Data Distribution Visualization (DDV)
for Performance Evaluation

Steven T. Hackstadt
Allen D. Malony

CIS-TR-93-21
QOctober 1993

Department of Computer and Information Science
University of Oregon

Data Distribution Visualization (DDV)
for Performance Evaluation

Steven T. Hackstadt
Allen D. Malony
Dept of Computer & Information Science
University of Oregon
Eugene, OR 97403

{hacks,malony}fcs.uoregon.edu

June, 1993
(Revised: October, 1993)

ABSTRACT

The next generation of language compilers for parallel
architectures offers levels of abstraction above those
currently available. Languages such as High Performance
Fortan (HPF) and Parallel C++ (pC++) allow the
programmer to specify how data structures are to be
aligned relative to each other and then distributed across
processors. Since a program’s performance is often
directly related to how its data is distributed, a means of
evaluating data distributions and alignments is necessary.
Since there is a natural tendency to explain data
distributions by drawing pictures, graphical visualizations
may be helpful in assessing the benefits and detriments of
a given data decomposition. This paper formulates an
experimental framework for exploring visualization
techniques appropriate to evaluating data distributions.
Visualizations are created using IBM’s Data Explorer
visualization software in conjunction with other software
developed by the author. An informal assessment of the
resulting visualizations and an explanation of how this
research will be extended is also given.

||

" e -
. i

[

CIS-TR-93-21

1 Introduction

Modern parallel languages and compilers strive for at least three goals: ease of
use, efficiency, and portability. Attainment of these goals has challenged the
parallel computing community for some time. Most contemporary parallel
programming languages and environments exhibit a trade-off between these
goals. Those environments offering simplicity and efficiency are typically tied
to a single parallel architecture, while parallel languages boasting portability
can be more difficult to program. The next generation of parallel languages
and compilers hopes to defeat the reasons for these trade-offs.

New languages such as High Performance Fortran (HPF) [4] and Parallel
C++ (pC++) [1] offer cohesive data parallel programming abstractions,
strive for efficiency, and have portability as as an underlying motivation in
their design. Thus, they hope to attain all three goals identified above. While
these languages offer levels of abstraction far removed from the physical
architecture, they still give the programmer explicit control over such issues
as data distributions, data alignments, abstract processor arrangements, and
specification of parallel loop constructs. The results are languages whose
compilers can capitalize on certain recent advances in compiler technology
([5], for example), but presently leave the critical task of distributing data
across processors up to the programmer. Perhaps this signifies the parallel
computing community’s realization that automatic (and efficient) static data
distribution is an extremely difficult task. There are those people who will
undoubtedly applaud this step and consider user-specified data distributions
a ‘“feature.” Equally likely, there are those who will dread being forced to
figure out the best way to partition their data structures. Giving this ability
(or burden) to the programmer, however, places the performance of thousands
of parallel applications in potential jeopardy. Clearly, the distribution of data
across processors is a deciding factor in the performance of the program
operating on that data. Thus, programmers using new languages such as HPF
and pC++ are going to demand some means of evaluating different data
distributions.

The goal of this research is to demonstrate how performance visualization
techniques can be developed to meet the needs of programmers requiring
evaluations of data distributions. The work by Kondapaneni, Pancake, and
Ward [8] demonstrates how data distributions and alignmentsin Fortran D (a
language which contributed significantly to the design of HPF) may be
specified using graphical representations of program data structures. They
claim that the accuracy of data distributions specified by programmers using
their visual programming tool were more accurate than those made by

CIS-TR-93-21

programmers who did not use the tool. Furthermore, the graphical
environment also encouraged experimentation with different mappings.
These results strongly suggest that the evaluation of data distributions could
benefit from graphical representations as well. To this end, we embark on the
development of an experimental data distribution visualization (DDV)
environment — a framework from which visualization techniques,
evaluation criteria, and further research may arise.

The rest of this paper will proceed as follows. Section two will offer a brief
overview of the DDV project and a summary of other relevant research.
Section three will present the aspects of High Performance Fortran pertinent
to this work. A discussion of the project’s methodology in section four will be
followed by an application in section five. Section six will offer some initial
observations on the value of the visualizations which were generated, and a
discussion of future work and the paper’s conclusion will appear in section
seven.

2 DDV Overview

2.1 Goals

HPF and pC++ offer data parallel extensions to Fortran and C++,
respectively, allowing programmers to specify data distributions for the data
structures of each language. In HPF the programmer distributes arrays only.
In pC++, traditional C++ objects are the targets of distribution
specifications. As a starting point, this research will focus on developing
visualizations for HPF. High Performance Fortran offers a simple platform
from which to begin this work since only arrays need to be considered. With
that in mind, three primary goals can be established:

® Develop criteria for evaluating data distributions in HPF.
® Keep visualizations meaningful to the programmer.
® Provide a research base from which more advanced topics may be pursued.

For the first goal, metrics that will help the programmer determine the
effectiveness of a given data distribution must be identified. Once this occurs,
visualizations showing some or all of those metrics for a given distribution can
be developed. In accordance with the second goal, these visualizations should
demonstrate some consistency with the programmer’s mental model of the
data structure, the distribution, or other aspects of the problem. This is a
critical goal which deserves further explanation.

One of the primary features of HPF is that it offers an abstraction far removed
from any particular architecture. Thus, the specific architectural knowledge

CIS-TR-93-21

required by the HPF programmer is far less than that required for other
parallel environments. The consequence of this is that traditional
performance visualizations based on physical processor load and low-level
message passing, for example, may not be as meaningful to the HPF
programmer. Thus, visualizations for HPF must demonstrate levels of
abstraction that are consistent with the language’s — and hopefully the
programmer’s — underlying conceptual model.

Although many features of HPF could potentially benefit from performance
visualization, this research project is focusing on the visualizations for
evaluating data distributions. As will be seen later, this paper investigates a
problem of limited scope. If was mentioned above that HPF visualizations
could be more effective if, to a certain degree, they were dependent on HPF's
underlying programming and operational semantics. This suggests two
additional areas of research. First, the notion of source language-based
visualizations becomes evident. In other words, is it possible that an HPF
program with directives for data distributions contains enough information
to generate visualizations which are useful to the programmer? Second, if
source language-based visualization is possible, can the generation of such
visualizations be automated? Can a visualization compiler for HPF be built?
These are research topics which may eventually benefit from the work being
done here.

2.2 Approach

The work proceeded in five primary phases which are essentially echoed by
the sections of this report. Initially, a review of HPF was conducted to
determine syntax, distribution capabilities, programming model, and
abstractions. A review of current visualization technology followed. Based on
these two areas, a DDV visualization framework was established. This
primarily consisted of carving the problem down to a manageable size for the
limited time frame of this project. From here, an experimental visualization
environment evolved, and various visualizations were developed using Data
Explorer, a commercial data visualization software package by IBM. Finally,
an informal assessment of the current work took place.

2.3 Related Research

Performance visualization has become a hotbed of computer science research.
Tools such as ParaGraph [3], Pablo [9], and Sieve [10] have become popular
because of their portability, scalable displays, and complete visualization
environments. The displays offered by these products can be very effective for
general parallel performance evaluation. Typically however, the

CIS-TR-93-21

visualizations are independent of the source-language used and do not, in any
way, reflect the underlying conceptual model that may be inherent in an
application, a programming model, or data structures.

Asmentioned earlier, the visual programming tool for Fortran D developed by
Kondapaneni, Pancake, and Ward [8] offers visual representations of data
structures to aid in the specification of data distributions and alignments.
They also demonstrate how source code can be processed to assist in building
the graphical representations of data structures. While their work does not
extend into the arena of performance evaluation, the effectiveness of
graphically representing data distributions and alignments has immediate
relevance and adds validity to this research.

The Program Visualization (PV) environment is a prototype tool developed by
Kimelman and Sang’udi [7] at IBM’s T. J. Watson Research Center. PV
pursues the topic of integrating the generation of visualizations with the
language compilation process. They propose a language-level program
structure as a basis for more effective displays. Their environment
parallelizes sequential Fortran code and generates traditional performance
visualizations such as static call graphs, control flow graphs, and dependence
graphs for subprograms. Since their version of Fortran does not allow
user-specified data distributions, visualizations addressing this issue are not
immediately relevant.

The research most pertinent to DDV is being done in the computer science
department at Indiana University by Srinivas and Gannon [11]. They
propose an interactive environment that aims to address many of the same
questions about data distributions that this paper does. They also recognize
the importance of providing visualizations in terms of the semantics of the
application for new languages like HPF and pC+ +. Source code analysis and
visualization of data structures are also components of this environment.

The work which is the focus of this paper integrates many of the concepts just
presented. Currently, it is most similar to the work of Srinivas and Gannon
[11], but in the future it will potentially integrate the research done by
Kimelman and Sang’udi [7] as well. Kondapaneni et al. [8] offer support for
the benefits of graphically representing data distributions, while the host of
other visualization tools all emphasize the important role visualization now
plays in performance evaluation. We are attempting to bring these two
research areas together.

CIS-TR-93-21

3 High Performance Fortran

3.1 Overview

High Performance Fortran is a parallel Fortran language that hopes to offer
support for high performance on a wide variety of parallel processing
architectures, including massively parallel SIMD machines (e.g., Maspar’s
MP-1 or Thinking Machine’s CM-2), distributed- and shared-memory MIMD
architectures (e.g., the Intel Paragon and the Cray Y-MP (C90), vector
processors, and other architectures. Version 1.0 of the language specification
[4] was released on May 3, 1993, by the HPF Forum, a coalition of industrial
and academic groups representing most commercial vendors, several
government labs, and many university research groups.

HPF is a set of extensions and modifications to Fortran 90 [6] that will offer
data parallelism in the form of explicit parallel loop constructs, code tuning
for various parallel architectures through a set of extrinsic procedures, and
high performance on MIMD and SIMD machines through data distribution
and alignment capabilities which the user spceifies with compiler directives.

3.2 The Programming Model

While there are many features of HPF which make it an interesting topic of
discussion, this work is concerned only with its data distribution features. It is
well known that modern parallel architectures achieve their best
performance when data accesses exhibit high locality of reference. A
programmer should, therefore, try to limit the frequency with which a
processor must obtain data from other processors. Data distributions hold the
key to achieving this goal. HPF allows the programmer to specify aspects of
the distribution process. The primary directives and their functions are given
in Figure 3.1.

HPF Directive Function

PROCESSORS Declare an n—dimensional mesh of
abstract processors

ALIGN Specify relationships between multiple
arrays

DISTRIBUTE Specify how arrays (or groups of arrays)

are distributed across processor sets.

Figure 3.1 — Primary HPF Directives

CIS-TR-93-21

The PROCESSORS directive allows the user to declare an abstract set of
processors onto which distributed arrays will be mapped. The abstract
processor set takes the form of an n-dimensional mesh with no inherent
interconnection network. Next, relationships between different data
structures are specified with the ALTGN directive. An ALTIGNment offers a
common structure to which several arrays are oriented. Finally, using the
DISTRIBUTE directive, ALIGNments {i.e., groups of related arrays) are
mapped onto the abstract set of processors. Thus, the HPF programming
model can be illustrated as in Figure 3.2 [4].

. Abstract Physical
Arrays Alignments processors processors

O—0O—0O—0

ALIGN DISTRIBUTE Compiler-specific
directives {optional)

_’d Se— e—
Programmer domain Compiler domain

Figure 3.2 — HPF Model

From the programmer’s perspective, this is a two-level mapping: first, data
structuresare aligned with one another, and then these groups are distributed
onto a set of abstract processors. The compiler takes responsibility for
mapping the abstract processor set onto the physical processors. (The HPF
Forum suggests that commercial HPF compilers may wish to offer
compiler-specific directives so that the user has some say in how abstract
processors are mapped to physical processors.) From this, the underlying
programming model becomes evident. Programs are written as if running on
an arbitrarily sized, n-dimensional mesh of processors. Thisis consistent with
the ideal data parallel programming paradigm where the amount and type of
data determines the processing resources needed.

As a side note, it is important to realize that specifications for processors,
distributions, and alignments in HPF are expressed as compiler directives.
Thus, the programmer is advising the compiler on how to partition data
structures; a compiler is not obligated to follow such directives.

The HPF model is dependent on two assumptions that are reasonable for
current architectures. First, an operation involving multiple data elements
will be faster if the elements are all on the same processor. Second, many such

CIS-TR-93-21

operations can be done simultaneously if they can be performed on different
processors.

3.3 Examples of HPF Directives

This section will offer a few examples of HPF directive syntax for specifying
processors and distributions. Alignments will not be discussed here as they
are not currently incorporated into the visualization model. Visualizations
which would incorporate the concept of alignments stand to be considerably
more complex than the displays discussed here.

3.3.1 Processors

The PROCESSORS directive is used to declare an n-dimensional mesh of
abstract processors. The following are examples of some possible processor
arrangements.

'HPF$ PROCESSORS A_SCALAR

'HPF$ PROCESSORS A_VECTOR({16)

'HPF$ PROCESSORS A_GRID(32,32)

'HPF$ PROCESSORS A_CUBE(S8, 8, 8)

IHPF$ PROCESSORS A_MESS(2,5,3,4,8,1)

The A_SCALAR processor specification declares a scalar processor (which
might be mapped to a parallel machine’s front-end processor). A_VECTOR
corresponds to a linear vector of processors. As can be seen from the last
example, processor arrangements do not have to be uniform in all
dimensions.

3.3.2 Distributions

The DISTRIBUTE directive allows the programmer to specify how arrays or
groups of arrays are distributed. The following examples will specify
distributions independent of any particular set of processors. The next
section (3.3.3) will combine the the PROCESSORS and DISTRIBUTE directives.

INTEGER CHESS({8,8)

INTEGER GO(19,19)
'HPF$ DISTRIBUTE CHESS (BLOCK, BLOCK)
'HPF$ DISTRIBUTE GO (CYCLIC, *)

These two examples distribute the arrays CHESS and GO in significantly
different ways. The CHESS array will be chopped into blocks whose size will be
determined by the compiler and then distributed in both dimensions. The GO
array, however, will only be distributed across the first dimension. That is, no
distribution across the columns of this array will occur; entire rows will be

CIS-TR-93-21

spread across processors in a cyclic fashion. In the first case, the blocking
factor has been left unspecified so that the compiler will try to determine the
best value to use. By not specifying a parameter for the CYCLIC distribution,
the factor defaults to one. The next section offers an example of a cyclic
distribution factor.

3.3.3 Combined

The DISTRIBUTE directive can be used to distribute an array across a specific
set of abstract processors. The following example demonstrates this
capability.

INTEGER CARDS(52)
IHPF$ PROCESSORS PLAYERS (4)
IHPF$ DISTRIBUTE CARDS (CYCLIC(3)) ONTO PLAYERS

The net effect of these directives is to ‘‘deal” three cards (that is, elements of
the array CARDS) to each player (or, processor in the processor set PLAYERS) .

For more information or additional examples of HPF directives, the reader is
referred to the HPF Language Specification [4].

3.4 Computations in HPF

The final aspect of HPF which must be addressed is the manner in which
computations are carried out. Bozkuset al. [2] propose four possible models of
computation based on the locations of left-hand and right-hand data
elements. Given the generalized form of an assignment statement, A: ths =
rhs, Figure 3.2 illustrates the four possible cases.

P; denotes processor i. The processor containing ‘‘lhs” owns the data element
on the left-hand side of the assignment; the processor(s) with ‘“rhs” own data
elements which are required by the computation; the processor containing
the ‘=" is the processor which performs the computation. Annotated arrows
indicate the interprocessor communication required with respect to when the
computation is performed (before or after).

Given a data distribution, the processor responsible for performing a
computation is not specified by HPF; that is, it is up to the compiler to
determine which processor will perform a given computation. As noted in
Figure 3.2, one of the more popular parallel computation models is known as
owner computes. Under this scheme, the processor which “owns” the
left-hand side data element (i.e., the data element to which the assignment is
being made) is the one that will perform the computation. Thus, before the
computation can occur, all processors holding data elements which occur on

CIS-TR-93-21

Figure 3.2 — Parallel Computation Models

the right-hand side of the assignment must send their data to the owner
processor. A degenerate case of owner computes occurs when all data
elements are locally owned. Thus, the top half of Figure 3.2 illustrates cases of
the owner computes rule.

Since the manner in which assignments and computations are carried out is
compiler-dependent, this work will generally assume that the owner
computes rule is used. This assumption is evident only in the sample
application described later.

4 DDV Methodology

The methodology of the DDV project consisted of two primary tasks which will
be discussed in the following sections. First, a limited DDV problem domain
was established. Then, an experimental environment where data distribution
visualizations could be built, refined, and evaluated was built. Figure 4.1
diagrams the process that was followed to define the DDV problem.

4.1 Establishing the DDV Problem Domain

Establishing a problem domain for data distribution visualization consists of
deciding which HPF features will be addressed by the visualizations, how data
distributions are to be evaluated, and what properties the visualizations
should have. The following sections will identify and justify the decisions
which were made.

CIS-TR-93-21

Evaluation
of Data
. Distributions __,

High
Performance
Fortran

Visualization
. Characteristics

DDV Problem
Domain

Figure 4.1 — DDV Problem Domain

4.1.1 High Performance Fortran

For thisinitial attempt, it isimportant that the problem be accessible. For this
reason, visualizations are limited to two-dimensional data arrays and
two-dimensional sets of processors. This results in simple, obvious mappings
from data structures and processor sets to graphical objects. (Similarly, an
upper-bound of three dimensions was set in [8].)

In addition, data structure alignments are not considered. The current
visualization system considers only individual arrays. Thus, relationships to
other arrays, specified with the ALIGN directive, are currently irrelevant,
though such relationships could undoubtedly play a role in future
performance visualizations.

In HPF, programmers can dynamically redistribute arrays in the middle of
their program. To maintain simplicity, DDV considers static distributions
only.

Finally, as mentioned earlier, the owner computes rule will be assumed as the
computational model for sample applications (which will be discussed later).

4.1.2 Evaluating Data Distributions

The evaluation of data distributions is essentially a load balancing problem.
The programmer wants to make sure that data structures are distributed in
such a way that no single processor is excessively burdened with data
requests. In accordance with the assumptions underlying HPE, the
programmer also wants to maximize local data accesses and minimize the
number of remote data operations that a given processor must perform.

To evaluate a data distribution for a given application, the programmer needs
to formulate answers to two questions:

10

CIS~-TR-93-21

® What memory reference patterns are exhibited by the application?

® Given the data distribution, how do these reference patterns manifest
themselves on the set of processors?

Thus, it stands to reason that the type of accesses being made to data
structures (i.e., reads or writes) and the type of communication associated
with that operation (i.e., local or remote) will play an important role in
determining whether a given distribution is good or bad. If visualizations can
be devised that show reference patterns for both the data structure and the
processors across which the data is distributed, then the HPF programmer
can answer the questions above. To this end, DDV focuses on collecting
information about data reference patterns, and then determines which
processor has that data element by the data distribution which was specified.

4,1.3 Visualization Characteristics

One of the primary goals set out earlier in this paper was that visualizations
should incorporate the programmer’s mental model. This applies toboth data
structures and processors. The limitations pertaining to HPF set out above
make this task much easier. By placing an upper-bound of two dimensions on
arrays and processors, visualizations should be able to include easily the
traditional representation of arrays. The creators of the visual programming
tool for Fortran D [8] point out the importance that should be placed on
maintaining consistency between graphical portrayals of arrays and the
programmer’s mental model of arrays. They also indicate that a grid of cells
arranged in rows and columns is the most obvious and intuitive
representation of such structures.

In order to answer fully the questions posed above, visualizations should
incorporate the passage of time. In general, this means that there should be
some component of animation in the visualizations.

Finally, the ability to show multiple dimensions of the problem in a single
visualization may be useful in some circumstances. At the very least, this
should be an option for the programmer.

Given the establishment of the DDV problem domain, the problem at hand is
well-defined and approachable. We now turn to a discussion of the
experimental environment which was developed.

4.2 Building an Experimental DDV Environment

In the following sections, a detailed examination of how the DDV
environment currently operates will be presented. Figure 4.2 offers an
overview of the steps from application to visualization.

11

CIS-TR-93-21

Application -

Memory Reference

rofile
Distributions
and Processors _/
- Trace Files
% <
Trace Processor
Visualization
Files
Visualization Visualization S,
Software J,«'} Softwvare _/
Graphic
Displays

User - -
U”User Actions

Figure 4.2 —DDV Processing

4.2.1 Creating Memory Reference Profiles

As with the visual programming tool for Fortran D [8], DDV encourages the
programmer to experiment with different distributions for a given
application. As shown in Figure 4.2, the first step in this processis to createa
memory reference profile for an application. The current environment does
not actually handle parallel programs; rather, a sequential application is used
and the owner computes rule is imitated by calls to a TRACE function (see
below). At desired points in the code, the programmer inserts function calls to
generate profiling information about the particular memory operation(s)
being performed and the data elements being referenced. To mimic owner
computes, the profiling information is made relative to some other data
element — in particular, the element appearing on the right hand side of the
assignment. This process could be accomplished automatically with current
program transformation technology.

While the profile may not actually represent the parallel execution, it
identifies the reference patterns that the application exhibits. Better yet, the

12

CIS-TR-93-21

reference profile is independent of any particular data distribution. Thus, a
single profile can lead to the creation of any number of trace files which are
distribution-specific. If a real parallel application was to be used, then the
TRACE function could be easily modified to generate distribution-specific
information, and the memory reference profile would be unnecessary.

The TRACE function accepts a time stamp, the location of the “owner”
element, a range of referenced data elements, and the operation (read or
write) performed. (Note that whether the operation required local or remote
communication is unknown until a distribution is specified in later steps.)
Figure 4.3 shows the function prototype and an example invocation.

Trace function prototype

void TRACE(int time,
int ownerRow, int ownerCol,
int minRow, int maxRow,
int minCol, int maxCol,
int op)

Trace function call

TRACE (Time, j,j, j+l.,row-1, 3j,3j. 0);

Figure 4.3 — DDV Trace function

4.2.2 Building Trace Files

Once a memory reference profile has been established, any number of trace
files can be generated. Each trace file is specific to a single data distribution
and processor arrangement. Thus, the process of building a trace file requires
a program that understands HPF’s data distribution functions. The HPF
language specification [4] offers formulaic definitions of the distribution
options discussed earlier in this paper. These formulas provide the mapping
from data elements to processors in a single dimension.

First, define c(j,k), the ceiling division function, by

c(j, k) = I_j—-"' ’;_ IJ .

Letd represent the size of the data array in a certain dimension, r, and let p be
the size of the corresponding dimension in the processor array. (Assume all
dimensions have a lower bound of 1.) Then, the specification BLOCK (m)
means that data element j of dimension r will be mapped to the abstract
processor at location c(j,m), provided that mp=d. Similarly, cycrLIC (m)

13

CIS-TR-93-21

means that the data element in location j of dimension r will be owned by
processor 1+((c(j,m)—1) mod p).

Figure 4.4 gives a small sample from a trace file. The trace file allows for
multiple operations in a given time step. In this fashion, the annotation of a
sequential application can be used to mimic the operation of the parallel
application.

0 0 4 2 5 read remote
0 1 6 2 9 read local
0 0 4 0 4 write local
1 0 7 2 7 write remote
1 1 3 8 9 read local
1 0 4 2 5 read remote
tile P%%[ggf dra}?v él:%y operation igfgg?g
column column

Figure 4.4 — Trace file fragment

Thefirst record of the trace fragment in Figure 4.4 indicates that data element
(2,5) was referenced. The data element is owned by processor (0,4), and it was
read by a remote processor. This record indicates that processor (0,4) had to
service a remote access, not that it initiated one. The processor performing the
operation is not currently available, nor is it relevant to the problem at hand.
(It would be a simple extension to add that information, though.) The reason
for this is that the processor making the request is dependent on the
computational model being used in that instance. We are not so much
interested in determining the data needed by individual processors as we are
interested in the types of data accesses being made for each element in the
array. The latter information is what will help the programmer determine
where data elements should reside in the distribution.

4.2.3 Creating Visualization Files

The next step to data distribution visualizations is to transform the trace file
into a visualization file. Essentially, this step creates a data file that IBM’s
Data Explorer software can process. From the information in the trace files
discussed above, this step keeps track of running totals and averages of local
reads, remote reads, local writes, and remote writes for each element in the
data array and the processor set. This information is present for each time
stepin the trace file. Thus, the totals and averages are computed over the time

14

CIS-TR-93-21

that has expired up to that point in the trace. In this way, an animation of the
application’s memory references may be constructed.

424 Building a Visualization Framework

The final step in the visualization process is to import the visualization file
into Data Explorer (DX) with a DX program. Data Explorer provides its own
programming environment in which visualization applications can be built.
Figure 4.5 is an image of the main control panel from the DDV visualization
application. The user has control over numerous aspects of the visualization.

I Help

[¢] Control Panel BT} [¢] Sequence Control En§
File Edit Execute Panels Options ' 26 i 60

Pathname | [2 [|]

"fhomeigrads/hacks/S93/c

Trace Type Dataset
Processor Trace r— 2-8-10-10-cyclicl-cyclic1-0-99-cum-avg —

Grid Coloring View on Grid Grid Connections Caption

Average r— on onr-

Glyphs View on Glyphs Guantity
[Remote Writes

Figure 4.5 — DDV Control Panel

The visualizations currently display both statistics (cumulative and average)
of a given trace quantity. One statistic is mapped to a colored background on
the grid, and the other is mapped to ‘“‘glyphs” which float in front of the grid.
(The graphic displays will be discussed in more detail later.) The user can
control several aspects of the display, Some of these are listed here.

® The trace type to view (data or processor)

® The dataset to view (the user can easily add additional traces to the control
panel)

15

CIS-TR-93-21

® The quantity to be displayed display (e.g., local reads, all remote accesses,
all reads and writes, etc.)

® The statistics to be displayed (cumulative and/or average)

The user can also control the animation with the ‘“Sequence Control” box.
The controls are simple and intuitive, similar to those used in audio cassette
and compact disc players.

In the actual visualizations, quantities are represented by the size and color of
the glyphs, and by the color of the background grid coloring. (Note that glyphs
currently contain redundant information. That is, the size and color of the
glyph represent the same quantity.)

4.2.5 Notes on the Displays

The best way to understand the actual displays that are generated is to
present a sample application as done in the next section. Unfortunately, the
displays contained herein are limited to greyscale, which poorly reflects the
actual color content of the images. For this reason, a set of full-color GIF
(Graphics Image Format) files is available from the authors. (Contact
hacks@es.uoregon.edu.) Another dimension of these visualizations that can
not be gleaned from either the greyscale images here or the full-color
snapshots is the animation which takes place through the life of the
visualization.

5 Application — Gaussian Elimination

To demonstrate the effectiveness of these visualizations, a sample application
will be presented here. As was mentioned earlier, the current DDV
environment is set up to operate with sequential programs. By carefully
annotating this code, a pseudo-parallel trace file can be generated.

5.1 The Data Distribution

In the following, visualizations built from a Gaussian elimination algorithm
will be presented. The algorithm operates on a 10 x 10 data array which is
distributed on a 2 x 8 grid of processors in a cyclic fashion (for both rows and
columns). The quantity being displayed in the images consists of all memory
accesses (that is, local and remote, reads and writes).

Let us consider the distribution of data which results from the distribution
and processor arrangement given above. Figure 5.1 specifies the processor
which owns each element of the 10 x 10 array by assigning each processor a

16

CIS-TR-93-21

unique number. It is important to note that processors 0, 1, 8, and 9 own many
more elements than the other processors because columns are distributedina
cyclic manner.

of 1] 2[3[4] 5] o] 7] of 1
8] o[1d 1113191414 8| 9

o[1] 2| 3| 4| 5/ 6| 7] o] 1

8| o|1d 1131941414 8| 9

01234567-<';|. o] 1] 2| 3| 4] 5] 6] 7] o] 1
8] o[1d 1114 14 141 r:_?). 8f sj1d 111419414194 8] 9
ol 1} 2] 3] 4| 5] 6] 7| o] 1

Processors B[slid 1114141419 8| o

of 1] 21 3] 4| 5] 6] 7| o] 1

8l o[1q 114191419 8| 9

Data Array

Figure 5.1 — Data distribution for Gaussian elimination

5.2 The Algorithm

The basic idea behind Gaussian elimination is to apply elementary row
operations (scalar multiplies and row additions) to transform an invertible
matrix into the identity. (Practically speaking, this is used when the original
matrix is augmented with the identity matrix. If the same operations are
applied to both matrices, the inverse of the original matrix will result in the
augmentation.) The pseudo-code for Gaussian elimination appears in Figure
5.2,

for each column j from 0 to MAX, do
make diagonal element (j,j) equal to 1
for each row i1 from j+1 to MAX, do
make element (i,j} equal to 0

for each column j from MAX to 0
for each row i from j-1 to 0, do
make element (i,j) equal to 0

Figure 5.2 — Gaussian elimination pseudo-code

5.3 Source-code Annotation

A fragment of code from the Gaussian elimination algorithm used to generate
the visualization presented in the following sections appears in Figure 5.3.

The piece of code illustrates the transformation that takes place during the
annotation process. The loop is one part of the Gaussian elimination

17

CIS-TR-93-21

1 ¢ = 1.0/B[j1[3]);

2 for (col=0; col<MAX; col++) {

3 /* scalar mult. the elements of row */
4 B[j][col] = c¢*B{j][col];

5

6 /* each owner read a copy of B[j,j] */
7 TRACE (Time, j,col, j.3j., j.3j. 0);

8 /* read own copy of B[j,col] */

9 TRACE {(Time, j,col, j,3j, col,col, 0);
10 /* wrote B{j,col] */

11 TRACE (Time, j,col, j,3j., col,col, 1);
12

13 /* do the same to the augmentation */
14 M[j] [col] = c*M[j][col];

15 1}

16 Time++;

Figure 5.3 — Annotated version of one Gaussian elimination loop

algorithm. In this example, each row is being scaled by the the reciprocal of the
element on the main diagonal. While the sequential algorithm makes an
assignment to the variable ¢, the calls to TRACE mimic what might actually
happen in a parallel version of the algorithm by having each of the “owners”
— referenced by the data element at (j,col) — request copies of that value.
Note also that the Time variable is not incremented until after the loop,
suggesting that the operations in the for —loop could be done simultaneously
in a parallel implementation.

5.4 Generating the Displays

The annotations are compiled along with the source-code, and a file
containing a stream of memory references augmented with some additional
information results after the application is run. This memory reference
profile is independent of any data distribution, and it represents the pattern
of memory accesses that this implementation of Gaussian elimination
displays under a loose interpretation of the owner computes rule. The profile
is used to create several different traces — one for each distribution that the
user wants to evaluate. The trace files are transformed into visualization files
which are imported into Data Explorer where the user can control many
aspects of the resulting animation.

18

CIS-TR-93-21

5.5 The Visualizations

At this point, we are finally prepared to present a sequence of actual
visualizations which resulted from the Gaussian elimination program. (The
filenames given after references to figures containing greyscale displays
correspond to files in the directory discussed in Section 4.2.5.)

Figure 5.4 (data22.gif) illustrates the data array early in the execution of
the Gaussian elimination algorithm (time=22). The background (when seen
in color) represents the average number of memory references, while the
glyphs (size and color) keep track of the cumulative number of references.
With element (0,0) in the upper left corner the access patterns of this phase of
the algorithm are already evident. As the algorithm proceeds, the glyphs in
each column below the main diagonal grow larger (and change color) as the
column elements below the diagonal are zeroed-out, and the row elementsare
adjusted accordingly.

Data Trace: Al Reads and Writes, time=22
Figure 5.4 — data22.gif

Figure 5.5 (proc22.gif)displaysthestate of the processors at the same time
as Figure 5.3. It can be seen that the size of the glyphs on the left side of the

19

CIS-TR-93-21

grid are larger than the others. At this point, it is too early to tell if this was due
to a poor distribution or the particular phase of the algorithm.

Processor Trace: Al Reods and Writes, time=22

Figure 5.5 — proc22.gif

Figure 5.6 (data60.gif) shows the data array at time 60 of the algorithm.
The first phase of the Gaussian elimination has been completed and the
second phase is just beginning. Thus, all of the elements on the main diagonal
are now 1, and all elements below the diagonal are 0. The algorithm is
proceeding to zero-out all matrix elements above the main diagonal by
working its way back through the columns in reverse order, toward the origin
of the array. Figure 5.7 (data60rw.gif) shows a different quantity being

Data Trace: Al Reads ond Writes, time=60
Figure 5.6 — data60.gif

20

CIS-TR-93-21

displayed on the data array. Rather than showing all memory references,
Figure 5.7 is showing only remote writes. The pattern of remote writes is
considerably different than the overall memory reference pattern illustrated
by Figure 5.6.

Data Trace: Remote Writes, time=60
Figure 5.7 — data60rw.gif

Figure 5.8 (proc60.gif) again shows the status of the processor grid. The
imbalance generated by the cyclic distribution is becoming more and more
evident by this point in the animation. The other processors appear to be
fairly well-balanced, though.

Processor Trace: Al Reads and Writes, time=60

Figure 5.8 — proc60.gif

21

CIS-TR-93-21

By time 89, as seen in Figure 5.9 (data89.gif), the algorithm is nearing
completion with only two columns remaining to be processed. It is evident
from this display that overall, the Gaussian elimination algorithm accesses
the array in a fairly uniform manner. That is, there are no elements that
receive excessive attention, in the long run. However, the earlier frames of the
animation clearly show that the algorithm progressed in certain phases.

Data Trace: Al Reads ond Writes, time=89
Figure 5.9 — data89.gif

Finally, Figure 5.10 (proc89 . gif) illustrates the sorry state of the processor
grid by the end of the algorithm. The load imbalance introduced by the cyclic
distribution has clearly overtaxed the processors in the two left columns of the

grid.

We have already come to some conclusions regarding the effectiveness of a
cyclic distribution in this case. Using what has been learned and the DDV
tools discussed earlier, the programmer could now go back and create a new
trace file using a different distribution or a different processor arrangement.
In this way, experimenting with different distributions is simplified and the

22

CIS-TR-93-21

Processor Trace: Al Reods and Writes, time=89

Figure 5.10 — proc89.gif

programmer undoubtedly gains insight not only to the algorithm, but to
which distributions are most effective for it.

6 Observations

In this section, some informal observations on the effectiveness and utility of
the DDV environment will be made. This will take place in three categories:
usefulness, understandability, and scalability.

6.1 Usefulness

As was shown in the previous section, the visualizations generated from the
DDV environment provided a good overview of memory reference patterns
exhibited by the application. Depending on the quantity that the programmer
is viewing, a sense of the interprocessor communication required is easily
achieved. By offering the programmer visualizations of both the data
structure and the processor set holding the data, one can effectively assess
many characteristics of a given data distribution.

While reference patterns can be extracted directly from the animated
displays, the size of messages being passed between processors remains
obscured. Similarly, contention for data elements can not be seen. While we
have not focused on these metrics in this inital work with HPF data
distributions, they are still of interest to programmers.

6.2 Understandability

Since the problem domain limited the data structures and processor
arrangements to two dimensions, these displays were able to take advantage
of the obvious way to visualize such structures (i.e., by using a grid). For this
reason, the displays are fairly simple to understand. The images shown here

23

CIS-TR-93-21

clearly lack labelling that would be present in a more complete environment,
though. The actual DDV displays contain color bars for each quantity being
measured, but they were omitted in this paper since color could not be shown.

It was mentioned earlier that the glyphs contain redundant information by
having the size and color controlled by the same quantity. This could have
both positive and negative effects. To novice users, it may reinforce the
magnitude of the particular quantity. To more advanced users, it may be
wasteful to have the same quantity represented tiwice in the same
visualization.

6.3 Scalability

Finally, a very important topic in performance visualization is the scalability
of the displays. Certain aspects of these visualizations are scalable while
others are not. The glyphs, for example, do not offer a high degree of
scalability. While very effective for small grids, the information is lost when
grid size goes much above fifteen in one dimension. In particular, the variance
in the size of the glyph becomes so minute that little or no information is
conveyed. Thus, glyphs may be more appropriate for processor set since they
tend to be smaller than data arrays.

The background grid coloring (not evident in the greyscale images included in
this report) represents a more scalable visualization tool, however. By letting
the color of the grid at each data element correspond to the quantity being
measured, a global picture of memory references can be achieved for both
small and large grids. In fact, the display actually seems to improve as the grid
grows larger, up to a certain point. By letting the appropriate quantities color
the grid background, the “hot” and ““cool” spots of the data structure emerge.
Also, Data Explorer offers zooming capabilities which allow the user to focus
on particular regions of the data or processor structure.

7 Future Work and Conclusions

The work presented here can be extended in several ways, especially since a
very limited problem domain was pursued by this research. Three areas of
future work can be identified in terms of adding different visualizations,
extending the model, and expanding the original problem. Each of these will
be discussed below.

7.1 Additional Visualizations

The visualizations presented in this report had as a primary goal the
maintenance of consistency with the programmer’s conceptual model.

24

CIS-TR-93-21

Additional visualizations may choose to deviate from this goal to reveal
relationships that are not evident in a simple two-dimensional grid. It is still
important that the programmer have access to displays like the ones
presented here, but there could be much to gain from advanced displays which
are not necessarily formulated from a programmer’s conceptual view.

Currently, displays for data and processor structures are independent of one
another. While driven by the same trace file, the displays can not be viewed
simultaneously. It would be desirable to have a display that integrated the
data and processor information. One way that this could be accomplished
would be to take advantage of the redundancy currently present in the glyphs.
For example, the glyph color could correspond to the processor which owns
that data (hence, the visualization would also represent the data distribution
itself), the grid background could be one quantity (processor or data), and the
glyph color could be some other quantity (processor or data). This would be a
fairly simple extension to the current DDV environment.

7.2 Extending the Model

Another potential source of future research would be to loosen some of the
restrictions on HPF. For example, representation of three- and
higher-dimensional arrays would be useful. The notion of data alignments
could be incorporated into the visualization environment, allowing the
relationships between multiple data structures on the same processor set to
be visualized. Another extension would be to allow the dynamicredistribution
and realignment of data during the execution of an application. In this case, at
some point in the animation the data would be rearranged and an entirely
new animation would ensue. Finally, including special visualizations for
HPF’s explicit parallel loop construct, FORALL, might be useful.

7.3 Expanding the Original Problem

The original problem motivating this research was the need for visualizations
which would help programmers evaluate data distributions in new languages
like HPF and pC+ +. Section 2 briefly mentioned two extensions to this topic.
In particular, one branch of additional research could investigate further the
degree to which source-code can drive the generation of visualizations, a
process that the author has termed source-based visualizations. Another
possible extension is an investigation into whether these types of
visualizations can be created automatically by a visualization compiler. Some
projects are already looking at these areas of research [7][11].

25

CIS-TR-93-21

7.4 Conclusions

The research presented here has as its goal the development of an
experimental environment that can help to assess the role that performance
visualization can play in the evaluation of data distributions. We have
informally demonstrated that performance visualization techniques can be
developed that will benefit the programmer responsible for writing efficient
HPF programs. The important role played by data distributions in
determining the efficiency of parallel applications demands that tools which
assist in evaluating distributions be developed. The Data Distribution
Visualization, or DDV, environment developed here is a large step toward the
development of such products.

26

[1]

[2]

[3]

[4]

[5]

[6]

[7]

(8]

[9]

[10]

[11]

CIS-TR-93-21

References

F. Bodin, P Beckman, D. Gannon, S. Narayana, S. Yang. Distributed
pC++: Basic Ideas for an Object Parallel Language. University of
Rennes.

Z. Bozkus, A. Choudhary, G. Fox, T. Haupt, S. Ranka, and M. Wu.
Compiling Fortran 90D/HPF for Distributed Memory MIMD
Computers. Northeast Parallel Architecture Center, Syracuse
University, Technical Report SCCS—444, March, 1993.

M. Heath and J. Etheridge. Visualizing the Performance of Parallel
Programs. IEEE Software, September, 1991,

High Performance Fortran Forum. High Performance Fortran
Language Specification, Version 1.0. Rice University, May, 1993.

S. Hiranandani, K. Kennedy, and C. Tseng. Compiling Fortran D
for MIMD Distributed —Memory Machine. Communications of the
ACM, Vol. 35, No. 8, August, 1992.

ISO. Fortran 90. May, 1991. [ISO/IEC 1539: 1991 (E) and now ANSI
X3.198-1992].

D. Kimelman and G. Sang’udi. Program Visualization by
Integration of Advanced Compiler Technology with Configurable
Views. Technical report, IBM T. J. Watson Research Center,
September, 1992.

P Kondapaneni, C. Pancake, and C. Ward. A Visual Programming
Tool for Fortran D. December, 1992.

D. Reed, et al. The Pablo Performance Analysis Environment.
Technical report, University of Illinois at Urbana—Champaign,
Department of Computer Science, October, 1992.

S. Sarukkai and D. Gannon. Parallel Program Visualization using
SIEVE.1. Proceedings of the 1992 ACM International Conference
on Supercomputing, July, 1992,

S. Srinivas and D. Gannon. Interactive Visualization and
Animation of Parallel Programs. Technical report (abstract),
Indiana University.

27

