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Introduction

If G is a group and U is a subgroup of G, we say U is pronormal in G, denoted
U pr G, if for each element g of G, U is conjugate to UB via an element of <U,U8B>.
Pronormal subgroups include Sylow subgroups, Hall subgroups, maximal subgroups, and
Carter subgroups. A solvable :-group is a solvable group in which normality is a
transitive property, i.e., a solvable group in which every subnormal subgroup is normal.
These turn out to be the solvable groups in which every subgroup is pronormal [Fe].

In [KL], Kantor and Luks describe a tool kit for obtaining polynomial-time
algorithms for determining various subgroups and checking various properties of finite
permutation groups and their quotients. Some of their results are detailed below, in
Lemma 0.1. The purpose of this note is to illustrate the power of this tool kit when
combined with information about solvable t-groups and about pronormal subgroups of
solvable groups.

Of particular interest here are results concerning the normalizer of a subgroup of a
group that is a solvable quotient of a group of permutations. In [KL], polynomial-time
algorithms for computing normalizers are described for two special cases: when the
group is nilpotent, and when the subgroup is a Sylow or Hall subgroup. It is important to
note that in [Lu2], Luks presents more complex and difficult methods that make it
possible to compute in polynomial time the normalizer of an arbitrary subgroup of a
solvable quotient of permutation groups. In this paper, we show how to exploit special
properties of t-groups and of pronormal subgroups to compute certain normalizers using
the methods of [KL], without having to resort to the more advanced techniques of [Lu2].

First, in Section 1, we use the techniques of [KL] but not of [Lu2] to obtain, in
Theorem 1.1, a polynomial-time algorithm for checking whether a quotient of
permutation groups is a solvable t-group. For the special case of nilpotent quotients of
permutation groups, in addition to describing polynomial-time algorithms for computing
normalizers of subgroups of such groups, Kantor and Luks present a polynomial-time
algorithm for determining whether two subgroups are conjugate, and if so, obtaining an
element conjugating one to the other. In Proposition 1.4, we show how to adapt these
algorithms to apply to solvable t-groups that are quotients of permutation groups.

In Section 2 we concentrate on the pronormality of individual subgroups of a
solvable quotient of permutation groups. We begin by obtaining, in Theorem 2.1, a
criterion for pronormality of a subgroup in terms of the index of its normalizer. Then in
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Theorem 2.3, again using the results of [KL] but not of [Lu2], we describe a polynomial-
time procedure for simultaneously determining whether a subgroup is pronormal and for
computing its normalizer,

0. Notation and Tool Kit

Let G be a group of permutations on a set Q of size n, and K be a normal
subgroup of G. Let G denote G/K, and similarly let A denote A/K for any subgroup A of
G containing K. When we refer to a polynomial-time algorithm for G, we mean an
algorithm whose running time is polynomial in n. Note that IGI could be as large as n!,
much larger than n, although the prime factors of |G/ are all less than or equal to n.

In Lemma 0.1, we present a summary of the propositions from [KL] that we will
use below. The proposition numbers from P1 to P16 labelling the parts of Lemma 0.1
refer to the sources of these parts in that work.

Note In the Lemma and below, the statement "find a subgroup X of G" means "obtain
generators of X",

Lemma 0.1 Let G denote G/K as above. Then there exists a polynomial-time
algorithm for each of the following problems.

(i) Find IGL [P1]

(i1) Given a subset S of G, find the normal closure of S in G, i.e. the smallest
normal subgroup of G containing S. [P3(i)].

(iii) Given subgroups A and B of G solvable, find AnB. [P4(iii)]
(iv) Given a subgroup A of G solvable, find Co(B). [P7(i)]
(v) Given a subgroup B of G nilpotent, find Ng(B). [P8(i)]

(vi) Given subgroups Bjand By of G nilpotent, determine whether or not By
and B are conjugate in G, and if so, find g in G such that B} = B. [P8(ii)]

(vii) Find a composition series for G. [P10(iii)]



(viii) (a) If H is normal in G, test whether H is a minimal normal subgroup,
and if not, find N normal in G such that 1 < N < H. [P11(i), (ii)]
(b) Find a chief series for G. [P11(iii))

(ix) If G is solvable and 7 is a set of primes
(a) find a Hall n-subgroup of G containing a given n-subgroup H of G.
{P13(i); Remark (ii), p. 13]
(b) given Hall n-subgroups Hy and Hz of G, find g in G such that
P% =P,. [P13(ii); Remark (ii), p. 13]
(c) given a Hall n-subgroup H of L, where L is normal in G, find Ng(H).
[P13(iii); Remark (ii), p.13]

(x) Find the derived series, lower central series, and upper central series of G.
[P14]

(xi) Find the socle of G, i.e., the subgroup generated by all minimal normal
subgroups of G. [P15(i))

(xii) Find the intersection of all maximal normal subgroups of G. [P15(ii)]

(xiii) For any collection Z of simple groups, find Oz(G) and OE(G). (Here
Oz (G) denotes the largest normal subgroup of G each of whose composition factors is in
%, and O%(G)denotes the smallest normal subgroup of G such that each composition
factor of G/Oz(G) isin X.) [P16]

When we refer below to a part of this Lemma, we will write only the part number.
Thus (i) refers to Lemma 0.1(i), which is actually [KL, P1].

1. t-groups

Gaschutz [Ga] has described the structure of solvable t-groups. Recently the
author [Fe] has shown that a solvable group is a t-group if and only if all of its subgroups
are pronormal.



Our first goal is to establish the following:

Theorem 1.1 There is a polynomial time algorithm to determine if G is a solvable t-
group.

We begin by stating the parts we need of two results of Gaschutz, which apply to
all finite groups, whether or not they are described as permutation groups. Here a group
is called Dedekind if all of its subgroups are normal, and GN denotes the smallest
normal subgroup of G with G/GN nilpotent.

Satz 1 [Ga] If G is a solvable t-group, and L=GV, then:

a) G/L is Dedekind,

b) ILi is odd,

c¢) L is abelian,

d) (IG/LLILI) =1, and

e) for any automorphism o on L induced by an inner auiomorphism of G, there
exists an integer, m, such that x © = xm for all xe L.

Satz 2 If G is a finite group with a normal subgroup L satisfying a), d), and e) described
above, then G is a solvable t-group.

Now suppose that G and G are as described above. Then the subgroup L = GV,
which is the minimal element of the lower central series of G, can be computed in
polynomial time by (x). By (i), we can compute both IG! and IG¥| in polynomial time, so
we can easily check d). Thus to check in polynomial time whether G is a solvable t-
group, we need only devise schemes for checking a) and e) in polynomial time.

Note that we have generators for L, which equals L/K for some normal subgroup
L of G, and we have generators for K. We can combine these to obtain generators for L,
so we can apply Lemma 0.1 to G/L or to L/K. But G/L is isomorphic to G/L, so any
structural property we can obtain for G/L using that Lemma is also possessed by G/L.
Similarly, we can use the Lemma for L/K = L. In fact, the former argument works for
any normal subgroup of G whose generators we can compute in polynomial time, and
the latter argument works for any subgroup of G we can obtain in polynomial time,
whether or not it is normal in G.



In particular, then, the following result for general G as defined above implies that
we can check a) in polynomial time.

Lemma 1.2 There is a polynomial time algorithm to determine whether G is a Dedekind
group.

Proof Every abelian group is Dedekind, and non-abelian Dedekind groups are called
Hamiltonian. Because by (x) we can check whether G is abelian, we need only show that
we can check in polynomial time whether G is Hamiltonian.

Now a finite group is Hamiltonian if and only if it is the direct product of an
abelian group of odd order, a quaternion group, and an elementary abelian 2-group [Ha,
Theorem 12.5.4]. Thus G is Hamiltonian if and only if:

i) IGl= 102(G)II0%(G)),

ii) O(G) is an abelian Hall 2"-subgroup of G, and

iii) O2(G) is the direct product of a quaternion group and an elementary abelian 2-
group.

We can obtain each of 0O%(G) and O3(G) in polynomial time by (xiii), with £
consisting of just the cyclic group of order 2. Thus i) can be checked using (i).

We can compute I02(G)! by (i), easily check whether it is odd, and check whether
02(G) is abelian by (x). Checking whether IGVIO2(G)! is a power of 2 takes at most
loglG1 divisions by 2, where IG| € n", so loglG| € n2, Thus we can check ii) in
polynomial time.

Checking iii) is more complicated. Let T = O2(G). Now we can compute the
center Z(T) by (x) and the socle soc(T) by (xi). Suppose for the momentthat T=Q x E,
where Q is a quaternion group and E is elementary abelian. Note that any nontrivial
element of E generates a minimal normal subgroup of T of order 2, and Z(Q) is also a
minimal normal subgroup of T of order 2. Then soc(T) € Z(Q) x E. But if N is minimal
normal in T and not contained in Z(Q) x E, then Z(Q) x E x N is a proper subgroup of T
because T is not abelian. Then IT: Z(Q) x El =4 implies N is of order 2. It is easy to see
that the elements of order 2 in T are all in Z(Q) x E, a contradiction. Thus soc(T) = Z(Q)
x E =Z(T), an elementary abelian group of index 4 in T.

Furthermore, by (xii) we can compute the intersection of all maximal normal
subgroups of T, which in the nilpotent group T is ®(T), the intersection of all the
maximal subgroups of T. Now T/®(T) is the largest elementary abelian quotient group
of T,s0if T=Q x E, ®(T) = ®(Q) = Z(Q), the unique subgroup of Q of order 2. Then
®(T) = Z(Q) < soc(T). Note that we can check whether the 2-group soc(T) is elementary
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abelian by checking whether its generators commute with each other and are of order 2,
or by checking whether ®(soc(T)) = 1. Thus the first step in checking iii) is checking
whether soc(T) = Z(T), D(soc(T)) =1, and O(T) < soc(T).

Hence we may assume in checking iii) that soc(T)=Z(T) is elementary abelian,
IP(T)! = 2, and soc(T) is of index 4 in T.

Let A = soc(T) and B = ®(T), a subgroup of order 2 of the elementary abelian
group A. Let A = A/K and B = B/K, so B is normal in A. As remarked above, we can
apply Lemma 0.1 to A/B. In particular, by (vii), we can obtain a composition series B/B
= Bo/B < B1/B < B2/B < ... < By/B = A/B for the elementary abelian A/B, where 2V =
IA/Bl = |A/Bl. For each ByB, choose one generator Bb; that is not contained in Bj.1/B.
(We know that the number of generators obtained for B;i/B is at most w, less than n2.)
Thus <Bby> = B1/B and <Bbj,Bby,...,Bby> = A/B. Therefore, B<by,bs,...,by> = A.
Hence (B/K)[<Kby,Kby,....Kby>] = A/K; ie., B<Kb;,Kby,...Kby> = A, Let W =
<Kb1,Kb3,....Kby>, so Al = IBI IW[/IB n WI, Buteach Kb; is of order 2 in the
elementary abelian group A, so iWi<2W¥ =|A/Bl. Hence IB N Wi=1,and A=B xW.

Note that W < Aand B =®(T) N A, so IO(T) n Wl =1, We can check whether
W is normal in T using (ii). If not, T is not Dedekind, so we assume W is normal in T.
Suppose again that T = Q x E for some quaternion group Q and elementary abelian 2-
group E. ThenQ n W <s0c(Q) =Z(Q)=B,s0lQWi=1. Also, BxE=A=Bx
W, so IWl=IEl. Thus QWi=IQEI=ITl,soT=Q x W, and T/W is a quaternion
group. Thus T = Q x E for some quaternion group Q and some elementary abelian group
E if and only if T/W is a quaternion group and W is complemented in T.

It is easy to check in polynomial time whether T/W is a quaternion group. We
simply check whether or not T/W is a group of order 8 that has precisely one element of
order 2 and more than 2 elements of order 4. Then we may assume that T/W is a
quaternion group; we need only check whether W is complemented in T.

Now let Wx and Wy be two distinct elements of order 4 in T/W that do not
commute; we will have discovered such elements in obtaining more than 2 elements of
order 4 in T/W. Then neither x2 nor y2 is in W. We check whether x* = y4=1; if not,
T # Q x W for any quaternion group Q, so we may assume x and y are of order 4, and
their squares are of order 2. Now if T =Q x W, x2 =y2, for the square of any element of
order 4 in Q x W is the unique element of order 2 in Q.

Consider <x,y>. If T =Q x W, every subgroup of T is normal, so <x,y> =
<x><y>, of order 8 because <x> # <y> but <x2> = <y2>. But x and y do not commute,
because Wx and Wy don't. Thus xY = x-1, the only element of order 4 of the normal
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subgroup <x> besides x. Hence <x,y> is a quaternion group, and <x,y>n W = 1 because
its unique element of order 2, x2, is not in W.

To show that we can check e) in polynomial time, we start with a lemma about
finite abelian subgroups of the above-described G.

Lemma 1.3 Suppose L is a finite abelian subgroup of G. There is a polynomial time
algorithm to obtain cyclic subgroups C;,C»,..., Cyy such that L is the direct product of the
C;, and ICjl divides ICj4yl for 1 £i €m-1,

Proof We modify a standard construction of such a basis for L [Ar, (21.1)]. First note
that ILI divides n!, so the prime factors of LI are all less than or equal to n; hence we can
determine all these prime factors in polynomial time. By (ix)(a), for each p dividing ILI
we can obtain the unique Sylow p-subgroup Ly of ILI. By (xii), we obtain @(Lp). Asin
the proof of Lemma 1.2, using (vii) we can get, in polynomial time, a composition series
for the elementary abelian group L/®(Lyp) that yields a set of elements x1,X2,...,Xw such
that @(Lp)<x1,X2,....xw> = Lp, s0 Lp = <x1,X2,....xw>, and {x1,X2,...,.Xw]} is a minimal
generating set for Lp.

We now obtain Lp as the direct product of cyclic subgroups. To start, determine a
generator of least order and, relabeling if necessary, call it xq, so Ixjl=pk < ILpl. Suppose
<X1> N <X2,....Xw> # 1. Then there exists a positive integer sq, a power of p with s; <
pk, such that x,% is in <x3,...,xy>, so there exist positive integers s»,....Sw such that
X" X" ... Xy,°* = 1. Now each s; = rijgj, where 1 <rj <p, and g; is a power of p, so
<xj> = <x;"i>. Thus replacing each x; by x;"i and each s; by q; still yields Lp =
<X1,X2,.Xw> and X% X552 ... x,°v =1, but now each of 51,5),...,Sw is a power of p.

Obtain the smallest sj of 51,52,....Sw, &nd interchange x) and xj if j # 1, so that 53
< pK is the smallest of s1,52,...,5w. Then sy divides each of s»,...,sw, for all are powers of
p. Letk; =si/s; for2<i<w. Then (x1x5? .. x&v)°l=1, and replacing x; by x] x52

xev still yields Lp = <x1,X2,....xw>. Now, however, x1l < s; = pj < pk. Note that the
generating set is minimal, so Ix1l >1.

Thus repeating the above process less than k times must yield a set of generators
<X1,X2,....Xw> such that <x)>M<xy,....xw> = 1, 80 Lp = <x1> x <x2,...,Xy>. Similarly, we
break down <x3,...,Xxw> into a direct product, etc. In polynomial time, we will have Lpas
a direct product of cyclic groups. We sort these groups (in polynomial time) so that their
order increases. Hence Lp =Py x P7 x ... x Py, where Pjl divides [Pjyl for 1 <i € w-1,
and w < n2 depends on p. Then let Cpy be the direct product of the maximal order factor
Py for each p dividing ILI. LetCp,.] be the direct product of the Py,.; for each p such
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that w > 1, etc. Note that m will be the largest value of w corresponding to any p
dividing ILI. Thenitis clear that L = C; x C2 x ... x Cp, with ICjl dividing ICj,jl for 1 i
< m-1 as claimed.

Proof of Theorem 1.1 Given G, let L = GV, which we've seen we can obtain in
polynomial time. By c) of Gaschutz' Satz 1, if L is not abelian, which we can check in
polynomial time, then G is not a t-group, so we may assume that L is abelian. We use an
approach inspired by Gaschutz' proof of Satz 1.

As in Lemma 1.3, decompose L into a direct product Cy x C2 x ... x Cn of cyclic
groups, with ICjl dividing IC;41l for 1 <i < m-1, Let C = <cj> for 1 £i <m, and denote
by e the order of Cr, which is the exponent of L. (We have already obtained these
generators in the process of obtaining the Pjand C;j in Lemma 1.3.) Consider the m-1
subgroups D1,D3,...,Dm-1, where Dj = <cicpy>. Check by (ii) whether each of the C's and
D's is normal in G. (There are less than 2n2 of these, so this can be done in polynomial
time.) Each of the C's and D's is normal in the normal abelian group L, so is subnormal
in G. Hence if any is not normal in G, G is not a t-group. Thus we may assume that all
are normal. We now show that this implies that condition e) of Gaschutz' Satz 2 is
satisfied,

Let x be an arbitrary element of G. Then (Cyp)* = Cyy, so ¢, = cp, for some
integer r. Furthermore, (D))* = Dj for 1 £i<m-1, so (cijcm)* = (cicm)S for some integer s.
But also (C;j)* = Cj,so ¢l = c{‘ for some integer k. Hence (cicm)* = (cicm)S = ¢f ¢}, and

also (cicm)* = cfck = ckcl,s0 ¢f = c¥ and ¢, = cf,, because C; NCpm = 1. This

implies e divides r-s, so Icjl, which divides e, divides r-s. Thus ¢ = ¢f = cf = ¢l
Therefore, for 1 <1<k, ¢f = ¢f. ButL=C; xC2 x ... x Cp, so y* = yf forany y in L;

i.e., property e) is satisfied, establishing the Theorem.

Note that Lemma 0.1 (v) and (vi) apply only to nilpotent groups. The structure
constraints on solvable t-groups described above make it possible to extend that
problem's solution to t-groups:

Proposition 1.4 Suppose G is a t-group.

(1) Given B <G, find Ng(B).

(ii) Given B, B2 <G, determine whether or not B and B are conjugate in G;
and if so, find ge G such that B} = Bj.



Note that this result is not exactly a generalization of (v) and (vi), for not all
nilpotent groups are t-groups; in fact, a nilpotent group is a t-group if and only if it is a
Dedekind group, for every subgroup of a nilpotent group is subnormal.

Proof (i) Suppose |Biis a prime, p. If p divides IGV], then by d) of Gaschutz' Satz 1, B <
GN, so by e) of Satz 1, Ng(B) = G. If p doesn't divide IGV, determine the set of primes
dividing !G/GM and obtain by (ix)(a) a Hall n- subgroup H of G containing B. Then H is

a Dedekind group by a) of Satz 1, for it is isomorphic to G/GV. Thus H <Ng(B), and G
= HGV, so Ng(B)=H Ngwv(B). But [B,N x(B)] < BNGN =1, so Ngw(B) =

CG” (B), which we can compute in polynomial time by (iv). Thus we can obtain Ng(B)
= HN_.» (B) in polynomial time.

Now suppose [Bl is not prime. By (vii), obtain a composition series for GV, and
as in the proof of Lemma 1.2, obtain a composition series for G/GV. Now all subgroups
of GN are normal in G, and all subgroups of G/GV are normal in G/G¥, so combining
these composition series actually yields a chief series G =Gp>G1>G2>..>Gp =1
for G passing through G¥, with each chief factor of prime order. The proof now proceeds
exactly as that of (vi) in [KL]:

Let i be the integer such that B is a subgroup of G; but not of Gj;1. Obtain J =
BNGis1 <B by (iii). Suppose that in polynomial time we could compute H, where H =
Ng{J) 2 Ng(B), so Ny(B) = Ng(B). Now IB/JI = IB/BNGj1l = BG;;1/Gis1l, which
equals 1Gi/Gi41l because IGy/Gij41! is prime. Now a subgroup of a t-group is a t-group
[Ga], so H is a t-group, and it is easy to see that then H/J is a t-group. Thus we can
compute NH/j(B/J) in polynomial time because B/J is of prime order. But Ny;j(B/J) =
Nu(B)/J, so we can use generators of J and Ny(B)/J to obtain Ng(B) = Ng(B). Thus we
have reduced the problem of obtaining Ng(B) to that of obtaining Ng(J), where IJI
properly divides IBl. Thus in a polynomial number of steps we can reduce to the case
where |BI is prime, establishing (i).

(ii) Suppose By, B3 < G. We can check orders in polynomial time, so assume IB|
= B2l . We know that BjG¥ and BonGV are Hall n(GV)- subgroups of B and B,
respectively, so if By and B are conjugate in G, so are BjnG» and BonGN. But all
subgroups of G are normal in G, so if By and By are conjugate in G, then B1AGN =
B2NGN. By (iii), we can compute these two subgroups in polynomial time. Thus we
may assume B1GN =B>NGN,

Thus IGVBy! = IGNB;3l. Now if B; and B are conjugate in G, then GNB and
GVB, are conjugate in G. But these are normal in G, so they are equal. Since we can
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easily obtain GVB and G¥B3 from GV, Bi, and By, we may assume GVB1= GVB,.
Clearly any Hall n(G/GN)- subgroup of By or B is a Hall n(G/G¥)- subgroup of GNB=
GNB,, so these are conjugate in GNB = GNB;. Hence By and B; are conjugate in G if
and only if IBjl = IBsl and By AGN = ByGN.

Now suppose B and B are conjugate in G. As seen above, B1nGVN =
B2NGN, GVB1= GVB, and B} and B3 are conjugate in GVB1= G¥B,. Thus we may
assume G = GNB1= GNBj. Then let D be a Hall n{G/GV)- subgroup of Bj and E be a
Hall n(G/GN)-subgroup of B, obtainable in polynomial time by (ix)(a). Then D and E
are Hall subgroups of G. Use (ix)(b) to obtain g in G such that D& = E. ButB; =
(B1nGY)D and B2 = (B1"GM)E, so Bf = By, and we are done.

2. Testing for pronormality and computing normalizers of pronormal
subgroups
P. Hall showed in the 1920's that if G is a finite solvable group, then for each p in

7(G), the set of primes dividing IGl, G contains at least one Hall p'-subgroup [DH, I(3.3)].
For each p in ©(G), choose one such Hall p-subgroup and denote it by Sy . Define a

function X from the set of all primes to the set of subgroups of G via X(p) = Sy if pisin

7(G) and X(p) = G if not. We call this 3 a complement system for G. Hall proved in the
1930’s that the complement systems of G are conjugate in G, where a conjugate Y8 is
defined in the obvious way by XE(p) = X(p)8 [DH, I(4.11), 1(4.18)). The system
normalizer NG(Z) is defined as (ge G : X = 28). Clearly Ng(Y) is a subgroup of G. If
T is any subset of the set of primes n(G) dividing IGl, then the intersection of the Sy inX
such that p is in ®(G)-n will be a Hall n-subgroup of G. If H is a subgroup of G, we say
3 reduces to H if X NH, defined by X "H(p) = X(p)NH, is a complement system for H.
Then pronormality can be characterized as follows:

Suppose 2, is a complement system of G that reduces to U.
Then U pr G if and only if X reduces to no other conjugate of U.
[DH, 1(6.6)]

It is easy to see that ¥ reduces to H if and only if X8 reduces to H8. Thus an
equivalent characterization of pronormality is:

Suppose 2, is a complement system of G that reduces to U.

Then U pr G if and only if for all g such that X8 reducesto U, g
normalizes U.
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The reducer Rg(H) is defined to be <x € G: X* reduces to H>. The remarks
above imply that for all H < G, Rg(H) 2 Ng(H), and that Rg(U)=Ng(U) if and only if U
pr G.

Note that for any H < G, any complement system for H can be obtained as Y, nH
for some complement system 3, of G: For each p in n(H), the Hall p'-subgroup of H is
contained in a Hall p'-subgroup of G, while for each p in a(G)-n(H), H itself is contained
in a Hall p-subgroup of G. Thus for any subgroup H of G, there is some complement
system 2, of G reducing to H.

A useful and easily checked fact is that if U pr G and . reduces to U, then the

system normalizer Ng(2) is contained in Ng(U). Forif X = 38, then Y reduces to ue',
Thus g-le Rg(U) = Ng(U), and therefore g € Ng(U).

Carter [Ca] has studied several invariants of solvable groups and embedded
subgroups, three of which are useful here. One is w(G), defined to be the number of
complement systems of G. Because G acts transitively on these complement systems,
w(G) = IG:Ng(2)!, where ¥ is any one of these complement systems, and Ng(3) is its
stabilizer under the action of G.

Another invariant is zg(U), where U £ G. Here is how Carter defines zg(U):
Begin with a U-composition series G=Hp> H1> Ha... > Hy = 1, so that all the Hy's are
normalized by U, and for 0 < j <r, Hj is normal in Hj.j and Hj.1/Hj has no nontrivial
proper subgroup normalized by U. Thus H;(Hj.1nU)/Hj must be trivial or equal to
Hj.1/H;. In the former case, we say U avoids Hj.1/Hj; in the latter case U covers Hj.1/H;.
Also, the factor group Hj.1/H; is called central if U centralizes it, and eccentric otherwise.
zg(U) is defined to be the product of the orders of the central factors in that U-
composition series avoided by U. Carter shows that zg(U) is independent of the choice of
U-composition series for G [Ca, p.539].

Finally, Carter defines o(U) to be the number of complement systems of G that

reduce to U, and proves:
(*) o(U) =zg(U)w(G)/IG:UlI [Ca, p.541].

We are now in position to prove a largely numerical criterion for pronormality:
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Theorem 2.1 Suppose U < G, where G is any finite solvable group, and }, is a
complement system for G that reduces to U. Then U pr G if and only if zg(U) =
INg(U):Ul, and zp(U) > INg(U):Ul if U is not pronormal in G.

Proof If U pr G then Ng(2) € Ng(U), and Z8 reduces to U if and only if g is in Ng(U).
Thus the number of complement systems for G reducing to U, o (U), is INg(U):Ng(Z)l.
Then by (*), substituting IG:Ng(X)l for w(G), we have INg(U:Ng(X)l =
zo(WIG:Ng(Z)G:UI, which yields zg(U) = INg(U):UL.

Now suppose U is not pronormal in G, so some generator x of Rg(U) is not in
Ng(U). Elements of Ng(U) yield ING(U):Ng(X) nNg(U)! distinct conjugates of Y.
Suppose NG(2) < Ng(U). If 3* = ¥ for some n in Ng(U), then xn-! is in Ng(Z) <
Ng(U), so x is in Ng(U), a contradiction. Thus o(U) > INg(U):Ng(Z)"Ng(U)l =
ING(U):NGg(Z)l. If Ng(2) is not contained in Ng(U), o (U) 2 INg(U):Ng(X)NNgU)I >
ING(U):NG(2)!. Hence INg(U):Ng (Z) < zo(U)w(G)/IG:Ul by (*), and zg(U) >
INGg(U):UL

The following criterion for pronormality in a speicial case forms the inductive
step below in the more general case. It exploits the link between computation of the
normalizer and determination of pronormality presented in Theorem 2.1.

Lemma 2.2 Suppose X is a solvable group with subgroups N and U such that N is an
elementary abelian p-group, and N and UN are normal in X. Let X be a complement
system of X reducing to U, P be the Sylow p-subgroup of X associated with ¥, and S be
the Hall p'-subgroup of X in 3. Let T = <U,S,NNCyn(U/UNN),Nyp(X AUP)>. Then
U pr X if and only if T < Nx(U) and IT:Ul = zo(U). Furthermore, if U pr X, then Nx(U)
=T.

Proof Note UP =UNP <X, Also, if H is the Hall q'- subgroup in ¥ for some q#p, then P
< H, and HAUNP = (HNUN)P is a Hall q-subgroup of UNP because UN is normal in
X. Similarly, SNMUNP = SNUN is a Hall p'- subgroup of UN and of UNP. Thus Y,
reduces to UP; i.e., ZNUP is a complement system for UP. Denote by D the system
normalizer Nyp(Z NUP).

Note that UNN is normalized by U because N is normal in X, and by N because
N is abelian. Thus UNN is normal in UN. Hence CynyunN(U/UNN) = C/UNN for
some C < UN, and C = Cyn(U/UNN).

Now if T £ Nx(U) and IT:Ul = zg(U), then INx(U):Ul 2 zg(U). Thus by Theorem
2.1, UprX.
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Conversely, suppose U pr X. We show first that T < Nx(U). Clearly U < Nx(U).
Also Cununn(U/UNN) = C/UNN implies [U,C] £ UnN < U, so C £ Nyn(U) and
NNC £ NNNyn(U). On the other hand, [UNANyn(U)] £ UNN, so NNNpn(U) is
contained in C and therefore in NNC. Hence NNnC = NNNyn(U). SetL =
NNNyn(U) = NnNx(U).

We now show X = Nx(U)N. UN is normal in X, so X = Nx(UN) 2 Nx(U)N. Let
x be an arbitrary element of X. Then U* =U2 for some a € <U,U*> because U pr X.
Hence xa-! € Nx(U). But UN is normal in X, so <U,U*> < UN. Thus a € UN, so x&
Nx(U)UN = Nx(U)N, and X = Nx(U)N, as claimed.

Now U pr X implies U pr UP, so Nyp(X nUP) € Nyp(U) < Nx(U) [DH, I(6.8)].
Thus D = Nyp(XNUP) < Nx(U). Also, U pr X implies X reduces to Nx(U) [DH,
1(6.8)], so SNNx(U) is a Hall p’-subgroup of Nx(U). But X = Nx(U)N, where N is a p-
group, so SNNx(U) is a Hall p'- subgroup of X; ie., SNNx(U) = 8§, so S £ Nx(U).
Hence T = <U,S,L,.D> < Nx(U).

Because X reduces to Nx(U), PN Nx(U) is a Sylow p- subgroup of Nx(U), so
Nx(U) = <§,PnNx(U)>. If we can show that PANx(U) € <U,D,L> < Nx(U), we will
have Nx(U) £ <S,UL.D> < T < Nx(U), so T = Nx(U), and IT:Ul = z5(U) by Theorem
2.1. Thus it remains to show PANx(U) £ <U,L,D>.

Now L = NnNx(U), so L is normalized by Nx(U) because N is normal in X and
L is normalized by N because N is abelian. But X = Nx(U)N, so L is normal in X. Also,
L <UNP =UP, so L is a normal subgroup of UP. And N £ UP, so UP = Nyp(U)N. We
show now that Nx(UL) = Nx(U). Clearly Nx(U) £ Nx(UL), so start with x € Nx{(UL).
Then <U,U*> < UL, so there exists a € UL such that U* = U3, But L € Nx(U), so UL £
Nx(U) and U2 = U; hence x € Nx(U). Thus Nyp(UL) = Nyp(U) and UP = Nyp(UL)N.

Note also that U pr X implies UL pr X because L is normal in X [DH, 1(6.4)].

IfE<UP, denote by E the group EL/L, and denote by ¥ the complement system
(ZNUP)L/L for UP. First note that Ngp(UL)NN = (Nyp(UL)NN)/L <

(Nx(UL)AN)/L = (Nx(U)AN)/L = L/L = 1. Also, UP = Nyp(UL)N implies UP =
Ngp(UD)N. Thus INgz(OL) = ITPYINI,

Now UN is normal in UP, with UP/UN a p-group. And system normalizers are
preserved under epimorphisms [DH, 1(5.8)], so D = Ngp('¥) and DUN/UN is a
system normalizer of the nilpotent group UP/UN. But all Hall subgroups of a nilpotent
group are normal, so a nilpotent group is its own system normalizer. Then D UN/UN
UP/UN and UP = D UN, s0 <D,U>N = UP. Thus D,U>l2ITPINNI, But U
UL pr UP, because UL pr UP. Hence D = Ngp(¥) € Ngp(UL). Hence <D,U>
Ngp(UL), whose order is IUPI/iNI. Therefore, <D,U> = Ngp(UL). Thus

IA
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<DL,UL> = Nyp(UL) = Nyp(U), so Nyp(U) = <D,U>L. Hence PNNx(U) < Nyp(U)
implies PANx(U) £ <U,L,D>, establishing the Lemma.

Now suppose G = G/K and U =U/K, where Kisnormal inGand Uand UG £
Sym(n). We will produce a polynomial-time algorithm for checking whether U is
pronormal in G if G is solvable. In the process, we will produce a polynomial-time
method for obtaining the normalizer of U if it is indeed pronormal in G. As mentioned
above, in [Lu2], Luks presents a polynomial-time method for computing the normalizer
of any subgroup of G [Lu2, Corollary 3.3]. To obtain this result for arbitrary subgroups,
he develops more complex machinery than is used here for the special case of pronormal
subgroups [Lu2, Section 6].

Theorem 2,3 If U and G are as described above, there is a polynomial time algorithm to
determine whether U is pronormal in G, and if so, compute Ng(U).

Proof We proceed recursively, keeping track of c(G), the number of prime factors,
counting multiplicities, in the prime factorization of IGI. G < Sym(n), so ¢(G) £ ¢(G) <
log(n!) < nlogn. Thus the number of recursive steps using ¢(G) will be polynomially
bounded.

Using (viii)(a), obtain a minimal normal subgroup N of G. We know that if U is
pronormal in G, then UN is pronormal in G [DH, 1(6.4)]. Recursively consider the
subgroup UN/N of G/N, where c(G/N) < c(G). If UN/N is not pronormal in G/N, then
UN is not pronormal in G, so U is not pronormal in G, and we are done. If UN/N is
pronormal in G/N, we compute Ng/N(UN/N) =NG(UN)/N in polynomial time, easily
yielding NG(UN). Note that UN/N pr G/N implies UN pr G.

Now let X = Ng(UN). We can obtain, in polynomial time, Hall p'-subgroups of
U, and therefore a complement system for U, and then, again in polynomial time, obtain
Hall p'-subgroups of X containing the elements of this complement system for U [KT,
(5.5); (ix)(a)]. Thus we can obtain in polynomial time a complement system Y, for X that
reduces to U. Note that UN is normal in X = Ng(UN), so we can use Lemma 2.2. Now
we check that we can compute T = <U,S,NNCyn(U/UnN),Nyp(ZNnUP)> in
polynomial time. We have U of course, and we already have S as part of our complement
system X. Because X is solvable, we can compute UNN, then compute C/UNN =
Cun(U/UNN) by (iv). Thus we can obtain C and NnC.
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Finally, P is the intersection of the Hall q'- subgroups of X, such that g#p, which
we can obtain in polynomial time by (iii), so we can get UP. We can intersect UP with
each of the elements of ¥, to obtain ¥ "UP. But Nyp(2 nUP) is the intersection of the
normalizers of at most n known Hall p'-subgroups of UP, for each prime p dividing |Gl =
n! is less than or equal to n. Thus we can obtain generators for these normalizers in
polynomial time by (ix)(c) and compute their intersection Nyp(XnUP) in polynomial
time as well. Hence we can obtain T in polynomial time, and use (i) to get T} and IU|, so
we can compute [T:Ul

Now T < Nx(U) if and only if <U,Ut = U for each of the generators we have
obtained for T, and we can check this in polynomial time by (i). If T is not contained in
Nx(U), then U is not pronormal in X, so it is not pronormal in G, and we are done. So
suppose T < Nx(U). Then by Lemma 2.2, U pr X if and only if IT:Ul = zg(U), so it
remains to compute zg(U) in polynomial time.

Next, we construct a U-composition series for X passing through UnN, N, and
UN. Although it is not necessary to constuct the entire U-composition series to compute
zg(U), it seems worthwhile to demonstrate that this can be done in polynomial time.

Note first that UNN is elementary abelian of order pd for some prime, p, and
positive integer, d. Consider UNN as a vector space of dimension d over the field F of p
elements. Clearly pd <n! < 1", sod <n2, Obtain a set of generators for U of size less
than n? [Lul, p.9]; this yields a set of generators for U = U/K of size < n2. By [Ro,
p.372], in polynomial time we can obtain a basis for UNN over F and express each
generator as a dxd matrix with entries in F. Consider the algebra J over F generated by
these matrices. Then by [Ro, p.371], we can obtain a minimal J-invariant subspace W of
UnNN, which is a minimal U-invariant subgroup of UNN, in time that is polynomial in n.
Apply this process to the vector space UNN/W, eic. Repeating the process at most d
times yields the terms of a U-composition series 1 = Ny <Ni.1 ... <Nj.1 <Nj=UNN for
UnN.

We can do the same thing for the vector space N/UNN, obtaining a U-
composition series UNN/UNN = Nj/UNN < N;j./UNN ... < N)/UNN < Ng/UNN =
N/UNN for UUNN. Clearly Nj and Nj.; are consecutive terms in a U-composition
series forany i, 1 <i <j. Forif N;j <M < Nj.1, for some U-invariant subgroup M of N,
Ni/lUNN < M/UNN < N;.1/lUNN, where M/UNN is U-invariant. This is impossible,
because Ni/UNN and Ni.j/lUNN are consecutive terms of a U-composition series for
N/UNN. Next, obtain a chief series UNN/UNN = UgUNN < Ug1/UNN ... <
U1/UNN < Uy/UNN = U/UNN for U/UNN by (viii)(b).
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Now for 0 €1 €5, NnUj = UNN, so INUjl = INIIU;/INNUjl = INIU;IUANNI,
and N =NUs <NUg | ... < NU; < NUg = NU =UN. Suppose NUj <M < NUj_1 and M is
U-invariant. Then M 2 N implies M = N(MUi.;), and MNU;.) AN =MnUNN =
UnN. Hence Ml = INIMNUi.1/IlUNNL, so  [Ujl < IMNUj.ql < 1Ui-.1l. Thus MAUj.q
is a U-invariant (i.e. normal) subgroup of U strictly between Uj and Uj.j, so
MnAU;.1/UNN is a U-invariant subgroup of U/UNN that is strictly between UyUNN
and Uj.1/UNN, which is impossible, because these subgroups are consecutive terms of a
chief series for U/UNN. Hence NUj and NUj.; are legitimate consecutive terms in a U-
composition series for X. Thus 1 = Ny < N1 ...<Nj<Ng<NUs...<NUg=UNisa
U-composition series for UN. We need only obtain the terms of the series above the
normal subgroup UN.

But that is easy, because U < UN: Simply obtain a composition series for X/UN
by (vii) and use these terms’' preimages in G to get UN=V; < V1 ..< Vi <Vpg=X.
Each Vj is U-invariant because it contains U, and V;.)/Vj is of prime order, so these terms
do indeed complete our U-composition series for X.

Now note that U avoids each of the composition factors of the form Vi./V; , for
Vi.1iNnU = V; nU =U. Furthermore, each of these is a central factor, for [V;.1/N,UN/N]
< UN/N, a normal subgroup of G/N. Hence [V;.],U] £ UN <€ V;, so U centralizes
Vi.1/Vi. Thus in computing Carter's zo(U), we must include the product of all these
Vi.1/Vi 's, which is IG:UNI. Clearly U covers the NU;.1/NU;'s, and the terms below
UnNN, but it does avoid the Nj_3/N;j's for 1 <i <j. Thus it is necessary to check which
among the polynomially bounded number of factors of the form Nj.1/Nj are centralized
by every one of the less than n2 generators of U; clearly this can be done in polynomial
time. Alternatively, we can invoke (iv) and check for each i whether Cunyn, (Ni1 /Nj)=
UN/N;.

Thus we can compute zg(U) in X in polynomial time. Now check whether IT:Ul =
zg(U) and apply Theorem 2.1. If IT:Ul # zo(U), U is not pronormal in X or G, so we are
done. If IT:Ul = zg(U), U is pronormal in X.

By Lemma 2.2, if U is pronormal in X, then Nx(U) = T, which we can construct
in polynomial time. But X = Ng(UN), so X contains Ng(U). Hence Ng(U) = Nx(U).
Now that we have Ng(U), we could use Theorem 2.1 to check whether U is pronormal in
G, but there is an easier way. For U pr Ng(UN) and UN pr G implies U pr G [DH,
1(6.4)], so since X = NG(UN), U is indeed pronormal in G, and we are done.
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