The Diadora Principle:
Efficient Execution of Fine-Grain,

Concurrent Languages
B. C. Massey and E. Tick

CIS-TR-93-15
June 1993

Abstract

A major problem in compile-time partitioning is how to deal with cycles, i.e.,
data dependencies that circularly link tasks. Incorrect assignment of a cycle into
a single thread can result in deadlock. Most dataflow compilers ease this issue
by partitioning only within procedures. For concurrent logic programming (CLP)
languages, this is insufficient because their smaller task granularity requires global
partitioning. Furthermore, perfectly safe data dependency analysis is difficult be-
cause of the prevalence of logic variables, which can cause hidden cycles through
aliasing.

This paper describes the Diadora computation model, developed to efficiently
and cheaply partition CLPs by instituting deadlock breaking if an inadvertent cy-
cle has been sequentialized. Static mode analysis and data dependency analysis is
performed, but need not be safe, only highly accurate, and therefore can be made
local and cheap. As an additional benefit, the compiler may deliberately overse-
quentialize the program. A starved processor may gratuitously break the task at
the bottom of the stack of some running task in order to cheaply increase program
parallelism. Thus, accurate granularity analysis becomes less important for efficient
execution under Diadora.

The Diadora model is a form of lazy task creation a & Mohr, Kranz and Hal-
stead. However, it is customized for CLPs and the somewhat different problems
and features of these languages. The technique is analogous to the Andorra model
of computation for Prolog, but its motivations and mechanisms are unique. Both
use deadlock breaking: Andorra to parallelize Prolog and Diadora to sequentialize
CLPs. Whereas Andorra is hypothesized to work well because most goals are de-
terminate, Diadora is hypothesized to work well because most goals have no cycles.

DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE
UNIVERSITY OF OREGON

1 Imtroduction

A primary difficulty in achieving high-performance implementations of concurrent lan-
guages is creating optimal task granularitics. If the language is inherently fine-grained,
as is for instance Id or Flat Concurrent Prolog [14], spawning parallel tasks, or even
concurrent tasks residing on the same processor, becomes expensive because of both
communication and task management overheads. These issues are outlined in numer-
ous papers for both functional and logic programming languages, and the technique of
partitioning Las been shown to assist in “granularity collection” at compile time [8, 17].

The difficulties in partitioning a program are numerous. Primarily, data depen-
dencies can cause “cycles” among tasks, which preclude sequentializing or threading
the tasks. To avoid deadlock, & sale didn dependency analysis must be conducted at
compile time. This implies global aualysis (by Lhis we mean across procedure calls) in
concurrent logic languages because of the flexibility of the logical variable: aliasing can
occur anywhere in the program. Functional language have analogous problems with
non-strictness, wherein redexes musi. be evaluated concurrently. Aliasing is in general
less prevalent in functional langnages, although of course array references are notorious
trouble spots.

Most partitioning algorithms [lor functional languages do local analysis within a
single procedure. This may be sufficient for dataflow languages where procedure bodies
have iterative loops within them, although even here it is not be enough to achieve
very high performance, as evidenced by ‘I'vaub and Culler’s [17] seminal work on global
analysis. In concurrent logic languages, such local analysis is surely not sufficient
because clauses consist entirely of procedure invocations: there is no iterative construct.

Our goal was therefore to develop bolh an inexpensive (at compile time) and ef-
fective method of partitioning such fine-grain languages. Others working in this area
include Mohr, Kranz and Ilalstead [11], who invented lazy task creation in the context
of concurrent Scheme, and King and Soper [8], who propased a global abstract interpre-
tation algorithm for deriving sale data dependency information about concurrent logic
languages. Lazy task creation as implemented in [11] has the disadvantage of work-
ing with a more complicated language implementation than is typical of CLPs. Thus,
either stack copying or complicated stack structures are required in order to “steal”
tasks: a difficulty we can avoid by Lhe nalure of our language implementation. King
and Soper’s partitions are always correct in the sense that cycles are conservatively
kept out of threads. We feel that there is little point in paying a steep compile-time
cost to derive safe information if at runtime everything is naturally safe. Furthermore,
in an effort to derive only safe information, conservative abstractions lose information,
potentially resulting in less granularity than can theoretically be exploited.

In this paper we describe a simpler mechanisin than both, called the Diadora model,
that requires only precise, though not necessarily correct, information. The point is
that in reality, few programs have complex “hidden” cycles. We further describe what
we mean by hidden cycles in Section 3.1, bt intuitively they are cycles that are not
syntactically apparent, e.g., within a single clause.

The paper is organized as follows. Seclion 2 describes the Diadora principle. Section
3 proposes an implementation of the model. Section 4 summarizes the literature in this
area. Conclusions are given in Section 5.

2 The Diadora Principle

In this section we first review the informal semantics of concurrent logic programming
languages [14] and then explain the Diadora principle in this context. The model
is general enough to be applied to non-strict linctional languages also. A detailed
discussion of implementation issues is given in the next section.

A committed-choice logic program s o sel of goarded Tlorn clauses of the form:
“H = G1y..oyGrm | Bry oo oy " where w0 > 00 I is Lhe clause head, G is a guard
goal, and B; is a body goal. The commit operator ‘|’ divides the clause into a passive
part (the guard) and active part (the body). “I'lat” languages have a further restriction
that guard goals are simple builtin functlions, c.g., <. A goal g commits to a clause p,
if g successfully matches with the licad of clause p (i.c., without causing any bindings
to the variables of the goal) and the guards of clause p succeed without binding any
goal variable. When a goal can commit to more than one clause in a procedure, it
commits to one of them nondeterministically (the other candidates are thrown away).
Structures appearing in the head and guard of a clause cause suspension of execution
if the corresponding argument of the goal is not sufficiently instantiated. A suspended
invocation may be resumed later when the variable associated with the suspended
invocation becomes sufficiently instantialted. A program successfully terminates when,
starting from an initial user query (a conjunct of atoms), after some number of reduction
steps, no goals remain to be executed, nor are suspended.

A meta-level sequentialization operator, ‘&’/2, as defined in Parlog [2], specifies
that its two operands are to be execuled in sequential order. One can “sequential-

‘,’/2 with sequential ones

ize” an entire program by replacing all parallel conjunclions
(although this will likely slow down the program in current Parlog implementations
because checking for termination of a sequential goal has overheads). For simplicity,
we can imagine a normal clause form wherein body goal conjunctions are all parallel

or are all sequential. Rewriting to normal form is trivial: new procedure invocations

are introduced. Furthermore, we place an artificial restriction on the program that
no sequential goal can be defined with parallel goals. In other words, if we produce a
DAG by collapsing the strongly connected components of the call graph, then only full
subtrees in this DAG can be sequential {a full subtree contains all children deriving
from a single root). This restriction is not necessary, but it simplifies the explana-
tion of the model, and is practically useful because it engenders efficient execution of
sequentialized goals.

We hypothesize that static analysis produces a data dependency graph that in-
dicates the dependencies between goals in the program (this is discussed in Section
3.1). This analysis will indicate which parallel conjunctions are necessary, and which
sequential conjunctions are desirable (considering granularity tradeoffs, e.g., [8, 13]).
Whatever the information, a normal form program can be created and code generation
can proceed to compile the threads, i.e., subtrees. A given thread produces standard
stack-based procedural invocation code scquences. A goal is invoked by creating a
frame of its arguments on the top of its associaled stack. It will invoke its body goals
in sequential order by creating framecs for cach one in sequence. Any of them can utilize
the stack and return. We do not need to go into details here, but standard optimiza-
tions, such as exploiting registers, can be used. For simplicity we view all relevant,
dynamic data structures as potentially resident on a global heap.! Thus a procedure
returns values via the heap.

Clauses consisting of parallel conjunclive goals are compiled in a manner similar
to most CLP language implementations {(e.g., [1, 7, 15]). This means that each body
goal is wrapped up in a goal record and placed in a ready set for work distribution.
Usually one of the goals is chosen for immediate execution (a weak form of tail-call
optimization).

A task in the Diadora model consists of a stack of frames rather than a goal record.
In the degenerate case of a parallel body goal defined by clauses of further parallel
body goals, the stack is trivially one frame. A unique element of the frame is the break
continuation: a code label to be executed to “break” the frame’s invocation into several
parallel subtasks. The idea is similar to Mohr, Kranz and Halstead’s lazy task creation
[11]. The break continuation for a degenerale stack (essentially a goal record) is empty.

The Diadora model proceeds by reducing goals sequentially, assuming some type
of scheduling that distributes the execution among the processors. Synchronization
occurs when a goal invocation requires a value for an input variable that has not yet
been bound. In this case, the goal is suspended. This might be implemented by hooking
the required variable to the goal. Note that cven on a uniprocessor, suspension must

YThis has implications with respect to the lazy task creation model [11] — see Section 4.

still be facilitated in some manner. For example, compilation of CLPs into Prolog
can be easily done if the Prolog offers a freeze predicate, effectively doing the variable
hooking and resumption. A key point is that subsequent binding of that variable will
eventually resume the hooked goal, i.e., adil it to the ready set.

We now give a brief overview of the execution of a sequential thread and how the
continuation is managed. This sketch is detailed in the next section. Consider a goal:
“g:—b & ¢ & d & e.” Assume that a is itself in a parallel conjunction, so that a
new stack is created for it, with the bottom frame holding its arguments. The initial
break continuation points to the code scgment: “e,d,e.” representing the concurrent
invocation of these body goals. Il b relurns successfully to a (without suspending), then
e modifies its break continuation to point to the code segment: “d, e.” and so on. Notice
that these code segments overlap so that we nced only generate two copies of the clause:
a sequential and a parallel version. The continuations then become labels between the
parallel goals. (However, in the presence of traditional compiler optimizations of the
sequential version, some “glue” code may be required for each continuation.)

If the ready set is empty and no goals arc suspended then the program terminates.
If the ready set is empty but one or more suspended goals remain, then we attempt
to break the deadlock, similar to Andorra and Pandora [3, 1]. Deadlock is broken by
selecting some goal, near the top of a stack, that has a non-empty break continuation.
Picking a top goal is a heuristic aimed atl quickly breaking deadlocks due to cycles
incurred near the present invocation.

Consider that if b suspends, and this stack is eventually chosen to break deadlock,
the break continuation to “c,d,e.” will be executed. Furthermore, the return continu-
ation in the frame of b must be madified to return to the end of a, not to the call of ¢
(since ¢, d and e have already been spawned).? By injecting these three additional goals
in the ready set (each which has an empty continnation), deadlock might be broken, or
might remain. In the steady state, the mundel coroutines between running and breaking,
i.e., between a state of normal execution and a state of deadlock breaking,.

In summary, several points should be emplasized about the model. First, no back-
tracking is needed to break deadlock because these are committed-choice languages, i.e.,
all bindings produced are valid in any possible execution of the given program. Second,
the overhead of breaking deadlock is relatively small: we jump to a continuation which
performs roughly the same code that would have been executed in a fully concurrent
model. Little extra recomputation is performed. Third, and critically, deadlock is still
costly because it causes all processors to idle. Lven detecting this situation can be

2Variations of this scheme are of course possible. For example, we could spawn b, ¢, 4, and e and
rewrite a’s stack appropriately.

costly. Note that in a standard model, deadlock detection is not critical because it is
true deadlock, i.e., there is no way to break it and thus it is a programmer error.

We believe, however, that cycles causing deadlock are both rare and local. By
the latter, we mean that breaking the deadlock from the top-of-stack down will be an
efficient strategy. If both of these hypotheses are correct, the impact of deadlock on
performance should be fairly low.

3 Implementation Issues

In this section we describe the statlic analysis, code generation and abstract machine
design, and runtime system support nceded to successfully implement the Diadora
model.

3.1 Static Analysis

As noted earlier, in order to avoid frequent deadlock, we need precise static informa-
tion about dependencies between procedures. Fortunately, there are several standard
analyses which provide such information al reasonable cost. A basic strategy [10] is
to first identify which variables in a clause are bound by the caller, and which by the
callee. Once these “modes” have been determined, the induced graph of dependen-
cies between body goals gives the information necessary to sequentialize the program.
Finally, threaded code is generated based on the global information.

We benefit from restricting oursclves o subset of the CLP family that allows full
mode information to be derived. Our choice is Fully-Moded Flat Guarded Horn Clauses
(FGHC) defined by Ueda and Morita [18], representing a class of languages such as
Strand [5] and Janus [12]. We call this langnage FM for short. The essential idea of
FM is that the input /output structure of corresponding clause arguments of a procedure
is required to be identical. Thus, for example, the procedure

pla(X),u(Y)) - X:=Y +1.

p(a(X),b(Y)) - YV:i=X+1.

is not moded, since the first subterm of the st argument of the first clause of p is
output (i.e., is bound by the clause), whereas the first subterm of the first argument
of the second clause of p is input (i.e., may be bound by the caller). Note that in a
language such as Parlog, all arguments of all clauses of p would be input. In other
words, Ueda and Morita’s mode analysis details the entire input/output structure, not
just the top level. The phrase “the first subterm of the first argument of the first
clause” is an example of a path, noted as {< p,1 >, < a,1 >}. Each path has a mode of

5

output if any variable occurring at that path position is bound in the procedure body,
or of mode input otherwise. Because of recursion, there is potentially an infinite set of
paths for each procedure, all of which need to he moded for the procedure itself to be
fully moded.

Once we have moded all possible patlis of all procedures in a program, we can
immediately and precisely derive all local dependencies between the invocations of
procedures in a clause body. Ueda and Morita outline a scheme whereby all mode
information can be derived (and thus the fully-modedness of a program checked) by
unification of rational trees. Essentially, some palhs in a clause are found to be input by
identifying that the argument must be bound externally for the clause to be executable,
and some paths are found to be output by identifying direct bindings of them in the
body of the clause. Then, since all clauses of a given procedure must have the same
mode for each path starting in that procedure, unification may be used to combine the
mode information from the various clauses, and from the body goals of those clauses.

We have implemented this algorithm and an alternative mode analysis algorithm
based on a finite set of paths [16]. The lormer analysis provides precise information
whereas the latter analysis cannot detect the non-modedness of some FGHC programs.
However, the latter algorithm has the comparative advantage that it is easy to imple-
ment and runs quickly. Because the finile-palh algorithm is not complete, it might
produce inaccurate mode information which conld lead to deadlock through incorrect
sequentialization of an FGIIC program.

Though we find that in practice most of Lthe modes of real-world FM programs are
derived by the algorithm, and that most of the modes which are derived for real-world
FGHC programs are correct, the possibility that a compiler dependent on this mode
analysis algorithm would be unable to generale code or would generate incorrect code
in some cases inhibits its apparent usefulness. Fortunately, incorrect sequentialization
of a program under the Diadora model never affects the correctness of the program,
merely its efficiency. Thus, our finite-path mode analysis algorithm may be safely used
to sequentialize FGHC programs for use under Diadora.

Still another approach is to apply abstract interpretation, either locally or globally.
Perhaps typical of such schemes is King and Soper’s “producer-consumer analysis”
[8,9]. The main advantage of such a method is that it produces safe results for non-fully-
moded programs. The main disadvantage is that it appears to be complex to implement
and expensive to execute. We are currently unaware of any published empirical studies
of any of these static analyses [or comparison.

Once we have accurate information about the producers and consumers of all vari-
ables in the program, we topologically sort the induced dependency graph in order to

obtain a threading of the program. The catch is that the dependency graph may con-
tain cycles! These cycles represent feedback, i.c., the use of the output of a subprogram
invocation as an input to that invocation. Note that this differs from recursion, in which
the output of one subprogram invocation is used as the input to another invocation of
the same subprogram.

In the absence of complete dependency information, it may be impossible to decide
whether feedback is present in a procedure or not. It is always possible to take the
safe approach of breaking all such potential cycles across multiple threads. This is the
approach taken by Traub and Culler [I17] for functional languages, and by King and
Soper [9] for CLP languages.

Even in the Diadora model, it is beneficial to break known cycles at compile time.
This avoids the runtime overhead of deadlock and breaking such cycles. It is debatable
whether to break potential cycles al compile time, however, since it depends on the
tradeoff between the benefits of runtime scquentiality and the costs of dynamically
breaking deadlock, weighed by the estiated probability that the deadlock will occur.

3.2 Compilation

In this section we explain the abstract machine and corresponding code generation we
envision for the Diadora model. Once we have a sequentialization for the body goals
of a program, we may generale machine code for ils execution. For each procedure,
the compiler will generate code to handle the head tests, and select an appropriate
clause body, code to sequentially execute the hody goals and primitives, and alternative
code to spawn the body goals and primilives concurrently (if necessary). Lastly the
invocation returns.

The abstract machine model consisls of multiple workers, each of which executes
tasks and shares a global address space ealled Lhe heap. A task contains a program
counter, a lock (for synchronization during deadlock breaking), a stack and pointers to
its base and top. The stack contains frames which are abstractly tuples of the form
<return, break, contexip>. Conlczip poinis to an n-tuple of invocation context on
the heap. Consider the example shown in Figure |, annotated by the compiler with
proposed sequentialization operators &. The compiler might produce pseudo-code for
b as shown in Figure 2.

Although this is unoptimized code for a simple example, it should be sufficient for
understanding the basic concepts. The pseudo-code consists of four basic blocks. The
first block corresponds to the head ol & and the call to the first body goal ¢. The second
block handles the return from ¢, the updaling of the break address of b, and the call
to 7, all on a locked stack to avoid races with potential task stealers. The third block

- = A = A

G(Xl,XS) - b(X, , Xs).

(a) Before Deadlock Breaking

b(X],A-'_n) B C(}\'l,z\';;) & j(Xg,Xz).
C(X1,X3) = d(‘\’l,z\'.:).
d(X1,X4) — (X1, X5) & k(X5,X).
e(X1, X5) + SN, Na)
f(/\’] y Xﬁ) H y(.\.| f .\'7) L Iu(l\'7, Xﬁ).
g(X1, X2) = BN, N7)
Figure 1: Sample FGHC Program
b: set this frame's break address Lo b2p
push a new frame <b2, emply, < X, X3 >>
jump to procedure ¢
b2: lock this task’s stack
set this frame’s break address to empty
pop old frame
push a new frame <hd, empty, < X3, X2 >>
unlock this task’s stnck
jump to procedure j
b3: jump to this frame’s relurn address
b2p: create a new Lask
give new task frame <exit, empty, < X3, X7 >>
set the new task’s program counter to j
mark the new task aclive
set this frame’s break address Lo empty
jump to Lhis Lask's saved progran counter
Figure 2: Pscudo-code For Sample Program
2 empty < X1,Xa > 4 f3 empty < X1,X2>
e2 2p < X, X6 > { | ¢2 | empty | < X;,Xs5>
d2 | empty < X1,X5 > ¢ d2 | empty <X, Xs >
c2 d2p < X1,Xq> d c2 d2p < X1, X4 >
b2 | empty | < X1, Xa> ¢ b2 | empty < X1, X3 >
a2 b2p <Xy, Xa> b a2 b2p <X, X2 >
exit | empty < X1, Xa > a | exit | empty < X;,Xs >

(1b) After Deadlock Breaking

Figure 3: Stack Snapshot During Example Execution

merely returns from b. The fourth block is the break continuation which spawns the
second body goal j of b as a separale task during deadlock breaking or task stealing.

Note that popping the topmost stack frame on return from a procedure call is an
action of the caller rather than the callee (lazy task creation does likewise [11]). This
is because of the invariant that the stack must be locked in order to pop a stack frame,
which prevents a race between the current worker and another worker attempting to
steal a task from it.

3.3 Runtime Support

One of the nice things about the Diadora model is that it doesn’t require a great deal of
runtime support. Conceptually, the runtime system for a Diadora implementation con-
sists of an active set, a ready sel, and a suspended sel. [n each set is zero or more tasks
as described previously. A global heap ix necessiry lor resizable, persistent, and shared
data objects, although all data objects may be stored there in simple implementations.

In particular, there is no requirement for an explicit task manager in Diadora.
Instead, the compiler may generate code and runtime system calls such that each
task does its own manipulations of the runtime data structures. Thus, the code in
the continuations creates and aclivates new lasks, and each task contains code to
perform its own garbage collections, and to delete itself. This allows great efficiency for
the Diadora “runtime system,” since ecach task typically can manipulate its own state
cheaply and without the possibility of race conditions.

Returning to our example, some of the runtime system calls in the pseudo-code of
Figure 2 need addition explanation. The “exil” continuation inserted into the stack
frame by the generated code is a speccial continuation which will deallocate a task
(probably implicitly, via the garbage collector), and then pick up another task. The
action of “picking up another task,” used by the exit continuation as well as other
runtime routines such as suspension, is a hit complicated. To pick up another task, one
chooses the first action which appplies, [rom Lhe ollowing list:

1. Check the ready set for tasks s juimnp into one if found.

2. Scan the suspended set, locking for a task whose hooked variable is now bound.
Jump into one if found.

3. Scan the suspended set, looking for cycles of tasks suspended on each others’
variables. If such a deadlock is found, break it as described below.

4. Pick a task from the active sel and steal new tasks from it as described below.

5. No tasks are active, ready, or suspended, then the program is finished. Halt.

The “deadlock breaking” method is sitnple, Nole that if no task in the cycle has a
non-empty break continuation, anywhere on its stack, then the deadlock is real, and a
program error is signaled. Otherwise, one calls the break continuation of some task in
the cycle which is nearest to the top of the stack. ‘I'his creates a new set of active tasks,
one of which will hopefully supply the bindings needed to get execution started again.
The choice of the topmost break continualion is mainly because of the hypothesis,
mentioned previously, that most deadlocks are local. It is important to free deadlocked
producers as quickly as possible, so that consumers may be restarted as well.

Consider our sample program at a point just alter the execution of g. At this point,
given that the compiler generates labels similar to those of Figure 2 for each procedure
of Figure 1, the upward-growing task stick will look like Figure 3a. I we were to
deadlock at this point, we would choose to break the deadlock via the break address
f2p in the frame f. We replace the return address in ¢'s frame with f3, the ending
address of f, replace the break address of f with empty, and invoke the old break
address of f { f2p) to create new subtasks. After breaking, the original task’s stack will
look like Figure 3b.

The “task stealing” method is a hit trickier. 'This is because the task from which
tasks are being stolen is currently active. 1f interrupts are cheap, the system may be
simplified by forcing a task to suspend hefore stealing from it, but this is not normally
the case. Thus, before stealing fromn a lLask, we lock the targeted task’s stack, which
ensures that the active worker may not return through the frame we are trying to steal
from, since the worker locks the stack before each return. This adds overhead to the
return relative to a conventional language implementation. However, the overhead of
task termination via locked return is still low compared to the overhead of traditional
CLP implementations, which musl select a new task from the active set at every task
termination point.

We conclude this section by listing a few potential improvements to the previously
described schemes:

e The compiler may choose to place variables on the stack of their creating task,
rather than on the heap, to reduce the burden of the garbage collector and the
virtual-memory system. This complicates the implementation greatly, but could
be of great benefit for allocalor-intensive applications. However, this would re-
quire the stack manipulations of the lazy task creation model [11], as described
in Section 4.

¢ Even stack-based variables in CLIP® implementations are logic variables, which
means that the overhead of synchronization {(usually by testing for boundness)
is incurred on every read operation, and polentially on every write operation.

10

Although somewhat orthogonal to Diadora, it would be nice to replace some
of the logic variable implicit synchronization in the compiled code with explicit
synchronization and “ordinary™ variables, in order to improve code efficiency.
Unfortunately, this requires a compiler to perform complex static analysis of a
sort that is not currently well-understood, and thus needs further research to be
practical.

o Various standard intraprocedural oplimizntions may be performed on the se-
quential version of the code, and indeed some interprocedural ones. The only
constraint is that no optimization should be performed which irretrievably loses
runtime data needed by the parallel code, e.g., by destroying vital context.

¢ The order in which the suspended, active, and ready sets are scanned by the
above algorithms is very important. It is likely to be possible to prioritize these
sets 50 that the scan time is near minimal.

e A good choice of which task to parallelize when deadlock is detected may be
crucial to the efficiency of the Diadori method, although it is not necessary for
its correctness. The important point is that if one randomly chooses goals to
parallelize at deadlock, the performance should be similar to that of a simple
fully-concurrent model.

4 Literature Review

In this section we primarily review the work of Mohr, Kranz, and Halstead [11] on lezy
task creation, which is closest Lo the Diadora concept. Their work is based on a mostly-
functional concurrent dialect of Scheme and shares the motivations of our research:
increasing the granularity of too-fine programs. Their model is more or less a superset
of Diadora because it can also handle implicil eager procedure calls and full functional
languages. The terminology of task stealing and deadlock breaking is originally theirs,
as is the idea of locking the stack to guard against races during stealing.

In comparison with Diadora, the lazy task creation implementation is complicated
by the problem of downward stack references: any stack frame may contain references
to objects which are in frames nearer {he bottom of the stack. When creating a new
task with a given stack frame as context, care must be taken that downward refer-
ences contained in that frame remain valid, Mobr, Kranz, and Halstead thus present
two implementations, one which copies stack frames, and another which uses a linked
list of heap-allocated frames rather than a traditional stack. Since CLP language im-
plementations typically allocate all variables on the heap, these potentially expensive

complications are not necessary for Diadora, which can merely modify the existing
stack and create new stacks from scratch. lowever, if we plan to keep logic variables
directly in stack frames, then we need to move to a model like that of [11).

Their implementation is also complicated by the fact that only explicit concurrency
via futures is permitted in their target language, so a special lazy task queue must be
maintained to record the occurrence of deactivated futures. A future can create only a
single concurrent task, so the more gencral concept of breaking a frame into muitiple
tasks is unnecessary. This implies that the runtime system, rather than the compiler,
contains the code which does task creation.

Actual timings for two implementalions of lazy task creation show that the perfor-
mance is quite good for the targel language [11]. We fully expect these performance
improvements to carry over Lo CLI" laaguagen, especially given the extiremely fine-
grained parallelism of traditional implementations,

As we have reviewed throughout the paper, work related to the process of compiling
for Diadora includes the work of King and Soper [8] on producer-consumer analysis,
Ueda and Morita’s [18] work on mode analysis, and the work of Traub and Culler
[17] on forming threads. All of these are, however, conservative, in the interests of
safety for traditional implementations. ‘I'hus they form smaller threads than might be
produced given the deadlock-breaking ability of Diadora/lazy task creation. Our model
is close in spirit to the Andorra model [3], with deadlock occuring in Andorra due to
favoring determinate procedurc invocations, whereas deadlock occurs in Diadora due
to favoring sequential threads. An open rescarch issue is how the models compare in
terms of compilation effort and slalic cade size, and dynamic performance.

5 Conclusions

The paper introduced a new parallel execution model for concurrent logic programs
(CLPs) based on dynamic deadlock breaking wml lazy task stealing of threaded code.
In the logic programming community, these coneepls are novel, although they were
originally introduced in another form for conenrrent functional languages by Mohr,
Kranz and Halstead [11]. The Diadora model differs from the previous work in that
1) CLPs are implicitly concurrent increasing the threat of deadlock, and therefore our
model emphasizes the synergy belween good slatic analysis and dynamic deadlock
breaking; 2) CLPs heap-based implementations allows simpler stack management; and
3) the interaction between deadlock breaking and task stealing in the extremely fine-
grained (far more than futures-based languages) CLP enviroment requires innovative
solutions to various implementation problems.

In summary, the advantages of the muodel include:

¢ Safe analysis for sequentializalion is very diflicult to do fast and accurately. Fun-
damentally there is a tradeofl of specd vs. information. In general, global static
analyses for CLP languages are slow. lFurthermore, to ensure that they are safe,
conservative estimations usually degrade the quality and utility of the informa-
tion that they produce. The application of data dependencies is a particularly
degenerate situation because it is almost never the case that critical cycles exist in
a computation. Noncritical cycles can appear locally, e.g., when using difference
lists in a divide-and-conquer all-solutions search, but they do not cause deadlock.?
Our scheme allows for unsafe information Lo be utilized efficiently by supporting
a trapdoor in the rare case that cycles deadlock the computation.

¢ Fine-grain languages at this level require partitioning across procedure calls to en-
able construction of large-cnough tasks to overcome communication-to-computation
ratios. This opens the door to aliasing problems and the myriad of potential, but
improbable, cycles-they bring. Afller much thought, it became clear to us that
no simple static or dynamic appronch could guarantee safety. Hence was born
Diadora, a “morning-after pill” for (1,1,

e Considering the Andorra model, one representative implementation, Pandora [1],
is quite complex compared to its JAM [1] origin. This is because of the variable
extensions needed in the storage model to support backtracking., Diadora does
not support backtracking and as a result retains a lean abstract machine, even
though it incorporates running/breaking coroutining,.

Potential disadvantages include too-frequent deadlocks and high storage (multi-
ple stack) management overheads. Empirical studies are necessary to evaluate this
threat, and the ability of task stealing to preclude it. Thus our future work includes
implementing the model within Monaco, a high-performance CLP language system
for shared-memory multiprocessors [15). The first and foremost appropriate empirical
study will be to compare the performance results with those reported for Mul-T [11]
and Andorra [3].

Acknowledgements

This research was supported by an NSI' Presidential Young Investigator award, with
matching funds generously provided by Sequent Computer Systems Inc.

3These dependences are sometimes called non-strictly independent [6].

13

References

[1] R. Bahgat and S. Gregory. Pandora: Non-deterministic Parallel Logic Program-
ming. In International Conference on Logic Programming, pages 471-486. Lisbon,
MIT Press, June 1989.

[2] K. L. Clark and S. Gregory. PARLOG: Parallel Programming in Logic. ACM
Transactions on Programming Langneges and Systems, 8(1):1-49, January 1986.

[3] V. S. Costa, D. H. D. Warren, and R. Yang. The Andorra-I Engine: A Parallel
Implementation of the Basic Andorra Madel. In International Conference on Logic
Programming, pages 825-839. Paris, MI'l' Press, June 1991.

[4] J. A. Crammond. The Abstract Machine and Implementation of Parallel Parlog.
New Generation Computing, 10(4):385-422, August 1992.

{5] L Foster and S. Taylor. Strand: New Concepls in Parallel Programming. Prentice
Hall, Englewood Cliffs, NI, 1989.

[6] M. V. Hermenegildo and F. Rossi. Non-Strict Independent And-Parallelism. In
International Conference on Logic Programming, pages 237-252. Jerusalem, MIT
Press, June 1990.

[7] Y. Kimura and T. Chikayama. An Abstract KL1 Machine and its Instruction Set.
In International Symposium on Logie Progamaning, pages 468-477, San Francisco,
IEEE Computer Sociely ’ress, Augunl 987,

(8] A. King and P. Soper. leuristics, ‘Thresholding and a New Technique for Con-
trolling the Granularity of Concurrent Logic Programs. Technical Report CSTR
92-08, Department of Electronics and Computer Science, University Of Southamp-
ton, 1992,

[9] A. King and P. Soper. Schedule Analysis of Concurrent Logic Programs. In Joint
International Conference and Symposium on Logic Programming, pages 478-492.
Washington D.C., MIT Press, November 1992.

[10] B. C. Massey and E. Tick. Sequentialization of Parallel Logic Programs with Mode
Analysis. In 4*% International Couference on Logic Programming and Automated
Reasoning, St. Petersburg, July 1993.

[11] E. Mohr, D. A Kranz, and R. Il Halstead Jr. Lazy Task Creation: A Technique for
Increasing the Granularity of Parallel P’rograms. IEEE Transactions on Parallel
and Distributed Compuling, 2(3):264 280, July 1991.

1

[12] V. A. Saraswat, K. Kahn, and J. Levy. Janus: A Step Towards Distributed
Constraint Programming. In North American Conference on Logic Programming,
pages 431-446. Austin, MIT Press, October 1990.

[13] V. Sarkar. Partitioning and Scheduling Purallel Programs for Ezecution on Mul-
tiprocessors. MIT Press, Cambridge MA., 1989,

{14} E. Y. Shapiro. The Family of Concurrent Logic Programming Languages. ACM
Computing Surveys, 21(3):413-510, 1989.

f15] E. Tick and C. Banerjee. Performance Fvaluation of Monaco Compiler and Run-
time Kernel. In International Conferenee on Logic Programming, Budapest, MIT
Press, June 1993. Also available as Universlty of Qregon CIS-TR-92-21.

[16] E. Tick, B. C. Massey, I'. Rakoczi, and I. Tulayathun. Concurrent Logic Programs
a la Mode. In Workshop on Practical hinplementations and Systems Experience in
Logic Programming. Budapest, University of Oregon, June 1993. Technical Report
CIS-TR-93-12.

(17] K. R. Traub and D. E. Culler. Global Analysis for Partitioning Non-Strict Pro-
grams into Sequential Threads. In Conference on Lisp and Functional Program-
ming, pages 324-334. San Francisco, ACM Press, 1992,

[18] K. Ueda and M. Morita. Moded Flat GHC and Its Message-Oriented Implemen-
tation Technique. New Generalion Computing, 1993. In press.

