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Abstract

Many graph parameters are the optimal value of an objective function over
selected subsets § of vertices with some constraint on how many selected neigh-
bors vertices in 5, and vertices not in §, can have. Classic examples are min-
imum dominating set and maximum independent set. We give a characteri-
zation of these graph parameters that unifies their definitions, facilitates their
common algorithmic treatment and allows for their uniform complexity classi-
fication. We investigate the computational complexity of problems admitting
this characterization, identify classes of NP-complete problems and classes of
problems solvable in polynomial time. We distinguish vertex subset properties
admitting the characterization which have the feature that any such set in a
graph has the same size.

1 Introduction

If every vertex in a selected subset S of vertices of a graph has zero selected neighbors
then 5 is an independent set, and similarly if every vertex not in S has at least one
selected neighbor then S is a dominating set. This suggests a common characteri-
zation of independent sets and dominating sets based on the constraints imposed on
the number of selected neighbors the vertices in §, and vertices not in S, can have.

As we show in this paper, a large collection of vertex subset properties found in
the literature, including variants of efficiency, packing and irredundance, admit such
a characterization. Many graph parameters are the optimal value of an objective
function over subsets of vertices admitting the characterization. From the standard
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definitions of these parameters it is not obvious that they are related as described
here. This characterization thus facilitates the common algorithmic treatment of the
problems computing these parameters.

The current bibliography [15] of papers related to the general topic of domination in
graphs, maintained by S.Hedetniemi and R.Laskar, has about 400 entries covering a
large variety of domination-type parameters. We are mainly interested in the algo-
rithmic theory of domination in graphs. A paper in this field will typically introduce
a new domination-type parameter, contrast it with related domination parameters
and give computational complexity results. As an example, Bernard, Hedetniemi and
Jacobs [2] define the efficiency of a graph, show the NP-completeness of computing
the efficiency of a bipartite graph and give a linear-time algorithm computing the
efficiency of a tree. Telle and Proskurowski [19] extend this latter result by giving a
linear-time algorithm computing the efficiency of a partial k-tree, for fixed k. Upon
the introduction of a slight variation of the efficiency parameter this work would then
usually be repeated. In contrast, the characterization we propose here facilitates
the common algorithmic treatment of these parameters and allows for their uniform
complexity classification. These parameters oftentimes arise from various fields, tra-
ditionally seen as separate, with the confusing effect that naming conventions are
not standardized. As an example, Biggs (3] and later Kratochvil [17] consider Per-
fect Codes in graphs (as a generalization of error-correcting codes), while Bange,
Barkauskas, Slater [1] study Efficient Dominating Sets in graphs (a variant of domi-
nation), and Fellows, Hoover [10] investigate what they call Perfect Domination. In
fact, they are all studying the exact same vertex subset property, designated in our
characterization as [p,, go}-sets.

In the next section, we present our characterization and show that many of the graph
parameters found in the literature admit such a characterization. In section 3, we
investigate the computational complexity of the problems computing these param-
eters. We identify several classes of both NP-complete problems and of problems
solvable by a greedy algorithm. The NP-completeness results identify properties with
interesting features, such as when both maximum and minimum versions are NP-
complete (independent dominating sets), or when merely deciding if a graph has a
vertex subset with the property is NP-complete (perfect codes). We show a class of
problems which are NP-complete even when restricted to planar bipartite graphs of
maximum degree three. A natural by-product of these results is the introduction of
several new domination-type parameters in graphs. In section 4 we give a theorem
describing those vertex subset properties admitting the characterization which have
the feature that any such set in a graph has the same size. In the last section we show
a refinement of the characterization allowing for the definition of maximal and mini-
mal versions of the same vertex subset properties, and also of vertex subset properties



related to irredundant sets.

2 Characterization of Domination-type Problems

We use standard graph terminology [4]. For a vertex v € V(G) of a graph G, let
Ng(v) = {u: (u,v) € E(G)} be the set of neighbors of v and degg(v) = |[Ng(v)|- For
S C V(G) let G[S] denote the graph induced in G by S and let the symbols o and p
denote membership in S and membership in V(G) — S, respectively.

Definition 1 Given a graph G and a set S C V(G) of selected vertices

o The state of a vertex v € V(G) is

d | pi ifvgSand [Ng(v)NS|=1
states(v) = { o; ifveSand |[Ng(v)NS]=1

o Define syntactic abbreviations

Psi = Po, L1y i T8 = 00,01, .., 04 P2: = Poy Pagly e 02y = 04y Figly oee

The latter two abbreviations each represent an infinite set of states. Mnemonically, o
represents a vertex selected for S and p a vertex rejected from S, with the subscript
indicating the number of neighbors the vertex has in S. A variety of vertex subset
properties can be defined by allowing only a specific set L as legal states of vertices.
For example, S is a dominating set if state po is not allowed for any vertex, giving the
legal states L = {pz1,020}. Optimization problems over these sets often maximize
or minimize the size of the set of vertices with states in a given M C L. For the
minimum dominating set problem, M = {&3o}.

Definition 2 Given sets M and L of vertex states and a graph G
o § C V(G)is an [L]-set if Vv € V(G) : states(v) € L

e minM[L) (or mazM{L}) is the problem minimizing (or maximizing)
Hv : states(v) € M} over all [L])-sets S

o min[L] (or max[L]) is shorthand for minM[L] (or maz M[L]) when M consists
of all g-states in L, in effect optimizing the size of the selected set of vertices.

o minM[L](G) (or mazM[L](G)) is the corresponding parameter for G



Our notation Standard terminology

[720, o0l-set Independent set

[p21, 20}-s€t Dominating set

[p<1, o0}-set Strong Stable set or 2-Packing
[1, o0)-set Efficient Dominating set or Perfect Code
(P21, 00])-set Independent Dominating set
[, o20]-s€t Perfect Dominating set
[p21,021])-set Total Dominating set

[21, 01]-set Total Perfect Dominating set
[p<1, 20)-5€t Nearly Perfect set

[p<1,041]-s€t Total Nearly Perfect set

[p1, o51)-set Wealkly Perfect Dominating set
(P20, o <k—1]-set k-dependent set

[p2k, o 20]-set k-dominating set

[20, o4]-set Set inducing k-regular subgraph
maz{p1}[pz0,020] | Efficiency problem
min{ox}{pz1,020] | Domination problem

Table 1: Some classical vertex subset properties and graph parameters

Thus, a dominating set is a [p>1, o>0}-set, with the square brackets implying the set
notation. Table 1 shows some of the classical vertex subset properties {12, 5, 10, 1,
2, 6] and a few graph parameters as expressed using our characterization. Note that
properties traditionally defined using closed neighborhoods are easily captured by the
characterization. For vertex weighted versions of these parameters optimize the sum
of the weights of vertices with state in M, the cardinality version corresponding to
unity weights. For directed graphs define Ng(v) as {u : (u,v) € Arcs(G)} to obtain
directed versions of these domination-like properties and parameters. In the last
section of this paper, we give an extension of this characterization to encompass also
parameters related to irredundant vertex subsets, and also to maximal and minimal
versions of the vertex subsets given here.

Table 1 can be used as a quick reference guide to the exact definitions of the various
properties and parameters represented. The characterization may also be useful when
introducing new parameters. In another paper [19}, we give practical algorithms on
partial k-trees (graphs of treewidth bounded by k) solving any problem admitting
the given characterization. A measure of the complexity of the resulting algorithm
solving a problem with legal states L is the set Ay (a superset of L) of states needed
for algorithmic purposes and its syntactic size |Ar}. Suffice it to say that any non-
parameterized problem derived from Table 1 has |AL] < 4.



Theorem 1 [19] For any problem admitting the given characterization having legal
states L there is an algorithm which takes a graph G with n vertices and a width k
tree-decomposition of G as input, and gives a solution for G in O(n|AL|**) steps.

The next section focuses on the computational complexity on general graphs of the
problems admitting the characterization.

3 Complexity Results

We would like to classify the computational complexity of the problems admitting
the given characterization. We are mainly interested in classifying problems as NP-
complete or solvable in polynomial time.

From Table 1 we note that subset properties characterizable by two syntactic states
(using the abbreviations) in which vertices have zero, one, at least zero, or at least
one selected neighbors, attract the most interest. Similarly, the objective functions
most studied involve minimizing or maximizing the cardinality of the set of selected
vertices, and for each entry in Table 1, except Nearly Perfect Sets, there is at least
one NP-complete problem related to such a parameter. For Independent Dominating
Sets, it is well known that both minimizing and maximizing the size of such a set is
an NP-hard problem. We give some vertex subset properties not found in Table 1, in
which vertices have zero, one, more than zero, or more than one selected neighbors,
sharing this feature of Independent Dominating sets.

Theorem 2 The decision problems opt[ps1,7], opt[pz1, 0], opt[pz2,00] and
opt|pz2,01] with opt replaced by max or min are all NP-complete.

To our knowledge, maz[pz,, 01} is the only one of these parameters that has been
studied previously[13). The theorem will follow from Lemmas 1-4.

Lemma 1 The decision problems min|py,, 1] and maz|[pz, o1] are both NP-complete.

Proof: Clearly, both problems are in NP. The problems min|pz;,00] (minimum
independent dominating set) and maz[py, 0¢] (maximum independent dominating
set) are known to be NP-complete. For any graph G we describe a graph G’, such
that G has a [pz1, 0¢]-set S if and only if G’ has a [p31, 01]-set S’ such that 2|S| = ||
Let G'(V) = {uo, u1,u2,u3 : u € V}. Fix an orientation EQ of G(E) and let G(E') =
{{(uo, u1), (ur, uz), (us, uz) : u € G(V)} U {(u0, 1), (w1, v1), (11, 02), (s, v3), (u2, vo),
(ua,v1), (u2, v2), (ua, v2) : {u,v) € EO}}. See Figure 1.

For one direction of the proof, let § be [p21,00] in G. Then &' = {u;,uz : u € 5}
has twice the cardinality and is [p»1,01] in G'. This since (uj,u2) € G'(E) and if
v € N(u) any v; is adjacent to either u; or us.
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Figure 1: Given G on the left, the reduction for Lemma 1 constructs G' on the right

For the other direction of the proof, we first show that a [p3,0¢)-set S’ in G’ is
of the form S’ = {uj,u; : v € S} for some § C G(V). Suppose some ug,u; €
S’. Then, regardless of the orientation EQ, N({ug,u1}) N S = {ug,u;}, and since
uz & N({uo,u1}) and N{uz) — N({ug,u1}) = 0, we must have states(us) € {po, 0},
but then S’ is not [p31,01). Similarly, us,uz € §' = states:(ug) € {po,00}. In the
following, assume (u,v) € EQ. Then (u;, v, € §)V (u1,v3 € §') = states:(us) €
{po, 00}, and (uz,ve € §') V (uz,vo € §') = states(uo) € {po, 00}, and (uy,v2 € S)V
(us, vz € §') = states(ve) € {po, 00}, and (uz,v1 € §')V(ug, vy € §') = states(vs) €
{po,00}. We have shown that if 5’ is a [p>1,01] set of G’ then §' = {wy,wy : w € 5}
for some 5 C G(V). But then it is easy to see that S must be a [p3,, g¢]-set in G and
21S| =[5

The transformation is easily done in polynomial time, so we conclude that both
min[pz1, 01} and maz{py, 0] are NP-complete. O

Lemma 2 The decision problems min[pz, 051} and maz[p>1,0<| are both NP-complete.

Proof: Maximum problem by reduction from maximum independent set (proof omit-
ted) and minimum problem follows from Corollary 3.

Lemma 3 The decision problems min[pzs, 0] and maz(p>a, 09| are both NP-complete.

Proof: Clearly, both problems are in NP. As in Lemma 1 we reduce from min[pz,, oy
and mazx(p>1, 00) by, for a given graph G, constructing a graph G’ such that G has a
(21, 00]-set S if and only if G’ has a [pzs, og]-set S’ such that 2|S| = |5|.

Let G'(V) = {uo,ur,uz : u € G(V)} and G'(E) = {{{uo,w1), (w1,u2) : u € V} U
{(uiyv;) 1 0 <4, <2A(u,v) € G(E)}}. See Figure 2.

For one direction of the proof, let § be [p21,0¢] in G. Then §' = {ug,us : u € §} has
twice the cardinality and is [py4, 0¢] in G'. This since (uq, uy) € G'(E) so any vertex in
S’ has state 3o and a vertex u; & S’ has |Ng(w,)NS'| = {{vo,ve : v € Ng(u)NS}| > 2.
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Figure 2: Given G on the left, the reduction for Lemma 3 constructs G’ on the right

For the other direction of the proof, we first show that any [p>s,00]-set S in G' is
of the form §' = {ug,us : u € S} for some S C G(V). Suppose some u; € 5.
Then states(uy) = 3o so that N{u;) NS = 0. But N(up) — N(w;) = u; so that
N(ug) NS = uy. Hence stateg(ug) € {1,31} so S is not a [p>2,00)-set. Now
suppose ug € S’. Again N(uo) NS’ = @, and since N(uz) — N(up) = @ we must have
up € 5'. Similarly one shows u; € §' = up € §'. So §' = {ug,uy : u € §} for some
S € G(V) as claimed. But then it is easy to see that S must be a [p»;,00]-set in G
and 2|8| = |9’|.

The transformation is easily done in polynomial time, so we conclude that both
min[pza, 0o] and maz[pzs, ag] are NP-complete. O

Lemma 4 The decision problems [pz2, 01] and maz[p22,01] are both NP-complete.

Proof: Clearly, both problems are in NP. The problems min[p22, 04| and maz[p>2, 00}
were shown NP-complete in Lemma 3. For any given graph G we describe a graph G’
such that G has a [p»3, 0o}-set S if and only if G’ has a [p32, 01)-set 5’ such that 2|S| =
|S'|. Let G'(V') = {uo,u1,uz,u3 : u € G(V)} and let G'(E) = {{(uo, u1), (xo, u2), (1, u2), (11,1
u € G(V)} U {(uo, v2), (u1,v1), (u1,v2), (u2,v3) : (w,v) = (v,u) € G(E)}}. See Fig-
ure 3.

For one direction of the proof, let S be [pz2,00] in G. Then 5" = {uj,uz : u € S} is
[p22,01] in G’ and 2|S| = |S’|. This since (u1,uz) € G'(E) and for v € N(u) any v, is
adjacent to either u; or u,.

For the other direction of the proof, we first show that any [p>3,01)-set S* in G’ is of
the form S’ = {u;,uz : u € S} for some § € G(V). Suppose some ug,u; € S'. Then
N({ug,11}) N S’ = {ug,u1} and since uz € N(u,) shares all its neighbors with u; we
have states:(ua) = py so that S’ is not [p»2,01]. Similarly, (up,us € S') V (up, vy €
S') = states/(uz) = py, and (u3, us € ")V (us, w1 € §)V(us, vy € §') = states(ug) =
p1. Hence, if 5’ is [p22,00] it cannot contain any vertex ug or ua. In the following,
assume (u,v) € G(E). As above, we have u;,v; € §' = stales(up) = p;. Suppose
u1,v2 € S Then N({uy,v2}) NS’ = {u1,v2} and since N(uy) — N({u,,v,}) contains
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Figure 3: Given G on the left, the reduction for Lemma 4 constructs G’ on the right

only vertices of type wp or wa, neither of which can be in 5’ we getl states/(u3) = p1
so that S’ is not [pxs, 1], Similarly, uz, v, € §' = stateg(v2) = p1.

We have shown that if S’ is a [px2,01] set of G’ then §' = {uj,up : v € S} for
some S5 C G(V). But then it is easy to see that S must be a [p32, 00}-set in G and
2|5| = |5

The transformation is easily done in polynomial time, so we conclude that both
min[pzq, 01] and maz[py,, 01| are NP-complete. O

Theorem 1 follows from Lemmas.1-4.

For certain subset properties, such as Perfect codes, it is well known that merely
deciding if a graph has any such set is an NP-complete problem. We give a gen-
eral theorem identifying a large class of such properties. The proof of this theorem
involves a reduction from the NP-complete problem Exact 3-Cover (X3C) and is a
generalization of a reduction used in {17].

Definition X3C
Instance: Set U/ and T g(g)

Question: 3T C T, where T” a partition of U7

Theorem 3 For any set of legal states L containing a finite positive number of both
p-states and o-states, and with po € L, the problem of deciding if a graph has an
[L]-set is NP-complete.

Proof: Let L = {pp,,Pp;s o1 Poms Oq1s Tgzr -2 Ogn }» Where nym > 1 and p;, ¢ non-
negative integers satisfying 0 < py < p2 < ... < pm and ¢ < ¢2 < ... < ¢0.

We reduce the NP-complete problem X3C to the problem of deciding if a graph has
an [L]-set. The theorem will follow since, in polynomial time, it is easy to verify that
some S C V(G) is an [L)-set and also easy to compute the reduction we are about to
describe.



Figure 4: A rough sketch of the components of G; where the absence of a line between
two components reflects the absence of an edge in G; connecting any two vertices from
those two components.

Given an instance of X3C we want a graph G such that G has an [L}-set S C V(G)
if and only if 37" C T, a partition of U. For t = {uy,up,m, uia} € T we will construct
a graph G, where V(G;) = W; U {un, ue, w3} with the property:

Any S: € V(G:) for which states(w) € L,Vw € W, has either

(i) 3tat63(Uﬂ) = states(um) = states(um) = po Or

(i) states(un) = states(up) = states(um) = pp,,-

Moreover, sets of type (i} and sets of type (ii) should exist for G,.

Claiml: G = UG, has [L]-set S C V(G) & 3T C T, a partition of U.

(<=:) Note the parts G, of the graph G share only the vertices representing U. For
each t € T choose a set S; C V(G,) of type (ii) for G,. For each i & T" choose a set
St C V(Gy) of type (i) for G,. Let S = UerS:.

(=>:) For any [L]-set S of G we must have SN V(G,) be either a set of type (i) or
a set of type (ii) for G,. This since only G; contains the vertices W,. Since po & L,
and since a vertex u € S can have at most p, neighbors in S, we must have that
T'={t:V(G,) NS is a set of type (ii) for G,} is a partition of U.

Construction of Gg: Let V(Gt) =A U B U A U Y U Z U {C} U {uu,utg, 'U.ga}.
See Figure 4 for a rough sketch of how these components are connected together. As
a preview, we mention that {AU Y} will be a selected set of type (ii) and {B U Y}
a selected set of type (i) for G;. X and ¥ will be such that a selected set cannot
contain any vertex from X but must contain all vertices from Y. The vertex ¢ will
be connected to enough vertices of ¥ so that none of its other neighbors, namely
Z U {un, u, um}, can be selected. The vertices Z will ensure that either all or none
of the neighbors of u;; are selected.

Let A= A" U ..U AP and B = B' U .. U B with A' = {a},...,d} ,,} and
B = {b;,...,b; 1}, and let G[A'], G[B'],Vi be complete graphs on g; + 1 vertices,



with no other edges between As or between Bs. Edges connecting vertices of A with
vertices of B are restricted to (ai,bl),Vi,, k. Edges incident with {us, 1, us) in
G, are restricted to (a},uy), Ve, k.

Let § = max{pm,¢.} >0 and a= [m‘i_l_—m] > 0.

Let Y = Y U ...U Y”* and G[Y"],Vi, a complete graph on ¢, + 1 vertices.

Let X = {21, %2, ..., Z(gat1)(8+1)a} With G[X] containing no edges.

We add edges connecting X-vertices with Y-vertices such that each vertex of X gets
p1 neighbors in Y and each vertex of Y gets 8+ 1 neighbors in X. This can be done
since |X| = a(gs + 1){(B+1) and |Y| = a(gq. + 1)p;.

The vertex ¢ is connected to p,, vertices of Y, note |Y| > p. > 0, and c is also
connected to every vertex of Z U {uy, us, w3}

It remains to describe the vertices and edges contributed by Z. Let Z=2'U 220
Z2 U {2} with Z* = {2f,..., 2k } for k € {1,2,3}).

The vertex z},Vi, is connected to a! and to & and also has p; — 1 neighbors in Y.
The vertex z2, Vi, is connected to al and to b and also has p,, — 1 neighbors in Y.
The vertex 22, Vi, is connected to a} and to & and also has p; — 1 neighbors in Y.
The vertex z' is connected to {al,...,al™,b,...,b{"}.

This completes the description of G,.

Claim2: AUY is a set of type (ii}) and BUY is a set of type (i) for G;.

Proof of claim: We consider AUY first. G[AUY]is a collection of p, copies of K, 11
for the As and p,o copies of K, 4; for the Y's, so statesuy(e) = o,,,Ya € A and
statesuy(y) = Oq,, Yy € Y. Moreover, Vz € X we have N(z) C Y and |N(z)] = p1
so stateqayy(x) = pp,. For the vertex ¢ we have N{c) C {Y' U Z U {uy,us,us}} and
|N(c) NY| = pm, so stateuy(c) = pp,,- The vertices z € Z' U Z3 have |[N(z) N {A U
Y} = p1, so stateuy(z) = pp,. Similarly, Vz € Z2 we have |[N(z) N {AUY}| = pm,
so stateauy(z) = pp,,. The vertex 2’ has N(z') C AU B and |N(z) N A] = p,., so
stateauy(z') = pprn-

So far, the argument for BUY being a set of type (i) can be obtained from the above
by replacing B for A and vice-versa.

Since Vb € B, N(b) € AU Z and |N(b) N A| = pn, we have stateuy(b) = pp..
Similarly, Ya € A we have N(a) € BU Z U {uy, ue, urz} and |[N(a) N B| = py,, so
stateguy(a) = pp,..

What remains is the argument for the vertices {uy, w2, un}. We have for k € {1,2, 3},
N(us) = {a], ...,ai"}, so stateuy (u) = pp,, and stateguy(uy) = pp, 50 that AUY
is a set of type (ii) and BUY is a set of type (i), completing the proof of the claim.

Claim3: For any S; C V(G;) with states,(w) € L,Yw € V(G}) = {un, w2z, w3} we
have Y C 5; and also {Z U {usn,uw,un}} NS =0

Proof of claim: Vy € Y we have [N(y) N X| > 8,50 3z € N(y): = ¢ S;. But then
states,(z) = pp, and y € S;. This means that Vy € ¥ we have stateg,(y) = o,, and
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since Jy €Y : ¢ € N(y) — Y we also have c € ;. But then since |[N(c) NY| = p,, we
have states,(c) = pp,, and {ZU {un, w2, ua}} NS = {N(c)-Y}NS, =B, completing
the proof of the claim.

Claim4: For any S; C V(G,) with states(w) € L,Vw € V(G,) — {un,wm, us} we
have either ¢} € S;,1 <i < pnor e} € S;,1 <i < pp.

Proof of claim: From Claim3 we have Z NS, = ® and ¥ C 5,. In particular,
states,(2!) € {PpysPp+1}, similarly states,(2?) € {ppn-1,Ppm} and states(2?) €
{Pp1s Pos+1}- In turn, we consider the two cases al € S, and a} ¢ S..

a} € S, gives states,(z2) = pyn, Vi, 50 b & S, Vi. This in turn gives states,(2?) = p,,
so al € 5,Vi, completing the first case.

al € S: gives states,(z}) = p,,, Vi, s0 b} € S;,Vi. This in turn gives states,(z') = p,,,
so al & 5,,Vi, completing the proof of the claim.

Each of {us,u, w3} is adjacent to exactly {al,...,a}™} and by Claim3 cannot be
in 5;. Hence, Claim4 actually shows that any S; € V(G,) such that siates,(w) €
L,VYw € V(G}) — {uu, w2, um} has either

(i) states,(uﬂ) = StatES,(utg) = statest(utg) = fo

or (ii) states,(un) = states,(uw) = stateg,(u) = py.,-

Thus G has the claimed properties and the theorem follows. O.

We have the following corollary:

Corollary 1 Any decision problems of the form maz[L], min[L], or maz L|P)] where
L C P contains a finite posilive number of both p-states and o-states, and with pg &€ L,
is NP-complete.

Proof: For a given graph G, we have max[L] defined, min[L) defined and maez L[ P)(G)
IV(G)| if and only if G has an [L]-set, and the latter problem was just shown to be
NP-complete. D

As our next theorem shows, some of these decision problems are NP-complete even
for very restrictive classes of graphs. The reduction used is a simple special case of the
one just given, and uses the NP-complete problem Planar 3-Dimensional Matching
(P3DM). A similar reduction is used in [10] to show the NP-completeness of finding
Perfect Codes ([p1, ou)-sets) in planar graphs of maximum degree three.

Definition 3DM
Instance: Sets Uy, U, Us with U = Uy Ul Ul and T C Uy x Uy x Us.
Question: 37" C T, where T” a partition of U?

With an instance I of 3DM, we associate the bipartite graph Gy where V(G;) = UUT
and E(Gr) = {(u,t):u € UAu €t € T}. In [8] it is shown that the Planar 3DM
problem, 3DM restricted to instances where Gy is planar, is still NP-complete.
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Figure 5: Transformation of G to G’ used in Theorem

Theorem 4 The problem of deciding if a planar bipartite graph of mazimum degree
three has any [p;, 01]-set (Total Perfect Dominating Set) is NP-complete.

Proof: Given an instance I of P3DM, we construct a graph G having a [py, o1]-set if
and only if 37" C T, a partition of U. Let G be the graph G; augmented by adding,
for each t € T, the vertices a; and b;, and edges connecting @, to both ¢ and 4,. Since
this reduction does not distinguish between the sets U/}, Uz, Us, the instance I can be
viewed as an instance of X3C, and the argument that G has a {p;, 0,]-set if and only
if 37" C T, a partition of U, is left out since it is in easy analogy with the argument
used for the previous theorem.

Note that G; and G are both planar bipartite graphs. We next show an easy trans-
formation of a graph G having a vertex of degree larger than three to a graph G’ with
the following properties:

(i) if G planar and bipartite then G’ planar and bipartite,

(i1) Efv:dego(v)2419€96(v) > Buideggi(v)z1)degar(v)

(iii) G has a [py, ay]-set if and only if G’ has a [p;, 0y]-set.

Hence, applying such a polytime transformation repeatedly, starting with G, until
the resulting graph has no vertices of degree larger than three, yields a graph proving
the theorem.

We define the transformation by describing the resulting graph G’. Let v be a dis-
tinguished vertex of G with Ng(v) = {vi,va,...,vx} and k > 4. Let G’ have ver-
tices V(G') = V(G) U {w,z,y,z} and edges E(G') = E(G) - {(v1,v), (v2,v)} U
{(v1,w), (ve, w), (w, 2),(z,¥), (¥, 2), (z,v)}. See Figure 5. Note the transformation is
local, with changes only to the neighborhoods of v, vy and w.

We prove the stated properties of the transformation:

(i) Planarity is obviously preserved. If A, B is an appropriate bipartition of V(G)
then w.l.o.g. we must have v € A, N(v) C B so that AU {w,y} and BU {z, z} forms
an appropriate bipartition of V(G'). (ii) The new vertices all have degree less than

12
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4, whereas the degree of v decreases to k — 1. (iii) Let S and S’ be [p;, o4]-sets in G
and G, respectively. Note that {w,z,¥,z,v} induces a 5-path in G’ so there are 4
possibilities for {w,z,y,z,v} NS, namely {y, z}, {w, z,v}, {w, z,v} and {z,y}. We
similarly split the possibilities for choice of S into 4 classes, namely

|{U1,U2} nSl =1Av ¢ S A I{'U:_J,,...,vk} M Sl & 0,

{vr,v2} N S| =1Av € SA{ugy...,ve} N S| =0,

{vi,v2}NS|=0Av € SAHus,...,ux} NS =1,

Hv,v2}NS|=0Av € SAHus,...,u} NS = 1.

It is easy to check that the 4 possibilities for choice of S’ have, in the order given,
characterizations in terms of effect on v and N(v) which are identical to those just
given for S, and indeed property (iii) holds. O

To our knowledge, the complexity of this problem, finding Total Perfect Dominating
Sets in graphs, was previously not known [5]. We have the following corollary.

Corollary 2 The decision problems min[p, 01|, maz|p,, 01] and maz{p,, o1 }|L] with
{p1,01} € L are NP-complete even when restricted lo planar bipartite graphs of maz-
imum degree three.

A problem encompassed by this corollary is maz{p1, 1}[pz0, @20), which we call Total
Efficiency. This problem arises in communication networks, if we assume that a
communication round has two time-disjoint phases, sends and receives, and that a
processor receives a message whenever it has a single sending neighbor. The maximum
number of processing elements that can receive a message in one communication round
is the Total Efficiency of the graph underlying the network topology.

A result of Kratochvil [17] shows the NP-completeness of deciding if a planar 3-regular
graph has a [py,00}-set (perfect code). This is a strong result with the following
implications for problems admitting our characterization.

Corollary 3 Any decision problem of the form designated by a) or b) below is NP-
complete on planar 3-reqular graphs.

a) maz{py, ao}[L] with {p1,00} C L

b) min[L] with po € L and {p,,00} C L

Proof: Let G be a planar 3-regular graph. If a problem satisfies case a) then clearly
G has a [py, 00)-set if and only if the corresponding parameter of G has the value
|V|. If a problem B satisfies case b) we show that G’ has a perfect code if and only
if the corresponding parameter of G has the value |G(V)|/4. Since every vertex of
G has degree 3, a perfect code of G has size |{G(V)|/4 and is clearly a dominating
set. Moreover, a dominating set of G which is not a perfect code will have more than
|G(V)|/4 vertices. A set achieving the minimum value of G asked for by problem B

13



is a dominating set since po is not legal and it could be a perfect code since p; and
oo are legal. The corollary follows. O

An example of a problem encompassed by this corollary is min[p>,, #q, 722], the prob-
lem of finding a minimum size dominating set inducing a subgraph with no vertices
of degree one.

We are currently trying to resolve the complexity status of the maximization version
of this problem, equivalent to finding a maximum induced subgraph with no vertices
of degree one, maz{pzo, g0, 722].

We now turn to problems with an easy solution algorithm.

Theorem 5 The problem maz[L} is solvable by a greedy algorithm if oy is the only
o-state in L and either (i), (ii), (iii), (iv) or (v) holds

(l) {PU, Plyeesy pk-l} - L

(u) {Pﬂa Pl’-n,Pk—l} NL=0

(i) po € L and {p1,p2,...,ps-1} C L

(iv) pzy is the only p-state in L, for some h

(v) po and p3h are the only p-states in L, for some h

Proof: For each of the five cases we describe a greedy algorithm which takes a graph
G as input and gives maz[L](G) as output. The algorithms use data structures Bo,Bp
of type set.

Algorithm-i(G)

Bo, Bp .= V(G), b;

while (3v € Bo : |[N(v) N Bo| < k) do Bo, Bp:= Bo \ {v}, Bpu {v};
output(Bo);

Algorithm-ii(G),Algorithm-iii(G),Algorithm-iv(G)
Algorithm-i with the output-statement replaced by
if (3v € Bp: statep,(v) € L} then output( A[L]-set) else output(Bo);

Algorithm-v(G)
Be, Bp :=V(G), §;
while (I: 3v € Bo : [N(v) N Bo| < k) or (II: 3w € Bp : |[N(w) N Bo| < k) do
Case 1 : Bo, Bp:= Bo \ {v}, BpU {v};
Case 1I: Ba, Bp:= Bo \ {N(w)N Bo}, BpU {N(w)N Bo}\ {w};
output(Be);

Claim: For any of the above algorithms, we have the loop invariant: “A vertex
v & Bo cannot be a member of any [L]-set of G.”

14



Proof of claim: The loop invariant is true initially since Be = V(G). Let Bo and
B’ be the values before and after an execution of the loop and let S be an {L]-set of
G. From the loop invariant we have S C Bo and show that S C Bo'

Case I (all five algorithms): Beo \ Bo’' = {v} and v € Bo : |N(v) N Bo| < k. Since
o> is the only o-state in L, S C Bo cannot contain v.

Case II (Algorithm-v only): v € Bo \ Bo' and Jw : v € N(w) where w € Bp and
|N(w) N Bo| < h. When a vertex is added to Bp it is also removed from the non-
growing set Bo so that BpN Bo = @ and in particular w € S. Since pg and p>; are
the only p-states in L for Algorithm-v, stateg(w) = go so that N(w) N .S = . Since
v € N(w) this completes the proof of the claim.

At termination of Algorithm-i, Algorithm-ii, Algorithm-iii and Algorithm-iv all ver-
tices in Bo = § have at least k neighbors in S and all vertices not in S (in Bp)
have less than % neighbors in S, since Bo never grew during execution. Hence,
when {po, p1,..., pk—1} € L we have S an [L]-set, indeed a maximum-size [L]-set by
the claim, so Algorithm-i is correct. When po € L and {p, p,..., pr-1} C L then if
Jv : states(v) = po there cannot be any [L]-set in G but if such a vertex does not exist
S must be a maximume-size [L}-set, so Algorithm-ii is correct. Similarly, Algorithm-iii
and Algorithm-iv are easily seen to be correct.

At termination of Algorithm-v all vertices in Bo = § have at least k neighbors in S
and all vertices not in S have either at least & neighbors in 5 (these vertices are in
Bp) or no neighbors in S. Since pg and py;, are both in L for Algorithm-v we have S
an [L]-set, indeed a maximum-size [L]-set by the claim, so Algorithm-v is correct. O

4 A graph-theoretic result

As another example of application of our characterization, we consider a generaliza-
tion of perfect codes ([p1, 0o]-sets) and extend a result that holds for perfect codes to
this generalization.

Lemma 5 Forp > 1,9 > 0 if both A and B are [p,,0,]-sets of a graph G then
|A] = |B].

Proof: Let X; = ANB, Xy, = A—X;and X = B— X|. Since A, B are [p,, 0,]-sets,
both G[A] and G[B] are g-regular, so we have Vv € X : |[N(v) N X4 = |N(v) N Xp]|.
Let uex, IN(v) N X4| = r = ¥,cx, [N(v) N Xp|. Consider the subgraph F =
(AUB,{(u,v) e E:(u € XaAv € B)V(u€ AAv € Xg)}). Since A, B are
[pp, 04]-sets, Vv € XaUXp : degr(v) = p. Let H = F[X4UXg]. Then H is bipartite,
so that },ex, degr(v) = Toexp degu(v). We then have

PIXal= 3 degr(v)= ) degu(v)+r= 3 degn{v)+r= Y degr(v) = p|Xg|
veX 4 vEX 4 vEXg vEXpg
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Figure 6: I) A graph having {p,,ps,0.]-sets A and B. 11) A graph having two
[pa, o0, 0c]-sets of size b+ 1 and c4+1 (a < b+ 1)

and since p > 0, JA| =|B|. O

Theorem 6 For a set of vertex states L, the statement “For any graph G, all [L]-sets
have the same size” is true if and only if (i) or (ii) holds

(1) L= {pp,0,} for somep>1,4>0

(i1) L has either no p-states or no o-states

Proof: If L has no p-states then the only possible [L]-set is $ = V(G) and if L has
no o-states then the only possible [L]-set is S = @. One direction of the proof then
follows from Lemma 5. For the other direction of the proof, consider sets L not of type
(i) or (ii), and construct graphs with two [L]-sets of different sizes. First note that if
po € L then S = 0 is an [L]-set and it is easy to construct a graph with some larger
[L]-set. The remaining cases are covered by two arguments, depending on whether
there is more than one legal state for selected vertices, or more than one legal state
for non-selected vertices. In both cases, we construct a graph G with appropriate sets
A and B (each set inducing a collection of complete graphs) of different sizes.

Case 1: Suppose {pa,pp,0.} € L where @ < b. Then let G = (AU B, E) where A
induces a copies of K., and B induces b copies of K.y, clearly both c-regular. The
remaining edges form a perfect matching between each pair of A4,’s, one from each
of A and B. See Figure 6-1. Thus a vertex in A has b neighbors in B and a vertex in
B has a neighbors in A. |A| = a{c+ 1) < b(c+ 1) = |B| since a < b.

Case 2: Suppose {p.,04,0.} € L where b < c. If a b+ 1let G = (AU B,E)
such that A and B induce K441 and K41, respectively, and A N B induces K, this
accounting for all the edges. See Figure 6-I1.

16



1 oy afbe1)

B:E
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Figure 7: A graph having [p,, 05, 0.)-sets A and B (a > b+ 1)

If a > b+1 we use the graph depicted in Figure 7. As before, A induces the K ;s and
B induces the K15 (shaded in the figure). The remaining edges are between A — B
and B — A and can be added in any way such that each vertexol A— Bgetsa—b—1
additional edges and each vertex of B — A gets a additional edges. Thus, the bipartite
graph between A — B and B — A must have (c+1 —(b+1))(a—b—1)a(b+1) =
(b+ 1)a{a — b—1)(c — b) edges, counting from A — B or B — A respectively, and since
a—b—1<awehave |Al> |B|. O

5 A refined characterization

We give a refinement of the characterization useful for describing maximal and mini-
mal vertex subsets with a given property.

Definition 3 Given a set L of vertex states and a graph G

e 5 C V(() is a maximal (minimal) [L]-set if there is no vertex v € V(G) - §
(v € §) such that SU {v} (5 — {v}) is an [L]-set.

Parameters related to irredundant sets in graphs will also be expressible using the
refinement. Irredundant sets require some vertices to have at least one neighbor with
a given state, motivating the definition of a refined vertex state as the juxtaposition
(denoted by -) of the state of the vertex with the state of one of its neighbors.

Definition 4 Given a graph G and a selected set of vertices S C V(G)

o The set of refined vertex states of v € V(G) is
rstates(v) = {states(v)} U {states(v)- states(w) : w € N(v)}
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Qur notation Standard terminology

[p20, 00, 731 - p1]-set Irredundant set (closed-closed)
[p20, 60,021 p1,03; - 01]-set | closed-open Irredundant set
{P20,020° p1,0320° 01]-s€t open-open Irredundant set
(P20, 720- p1]-set open-closed Irredundant set
(P20, O gkm1, T2k - pi]-s€L k-Irredundant set

[p21, 00,021 - p1]-set Minimal Dominating set

[p<1- p1, 0 20]-s€t Maximal Nearly Perfect set
max{o20}[p20,00,721-p] | Upper Irredundance parameter
maz{o}|p21,00,021-p1] | Upper Dominating parameter

Table 2: Some vertex subset properties and graph parameters defined using refined
states

o For sets R, M of refined states, S is an [R]-set il Vv € V(G) : rstates(v)NR # @
and minM|[R)] (or mazM[R)) is the parameter minimizing (or maximizing)

{v : rstates(v) N M # 0}| over all [R]-sets S

Abbreviations like o3,-p; stand for ¢;-p1,02p1, ... , in analogy with earlier definitions.
For example, irredundant sets have legal refined states R = {px0, 09, 21-p1}, meaning
that states(v) € {01,02,...} = Jw € Ng(v) : states(w) = p; (a selected vertex
having at least one selected neighbor must also have a private non-selected neighbor.)
Table 2 gives examples of vertex subset properties and graph parameters [7, 9, 11, 16}
admitting a characterization using refined states. The discriminating term closed-
closed for irredundant sets arises from the definition of an irredundant set S as one
for which Vv € § the union of the closed neighborhoods of vertices in § — {v} is
strictly smaller than the union of the closed neighborhoods of vertices in S.

Given a set of (non-refined) vertex states L we give a general procedure constructing
sets of refined vertex states Lmaz and Lmin such that the {Lmaz]-sets are exactly
the maximal [L]-sets and the [Lmin]-sets are exactly the minimal [L]-sets. Define

Amaz = {p;: pi € LAo; € L}

Amin={o;:0,€ LA p; & L}

Bmaz = {p;:p.' € LApin QL}U{O’;:O’,‘ELAU,'.H ¢L}

Bmin={p;:p;€ LAp1 €L} U{oi:0;€ LAo;, & L}

A subset of vertices S is a maximal (similarly, minimal) [L]-set if and only if § is
an [L]-set and Vv € V(G) = § (Vv € S) either states(v) € Amaz (€ Amin) or
Ju € Ng(v) : states(u) € Bmaz (€ Bmin). Let Lp and Lo be the sets of p-states
and o-states in L, respectively, so that L = Lp U Lo. We then have

Imaz € AmazU LoU{a-b:a € Lp — Amaz A b € Bmaz}

18



Lmin € Aminu LoU{a-b:a € Lo — Amin A b € Bmin}

and it is easy to see that maximal [L}-sets are exactly the [Lmaz]-sets and that mini-
mal [L]-sets are exactly the [Lmin]-sets. Table 2 shows the resulting characterizations
for minimal dominating sets and maximal nearly perfect sets. Note that maximal [L]-
sets (similarly, minimal [L]-sets) are exactly the [L]-sets themselves if Amaz (Amin)
contains every p-state (every o-state) in L or if Bmaz = L (Bmin = L) and the
graph G has no isolated vertices.

Acknowledgements: Thanks to my advisor Andrzej Proskurowski for many ideas.
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