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Abstract

In this paper, we provide a specification for a class of communication networks that are
immune to single site failures, not only maintaining the ability to transfer messages between
remaining, operable sites but doing so with no additional delay (i.e., no increase in length of
communication path). Our specification includes a constructive characterization of a class of
minimal self-repairing graphs and an algorithmic determination of associated routing tables that
can be used by a simple message transfer procedure to realize the desired immune behavior.

We call these networks self-repairing and refer to their underlying topologies as self-
repairing graphs. Starting with a 4-cycle, we generate larger, minimal self-repairing graphs by
operations of connecting a vertex of degree 2 to a pair of twins (i.e., vertices having identical
open neighborhoods) in a given, self-repairing graph , doubling the graph, or cloning a vertex
of the graph. We add new entries to routing tables as each graph operation is applied.



Introduction

A communication network provides means for the dissemination of information among
a set of sires by transmission of messages over a set of lines interconnecting the sites.
Complete specification of a communication network requires consideration of two elements:
topology and operation. A network's topology corresponds to relatively static aspects of the
network: the set of sites, how they are interconnected by lines, and other relevant features,
such as line length, cost, and capacity, etc. A network's operational specification indicates
essential features of its behavior, such as whether it is a store-and-forward or broadcast
network, whether a site can communicate with more than one site concurrently, and particulars
of communication protocols, including routing tables and calling sequences to be used for
given information dissemination tasks.

The basic information dissemination task is that of message transfer, which transfers a
message between one site, the sender, and another site, the receiver. In a store-and-forward
network, message transfers are completed by series of calls placed between directly connected
sites. In previous research, we considered network design for broadcast (sending a message
from one site as sender to all other sites as receivers) and gossip (sending messages from all
sites as senders to all sites as receivers) [4]. In this paper, we focus on effective network
designs for the task of message transfer under conditions of single site failure.

We model the topological aspects of a network by an undirected graph G = (V,E),
consisting of a set V of vertices, corresponding to network sites, and a set E of edges, each
edge connecting a pair of vertices (v1,v2), corresponding to lines of the network. For a given
vertex v, let i(v) represent the set of edges incident to v in graph G, i.e., those for which v is
a member of the edge's vertex pair. The degree of a vertex v in graph G, deg¢(v), is equal to
the number of elements in iG(v). For a given vertex v of graph G, let n;(v) denote the open
neighborhood of v, being the set of vertices with which v shares edges in G. Let ng;/v] denote
the closed neighborhood of v, being ng(v) + {v].

A path between two vertices x and y is a sequence of edges (v1,v2),...,(V4-1,V5) such
that vy=x and v,=y. We denote such a path as the sequence of vertices encountered on the
path, i.e., (x = v, ..., v, = ¥}. The length of a path is the number of edges in the path. For a
given pair of vertices, u and v, in G, let the distance between them, d¢;(u,v) be the length of a



shortest path from u to v in G. Two vertices at a distance of 1 are directly connected by an
edge and are said to be adjacent or neighbors.

A graph is connected if there exists a path between every pair of vertices. The verrex-
connectivity of a pair of vertices in a graph is equal to the maximum number of vertex-disjoint
paths that can be found between the pair; the vertex-connectivity of a graph is the minimum of
the vertex connectivity over all pairs of vertices in the graph. We shall say that a graph is k-
connected, for positive integer k, with k not greater than the vertex connectivity of the graph.

Another perspective on connectivity is the effects of removing certain elements of a
graph. A graph is 2-connected iff for every vertex v of G, the graph G'=(V-(v}, E-ig(V)) is
connected. In other words, removing any vertex of G does not disconnect the graph. A
minimally 2-connected graph is a 2-connected graph such that the removal of any edge results
in a graph that is not 2-connected. A minimum 2-connected graph is a 2-connected graph
having the fewest edges for a given number of vertices. Obviously, the set of minimum 2-
connected graphs is a subset of minimally 2-connected graphs. These notions of minimal and
minimum subsets of a class of graphs can be applied to other classes of graphs, as well.

Viewing a graph as a model of the toplogy of a communication network, we see that a
graph that is 2-connected represents a network that can be made immune to single failures. The
failure of a single site (vertex) would still allow all remaining sites to communicate with each
other, assuming appropriate rerouting of message transfers as needed. To complete
specification of an immune network, we must specify a communication protocol that completes
possible message transfers under anticipated failure conditions. In this paper, we investigate a
class of 2-connected graphs and associated immune networks that preserve vertex distances,
and thus message transfer times, under single vertex removal, or site failure, conditions.

We say a graph G is immune with penalty k, IP(k), if it is 2-connected and the
maximum (additive) increase in distance between any pair of vertices, regardless of which
vertex is removed, is equal to k. Cycles, i.e., minimum 2-connected graphs in which every
vertex has degree 2, pay the highest penalty in maximum increased distance when a vertex is
removed for any graph with n vertices. Vertices that neighbor the removed vertex are at
distance 2 in the original graph. However, they are at distance n-2 in the graph with the vertex
removed; as such, the distance between them is increased by n-4. From this, we can conclude
the following: If G is a 2-connected graph of n vertices, then G is IP(k) for some k, 0<k<n-4.

Cycles are important aspects of 2-connected and IP(k) graphs. In a 2-connected graph,

there are 2 vertex disjoint paths between every pair of vertices; thus, every pair of vertices lies
on acycle. A cycle with n vertices is called an n-cycle, denoted as C,,.



Self-Repairing Graphs

We will focus on the class of IP(0) graphs, which we will call seif-repairing graphs.
Self-repairing graphs are graphs, such that the removal of any single vertex results in no
increase in distance between any pair of remaining vertices. We have the following theorem,
which localizes this global distance property to vertex neighborhoods.

Theorem 1. A graph G is self-repairing iff, for every vertex v and for each pair of vertices
x and y in n(v), nglx] nglyl is not empty, where G' = (V-{v}, E-ig(v))

Proof: Let v be the vertex removed from G to form G'. For a pair of vertices, u and w, in
G', such that no shortest path between them in G includes v, distg(u, w) = distg(u,w).
However, if there exists a shortest path in G between u and w that includes v, then we must

show that there exists a path in G' of the same length. The shortest path through v in G is of
the form (u =...v; v v,y ... = W), where there are zero or more vertices between u and v, and

between w and v,,. By our assumption as to the non-empty intersection of neighborhoods of
vy and vy, in G', there exists a path of the form (u = ..vy, V'vy, ... = W) in G'. Thus,
distg(u, w) = distcz+(u,w).

If our assumption as to non-empty neighborhood intersections is not true, i.e., there

exists vertices u and w that are neighbors of a vertex v in G and do not share a vertex in their
closed neighborhoods in G', then distg(u, w) > distg(u, w) =2. []

We can restate Theorem 1 as the following corollary in terms of the possible size of a
cycle involving pairs of neighbors of a vertex in a self-repairing graph.

Corollary 1. G is a self-repairing graph iff, for every vertex v in G and for each pair of
vertices x and y in ng(v), vertices v, x, and y are members of a 3-cycle or 4-cycle in G.

We have characterized self-repairing graphs in terms of a local property of vertex
neighborhoods. Are there graphs which have this property? The complete graph on n vertices
(n>2), in which every vertex is connected to every other vertex, is a self-repairing graph; every
vertex and any two neighbors form a cycle of length 3. Complete graphs with n vertices
require O(n?) edges. If we remove an edge from a complete graph having more than three
vertices, the remaining graph is still self-repairing. Thus, complete graphs are not minimal
self-repairing graphs; fewer edges suffice. Can we find a constructive characterization of an



sparse class of self-repairing graphs, where by sparse we will mean minimal self-repairing
graphs having only O(n) edges? In addition, can we find a calling scheme and routing tables
sufficient to generate the desired, immune communication in the corresponding networks?

Sparse Self-Repairing Graphs

We consider the class of twin graphs, to be defined below. Vertices u and v in a graph
G are twins iff ng(x) = ng(y). For a given vertex v in graph G, twing(v) is the set, possibly
empty, of vertices that are twins of v in G. Based upon this notion of twin vertices, we define
a twin graph as follows: (i) the 4-cycle is a twin graph; (ii) if G is a twin graph, then the graph
G' constructed by connecting a new vertex by two edges to a pair of twins in G is a twin
graph. Note that, when a new vertex is connected to a pair of twins in G, the pair remains
twins in G'. In fact, once a pair of twin vertices have degree higher than 2, the two vertices
must remain twins of each other throughout further construction of the twin graph.

Theorem 2: A twin graph G is self-repairing.

Proof: Let G be a twin graph. Each vertex of G is of degree 2 or higher. Let a vertex v of
degree 2 be removed from G to form G'. In G, v is connected to twin vertices x and y, which,
by definition, share equal neighborhoods in G'. Each vertex v of degree greater than 2 in G
has a unique twin vertex, u. Every neighbor of vertex v in G is also a neighbor of u. Thus, if

v is removed to form graph G/, the intersections of neighborhoods of all pairs of vertices in
ng(v) include u. Thus, G is self-repairing, by Theorem 1. []

Twin graphs with n vertices have 2n-4 edges, as the 4-cycle has 2n-4 edges and 2 new
edges are added for each new vertex connected to the graph. Furthermore, twin graphs are
minimal self-repairing graphs.

Theorem 3. Twin graphs are minimal self-repairing graphs.

Proof: The 4-cycle is minimal, as the removal of any edge results in a graph that is not 2-
connected. In a larger twin graph, the removal of an edge that results in a vertex of degree 1
creates a graph that is not 2-connected. Thus, if an edge can be removed from a twin graph
and not eliminate the self-repairing property, the edge must be between two vertices x and y,
each of degree greater than 2. Without loss of generality, let x have the uniquetwin vertex x',
to which y is also connected by an edge, and y have unique twin vertex y', which is connected
by edges to x, x', and anotherm vertex z, where z is also connected to y. See Figure 1. This



local subgraph must be part of the twin graph G from which we remove edge (x, y) to create
graph G". Is G' self-repairing? No. Consider the removal of vertex vy from G', forming
graph G". Then, dist3:(z, x) = 2, but distgn(z, x) 2 4. []

Figure 1. Neighborhood in twin graph.

Thus, by our definition of sparse graphs, twin graphs are sparse, self-repairing graphs.
In a companion paper, we show that twin graphs, together with the 3-regular cube graph on 8
vertices, constitute exactly the class of minimum self-repairing graphs, i.e, those having the
fewest edges over all self-repairing graphs for a given number of vertices [3]. It is interesting
to note that twin graphs are not contained in the class of minimally 2-connected graphs. Due to
the strong restriction on allowable distance penalty of 0, more edges are needed in minimal
self-repairing graphs than in minimally 2-connected graphs. Figure ~s the smallest twin
graph that is not minimally 2-connected.

Figure 2. The smallest twin graph that is not minimally 2-connected.

Can we extend our constructive characterization of sparse, self repairing graphs?
Given a graph G, we define the double of G, double(G), to be the graph composed of two
copies of G (called components), with bridging edges connecting corresponding(isomorphic)
pairs of vertices in a one-to-one fashion. Figure 3 shows that the cube graph is a doubled 4-
cycle.
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Figure 3. Cube Graph as double(C,).

Theorem 4. If G is a self-repairing graph, then double(G) is a self-repairing graph.

Proof: By Corollary 1, we must show that every pair of neighbors of a given vertex v is in
a 4-cycle that includes v. I both neighbors of v are in the same component as v in double(G),
then, by our definition that each component of double{G) is a copy of the self-repairing graph
G, the required condition is met. When the neighbors of v are in differing components, one
neighbor u is within the same component as v and the other neighbor v' corresponds to v in the
other component (connected to v by a bridging edge). By definition, vertex u has a neighbor
u' corresponding to u in the same component as v'. Since v is a neighbor of u in one
component, their corresponding vertices (v' and u') are neighbors in the other component. As
such, vertices v, u, u', and v' form a 4-cycle. Thus, double(G) is self-repairing. []

By the above theorem, the class of graphs known as hypercubes, obtained by iterated
doubling of a 4-cycle, are self-repairing graphs. The doubling operation preserves the property
of being minimal self-repairing, as well.

Theorem 5. If G is a minimal self-repairing graph, then double(G) is minimal self-repairing.
Proof: By the above theorem, we know the self-repairing property is preserved. We only
need to show that every edge in double(G) is required to maintain this property. There are two
cases to consider: (i) the edge removed is between two vertices of a single component, and (ii)
the edge removed is a bridging edge between vertices of different components. Consider case
(i). By our assumption as the the minimal property of G, elimination of such an edge means
that the distance between at least one pair of vertices in the affected component must increase
when a vertex is removed. The original distance between these vertices can not be maintained
by using a path involving bridging edges, as going between components adds at least 2 to the
original distance in a single component. Thus, all edges within each component are needed.



Looking at case (ii), consider eliminating the bridging edge between a vertex v and its
corresponding vertex v' in the other component. Now consider the removal of a neighbor u of
v in v's component and the impact this will have on the distance between v and u', the vertex
corresponding to u in the other component. In the graph before removal of u, the distance is 2;
without the edge between v and v', the distance after removal of u must be at least 3. Thus, the
graph without edge (v, V') is not self-repairing. This establishes our theorem. []

We can maintain the property of self-repairing by the operation of vertex-cloning. A
graph G' is obtained from graph G by the operation of vertex cloning , i.e., adding vertex v' to

graph G such that the open neighborhood of v' in G' is made equal to the open neighborhood
of some vertex v in G, i.e., ni(v') = ng(v) (=ng(v)). Vertex v'is a cloneof vin G

Theorem 6. If graph G’ is formed from a self-repairing graph G by adding vertex v' as a clone
of vertex v in G, then G' is self-repairing.

Proof: As v and v' are twins in G', all pairs of their (common) neighbors are elements of 4-
cycles through these two twins. Likewise, each pair of neighbors of those neighbors is in a 4-
cycle, either because both were in such a cycle in G already, or, if the pair is v' and another
vertex u, we can use the same vertex of G that forms a 4-cycle for the pair v and u in G. Other
neighborhoods of G are not affected. Thus, by Corollary 1, G' is self-repairing. []

Note that vertex cloning creates at least one new twin pair in a self-repairing graph,
allowing addition of degree 2 vertices between these twins while preserving the self-repairing
property (by Theorem 1). This observation suggests that vertex cloning does not guarantee
minimality of the resultant self-repairing graph in all cases. In fact, we have the following.

Theorem 7: If we clone vertex v by v'in a self-repairing graph G, where vertex v is of degree
greater than 2 and has neighbors x and y that are twins in G, then the resulting graph
G' is not minimal self-repairing.

Proof: We need only connect vertex v' to the pair of twins x and y in the neighborhood of

v. If we do this, vertex v' and its neighbors x and y form a 4-cycle as x and y are twins and

share a common neighbor. Similarly, x (y) together with v' and any other neighbor of x (y)

form a 4-cycle through y (x). Thus, v' need only be connected to x and y. Cloning v in this

case introduces unneeded edges into graph G'. []

This means cloning vertices of degree greater than 2 in a twin graph will destroy minimality.



Routing Tables for Self-Repairing Networks

We have shown that twin graphs and doubled graphs are self-repairing. To complete
the design of the corresponding, self-repairing communication networks, we must determine
calling schemes and routing tables that allow message transfers to be completed in the same
number of successful calls (i.e., over paths of the same length), given single site failures.

In our model of network operation, we focus on characterizing the communication
process carried out to perform a particular information dissemination task. A communication
process is the total activity performed in completing an information dissemination task. In our
model, the basic activity is the call, being the transfer of a message between two neighboring
sites (adjacent vertices). A call is initiated by a procedure callimessage, neighbor), which has
the site transfer message to the specified neighbor; the procedure indicates success (with side
effect of message transfer) or failure. Calling sequences for a given site are represented by
routing tables that indicate neighbor(s) the site is to call for a given dissemination task. For
message transfer under single site failure, we will need preferred and alternate neighbors.

Below, we define a message transfer procedure that implements the calling scheme to
be followed by each site:

procedure transfer(self, destination, message):
if [call(message, preferred(self, destination)) indicates failure]
then call(message, alternate(self, destination)).

For each site, we need to determine values for preferred and alternate neighbors to call
for every other site as eventual destination. We assign routing table entries as the associated
immune graph is built. For twin graphs, we add routings with each new vertex, as follows:

For the 4-cycle with vertices numbered as shown in figure 4, we determine the routings
as shown there. We use the entry "fail"” for alternate calls where the preferred call is routed
directly to the destination.

pref(1, 2) = 2

alt(1, 2) = fail
pref(1, 3) = 3
alt{1, 3) = fail
pref(i, 4) = 2
2 3 alt(1, 4) = 3
etc

4 :
Figure 4. Routings for the 4-cycle.



As a vertex v is added, connected to twin neighbors x and y, we assign the following,
additional, routing table entries:
preferred(v, x) = x; altemate(v, x) = fail; preferred(v, y) =y; alternate(v, y) = fail;
preferred(x, v) = v; alternate(x, v) = fail; preferred(y, v) = v; alternate(y, v) = fail;
for all u, x2uzy: preferred(v, u) = x; alternate{v, u) =y;
preferred(u, v) = preferred(u, x);
alternate(u,v) =
if [alternate(u, x) = fail] then y else alternate(u, x).

If alternate(u, x) = fail, then u is a neighbor of twin pair x and y. Preferred and
alternate calls always are assigned vertices from a neighboring twin pair. Lemma 8 will assist
us in verifying that our protocol realizes the desired, self-repairing communication behavior.

Lemma 8: Each vertex in a twin graph G is equidistant from every other pair of twins in G.

Proof : By induction on number of vertices in G. We see our hypothesis is true for the 4-
cycle. Suppose it is true for all twin graphs having k or fewer vertices (k>4) and consider twin
graph G with k+1 vertices. G must have at least one vertex v of degree 2, adjacent to twin pair
x and y. Removing v, we have a twin graph G' for which our hypothesis holds by inductive
assumption. Consider another twin pair, s and t, of G'. These vertices are equidistant from x
with distance d, and similarly from y at distance d'. As a twin pair, x and y are equidistant
from any other vertex in G'; thus, d=d. In G, vertex v is at distance 1 both x and y and thus
equidistant from any other twin pair in G. As any twin of v in G is also only directly
connected to x and y, all vertices in G are also equidistant from any such new twin pairs.
Connecting v to x and y does not change the distance between x and y; so, addition of v
provides no "shortcuts", ensuring that distances between vertices already in G’ do not change
in G with the addition of v. []

Theorem 9. The routing tables for a twin graph make the corresponding network self-repairing.

Proof: By induction on number of vertices, we see our routing tables direct preferred and
alternate calls toward a destination through a pair of twins that are each one step closer to the
destination. With Lemma 8, we see this is sufficient to realize the desired, self-repairing
communication behavior. []

Next we consider routing table entries determined at application of the doubling
operation. Assuming we are doubling graph G for which we have determined routing table



Conclusion

In this paper, we have provided a complete specification of a class of communication
networks that are not only immune to single site failures, but maintain the ability to
communicate between reminaing, operable sites with no additional delay (i.e., no increase in
length of communication path)., Our specification includes a constructive characterization of a
subclass of minimal self-repairing graphs and algorithmic determination of associated routing
tables used by a simple message transfer procedure to realize the desired immune behavior.
Our work on distance penalties for message transfer contrasts with recent work on finding
graphs that have spanning subgraphs approximating distances in the original graphs [5].

Open research questions for future work include the constructive specification of IP(k)
networks, wherein bounded delay is acceptable, 1.e., k>0. As a first step, by generalizing
Corollary 1, we have that a graph G is an IP(k) graph iff, every vertex v of G and every pair of
neighbors of v, x and y, form part of a cycle of length less than or equal to k+4. One can also
generalize the problem along the dimension of number of failures, finding self-repairing graphs
that are immune to m failures for m>1, while incurring no communication delay. In particular,
one might investigate the case where multiple failures are isolated (i.e., not involving
neighboring elements of the network) [1]. Finally, different communication tasks could be
considered, such as networks whose broadcast behavior is immune to failures [2].
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entries already described above. We will use the routings in G when assigning routings for the
doubled graph. We will refer to vertices v', v" and d', d" in double(G), which are
understood to be copies of vertices v and d in G. We assign routing table entries, as follows:
/* First assign calls within a component */
preferred(v', d") = preferred(v, d)'; preferred(v", d") = preferred(v, d)";
alternate(v', d') = alternate(v, d)"; alternate(v", d") = alternate(v, d)";
/* Then assign calls between components */
if (v=d) then /* v and d" at distance 1 */
preferred(v', d") = d"; preferred(v", d) = d;
alternate(v', d") = fail; alternate(v", d') = fail
if [preferred(v, d) =d] then /* v' and d" at distance 2 */
preferred(v', d") = d'; preferred(v", d') = d";
alternate(v',d") = v"; alternate(v", d") = v';
otherwise, preferred(v', d") = preferred(v', d");
preferred(v", d) = preferred(v", d4");
alternate(v', d") = alternate(v', d');
alternate(v", d') = alternate(v", d").

Theorem 10: The routing tables for the doubled graph double(G) make the corresponding
network self-repairing.

Proof: The routings in double(G) follow the previously determined, self-repairing routings
when senders and receivers are in the same component. For those in different components, it
follows the routing within the originator's component until reaching a site at distance 2 from
the destination. That site then first attempts to call the site corresponding to the ultimate
destination in its own component, if that fails, the site calls its corresponding vertex in the other
component, which is also at distance of 1 from the destination. One of these must succeed. As
such, the routing maintains the immune, self-repairing property as required. []

Finally, we consider routing table entries to be assigned at application of the vertex-
cloning operation. Assuming we form a new self-repairing graph G' by adding vertex v'
cloning vertex v of self-repairing graph G, for which we have routing table entries. Routings
to other destinations from v' are assigned to follow the self-repairing routings already
determined from v in G. Routings from other sites to v' follow the self-repairing routings to v
until reaching the neighborhood of v, from which v' is called directly. Message transfers
between v' and v utilize their common neighborhoods to realize the desired immune behavior.
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Abstract

A graph is self-repairing if it is 2-connected and such that the re-
moval of any single vertex results in no increase in distance between
any pair of remaining vertices of the graph. We completely character-
ize the class of minimum self-repairing graphs (which have the min-
imum number of edges for a given number of vertices) and establish
certain algorithmic properties of such graphs.

1 Preliminaries

In this paper, we investigate the class of graphs which we will call self
repairing. These are graphs from which the removal of a single vertex results
in no increase in distance between any pair of remaining vertices. Specifically,
we show that a minimum number of edges in a self-repairing graph with n
vertices is 2n — 4 and determine the class of all such minimum size self-
repairing graphs.

By a graph we will understand a simple undirected graph G = (V, E),
consisting of a set V of vertices and a set E of edges, each edge connecting

*Research supported in part by National Science Foundation grants NSF-CCR-9213439
and NSF-INT-9214108.
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Figure 1: (2) The three-cycle, (b) the four-cycle (also K52), and (c) the cube.

a pair of vertices (v1,v2). For a given vertex v, let ig(v) represent the set
of edges incident to v in graph G, i.e., those for which v is a member of
the edge pair. The degree of a vertex v in graph G is equal to the number
of elements in ig(v). For a given vertex v of graph G, let Ng(v) denote
the open neighborhood of v, being the set of vertices with which v shares
incident edges in G. Let Ng[v] denote the closed neighborhood of v, being
NG('U) U {’U}

A path between two vertices z and y is a sequence of edges (vy,v2), ..., (Un-1,Vn)
such that v) = rand v, =yand for 1 £i < j < n, v # v;. When this
constraint is violated for i = 1 and § = n (i.e.,, £ = y), such a sequence of
edges defines a cycle. The length of a path is the number of edges in the
path. For a given pair of vertices in G, u and v, let the distance between
them, distg(u,v), be the length of a shortest path from » to vin G. A graph
is connected if there exists a path between every pair of vertices. A graph is
2-connected if for every vertex v of G, the graph G' = (V — v, E — ig(v)) is
connected. In other words, removing any vertex of G does not disconnect the
graph. As such, self-repairing graphs are a subset of the 2-connected graphs.

In the following, we will refer by name to the three-cycle (cycle of three
vertices), the four-cycle (cycle of four vertices), the cube graph (the 8 vertex,
12 edge skeleton of the cube) and the complete bipartite graph K having
k 4 2 vertices, 2 of which are adjacent to k other vertices, and no other
adjacencies (see Figure 1).

We first establish a property of the neighborhoods of vertices in a self-
repairing graph.

Theorem 1: A graph G is self-repairing if and only if, for every vertex v
and for each pair of vertices z and w in Ng(v), Ner[u] N Nev[w] # 0, where
G'=(V-{v}hE-i))



Proof: Let v be the vertex removed from G to form G'. For a pair of
vertices, z and y in G', such that no shortest path between them in & includes
v, distg(z,y) = diste:(z,y). However, if there exists a shortest path in G
between z and y that includes v, then we must show that there exists a path
in G’ of the same length. The shortest path through v in G contains edges
(u,v) and (v, w), for some vertices u and w in Ng(v), where there are zero
or more vertices between u and z and between y and w. By our assumption
as to the non-empty intersection of neighborhoods of u and w in &', there
exist edges (u,?') and (v/,w) in G’ (u and w are not adjacent because the
(z,7) path has the shortest length). Thus, diste(z,y) = diste (z, y).

If our assumption as to non-empty intersections is not true, i.e., there
exist vertices u and w that are neighbors of a vertex v in G that do not
share a vertex in their closed neighborhoods in G' after the removal of v,
then dister(u, w) > diste(u,w) =2. =

We can restate Theorem 1 as the following corollary in terms of the max-
imum possible length of a minimum cycle involving a pair of neighbors of
any vertex in a self-repairing graph.

Corollary 1: G is a self-repairing graph if and only if, for each vertex v in
G and for each pair of vertices z and y in Ng(v), vertices v,z, and y are
members of a cycle of length at most 4 in G, i.e., a three- or a four-cycle.

2 Main result

We want to characterize self-repairing graphs with minimum number of edges.
We first define the class of twin graphs that are self-repairing .

We call two vertices = and y in a graph G twins if and only if Ng(z) =
Ne(y), where the neighbor set is non-empty. Based upon this notion of twin
vertices, we define twin graphs recursively, as follows: (i) the four-cycle is
a twin graph; (ii) if G is a twin graph, then the graph G’ constructed by
connecting a new vertex by two edges to a pair of twins in G is a twin graph.

Note that, when a new vertex is connected to twins z and y, vertices z
and y remain twins in G’. In fact, once a pair of twin vertices have degree
higher than 2, the two vertices remain unique twins of each other in any twin
graph constructed from this smaller graph.
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(a) 3 (b)
levels

Figure 2: (a) The level graph of a twin graph wrt. a degree 2 vertex, and
(b) the corresponding free tree.

Fact 1: In a twin graph, vertices of degree greater than 2 occur in uniquely
defined pairs of twin vertices. m

Theorem 2: A twin graph is self-repairing.

Proof: Let G be a twin graph. Each vertex has degree 2 or higher. Let a
vertex v of degree 2 be removed from G to form G'. In G, v is connected to
twin vertices = and ¥, which, by definition, share a non-empty neighborhood
of vertices in G'.

Now, consider v having degree greater than 2. Such a vertex v has a
unique twin vertex w (Fact 1). Every neighbor of vertex v in G is thus also
a neighbor of w. Thus, if v is removed to form graph G’, the intersections of
neighborhoods in G’ of all pairs of vertices in Ng(v) include w.

Thus, G is self-repairing, by Theorem 1. =

Twin graphs with n vertices have 2n — 4 edges since the four-cycle has
2n — 4 edges and 2 new edges are added for each new vertex connected to
the graph. We will show that, together with the cube graph, they constitute
exactly the class of minimum size self-repairing graphs with n vertices.

In our proofs of the tight lower bound on the number of edges in a self-
repairing graph, we will use the notion of level graph of a given graph G with
respect to a fixed vertex z of G. Vertices of graph G are arranged in levels,
depending on their distance from the vertex z. Given a vertex z in G, we
assign a level to each vertex by defining level(z) = 0 and level(y) =1 > 0 to
every vertex y at distance i from z (see Figure 2(a)).
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Lemma 1: In a level graph of a self-repairing graph, any vertex at level
i > 1 is adjacent to at least two vertices at level 7 — 1.

Proof: Consider a vertex v at level i > 1. It must have a neighbor x at
level i — 1, which in turn has a neighbor y at level i — 2. Since v,z and y are
in a four-cycle, v must have another neighbor at level i - 1. =

Together with the fact that self-repairing graphs are 2-connected, Lemma 1
gives us the following lemma.

Lemma 2: In a level graph of a self-repairing graph, each level 7 > 0, except
for the maximum level, contains at least two vertices. =

We want to prove that there are no self-repairing graphs of n vertices
with fewer than 2n — 4 edges. We will proceed by assuming the contrary and
proving that such a graph cannot have vertices of degree 2. This, in turn,
will be used to show that no such graphs exist.

Lemma 3: A self-repairing graph G with n vertices and fewer than 2n — 4
edges has no degree 2 vertices.

Proof: Assume that there is a degree 2 vertex xz in G. We will consider
the levels defined wrt. z. By Lemma 1, every vertex on level i > 1 is adjacent
to at least 2 vertices on level i — 1, which totals at least 2(n — 3) edges. The
vertex z and its neighbors induce at least 2 edges. Thus G has at least
2n — 6 + 2 = 2n — 4 edges, a contradiction. =

Not having any degree 2 vertices, a self-repairing graph G with n vertices
and fewer than 2n — 4 edges must have some degree 3 vertices. We will show
that this cannot happen. Thus, there are no such graphs.

Lemma 4: In a level graph of a self-repairing graph G with n vertices and
fewer than 2n — 4 edges, where levels are defined wri. a degree 3 vertex,
every vertex at level i > 1 has exactly two neighbors at level i — 1 and no
neighbors at level 1.

Proof: By Lemma 3, such a graph G does not have a degree 2 vertex
and thus must have a degree 3 vertex . We will consider the levels defined
wrt. z. Lemma 1 requires that there are at least two level i — 1 neighbors
of a level i > 1 vertex; thus the n — 4 vertices of G — Nz] account for at
least 2n — 8 edges. This is also the maximum number of edges incident with
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vertices at levels > 1 if G is to have fewer than 2n — 4 edges, since at least
3 edges are induced by N|[z]. Thus every vertex at level i > 1 has exactly
two neighbors at level i — 1 and no neighbors at level i. =

Theorem 3: The minimum number of edges in a self-repairing graph of n
vertices is 2n — 4.

Proof: In a self-repairing graph G with n vertices and fewer than 2n —4
edges, every vertex at level ¢ > 1 has exactly two neighbors at level i —1 and
no neighbors at level i (by Lemma 4). This implies that vertices on the last
level defined wrt. x have degree 2. This contradict the result of Lemma 3,
which states that there are no degree 2 vertices in G. Thus, there are no self-
repairing graphs with n vertices and fewer than 2n — 4 edges. Twin graphs
are self-repairing and have 2n — 4 edges. =

We have seen that twin graphs are self-repairing and reach the lower
bound on the number of edges. We will show that, except for the cube
graph, there are no other minimum self-repairing graphs. Here again, we will
consider level graphs of minimum self-repairing graphs defined wrt. a vertex
of degree 2, or 3.

Lemma 5: A minimum self-repairing graph having a degree 2 vertex is a
twin graph.

Proof: Assume the contrary and consider a smallest minimum self-
repairing graph G with a degree 2 vertex x that is not a twin graph. In
the level graph of G defined wrt. z, every vertex at level i > 1 is adjacent to
exactly 2 vertices at level i — 1 and has no neighbors at level i. By Lemma 1,
the number of neighbors at level i — 1 for each such vertex is at least 2, and
is adjacent to two edges, which accounts for the total of 2(n —3)+2 =2n—4
edges. As such, the two neighbors of = have identical sets of neighbors and
thus are twins; z and its two incident edges can be removed to give G'. It is
easy to see that G' is a minimum self-repairing graph. Also, G’ has a degree
2 vertex (as discussed in the proof of Theorem 3). Thus, by our asumption,
G' is a twin graph and so is G, a contradiction. =

Lemma 6: A minimum self-repairing repairable graph without degree 2
vertices has no three-cycle involving a degree 3 vertex.

Proof: Assume to the contrary that three vertices induce a cycle. Con-
sider the levels defined wrt. a degree 3 vertex z from this cycle. The remain-
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ing n — 4 vertices account for at least 2n — 8 edges which together with the 4
edges induced by = and its neighbors gives 2n — 4 edges. Thus, the vertices
at the last level must have degree 2, a contradiction. =

Lemma 7: The only minimum self-repairing graph with no degree 2 vertices
is the cube graph.

Proof: Such a graph G must have at least 8 degree 3 vertices. Consider
the level graph of G defined wrt. a vertex of degree 3. Only one vertex at any
of the levels 7 > 1 can have 3 neighbors on level i — 1, or only two vertices at
the same level i > 1 can be neighbors. By the absence of degree 2 vertices,
this must apply only to the last level, k. If there are two adjacent vertices of
degree 3 at level k, then they must be adjacent to four different level k — 1
vertices (by Lemma 6). This and the absence of other edges between vertices
at the same level (Lemma 4) violates the requirement that two adjacent edges
in a self-repairing graph belong to a four-cycle.

Assume that the last level k consists of exactly one degree 3 vertex. By
symmetry, every vertex at level 4, 0 < < k — 1, has exactly two neighbors
at level i + 1. This implies that all intermediate levels have 3 vertices with
the same pattern of adjacencies with vertices on the neighboring levels. By
inspection, vertices on three (or more) intermediate levels violate the self-
repairing property and thus £ < 3. For k = 2 we have Ky 3, a twin graph,
and for k = 3 we have the cube graph. =

Lemmas 6 and 7 imply our main result.

Theorem 4: A minimum self-repairing graph is either a twin graph or
the cube graph. =

3 Algorithmic properties

We have presented a constructive characterization of the class of minimum
self-repairing graphs. With one exception, the class is identical with the class
of twin graphs, which are thus useful as graphs underlying communication
networks immune to certain element failures ([5, 6]). In this section, we also
characterize twin graphs by an efficient recognition algorithm and propose
a simple enumeration scheme for these graphs that is based on a bijection
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with the family of free trees. This bijection reflects a tree-like structure of
twin graphs, which we show here to have treewidth not greater than 3, and
thus belong to a well-known class of graphs with good algorithmic properties
(see [1, 2]).

3.1 Recognition of twin graphs

We have completely characterized minimum self-repairing graphs by their
construction process. This characterization leads to a simple and efficient
recognition algorithm by means of a graph reduction system. Such a system
reverses the iterative construction process discussed above.

Theorem 5: A twin graph can be recognized in time proportional to the
number of vertices in the graph.

Proof: The only reduction rule is the removal (deletion) of a degree 2
vertex (and its incident edges) adjacent to twin vertices, as long as the graph
has more than 4 vertices. The rule is generic in the sense that the degree of
the twins is not bounded. The original graph is recognized as a twin graph,
if and only if its irreducible reduct is the four-cycle. This algorithm can be
implemented to execute in time proportional to the number of vertices of
the input graph. Degree 2 vertices are accessible in constant time through
an initial degree count and incremental maintenance of “current degree”.
Checking of the twin property (the equality of the neighborhoods of two
vertices) requires examination of the graph’s adjacency lists (which have
linear size) at most twice per edge. =

There is an additional advantage of the twin graph recognition algorithm,
pertaining to its use as the topology of a self-repairing communication net-
work ([6]). Since the recognition process reverses the iterative construction
process, if the self-repairing communication protocol (routing tables) is not
established with the graph’s construction, it is possible to create the correct
entries as a result of the recognition process.

3.2 Enumeration of twin graphs

We will construct a bijection between twin graphs and free trees. Due to
this relation, a systematic enumeration of twin graphs can be performed by
enumeration of free trees, see for instance [4].
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The bijective relation between the set of free trees with m internal nodes
and k leaves, and the set of twin graphs with & degree 2 vertices and 2m
vertices of higher degree is established as follows.

Given a twin graph G with at least 5 vertices, the corresponding tree T(G)
is defined by the set of nodes and the set of edges incident to the nodes. A
degree 2 vertex z in G defines a leaf of T(G) that is adjacent to the node
representing the pair of twin neighbors of z in G. A pair of twin vertices
of degree at least 3, say = and y of G, defines an internal node of the tree
T(G). By Fact 1, this determines uniquely the set of nodes of T(G). The
node corresponding to the pair of twin vertices = and y is adjacent to every
node in T(G) that corresponds to a pair of twin vertices of degree at least
3, say u and v in G such that the sequence z,u,y, v constitutes a four-cycle
without chords in G. If G has k degree 2 vertices and 2m vertices of higher
degree, then T(G) has k leaves and m internal nodes (¢f. Figure 2).

Conversely, consider a tree T" with at least four nodes. An internal node of
T will define a pair of (twin) vertices of the corresponding twin graph G(T'). A
leaf will define a degree 2 vertex of G(T"). The adjacency between two internal
nodes X and U that correspond to two pairs of vertices of G(T"), = and y, and
u and v determines the four edges in G(T) : (z, uw), (z,v), (v,u) and (y,v). A
leaf node Z of T adjacent to an internal node X corresponds to a degree 2
vertex z of G(T') adjacent to the (twin) vertices z and y corresponding to X.

To see that G(T') is a twin graph, we will construct it according to the
twin graph construction rules. If T has only one internal node and k leaves,
it corresponds by this definition to the twin graph Kox. If T has at least
two internal nodes, then by considering an arbitrary pair of adjacent internal
nodes X and U as representing vertices of the initial four-cycle of G(T) and
proceeding to construct G(T') by adding vertices of G(T') corresponding to
nodes of T adjacent to those already regarded nodes, we get G(T').

3.3 Treewidth of twin graphs

Existence of a tree describing the structure of a given twin graph indicates
the possibility of an efficient algorithmic treatment of these graphs. We give
an indirect proof that many optimization problems, inherently difficult for
general graphs, can be solved efficiently when restricted to twin graphs. We
exploit here the concept of the treewidth of & graph, tw(G), or rather a related
concept of a partial k-tree: for & given integer k, graph G is a partial k-tree
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Figure 3: Reduction rules for recognition of partial 3-trees.

if and only if tw(G) < k. Such graphs have good algorithmic properties, as
mentioned above, and for k < 4, there are recognition algorithms of linear
time complexity. We refer the reader unfamiliar with these concepts to the
relevant references ([1, 2, 3]) and only sketch the proof here.

In & graph G = (V, E), a minimal separator S € V is a smallest subset
of vertices such that G’ = (V — 8§, E — Uyesic(v)) is not connected. A k-tree
is a connected graph such that any minimal separator induces a complete
subgraph K. Partial k-trees are subgraphs of k-trees.

Connected partial 3-trees can be recognized by using the reduction rules in
Figure 3. Applying a reduction rule consists of finding a subgraph isomorphic
to the left-hand side of the rule, such that the vertices corresponding to the
bold vertices of the rule have exactly the adjacencies indicated, and replacing
it by a subgraph isomorphic to the right-hand side of the rule. A finite
number of reductions transforms a connected partial 3-tree (and only such
graphs) to the trivial graph ([3]). We will show that a twin graph can be
always reduced in such a manner. The intermediate graphs obtained through
reduction of twin graphs differ from twin graphs in that some twins will
become adjacent.
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Figure 4: The result of two series reductions (first step) and a triangle re-
duction (second step) applied to the twin graph in Figure 1.

A degree 2 vertex of a twin graph G can be reduced according to the series
rule (second rule of Figure 3). This reduction introduces an edge between
the neighbors of the reduced vertex which are twin vertices in G.

Consider an intermediate graph G in which all degree 2 vertices adjacent
to the same pair of (now adjacent) twin vertices, say u and v, have been
reduced (this is illustrated in the first reduction step Figure 4). Vertices u
and v have degree 3 in G and Ng[u] = Ng[v]. Thus, one of these vertices,
say u, can be reduced according to the triangle rule (third rule of Figure 3).
The reduction results in a graph G’ with a degree 2 vertex corresponding to v
adjacent to the two neighbors (in G) of u and v which are (possibly adjacent)
twins in G and are now connected (second step in Figure 4). Iterating this
process, a twin graph is reduced (according to the rules in Figure 3) to an
edge graph (K:). The edge graph can be reduced to the trivial graph by the
first rule of Figure 3, showing that tw(G) < 3. Thus, we have established
the following fact.

Theorem 6. Twin graphs have treewidth at most 3.

Actually, only twin graphs Ky ;, 7 > 2, (represented by trees of star shape)
are partial 2-trees. (This follows from the property of partial 2-trees which
excludes subgraphs homeomorphic to K4.) We notice that, though most twin
graphs have treewidth 3, their minimal separators are of size 2. Thus, many
optimization algorithms for twin graphs, guided by the tree corresponding to
the input graph, should be simpler (more efficient) than the corresponding
algorithms for partial 3-trees.
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