph returned by unify has the same number of nodes as the original graph. However,
for practical purposes either of the input roots can be discarded, turning unneeded nodes into garbage. The key
point is that the graph must always be traversed according to the node partitions, so as the partitions grow larger,
effectively the graph shrinks. To ensure that the graph shrinks in practice, unneeded nodes must be explicitly
removed from the graph, an operation that we do not detail here.



unify(a, &) {
Va, b clear mark({a,b}) (1)
sunify(a, b)

sunify(a, &) {
if a.fun # b.fun
return(failure)
if mark({a,b}) clear then {
set mark({a,b}) (2)
Yk € [1,arity(a)] {
if vunify(a/k, a.out(k}, b/k, b.out[k]) failure then
return(failure)

}

return{success)

}

vunify(i, a,, j, b,) {

a = find_set(a,)

b = find_set(b,)

if mark({a,b}) clear then {
set mark({a,b})
¢ = union(a,b) (3)
- compute the compatible mode set
define u s.t. a.infu] =i

vs.t binfv)=j

P = a.modes x b.modes

Pl={(s,t)e P | slul=1[s]} (4)
if (P’ empty) then
return(failure)
c.modes = { s || (my, ma, ..., My_1, Mys1,...,mx) |
(s,t) € P!, t = (my, ma,...,my,..my) } (5)

— compute the entry-port identifiers
let (p1, P2, ..y Poy ooy Pr) = butn
c.in=a.in ” (PI,P2,---,Pu—eru-i-h---ymk) (6)
— compute the exit-ports identifiers
U=a.out U b.out
F,={s.fun | s € a.out}
Fy = {s.fun | 5 € b.out}
I={s| fun€ F, N Fy, s.func U}
cout =a.oult U [ (M)
— unify children with the same functor/arity
Y(z,y) | = € a.oul,y € b.out {
if z.fun=y. fun
if sunify(z, y) failure then (8)
return(failure)

return(success)

}

Figure 5: One-Pass Graph Unification Algorithm
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belongs to the second disjoint set. Procedure union returns the canonical name of the partition
(3), i.e., the least identifier of the nodes. This facilitates reusing graph nodes while rebuilding
the graph.* Function find_set(z) returns the canonical name of the disjoint set containing z.

The major complexity in the algorithm is in procedure vunify, where the abstract unification
must merge the modes of the two argument nodes. First, mode vectors that are contradictory
are discarded (4). If all mode vectors are contradictory then a mode error has occurred and
unification fails. Otherwise redundant modes are removed and the two mode vectors are con-
catenated (5). Next we create the entry-port identifiers associated with the new mode vector
(6). Lastly, children of the argument nodes that share equal functor/arity must be recursively
unified (8). The exit-port identifiers consist of a single exit-port for each pair of children unified,
included with exit-ports for all children for which unification does not take place (7). Intu-
itively, a variable node forms OR-branches with its children, whereas a structure node forms
AND-branches with its children. In other words, the least-upper-bound (lub) of the abstract
unification semantics at a variable node is a union of the structures that potentially concretely
unify with the variable node.

Local analysis continues with unification of roots among clauses composing a single procedure
definition. Local analysis terminates when no two roots have the same functor and arity within a
procedure graph. This is perhaps not a time-optimal strategy, but was selected, in our prototype,
for its simplicity. Analyzing non-recursive clauses first, and then unifying these clause-head roots
with recursive call sites in other clauses, is expected to terminate faster. The rationale is similar
to quickly reaching a fix point in abstract interpretation by approximating recursive calls with
their corresponding non-recursive clause input/output relationships.

After local analysis we perform global analysis which unifies roots among different procedure
graphs. Global analysis terminates when each root in the entire program is unique.

Ezample: Reconsider the quicksort program (Figure 1) to illustrate the unification
algorithm. First, we consider the second clause of ¢/3 and construct the graph in
Figure 3. Each node of the graph is assigned a unique identifier. Then entry-ports,
exit-ports, and modes are shown.

We start the local analysis for this graph by unifying the node 1 with node 3. The
result of this unification is shown in Figure 6.° That is we unify all three correspond-
ing argument positions of both nodes. The first pair of arguments unified is node §
(entry-port 1) with node 13 (entry-port 2). Initially these nodes belong to their own
partitions, so find_set returns 5 and 13. The union returns the canonical name 5,
the minimum of the two. Thus node 5 is overwritten with the new (fused) variable
node.

For example, all possible modes of node 5 entry-ports are {(in)} and the mode set of
node 13 is {(in,out),(out,in)}. The cross-product set is {(in)} x {(in,out),(out,in}}
= {(in,in,out), (in,out,in)}. Element {(in,in,out)} is discarded because the first and
the third positions (instances, or entry-ports, of the unified argument) do not match.
Thus, the legal cross-product set is {(in,out,in)}. This is reduced to the mode set
{(in,out}} and entry-port vector (1/1,2/3), removing redundancies. Note that by

*Optionally, the canonical name can be defined to be a new identifier, avoiding node reuse. This might facilitate
searching for tlhie modes of top-level variables, e.g., for data-dependency analysis.

*By convention we remove nodes 3, 12, and 13 from the illustration to clarify that they represent redundant
information. In the implementation, these nodes might be kept in the graph if space was not a critical resource.
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fusing the entry-port vectors, the edge from node 2 to node 13 has effectively been
rerouted to fused node 5.

Exit-ports need to be traversed in a recursive descent. In this case, the exit-port of
node 5 is simply inherited by the new node since node 13 has no children. Then the
second and third arguments of nodes 1 and 3 are unified, resulting in Figure 6. Node
1 and node 4 are then unified, resulting in the graph shown in Figure 7. This is the
final local unification possible for clause 2 since all roots now have unique functors.

We now do inter-clause analysis of ¢/3, unifying the first (root) nodes from the graphs
represented in Figures 7 and 4b, resulting in the graph of Figure 8. This represents
the most information that can be derived from g/3 alone. Note that the modes of
X1 and Xs, are still ambiguous. In normal operation, we would locally derive the
modes for s/4, and then do global analysis, unifying the s/4 graph with node 2 of
the ¢/3 graph. We show only the final resultant graph with all mode ambiguities
removed in Figure 9. o

3 Finite Domain Analysis

The first stage of the alternative algorithm generates a finite set of paths whose modes are
to be considered. Only “interesting” paths are generated in the first stage of our algorithm:
effectively those paths locally derived from the syntactic structure of the procedures. There are
three classes of interesting paths. The first class consists of paths that directly derive a named
variable in the head, guard, or body of some clause. All such paths can be generated by a simple
sequential scan of all heads, guards, and body goals of the program.

The second class consists of paths which derive a variable v in some clause, where a proper
path through the opposite side of a unification with v derives a variable +. More formally,
consider a unification operator v = ¢ where v is a variable and ¢ is some term other than a
variable or ground term. Let v’ be a variable appearing in { at path ¢, i.e., g(t) F v'. Thenif pis
a path deriving v (by which condition p is also interesting), then the concatenated path p- g is
also an interesting path. All paths in this second class may be generated by repeated sequential
scanning of all unification goals until no new interesting paths are discovered. The necessity for
repeated scans is illustrated by such clauses as

a(X,Z)-Y =c(X), Z=0b(Y).

where the interesting path {< ¢,2 >,< 5,1 >,< ¢,1 >} given by the first unification bedy goal
will not be generated until the interesting path {< «,2 >,< b,1 >} in the second unification
body goal is generated. Such repeated scans should occur infrequently in practice. In any case
not more than a few scans are necessary — no greater number than the syntactic nesting depth
of expressions containing unification operators.

The third class of interesting paths is generated by noting that if a path starting on the right-
hand side of a unification body goal (i.e., a path of the form {<=,2 >}-s) is interesting, then so
is the corresponding path starting on the left-hand side of that unification (i.e., {<=,1>}-s).

In general, all interesting paths of a program are generated in a few sequential passes. The 39
interesting paths of quicksort, shown in Table 1, are generated in two passes. Note the correlation
between these paths and the infinite paths represented in Figure 9. The interesting paths could
be generated from a depth-one traversal of the graph, except for {< ¢/3,2>,<.,1>} and
{<q/3,2>,<.,2>}. These two paths are “hidden” because they cannot be derived from

10
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input output

user builtin user builtin
{< 8/4,1>} {<'<’/2,2 >} {<q¢/3,2>} {<=0,1>}
{< 5/4,2 >} {«'<’/2,1>} {< s/4,3 >} {<=1,1>}
{<4/3,1>} {<>'/2,2>} {<s/4,45} {<=2,1>}
{< ¢/3,3>} {<'>/2,1>} {<s/4,3>,<.,1>} | {<=3,1>}
{<q/3,1>,<.,1>} | {<=0,2>} {<8/4,3>,<.,2>} | {<=4,1>}
{<q¢/3,1>,<.,2>} | {<=1,2>} {<s/4,4>,<.,15} | {<=3,1>,<., 1>}
{<q/3,3>,<,15} | {<=2,2>) {<s/4,4>,<.,2>} | {<=3,1>,<.,2>)
{<¢/3,3>,<.,2>} | {<=3,2>}) {<=4,1>,<.1>}
{<sf4,1>,<.,15} | {g=4,2>)} {¢=4,12>,<.,2>})
{<s/4,1>,<.,2>} | {<=3,2>,<.,1>}

{<=3,2>,<.,2>}

{<=4,2>,< ., 1>}

{<=4,2><.,2>}

Table 1: Interesting Paths of Quicksort (23 input, 16 output)

clause 2 of g/3 alone. However, the set of interesting paths produced is sufficient to mode the
program in the sense of assigning an unambiguous mode to all syntactic variables. An important
question is whether a finite set of paths represents a minimal and complete set of paths for the
mode analysis in general. Unfortunately, as discussed below, there is good reason to believe that
some fundamentally important paths may not be generated.

Once we have generated a set of interesting paths, our algorithm proceeds by simply noting
the modes of paths, first directly, and then by examining relationships between paths. There
are essentially four different stages in the algorithm:

1. Assert absolute modes for some paths.

2. Assert that all paths on opposite sides of a “tell” urification have opposite modes.

3. Proceed sequentially through the variables derivable from interesting paths, asserting all

binary relations between paths.

4. Repeatedly consider multiway relations (rule §4 Figure 2) asserted by the clauses.

The first three stages have linear complexity. The multiway analysis is exponential in the number
of variables, but by the time it is actually performed, most alternatives contradict the known
modes, and thus are not explored. We found multiway analysis contributed only 2-7% of total
analysis execution time in simple programs, and 11-20% in complex programs [4].

Some important practical and theoretical issues are raised by this algorithm. Some of these
issues include the consistency, completeness, and safety of the mode analysis. It is not difficult
to prove that the mode analysis algorithm is consistent in the sense that if, at some point in the
analysis, path p is shown to have mode m, and if some subset of the interesting paths implies
that p does not have mode m, then the algorithm will derive and report this contradiction.

The major barrier to the consistency of this algorithm is somewhat subtle: the non-moded-
ness of a program may not be detectable if the analysis uses the wrong set of paths! This leads
directly to a reasonable definition of a complete set of paths. A set of paths generated for a
program is complete iff the existence of a consistent moding for the set of paths implies that the
program is fully-moded. (We say that a program is “fully-moded” if the modes of all paths are
known, and “moded” if the modes of some paths are known).
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Thus, the infinite set of all possible paths is a complete set; however, we are interested in
finite complete sets and in particular in a minimal complete set of paths for the program. Our
path generation algorithm is incomplete; because of this incompleteness in path generation, the
mode analysis algorithm we constructed js unsafe. It is a consequence of the incomplete set
of generated paths that even if the program contains information about the mode of a path,
that information may not be derived by the mode analysis algorithm. Thus, the analysis is
unsafe in the sense the compiler may not detect mode contradictions in erroneous (not fully-
moded) programs, and thereby produce erroneous mode information for programs that should
be rejected altogether. Nonetheless, most generated paths in typical programs are moded by
our analysis, and if the program being analyzed is known to be moded, all modes derived are
correct. Thus, our mode analysis algorithm is a practical tool for many compiler optimizations.

4 Critique

We believe that our algorithmic specification and implementation of the constraint propagation
method has contributed in the following areas:

o The algorithm to be used is specified precisely. In particular, the data structures used by
the algorithm and the method of unification of subtrees are specified in sufficient detail

that the algorithms for encoding the program and determining its modes are always well-
defined.

¢ Qur implementation of the algorithm is undergoing benchmarking and appears to behave
correctly.

¢ The algorithm seems amenable to a proof of completeness and correctness via structural
induction, as it is specified in a relatively denotational style.

Nonetheless, there is still work to be done. Most importantly, a formal proof of the correct-
ness of the algorithm should be given, and the implementation should be tested with a variety
of real-sized programs.

The finite domain method avoids circular unification by sacrificing completeness. Qur initial
beliel was that real programs have very short paths, so that the construction of “interesting”
paths would cover most programs. From analysis of small benchmarks, we note that programs
with deep paths are not altogether rare. In our system, the programmer must declare the modes
of these deep paths that the analysis cannot derive on its own, if completeness is desired. In
addition, the finite domain method may fail to note a moding contradiction, and thus silently
produce unsound output for erroneous inputs.

To compare the utility of the two methods for a set of benchmark programs, we plan to
generate paths from depth-one traversals of the complete graph and feed these sets to the
finite path analyzer. For this we can compute the percentage of all syntactic variable modes
determined unambiguously. For fully-moded programs this indicates how well the finite domain
method approximates the constraint propagation method.

We believe that the graph algorithm is consistent, complete, and safe, although as noted
above this remains to be proved. Thus, in applications requiring these properties, we recommend
the use of the graph algorithm, as we currently know of no way to repair the finite domain
algorithm, although it may be possible.

Note that if either algorithm reports a contradiction, there is no obvious way to automatically
correct it, or even to determine the minimal subset of paths involved in the contradiction. Thus,
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we restrict our attention to the language of fully-moded (and thus non-contradictory) programs,
and check this constraint with the mode analysis algorithm. The current implementation will
report any contradiction, ignore the contradictory assertion, and proceed with the derivation.
This allows the user to examine the final modes produced by the analysis and determine which
might be incorrect. In our experience, this is usually sufficient to correct the problem. In
practice, in the absence of user intervention, this also allows the modes of most of the remaining
paths to be determined.

We have recently developed an parallel execution model [6] which requires only a fairly
precise approximation to the modes of a program to optimize the performance of the program
— in particular, the technique requires neither complete nor correct mode information. We
believe that our finite domain analysis may be an adequate choice for this case because it is
simple to implement, efficient, and reasonably precise.

5 Conclusions

This paper informally describes two alternative algorithms for deriving, at compile time, the
path modes of flat committed-choice languages. One contribution of the paper is to refine Ueda
and Morita’s proposed method of constraint propagation into an implementable and efficient
algorithm. This includes our novel abstraction of unification over variable and structure nodes
in the graph. In addition, we describe an alternative method based on a finite path domain, with
the motivation of decreasing analysis time by avoiding cyclic unification. This comes however
at the expense of completeness, because we cannot guarantee that all paths are constructed.

Future work in this area includes integrating these algorithms into the front end of our ex-
perimental FGHC compiler, Monaco [9, 10]. We have already experimented with code sequen-
tialization via mode analysis [4, 5] and continue to explore this application. Another important
problem to be solved is making the mode analysis algorithm constructive in the sense that it
can point out probable causes (in the source code) of illegal moding.
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