Object View: A Software Design
Architecture for Breakpoint-Based
Program Visualization

Christopher D. Hundhausen
Allen D. Maloney

CIS-TR-93-20
September 1993

Department of Computer and Information Science
University of Oregon






ObjectView: A Software Design Architecture for Breakpoint-Based
Program Visualization

Christopher D. Hundhausen, Allen D. Malony

Department of Computer & Information Science
University of Oregon
Eugene, OR 97403

Keywords
algorithm visualization, breakpoint-based program visualization, instrumentation, object-oriented
programming, portability, program object-to-graphics mapping, target-independent simulation-time
visualization system, time of visualization.

Abstract

Algorithm visualization (AV) systems, which provide graphic depictions of the dynamic state of an
executing algorithm, can prove invaluable to anyone interested in gaining insight into the dynamic
behavior of computer programs. Although past researchers have taken a multitude of different approaches
to designing and implementing such systems (cf. Myers 1984, Brown 1988, Stasko 1990, Naps & Hundhausen
1991, Tuchman, Jablonowski, & Cybenko 1991, Mukherjea & Stasko 1993), they have all had to address, in
some way, the same four issues underlying AV system design: (1) portability, (2) time of visualization, (3)
instrumentation, and (4) program object-to-graphics mapping. Targeting the specific domain of breakpoint-
based program monitoring and visualization—a style of AV in which one can set breakpoints and examine
the graphical representation of program's objects (variables, data structures, and other abstractions of
program state) of interest at those breakpoints—this paper both identifies the requirements of a target-
independent AV system architecture, and presents ObjectView, an architectural framework that we have
developed to meet those requirements. Through its use of a distributed model, the object-oriented
programming paradigm, and a portable, device-independent graphics language, ObjectView defines a
framework for AV design that supports (1) a natural and non-intrusive method for identifying the program
objects of interest, and for preparing those objects to be visualized; (2) a device- and program-independent
technique for defining mappings between program objects and the graphics displays to which they should
give rise; and (3) a run time source-level visualization environment for controlling the execution of a
program, and for viewing, on demand, dynamic graphical representations of program objects.

1 Introduction

Recognizing that computer algorithms represent “complex objects whose properties
can be difficult to fathom" (Brown & Sedgewick 1984, p. 177), computer scientists have
inexorably sought tools that might make the dynamic behavior of algorithms more
accessible. Predicated on the intuitive idea that we can gain insight into the dynamic
behavior of an algorithm through a mapping from its fundamental abstractions to two-
or three-dimensional graphics, algorithm visualization (AV) emerged in the 1980s as a
tool for gaining insight into the dynamic behavior of computer algorithms. Although
early work in algorithm visualization focused on developing methods for visualizing



classic, programming-in-the-small algorithms (cf. Brown 1988, Stasko 1990), more
recent research has turned to the problem of developing run-time systems for
graphically monitoring potentially large and possibly parallel programs. Qur work has
been greatly influenced by two, largely independent lines of recent research.

First, in describing their Vista visualization system, Tuchman, Jablonowski, &
Cybenko (1991) introduce the term simulation-time visualization to denote displays
that may be selected and viewed at run-time—as an executing program unfolds. Vista
exploits a compiler-generated symbol table and a distributed framework to achieve
simulation-time animation with "minimal and possibly automatic instrumentation"
of the target program, and without requiring the programmer to specify the
visualization mappings before compilation. Although users may select a visualization
mapping at runtime, Vista display methods are intimately tied to a small set of
standard data views; thus, Vista discourages user exploration of alternative algorithm-
to-graphics mappings.

In a similar vein, Mukherjea & Stasko (1993) describe a simulation-time
visualization system called Lens. Like Vista, Lens exploits a compiler-generated symbol
table to obviate the need for intrusive program instrumentation; moreover, a direct-
manipulation, run-time environment provides users with a graphical editor, along
with a suite of animation primitives, for interactively defining algorithm abstraction-
to-graphics mappings. In order to determine which primitives to include in the Lens
system, Mukherjea and Stasko examined a set of forty algorithms on which animations
had already been defined using Stasko's Tango system (Stasko 1990). Accordingly,
while the Lens system can prove invaluable for defining animations on algorithms
that are similar to those that Mukherjea and Stasko studied (mostly sorting, searching,
graph, tree, string, and graphics algorithms), a usability study that one author recently
conducted on Lens (Hundhausen 1993) suggests that the Lens primitives may prove
restrictive for defining animations in a more general setting.

In this paper, we introduce the concept of a target-independent simulation-time
visualization system, and we present a software design framework called ObjectView
that we have developed to meet the requirements of such a system. Section 2 precisely
identifies the requirements of a target-independent simulation-time visualization
system in terms of the four central issues that general algorithm visualization systems
have had to address. In Section 3, we present the ObjectView architectural model for
simulation-time visualization system design, and we assess its ability to meet the
requirements set forth in Section 2. Using our prototype implementation of the
ObjectView architecture as a basis, Section 4 illustrates the feasibility and benefits of the
architecture in practice. Finally, in Section 5 we sketch out numerous future directions
for the ObjectView project.

2 Target-Independent Simulation-Time Visualization System Requirements

Owing primarily to a variety of different target domains and applications, past
researchers have taken numerous different approaches to designing an AV system (cf.
Myers 1984, Brown 1988, Stasko 1990, Naps & Hundhausen 1991, Tuchman,
Jablonowski, & Cybenko 1991, Mukherjea & Stasko 1993). Nonetheless, we believe that



the usability and acceptance of these systems within their respective domains has often
turned on their ability to deal appropriately with four issues central to the design and
implementation of any AV system: (1) portability, (2) time of visualization, (3)
instrumentation, and (4) program object-to-graphics mapping. Below, we use those
four issues as a framework for defining the requirements of a target-independent
simulation-time visualization system; by “target-independence," we imply the ability of
a simulation-time visualization system to be applied to different target application
domains and execution environments. In Section 3, the system architecture we have
designed with these requirements in mind, ObjectView, is presented.

Issue 1: Portability. The portability of an AV system reflects the extent to which it is
tied to a specific computer platform, programming language, and graphics language. In
general, the more portable the system, the more flexibility one has in choosing the
programming and graphics language in which the algorithm and its visualization can
be written, as well as the computer platform on which that algorithm can be executed
and visualized.

Requirement 1: Device and language independence. We concur with Naps (1989),
who identifies device and language independence as an important feature of an AV
system. Specifically, two points are important here. First, the model underpinning the
AV system should not be tied to machine-specific features such as low-level graphics
libraries; instead, the conceptual model should be amenable to any graphics
architecture. Second, an AV system should not impose limits on the particular
programming languages that may be visualized; programmers should have the
freedom to program in the language of their choice, and the AV system should provide
ways of visualizing those programs regardless of the language in which they are
written. While it is clear that certain program abstractions transcend programming
languages—and hence are amenable to language-independent visualization—the
instrumentation requirements of simulation-time visualization systems can limit
language-independent capabilities, as we shall see in Section 3.

Issue 2: Time of visualization. An AV system can show a visualization of a
program either post-mortem or in real-time. Post-mortem visualization systems
usually require that programmers select the program states and events of interest before
their program executes; the program must be re-executed for each new set of program
events required. Real-time visualization, on the other hand, allows programmers to
control and view program states as their program unfolds. As a result, programmers
can decide, on the fly, which program states to view, and can thus alter the course of a
visualization based on their dynamic observations of program behavior.

Requirement 2: Both real-time and post-mortem visualization. Clearly, real-time
visualization gives users more flexibility in visualization specification, but requires
greater, and possibly more intrusive, run-time control. Furthermore, for programs that
manipulate large amounts of data, real-time visualization could become tedious and
cumbersome; for these programs, post-mortem analysis of a trace file may be more
manageable. Since both forms of visualization are more or less appropriate depending
on the situation, we conclude that an simulation-time visualization system should be
flexible enough to accommodate both real-time and post-mortem visualization.



Issue 3: Instrumentation. Instrumentation refers to the mechanism by which an AV
system gains access to the dynamic state of an executing program. Often,
instrumentation comes in the form of procedure calls inserted into the original source
code of the program to be visualized.

Requirement 3: Minimal intrusions into the original source code. Brown (1988)
promulgated this requirement in the first sentences of his dissertation, and it has had a
powerful influence on algorithm visualization systems ever since. Indeed, an AV
system that allows programmers to visualize a program without having to change it
very much should be preferred to an AV system that requires programmers to
transform their program into something that bears little semblance to the program they
originally wrote. In short, the fewer source code intrusions that are visible to the
programmer, the better.

Issue 4: Program object-to-graphics mapping. As pointed out in the introduction, AV
requires a mapping, at one or more points in a program's execution, between program
objects (variables, data structures, or other abstractions of program state), and two- or
three-dimensional graphics Past researchers have addressed this issue in a variety of
ways, ranging from automatic, static mappings whose location in the source code must
be specified at compile-time (cf. Naps & Hundhausen 1991), to user-defined mappings
that may be defined and applied dynamically at runtime (cf. Mukherjea & Stasko 1993).

Requirement 4a: Viewers should have dynamic control of mapping. Because one of
our target domains is real-time, breakpoint-based visualization, viewers should have
the ability to see the graphical representation of any visualizable object on
demand—whenever the program is suspended.

Requirement 4b: Viewers should have complete flexibility in defining mapping.
An AV system should provide tools that encourage viewers to experiment with
alternative ways of mapping program objects to graphics. In particular, viewers should
have the ability both to define their own program object-to-graphics mappings
independently of the visualization framework, and to plug a mapping into a
visualization session at runtime—i.e., without having to recompile either the original
source code or the visualization system. Although this requirement has been largely
ignored by past visualization systems, we believe that the systems of the future should
make it a top priority; indeed, recent research on the cognitive aspects of visualization
suggests at least two compelling reasons for encouraging viewers to experiment freely
with alternative visualization mappings:

Stasko, Badre, and Lewis (1993) argue that in order to benefit from a visualization,
one “must understand both [the] mapping [from algorithm objects to computer
graphics,] and the underlying algorithm on which it is based.” Assuming that
programmers already have an understanding of the program they wish to monitor,
they maintain that an effective way of illuminating its mapping to graphics is to
allow viewers to construct that mapping themselves.

Roschelle (1990) points out we should not assume that a mapping that accords well
with the expert’s mental model will be meaningful to everyone, as we have been



prone to assume in the past. Instead, Roschelle suggests, we should shift our efforts
away from designing visualization systems that are capable of accurately depicting
algorithms as experts have come to conceptualize them, and toward designing
systems that provide viewers with mediational resources with which they can
experiment with their own mappings, and thereby build their own understanding of
the algorithm.

3 The ObjectView System Architecture

In order to meet the design requirements of a target-independent simulation-time
visualization system within the specific domain of breakpoint-based program
visualization, we take an architectural approach, viewing the problem abstractly as a
physical system made up of four primary components (see Figure 1): (1)the program to
be monitored; (2) the program monitoring environment, with which users interact to
control the execution and display of a program; (3) the Mapper, which maps program
objects to their graphical representations; and (4) the Viewserver, which manages their
display. Although each component constitutes a standalone and independent unit,
model components must communicate extensively during a monitoring and
visualization session. Consequently, message-passing plays an important role in the
model. Below, we first examine the specific role of each actor in the architectural

model, called ObjectView,l as well as the considerations that proved crucial to its
formulation. We then look at the requirements of the message passing mechanism by
which components communicate, as well as the specific messages that need to be passed
among components. Finally, we consider the extent to which the ObjectView design
architecture meets the requirements of a target-independent simulation-time
visualization system.

3.1 The Program to be Monitored

Clearly, in order to coordinate its execution with the other components in the model,
the program will need to contain some kind of instrumentation; however, in
accordance with Requirement 3, we place three constraints on the nature and
intrusiveness of that instrumentation. First, programmers should be required to
instrument only those components of a program that they want to visualize; the
“administrative” instrumentation required to interface the program with the
monitoring system should be amenable to automatic generation via a preprocessor.
Second, the method of identifying and instrumenting visualizable program objects
should not require low-level, machine specific code; rather, the programmer should be
able to express such instrumentation naturally and elegantly using the constructs of the
language in which the program is written. And third, all instrumentation should be
nonintrusive in the sense that program should be able to run (without recompilation)
independently of the monitoring framework just as it would run without
instrumentation.

1The name ObjectView reflects our notion of a breakpoint-based program visualization
system that supports graphical viewing of program objects.
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3.2 The Program Monitoring Environment

The program monitoring environment (the User Environment in Figure 1)
provides all of the functionality that one would expect from a source-level debugger. In
particular, users have the ability to (1) see their code in a scrollable window; (2) set and
cancel breakpoints in that code, preferably by clicking on lines of code in the window;
(3) single-step through their program; (4) tell their program to resume execution; and
(5) examine the program variables and objects of their choice anytime the execution of
their program is suspended.

Note that with respect to (5), an important question naturally arises: Should users
have the ability to examine every variable in their program, as they would expect to be
able to do in a debugging system, or should they be able to examine only those that they
have identified as interesting—i.e., only those that they have instrumented? The
answer, as we see it, depends intimately on the specific purpose for which a program is
being monitored. If, for example, a program is being monitored in order to identify and
eliminate a low-level bug, then clearly the ability to examine all program variables
would be advantageous. If, on the other hand, a programmer is employing the
monitoring system to obtain a high-level picture of the dynamic behavior of a program,
then the ability to examine all variables would be, at best, unnecessary, and, at worst, a
distraction.

In designing the ObjectView model, we assume the latter perspective: namely, that
while it may be desired in certain situations, the ability to examine all program
variables will be unnecessary in all but the lowest-level debugging activities.
Furthermore, as we shall see in the next section, to supply users with such functionality
would detract from the relative simplicity of our instrumentation, and thereby violate
Requirement 3. While our model should be able to accommodate such functionality if
the need for it arises in the future, in this paper we shall not consider the challenging
issues related to giving programmers the ability to examine all program variables.

3.3 The Mapper

The Mapper is responsible for converting execution-time representations of a
particular visualizable program object to its graphic representation. Thus, although not
visible in Figure 1, a separate mapper may exist for each class of visualizable objects. In
devising this component of the model, we had to pay particular attention to
Requirement 4b: Viewers should have complete flexibility in defining mappings. The
Mapper responds to that requirement by decoupling the graphics routine used to specify
a program object-to-graphics mapping from both the program in which those objects
reside, and the environment in which those objects are ultimately displayed.

3.4 The Viewserver

The Viewserver manages the display of the graphic representations of program
objects produced by the Mapper. In order to meet requirement 4a— dynamic control of
visualization—the Viewserver must provide for a way to interface with a user-defined
mapping routine at runtime, as well as a way for users to request the graphical
depiction of any visualizable program object whenever the program is suspended.
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3.5 Message Traffic

Figure 2 shows the ObjectView physical model augmented with the messages by
which model components communicate. Although we have attempted to give
messages descriptive names, further comments on each message are appropriate. In
the following subsections, we group messages according to their source and destination
model components.

3.5.1 User Environment to Instrumented Program

These messages inform the program of user actions that affect the program’s
execution. setBreak and cancelBreak tell the program’s breakpoint manager to set or
cancel a breakpoint at the specified line. step tells the program to execute a specified
number of lines, while go tells the program to execute to the next breakpoint. Finally,
halt informs the program that the user does not wish to continue monitoring the
program; accordingly, the program should stop execution immediately.

3.5.2 Instrumented Program to User Environment

Two types of messages need to be sent from the program to the User Environment:
those that indicate which objects are currently in scope, and those that indicate what
execution state the program is presently in. The inScope and outOfScope messages
inform the User Environment that a particular visualizable object has just come into or
left the current scope. The suspendedAt and algComplete messages, on the other hand,
let the User Environment know how far along the program is in its execution:
suspended At says the program is suspended and waiting at a particular line number,
while algComplete says that the program has completed execution.

3.5.3 User Environment to Viewserver

Within the model, visualizable program objects are grouped into classes, with a
single class viewer responsible for displaying all visualizable objects belonging to a
particular class. Assuming that the appropriate class viewer has been opened, users
may choose to view any visualizable object that is within the current scope of the
program. Thus, the main messages from the User Environment to the Viewserver are
sent both in response to user requests to open or close a class viewer (openClassViewer
and closeClassViewer), and in response to a visualizable object's entering or leaving the
current scope of the program (addInstance and removelnstance ). Notice that the latter
pair of messages can only be sent if the user has opened a class viewer on the class to
which the visualizable objects belong.

The suspendUserEvents and resumellserEvents messages tell the Viewserver
whether it should accept user events (i.e. mouseclicks). The User Environment sends a
suspendUserEvents message immediately before the program begins or resumes
execution; a resumellserEvents message is sent when the program has suspended and
control has been transferred to the User Environment. Finally, the closeVS message
informs the Viewserver that either the user has chosen to abort the monitoring
session, or the program has run to completion; in either case, the Viewserver must
shut itself down.



3.54 Viewserver to User Environment

The classViewerClosed is sent in response to the user’s request (via a mouseclick) to
close a class viewer on a particular class. Since users interact with the Viewserver
directly—and, more specifically, with class viewers—the User Environment has no way
of knowing that the user decided to close a class viewer without the explicit notification
that the classViewerClosed message provides.

3.5.5 Viewserver to Instrumented Program

The show message is potentially sent in response to two distinct events: (1) when
the user chooses to open a view a particular visualizable object in a class on which a
class viewer has been opened; and (2) when the User Environment informs the
Viewserver (with a resumellserEvents message) that the program has suspended. In
the former case, the show message is used to generate a picture of the object whose
visualization the user requested. And in the latter case, the show message is used to
update the displays of all objects currently being displayed, so that they reflect the
current state of the program.

3.5.6 Instrumented Program to Mapper

The mapsnapshot message is always sent in response to a show message, which, as
described above, requests that a particular visualizable object send a current graphical
snapshot of itself to the Viewserver. The mapsnapshot message commences the
message passing necessary to fulfill that request by passing a textual representation of
the visualizable object of interest (i.e., whose graphical representation was requested by
the show message) to the Mapper associated with that object.

3.5.7 Mapper to Viewserver

The Mapper responds to an updateView message by mapping the textual snapshot
associated with the updateView message to an appropriate graphical depiction, which it
passes to the Viewserver via the updateView message. Note that the Viewserver
should be able to convert the graphicalsnapshot parameter directly to graphics that can
be displayed within the Viewserver.

3.5 Discussion

Does the architecture presented above meet the requirements of a target-independent
simulation-time visualization system? Below we examine the architecture vis-4-vis
each requirement.

Requirement 1: Device and language independence. That we were able to describe
the architecture independently of any specific computer platform clearly indicates the
architecture's device independence; indeed, the architecture's only operating system
requirement—an environment that supports multiple processes and a message passing
style of inter-process communication—is widely available and popular. Similarly,
assuming that the required message passing machinery is in place, we see no inherent
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reason why programs written in any programming language could not be integrated
into the ObjectView framework; however, as we shall see in the following section, if we
consider the elegance and ease with which programs to be visualized can be
instrumented, then object-oriented languages, which support an object-based, message
passing style of computation, are clearly more amenable to the architecture than
procedural or functional languages.

Requirement 2: Both real-time and post-mortem visualization. It should be clear
that the architecture facilitates real-time visualization; it does this by allowing show
messages, which give rise to a corresponding graphical depiction in the Viewserver, to
be issued anytime the executing program is suspended—i.e., in real-time. While it may
not be readily apparent that the architecture also supports post-mortem visualization,
we contend that post-mortem visualization fits quite naturally with the architectural
framework. Without modification of the underlying architecture, graphicalsnapshot
parameters (accompanying the updateView message) can be directed to a trace file
instead of, or in addition to, the Viewserver. A standalone, post-mortem AV system
similar in spirit to the GAIGS system described in (Naps & Hundhausen 1991) can then
be used to replay trace files created by the redirected updateView messages.

Requirement 3: Minimal intrusions into the original source code. Recall that this
requirement does not impose a limit on the total number of source code intrusions
required to instrument a program; rather, it limits the number of intrusions that are
visible to the programmer. Therefore, instrumentation that can be done automatically
and invisibly is not addressed by this requirement. As suggested by Figure 2, upon
execution of each line or block of code, the breakpoint manager is responsible for
checking whether a breakpoint exists, and for transferring control of the program to the
User Environment (via a suspendedAt message) if one does. We see, then, that some
kind of control statement is required immediately before each line or block of
executable code in order to interface the program with the ObjectView framework.
Notice that such control statements amount to nothing more than a call to a procedure
capable of checking the current line number against a table of breakpoints. Because this
instrumentation is quite uniform, requiring nothing more than a knowledge of the
number of the line that is about to be executed, it lends itself nicely to automation via a
preprocessor; thus, it is invisible to the programmer and therefore nonintrusive.

One other kind of instrumentation is needed to identify visualizable objects, and to
interface those objects with the architectural framework. In particular, visualizable
objects must be capable of (1) informing the User Environment that they are in scope or
out of Scope (cf., the inScope and outOfScope messages in Figure 2), and of (2)
responding to show messages with an appropriate textual representation of themselves
(cf., mapSnapshot message in Figure 2). As it requires only a knowledge of when an
object enters and leaves scope, the instrumentation needed to handle (1) can, in the
worst case, be automated by a preprocessor, and, in the best case, be obtained "for free"
via the native constructs of the programming language (as we shall see in Section 4.2);
in either case, it will not be intrusive according to our definition. The instrumentation
required to handle (2) involves both interrogating a visualizable object's current state,
and mapping that state to a textual representation; unfortunately, such
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instrumentation is intrusive: programmers must write it by hand. Nonetheless, by
successfully eliminating all but one form of potentially intrusive instrumentation, the
ObjectView architecture arguably meets the requirement of minimal intrusiveness.

Requirement 4a: Dynamic control of mapping. Within the architecture, a show
message, which invokes a program object-to-graphics mapping, may be sent from the
Viewserver anytime the program is suspended. Since viewers can have complete
control of when and which show messages are sent (e.g., through a user interface to the
Viewserver), the architecture supports the dynamic control of mapping by viewers.

Requirement 4b: Complete flexibility in defining mapping. Recall that by "flexibility
in defining a mapping,” we mean that viewers should have the ability to define their
own mappings without having to recompile any component of the AV system. Since
the Mapper—responsible for rendering a textual description of a visualizable object into
a corresponding graphical depiction—constitutes a distinct component in the
architecture, viewers have the ability (assuming they are provided with appropriate
tools for interfacing with the message passing system) not only to write their own
mapping routines, but also to plug such routines in at runtime without recompilation
of the entire system.

4 The ObjectView Design Architecture in Practice

Although we have already shown that ObjectView holds the promise of meeting the
requirements of a target-independent simulation-time system, the architecture will
clearly be of little use in practice unless it can be easily implemented as a working
software system. In this section, we use a prototype version of the ObjectView
architecture to illustrate its feasibility and benefits in practice.

4.1 Overview of the prototype

In order to realize the ObjectView model, our prototype system makes use of the C++
programming language, UNIX domain sockefpair interprocess communication, and an
XWindow-based version of the international standard Graphics Kernel System (GKS).
The prototype achieves complete independence and modularity of model components
by mapping each component to a separate UNIX process. Layered on top of UNIX's
socketpair IPC interface, a C++ stream-style protocolManager abstract base class provides
the foundation for the message-passing protocol; descendant classes cater the
protocolManager to the individual message-passing needs of each model component.
A C++ breakpointmanager class handles the "administrative” instrumentation
requirements of a program to be visualized; it defines a monitor method, which, when
inserted before each line of executable code in a program, appropriately interfaces that
program with the ObjectView architecture. An abstract base class called visualObject
implements the basic instrumentation requirements of a visualizable object; by
inheriting from the visualObject base class, programmers can identify and instrument
program objects they wish to visualize using the natural object-oriented constructs of
the C++ language, as shall be illustrated in Section 4.2. While, in our present
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implementation, the User Environment is implemented as a text-based, command line
interface, our Viewserver uses the C interface to XGKS, a device-independent, high-
level graphics language, to implement a graphical environment for displaying program
objects. Finally, our present prototype does not implement the Mapper as a separate
UNIX process; instead, mapping routines, which are written using the C interface to
GKS, are included directly into the Viewserver source code.

A visualization session using our prototype proceeds as follows. Users launch the
environment by running the User Environment executable code. From the User
Environment, users may select an executable program to monitor; acting as the parent
process, the User Environment then employs the UNIX fork and execvp commands to
spawn subprocesses for both the program to be monitored (the “Instrumented
Program” in Figures 1 and 2), and the Viewserver, which is then responsible for
managing and displaying visualizable objects for that program. As long as the program
to be monitored has been properly instrumented (as described below), it will be able to
communicate with the other model components to facilitate simulation-time
visualization within the ObjectView framework.

4.2 Using the ObjectView prototype to visualize an algorithm: An illustrative example

To make the prototype system described above more tangible, we present a simple
example that illustrates the three step process one must follow to prepare an program
for visualization within our prototype framework.

Step 1: Using multiple inheritance to define a visualizable object. Multiple
inheritance, which allows programmers to combine the behavior of two or more C++
classes, provides a natural and elegant way to define a visualizable object within our
prototype framework. The foundation of our multiple inheritance scheme is the
visualObject abstract base class presented in Figure 3; by properly overriding that class,
programmers can use multiple inheritance to interface any existing C++ class that they
wish to visualize with our prototype framework.

Recall that our architecture identifies three specific instrumentation requirements
for visualizable objects: (1) notifying the User Environment when a visualizable object
enters scope; (2) notifying the User Environment when a visualizable object leaves
scope; and (3} sending an execution-time representation of a visualizable object's
current state to the appropriate Mapper in response to the show message. Because,
according to the semantics of C++, visualObject’s constructor and destructor will be
invoked automatically when descendant instances enter and leave scope, our
implementation transparently satisfies requirements (1) and (2) by placing the
appropriate inScope and outOfS5cope message passing calls directly within
visualObject’s constructor and destructor. To satisfy requirement (3), we require
programmers to override the pure virtual show method so that it interrogates the
object's state, and writes a textual representation of that state to the Mapper. Figure 4
illustrates how one can create a visualizable stack class by using multiple inheritance to
specialize the behavior of an existing stack class; as can be seen, the only real work in
this step is to override visualObject’s virtual show method.
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class visualObject {

protected:

char iname[64]; f* The name of this instance. */

char cname[64]; /* The name of the class to which instance belongs.*/
alg_protmanager *view_sock; /* Pointer to the UNIX pipe connection. */

boolean dmode; /* Is the program running in debug mode? */

public:

/* Constructor--sends the User Environment an inScope message. */

visnalObject(char* instanceName, char *className,

alg_protmanager *my_sock, boolean debugmode);

/* Destructor -- sends the User Environment an outOfScope message. */

~visualObject();

/* This pure virtual method should use the insertion operator (<<)
defined on the alg_protmanager class to write the textual snapshot
over the view_sock that has been bound to this instance. */

virtual void show() = 0;

15

Figure 3. C++ abstract base class visualObject, which programmers override to define
a program object they wish to visualize, and to interface that object with the
ObjectView framework.

Step 2: Defining a mapping procedure. The next step is to write a routine that can
both interpret the textual format in which the show method defined in Figure 4 writes
the stack’s current state, and produce a corresponding graphical representation of the
stack. While the precise details of such a routine are beyond the scope of this example,
the routine involves just two steps: parsing the textual format into an internal data
structure, and using that data structure to make the appropriate GKS graphical calls to
draw the stack.

Step 3. Instrumenting the program to be monitored. Figure 5 summarizes the
relatively simple "administrative” instrumentation required to interface a program
with our prototype framework. Indeed, instrumenting a program amounts to nothing
more than instantiating a breakpointManager class object, and inserting calls to the
breakpointManager's monitor method before each line of code. With this
instrumentation in place, the program can be executed either as a subprocess of the
User Environment, in which case all visualObject descendants can take visual form in
the Viewserver, or as a standalone program, in which case it executes normally—just as
it would without the instrumentation.
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fclass stack { N
public: /* classic stack ADT */
stack(); /* constructor */
~stack(); /* destructor */
int push(int itemn);
int pop(};

int ontop();
int empty(); @ass visualObject )
U; J

' '

( class visualStack : public stack, public visualObject {

protected:
int Ipn;
void ("printnode)(void * ,alg_proimanager&});
public:
visualStack({char* insiName, int linespnode, void(*prnode)(void*,alg_protmanager&),
alg_protmanager *my_sock, boolean debugmode);

, bR R R S A d b Bl d b bl b ALyl Al el iRl ittty ]])

i function that prints a data node to a file.

i used to output a data node to an appropriate text file.

I HRAARRARAAAERARRERAA AR ARTSARSRd e et bR bbb d R RN W

~visualStack(); /* desiructor */
void show() {

I A b A SRS A AT AR SR AR AN E N R R TR AR NI RAR AR TR AR TR AR AR AR

// GIVEN : apm, a reference to an alg_protmanager object.

’ AR AR AN AR A AN AR AT AR S A A A AR A TR AR AR R AR AW

(* view_sock) << "Stack\n\0";
stacknode *temp = top;
char tipn[10];
sprintf(tipn,"%d",Ipn);
(* view_sock) << tlpn << ™" << iname << "n" << """V 0" /T endtitle Y
while (temp I= NULL) {
printnode(temp->datapir,(* view_sock)); temp = temp->next;
}
(* view_sock) << ""**A**"\n"; /* endsnapshot */

B

Q;

// GIVEN : The name of the instance to instantiate, an integer 'linespnode’, and a pointer to a

#/ TASK : Initialize a stack with 'linespnode’ lines per data node, for which ‘prnode' may be

// TASK : Output the current state of the stack to apm in standard GAIGS-readable format.

Figure 4. Using mutiple inheritance to implement a visualStack class.
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#include *“alg_protmanager.h” /* Monitored programs include the alg_protmanager */

#include "bpmanager.h" /* header file, the bpmanager.h header file, and the */
#include "visualStack.h" /* header files of the the visualObject descendants
that the program will use.*/
i:i);nanager *bpman; /* An instance of the breakpointmanager class */
boolean debug_mod /* the global variable debug_mode tells the program whether

it is being monitored in ObjectView. */

void main() {
/* Instantiate alg_protmanager object */

alg_protmanager *alg_sock = new alg_protmanager();
if (alg_sock->checkIfChild()) { /* See whether the program is being monitored . . . */
debug_mode = true; /* If yes, set the debug_mode to true and instantiate

the breakpointmanager object. */
bpman = new bpmanager(alg_sock,10); /* The second parameter indicates the number
lines of source code in the program being
monitored */
)
else {
debug_mode = false; /* debug_mode = false indicates normal execution outside of
ObjectView monitoring framework, */
delete alg_sock; /* We won't need it. */
alg_sock = NULL;
}
/* From here, each line of executable code should be proceeded by a call of the form: */
if (debug_mode == true) bpman->monitor(26); /* monitor’s single parameter indicates
the line number that is about to be
executed. */

Figure 5. The instrumentation required in a program to be monitored within
ObjectView

4.3 Practical benefits of the architecture

We believe that our prototype system demonstrates a good match between the
implementation requirements of the architecture, and the implementation tools (e.g.
UNIX, socketpair IPC, C++, and GKS) with which we realized the architecture;
nonetheless, the high level of abstraction at which we specified the architecture in
Section 3 afforded us much flexibility in choosing implementation tools. For example,
we might have chosen to implement the message passing system using an interpreted
language like Tcl (Ousterhout 1993) instead of our C++ stream interface to UNIX
socketpair IPC. Similarly, users would not necessarily have to write mapping routines
in a textual graphics language like the C interface to XGKS that we chose; instead, a
graphical user interface, through which users could specify a mapping by direct
manipulation, could be used to generate automatically the executable code required to
perform a mapping. In short, because the ObjectView architecture addresses the
requirements of simulation-time visualization using an abstract physical model whose
components' interrelations are precisely identified, the architecture allows us to plug in
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an alternative implementation for any model component—User Environment,
Instrumented Program, Viewserver, Mapper, or message passing system—without
having to modify the other components in the model. Therefore, we believe that the
architecture provides an ideal testbed on which to study the usefulness and benefits of
simulation-time visualization in practice; we look forward to exploring the tradeoffs of
alternative implementation strategies as our prototype system matures.

5 Conclusion and Future Work

In the preceding paragraphs, we have used four issues—portability, time of
visualization, instrumentation, and program object-to-graphics mapping— central to
AV system design as a framework for identifying the requirements of a target-
independent simulation-time visualization system within the specific domain of
breakpoint-based program visualization. The ObjectView architecture we have
described not only meets those architectural requirements, but also lends itself to
implemention using a variety of alternative implementation tools. Indeed, our
current ObjectView prototype based successfully demonstrates the benefits of
developing a program visualization system using a formal design framework.

In future activities, we intend to pursue three lines of research work. First, we want to
conduct usability studies with the ObjectView prototype to evaluate user-level benefits
of the design architecture. To do so will require improvements in the User
Environment interface and the implementation of the Mapper as a separate
component. Second, want to enhance the mapping procedures and graphics
renderning capabilities of the ObjectView system by integrating other program
execution analysis and view abstraction tools we have developed for parallel
performance visualization. Finally, we want to use the ObjectView architecture and
prototype as the basis for developing a breakpoint-based program visualization system
for a parallel C++ language and execution environment.
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