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Ahbstract

We consider different plane embeddings of partial 2-trees, count them and give
an efficient algorithm constructing a minimum cardinality cover of faces by vertices.
These tasks are facilitated by a unique tree representation of plane embeddings of
2-trees.

1 Introduction

1.1 Motivation

Partial 2-trees constitute a nontrivial class of planar graphs that includes outerplanar
graphs and series-parallel graphs. They admit efficient algorithms solving many inher-
ently hard problems on general graphs ([7,1]). This property of algorithmic tractability
follows from the tree-like structure of partial 2-trees and 2-trees, which are graphs imbed-
ding partial 2-trees. We propose a tree representation of 2-trees that is very useful in
algorithmic treatment of these graphs.

The central algorithmic problem considered here is connected with plane embeddings
of 2-trees and partial 2-trees. We first consider the problem of enumerating plane embed-
dings of partial 2-trees. (The problem for outerplanar graphs has been solved in [10].)
Solution of the problem is facilitated by the fact that the union of minimal separators of
any 2-tree has a very distinct structure. This fact implies a one-to-one correspondence
between certain subgraphs of partial 2-trees (outerplanar subgraphs pivotal for plane em-
bedding) and the corresponding subgraphs of the imbedding 2-trees. This intermediate
result complements the study of interior graphs of maximal outerplanar graphs in [4].
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We then consider restricted covers of faces of a plane graph by vertices. This notion
has been introduced in {8] and investigated in [9]. In the case of maximal outerplanar
graphs, a tree representation of a plane embedding was used both to count the number
of different embeddings (see [10]) and to construct an embedding admitting a perfect
vertex cover of all graph’s faces. The proposed tree representation of 2-trees is crucial for
constructing perfect FIVC for 2-trees and partial 2-trees.

1.2 Definitions

We will deal with simple, loopless combinatorial graphs. An edge is incident with its end
vertices which are mutually adjacent. A simple path between two vertices u and v is a
sequence of edges such that each of their end vertices (other than u or v) is incident with
exactly two neighboring edges. If u = v, we have a simple cycle. A graph is connected
if there is a path between any two of its vertices. In a connected graph, a subset S of
vertices is a separator if its removal disconnects the graph. A tree is a connected acyclic
graph. A graph G is outerplanar if there is an embedding of G in the plane such that
all vertices lie on the boundary of the infinite region of the plane (the outer face). Thus,
an outerplanar graph has no subgraph homeomorphic to (a subdivision of) the complete
bipartite graph K»3. The set of boundary cycles consists of the boundaries of the faces,
regions of the plane in a plane embedding. We identify a plane embedding of a graph with
the set of its boundary cycles. A subgraph of G induced by a subset S of the vertices of
G consists of S and all edges of G with both end vertices in S.

A 2-treeis either the complete graph on 3 vertices (the triangle K3) or a graph with n >
3 vertices obtained from a 2-tree G on n—1 vertices by adding a new vertex adjacent exactly
to both end vertices of an edge of G. (An alternative definition involves construction of
a 2-iree by a sum of two smaller 2-trees that have an edge in common.) Every minimal
separator of a 2-tree consists of the end vertices of an edge [6]-

A partial 2-tree is a subgraph of a 2-tree (it can be imbedded in a 2-tree) with the
same set of vertices. The class of partial 2-trees is identical with a slight generalization
of series-parallel graphs, graphs with treewidth at most 2. It is well known that a graph
is a partial 2-tree if and only if it contains no homeomorph of K4. For emphasis, we will
call 2-trees full. Also, we will distinguish between an embedding of a planar graph in the
plane and an imbedding of a partial 2-tree in a full 2-tree.

We will use the following classification of edges in a full or partial 2-tree H. An edge
e = (a, b) is called exterior if {a,b} is not a separator of H, otherwise it is called interior.
An edge e = (a,b) is called strongly interior if the graph H —{a,b} has more than two
connected components and weakly interior otherwise. A strongly interior edge e =(a, b)
is terminal if and only if at most one of the graphs G; = H — @, C; is not outerplanar
(here, C;’s are the connected components of H — {a, b}.)
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Lemma 1 FEvery non-outerplanar 2-iree H has a terminal strongly interior edge.

Proof: If a 2-tree H is not outerplanar, it has a strongly interior edge since it contains a
homeomorph of K3 3. Assume that there is no terminal such edge. Then, thereis a strongly
interior edge e that separates H into at least two non-outerplanar components: C, that
has the maximum size over all strongly interior edges and the corresponding components,
and D. The latter has a strongly interior edge f separating H into connected components,
one of which is non-outerplanar and properly includes C, thus contradicting the definition
of C' as maximum size. (This argument should give an intuition about the name of the
terminal strongly interior edge.) =

Outerplanar 2-trees are known as maximal outerplanar graphs (mops), which are also
identical with all triangulations of polygons.

2 Structure of 2-trees and their separators

2.1 Interior graphs of 2-trees

Hedetniemi et al. [4]) define the interior graph of a maximal outerplanar graph (mop, for
short) as the union of its interior edges. They completely characterize the interior graphs
of mops and show that such a graph is a connected union of mops and caterpillars. We
obtain a similar result for partial 2-trees.

Lemma 2 Any tree is the interior graph of some 2-iree.

Proof: (by induction on the number of vertices.) By inspection, the lemma is true for
n = 2and n = 3 vertices. For n > 3, consider a tree T' with n + 1 vertices. Unless
1" = K (“astar”) we can split T into smaller trees T} and T, by removing an edge e, so
that |T;| + | < n (2 = 1,2). By the inductive hypothesis, each of the trees T; augmented
by e is the interior graph of a 2-tree G; (: = 1,2). A 2-tree G obtained from G; and
(72 by identifying the copies of e in each of them has T as its interior graph. As for
the remaining case, I\, is the interior graph of the 2-tree with a universal vertex and n
remaining vertices inducing a path (“a wheel without one external edge”). =

Theorem 1 A connected partial 2-tree H is the interior graph of some 2-tree if and only
if 1l has no induced cycles of length greater than 8.

Proof: (sufficiency) Any such H has biconnected components, H;, that are either edges
or 2-trees. A 2-tree component H; is the interior graph of a 2-tree G; obtained from H;
by adding a triangle (a vertex adjacent to both end vertices of an edge) to each exterior
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edge. An edge component H; is the interior graph of a 2-tree G; obtained by adding
two triangles to H,. Consider the union of such graphs G; (identifying the corresponding
copies of articulation vertices of H). For each articulation point v of G, choose from each
connected component of G—v an edge e of H incident to v and connect the other end
vertices of these edges by a path. This results in a 2-tree that has H as its interior graph.

(necessity) Let a partial 2-tree H be the interior graph of a 2-tree G. As a chordal
graph, G has no induced cordless cycles other than triangles. Removing all vertices of
degree 2 from (G does not introduce any induced cycles. Since those vertices are incident
to all exterior edges of G, their removal results in the interior graph, H, also without
induced cycles of length greater than 3. »

The necessity result of [4] that the interior graph of a mop is a connected union of
mops and caterpillars is an immediate corollary of Theorem 1 (since caterpillars are the
only acyclic interior graphs of mops). However, the outerplanarity constitutes a nontrivial
hinder for the sufficiency of this condition.

2.2 'Tree representation of 2-trees

We will represent a plane embedding of a 2-tree by a rooted, ordered tree with sibling
nodes (children of the same parent) partitioned into two sets. Towards this goal, we first
define a unique associated graph D(G) of a given 2-tree G. D{G) is the intersection graph
of triangles of G over the set of edges. Thus, nodes of D(G) correspond to triangles of
G, and branches of D(G) correspond to edges of G that are in at least two triangles (an
example can be found in Fig. 1b).

It can be easily verified that each node v of D(G) is in at most three maximal cliques.
Furthermore, there is at least one node in D(G) that belongs to exactly one maximal
clique. We will call such a node (and the corresponding triangle of G) pendant.

We will now give an algorithm constructing a graph that represents a plane embedding
(i, of G (G, is assumed to be specified by the set of boundary cycles). Let r be a pendant
node in D(G). Let T, denote a directed tree rooted at r and obtained by the breadth-first
traversal of D(G) (Fig. 3b). Consider a node v € T;.. Let T, denote the maximal subtree
of T; rooted at v. Each node in T, corresponds to a triangle in G. Let G(v) denote a
subgraph of G consisting of vertices and edges in the triangles corresponding to nodes in
T,. Let us define the natural relation of inclusion between triangles of a plane embedding:
a triangle u is included in a triangle v if at least one of u’s vertices is strictly inside the
region bordered by v. We partition the children of v into three subsets:

¢ [n(v): nodes with the corresponding triangles included in v,

o Oul(v): nodes with the corresponding triangles not related to v,
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Figure 1: G and its associated graph D(G)

o Cou(v): nodes with the corresponding triangles including v.

These nodes belong to at most two maximal cliques of D(G) that also contain v.
Hf v = r, then these nodes belong to just one clique. Partition further the nodes in
In{v) into In (v) and In,(v) depending on to which of the two maximal cliques they
belong. Let Out{(v) and Quts(v) (respectively Cov,(v) and Cova(v)) be a similar partition
of Qut(v) (respectively Cov(v)). Order the nodes in each of the sets In;(v), Out,(v),
Covy(v), Ing(v), Outy(v), Covy(v) according to the relationship of the inclusion in the
plane between the corresponding triangles of G (the triangle that includes all the other
first). From now on we will treat these sets as ordered lists and || will denote their
concatenation; the equality will take under consideration the order of elements.

Note that either Cov,(v) = § or Covy(v) = @ due to the fact that G, is planar. In
fact, the planarity of G, forces the set of nodes U = {u € D(G)|Cov(u) # 0} to be on
a single directed path in 7,. Let v be a node of D(@) with Cov(v) # § that is farthest
away from the root r. Assume that Coui(v) = @ and Cov,y(v) # @ and let z; denote the
first node in Covy(v) (Fig. 2a). Consider the plane embedding (Fig. 2b) where:

e the triangle 2; is drawn outside of v (i.e., 2; is removed from Cou,(v) and added in
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front of Out,(v));

e triangles corresponding to nodes in Out,(z1) and Quty(z;) are drawn inside z; in the
same order (i.e., Out;(z;) and QOuty(2;) become Iny(z;) and Iny(z;), respectively);

e triangles corresponding to nodes in Iny(z) and Ina(z ) are drawn outside z; in the
same order (i.e., In,(z;) and Iny(z,) become Out,(z;) and Out,(z,), respectively).

.
%

- .
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>, _
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Figure 2: Identical plane embeddings

Although the two drawings are different, they represent the same plane embedding.

Since the above transformation can be applied repeatedly, we shall henceforth assume
that U = @ (or equivalently, Cov\(v) =@ and Covy(v) =@ for all v € T}.).



The tree T, together with the ordered partitions In,(v), Out,(v), Ina(v), Outs(v) for
every node v in T, other than r will be called an in-graph of T, rooted at r (Fig. 3c). It

will be denoted by T,. The root r will have all children in one partition In(r), Out(r).

b

{a) (b} {c)

Figure 3: D(G), its breadth-first tree T, and an in-graph T,

Lemma 3 FEvery plane embedding G, of a full 2-tree G can be represented by an in-graph
T:, where r is a pendant node in D(G).

Proof. Follows immediately from the above discussion. =

When drawing in-graphs as in Fig. 3c, we will use open (respectively bold) circles to
indicate nodes of Qui-subsets (respectively In-subsets). The order in the subsets will be
indicated by directed dashed paths.

Lemma 4 Every in-graph T of G defines a unique plane embedding G, of G.

Proof. The embedding associated with T, is obtained in the following manner (Fig. 4):

e Draw the triangle r.

s Traverse the nodes of T, in any parent-first order. When leaving a node v, draw
in the nested fashion triangles corresponding to In,(v) and Iny(v) (respectively
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QOut,(v) and Ouly(v)) inside (respectively outside) the triangle v. The ordering of
triangles is given by the directed paths (first node corresponding to the outermost
triangle). It is always possible to place triangles without violating the planarity
of the already embedded subgraph. Note that triangles drawn when traversing
In,(v) and Iny(v) (and their successors) will all be inside v. The unique face inside
v that contains all three vertices on its boundary will be considered as the one
corresponding to v. =

Figure 4: T, and the corresponding embedding G,

Let r be a pendant node of a pendant clique in D(G). Let T. be an in-graph rooted
at r. Let us define a transformation of Gy(v) called informally “turning inside-out” of G,
at v that swaps the /n and Qut subsets while preserving the order of their elements.
More formally, for a vertex v of T;,

o Inj(v) = Outy(v), Ini(v) = Outy(v),
o Outi(v) = In (v), Outh(v) = In,y(v).



For v = r, the subscripts are immaterial. Define the in-graph qb(I_"",.) obtained from 17'.,.
by turning G, inside-out at r.

Lemma 5 Two distinct in-graphs T, and T' both rooted at the same pendant node r in
D(G) represent the same plane embedding of G if and only if qb(T,.) -T’

Proof. It can be easily verified that if d)('f';) =T",, then the respective plane embeddings
are identical.

Let In and Out be associated with T}, and In’ and Out’ be associated with 7”,.. For
the implication in the other direction, note that if In;(v) = Inl( ), Outy(v) = Outi(v),

In,(v) = In4(v), Outy(v) = Outh(v) for all non-root nodes v ET then there is nothing

to prove. Let therefore v be a node of T, with at least one of the equalities violated.
Assume that v is selected such that for all nodes on the path between v and the root r,
the above equalities are satisfied. Let v = {a,, b,,c,} be the triangle in G corresponding
to the node v. Assume without loss of generality that In,(v) # Inj(v) or Outy(v) #
Oult)(v). Let Iny(v) = {z\, 2, ..., 2k}, In}(v) = {2}, 24, ..., 2}, Outy(v) = {v1, 2y -, Y1}
Outi(v) = {1, ¥3, .-y} Let u = {ay,by,c.} be the triangle in G corresponding to a
node u € In((v)||Out(v) = Ini(v)||Outi(v). Assume without loss of generality that
a, = a, and ¢, = ¢, for all u € Iny(v)||Outy(v).

Assume that £ > | and consider the face corresponding to z; in the plane embedding
given by T.. This face contains no vertices b, u € Iny(v)||Outy(v) \ {z+}. Neither does

it contain b,. Since T} represents the same embedding, =, is either z}. or y},.. By a similar
argument, if { > 1, then y; is either yp or z},.

Assume that & > 2 and let z;, ;41, 1 <t < k, be a pair of consecutive nodes in In(v).
Hence, the plane embedding must have a face w1th both b;; and b;,,, on its boundary.
Consequently, z, and z,4; must appear next to each other in either Inf(v) or Out}(v).
Similar arguments apply if [ > 2 and y;, y;41, J 2 1, is a pair of consecutive nodes in
Outy(v).

It follows from the above arguments that either
o In(v) = Ini(v), Out (v) = Out{(v), or
o In,(v) = Out{(v), Outi(v) = In{(v), and In,(v)||Out;(v) # 0.

Assume that v is not the root and In;(v) = Out}(v) and Out,(v) = In]. Assume that
Iny(v) # 0. Since z, is in front of Iny(v), no face with b;, on its boundary can contain a
vertex not in G(v). But z, is also in front of Out(v) implying that at least one face with
b, on its boundary must contain a vertex outside G(v), a contradiction. If In (v) = 0
then Outy(v) # @ leads to a similar contradiction. =

9



3 Counting plane embeddings

3.1 Plane embeddings of 2-trees

A frame in a 2-tree H is a maximal (with respect to subgraph inclusion) outerplanar
subgraph of H that does not contain any strongly interior edge as an interior edge. Any
frame is also a mop. Strongly interior edges of a 2-tree partition it into frames (if one
allows multiple copies of those edges).

We will first prove that a biconnected partial 2-tree has the same plane embeddings as
any full 2-tree that imbedds it (modulo embeddings of its frames). Since the frames are
outerplanar and the plane embeddings problem for outerplanar graphs has been solved
([10]), solving the problem for full 2-trees will imply the solution for partial 2-trees.

Lemma 8 A biconnecied partial 2-iree G contains all exterior edges of any full 2-tree
imbedding with the same set of vertices.

Proof: Removal of an exterior edge from a 2-tree introduces an articulation point. If
there were an imbedding H of G missing an exterior edge, it would be separable and so
would be any partial graph of H. This contradicts biconnectivity of G. a

Strongly interior edges of a 2-tree H partition H into maximal outerplanar compo-
nents (frames) in the following sense: In every non-outerplanar 2-tree, there is a terminal
strongly interior edge, say e = (a,}). Add the outerplanar graphs G; (connected compo-
nents C; of H —{a,b} augmented by {a,b} and the adjacent edges) to the set of frames
and remove the corresponding components C; to obtain a 2-tree H’. Repeat the operation
until only one edge remains.

Lemma 7 Any 2-iree imbedding H of a biconnected partial 2-tree G contains the same
set of strongly interior edges.

Proof: The lemma follows from the uniqueness of the set of exterior edges (Lemma 6).
If (a,b) is a strongly interior edge in an imbedding H of G, then the removal of {a, b}
disconnects G into more than two components. Since H — {a,b} consists of at least
three connected components, G contains three disjoint paths between a and b. A 2-tree
imbedding of G in which any two of the three paths are connected by a path not using
a or b, would have a subgraph homeomorphic to K4. This would contradict the absence
of such a subgraph in partial (and thus also in full) 2-trees. Thus, {a, b} is a separator in
any 2-tree imbedding of G. =
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3.2 Counting plane embeddings of 2-trees

Using the tree representation, it is a rather straightforward task to count all plane em-

beddings of 2-trees. Let v denote a node of an in-graph 7T, of a 2-tree G, v # r. Let
In(v)||Outy(v) = {z1,22,...,Zk, }, kv 2 0 and Iny(v)||Cuta(v) = {y1,y2,-- - ¥}, &b 2
0. There are k,! permutations of In;(v)||Out;(v). Each permutation can be split in k, +1
ways such that the first ¢ elements, 0 < ¢ £ k,, belong to In;(v) while the remaining
k, — elements belong to Out,(v). It follows immediately from Lemma 4 that the number
of plane embeddings of G is

1

7(GQ) = 3

Hueﬁ(l” + D)k, + 1)!
The coefficient 3 is due to the fact that plane embeddings obtained by turning inside-out
In(r) and Qut(r) subsets at the root r are identical.

3.3 Counting plane embeddings of partial 2-trees

For a planar graph G, let #(G) be the number of plane embeddings (i.e., embeddings
with different sets of boundary cycles). Let n/(G) be the number of plane embeddings of
G when the outer face containing a specified edge is distinguished. (It is easy to see that
this number is independent of the particular edge chosen. When the graph G has at least
2 faces, then 7'(G) = 27(G) since every edge is in exactly two faces.)

Lemma 8 Lel ¢ = (a,b) be an inierior edge of a 2-tree H with | components C; of

H — {a,b}. Let H = H - @®,,;C;. Then

7(H) =%n I =)

1<i<t

Proof: We will use the idea of permuting the components H, to produce all embeddings
of H while avoiding duplication by omitting embeddings related in a manner similar to
the mapping ¢ of the preceding subsection. The proof will follow by induction on I:

(i) { = 2. Assume that H is drawn with a vertical edge e separating C) on the left
of e from C; on the right of € and consider given embeddings of H; and H,. The same
embedding of H can be found among plane drawings of H with both C; and C, on one
side of e. On the other hand, every embedding of H; and H, with the distinguished
outer side of e contributes multiplicatively a new set of boundary cycles. Thus, #(H) =
w'(Hy) w'(Hs) = %HH w'(H;).

(ii) { > 2. Let z be an end vertex of e. For each H;, choose an arbitrary edge
€; incident with z. An embedding of H is uniquely given by the position of ¢; in the
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ordering of e; around z and the given embeddings of the Hy’s (1 < i < ) fixing the
‘outer side’ of e. Assuming 7(H — C;) = (I = 1)'[T1cic; 7'(H;), each embedding of H;
contributes multiplicatively to the number of different sets of boundary cycles and the
above observation proves the desired formula, since there are [ possible positions for ¢;. w

Note that the outerplanar case (with the embedding count given in [10] as #(H) =
2/-2 where f > 1 is the number of interior faces in H) is a simple corollary of Lemma
8, since every separating edge of an outerplanar graph gives [ = 2 and the absence of
such an edge gives the base case of 7(H) = 1. Since all mops of a given size have the
same number of interior faces, the number of plane embeddings of a mop is completely
determined by its size.

Lemma 9 Given a biconnected partial 2-tree G, the number of plane embeddings is the
same for every 2-tree H imbedding G.

Proof: By Lemma 3, any two 2-tree imbeddings of G differ at most on some subset of
weakly interior edges. Yet, the sizes of the corresponding frames are identical. Since the
frames of a 2-tree are maximal outerplanar, it follows by Lemma 8 that the number of
plane embeddings of H is determined by the size of frames of H and their interactions
through strongly interior edges of H. These are identical for all imbeddings of G. =

;From these lemmas follows immediately a formula counting the number of plane
embeddings for a partial 2-tree with minimal separators that induce edges.

Theorem 2 Let {a,b} be a separator of a biconnected partial 2-tree G with | components
C, of G —{a,b}. Let G =G — @;:C;. Then

(i) If {a,b) is an edge of G, then 7(G) = ;U![],¢iq1 7'(G:).

(i) Otherwise, 7(G) = (I — 1) ] ;1 *'(GY).

Proof: (i) Since it is almost identical with the proof of Lemma 8, we omit it.

(i1) If [ = 2, then either G is outerplanar, or one can find a strongly interior edge as
in (i). Let {a,b} be 2 minimal separator of G not inducing an edge. Since we assume
that the number of connected components of G — {a,b} is at least 3, (a,b) is an edge in
any 2-tree imbedding H of G. We notice that in this case, the [ > 3 components can be
“permuted” in (I — 1)! ways. Each subgraph G, of G will be defined as G — B,z C;
augmented by the edge (a,b). (In the previous case of the separator inducing an edge,
the edge e = (a,b) acts as an extra component.) =
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4 Independent Face covers

4.1 Perfect FIVC for 2-trees

Let G = (V, E) be a biconnected planar graph. A subset S of vertices is called a perfect
lace-independent vertex cover (or perfect FIVC, for short) of G if there exists a plane
embedding G, of G in which every face has exactly one vertex in 5. A set W of cycles of
a graph H is called a perfect vertex-independent face cover (or perfect, for short) if there
is a plane embedding H, of H such that W is a subset of boundary cycles of faces and
every vertex of H is in exactly one cycle of W. A perfect VIFC in this plane embedding
of H is simply a 2-factor of H which consists of facial cycles. In the geometric dual G}
of Gy, a perfect FIVC of G corresponds to a set of faces of G which is a perfect VIFC
of the vertices of G;. The problems of finding perfect FIVC and perfect VIFC are NP-
complete in general, see [3,2]. When restricted to outerplanar graphs, these problems are
polynomially solvable, see {8].

In this section, we describe a polynomial time algorithm that, given a full 2-tree
¢/, finds a plane embedding G, of G that admits a perfect FIVC, or decides that no
such embedding exists. In fact, the algorithm finds a plane embedding with a minimum
cardinality perfect FIVC, if a perfect FIVC exists. The algorithm follows an approach
similar to that of [9]. It processes in a bottom-up manner the breadth-first search tree T
of the associated graph D{(G).

If T, consists of the root r alone, the problem is trivial. In the following, we assume
that T, contains at least two nodes. Let v € Ty, v # r. Recall that T, is the maximal
subtree of T, rooted at v and G(v) is the corresponding subgraph of G. Consider the
branch (u,v} of T, entering v {(u,v) € T,). Assume that the corresponding edge in G
(and in G(v)) is (4., b,).

Define the following minimum cardinality covers among all plane embeddings of G(v).

o J(v) = face-independent vertex cover of all but the exterior face.

e B(v) = face-independent vertex cover of all but the face corresponding to v and the
exterior face.

¢ [*(v) = face-independent vertex cover of all but the face corresponding to v.

e [(v) = face-independent vertex cover of all faces with the face corresponding to v
and the exterior face covered by a,.

e H(v) = face-independent vertex cover of all faces with the face corresponding to v
and the exterior face covered by b,.
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E(v) = face-independent vertex cover of all faces using neither a, nor &,.

Initially, for each pendant node v = {a,, b,, ¢, } of T}, v # r, where (a,, b,) is a common
edge with another triangle, we let the corresponding covers be (cf. Fig. 5):

I(v) = undefined; it is impossible to cover the face corresponding to v without
covering the exterior face.

B(v) = 8.

F(v) = undefined; it is impossible to cover the exterior face without covering the
face corresponding to v.

L(v) = {a.}.
R(v) = {b,}.
E{v) = {c,}.

Figure 5: Existing covers of G(v), v a pendant node in T,

Any node for which the above six covers have been determined is said to be labeled.
Hence, all pendant nodes of T, other than r are initially the only labeled nodes. As-
sume that an unlabeled node v is chosen such that all its children in 7, are labeled.
In the remainder of this section, we explain how to determine the six covers for v. Let
Iny(v)||Outy(v) = {z1, T2, ..., 7 } and Iny(v)||Outs(v) = {y1,¥2, .-, y1 } denote the children
of vin T,

4.1.1 FIVC for All but the Exterior Face (/(v))

Suppose that /(v) exists. Let In,(v), Outi(v), Ina(v), Outza(v) denote the ordered parti-
tion of children of v such that the corresponding embedding of G(v) admits this I(v).
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Either In{{v) # 0 or Iny(v) # §; otherwise it would be impossible to cover the face cor-
responding to v by I(v). Suppose that the face corresponding to v is covered by a vertex
from the triangle corresponding to a node in T,,, v; € Ins(v). Assume that In,(v) # 0
(Fig. 6a). The first node in In;(v) is a root of a subtree of T,. None of the vertices of
triangles corresponding to nodes in this subtree can cover the face corresponding to v; oth-
erwise this face would be covered twice. Consider the plane embedding of G(v) obtained by
adding In;(v) to the end of Out,(v), i.e., the embedding with Out}(v) = Out,(v)||Ini(v)
and In{(v) = 0. I(v) is still a FIVC of G(v) for all but the exterior face (Fig. 6b).

Figure 6: Two different plane embeddings of G(v) admitting the same I(v)

We can therefore first assume that In;(v) = 0 and search for the minimum cardinality
Ii(v) (or decide that it does not exist) among such embeddings of G. Then, the minimum
cardinality I;{v) for embeddings of G with Iny(v) = @ is found or it is decided that it
does not exist. The smallest of these two is the desired I(v). If none of them exists, then
neither does {(v).

Our analysis will determine feasible covering sequences, i.e., sets of vertex covers of T3,
for every child = of v. Without loss of generality, let us assume that In;(v) = #. Assume
that Outy(v) # 0 (Fig. Ta). Consider the embedding of G(v) obtained by adding Out,(v)
to the end of Inq(v), i.e., the embedding with Inj(v) = Ingy(v)||Outz(v) and Quty(v) = .
I{v) is still a FIVC of G(v) for all but the exterior face (Fig. 7b). Hence, when looking
for the minimum cardinality /(v) with In,(v) = @, we can assume that Out,(v) = 0.

Suppose therefore that In;(v) = Quts(v) = 0. Let Outy(v) = {z;,zq,...,zx} and
Iny(v) = {¥1,92, ...,;u} with the indicated orders admitting I(v). Then G(z,) must be
covered by either /(z,) or B(z,); otherwise the exterior face would be covered. If G(z;) is
covered by f(z;), then G(z,) must be covered by either I(z3) or B(x;). If G(z,) is covered
by B(z,), then G(z;) must be covered by either F(z;) or E(zz). If G(z2) is covered by
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Figure 7: Two different plane embeddings of G(v} admitting the same I(v)

F(z,), then G(z3) must be covered by either F(z3) or E(z3). If G(z;) is covered by E(z;),
then G(z3) must be covered by either /(z3) or B(z3). Note that G(z;) must be covered
by either /{x}) or £(z;). Hence, the covering sequence of Outy(v) = {z1, 22, ..., zx } must
he formed as a path in the forest shown in Fig. 8a with leaves being either I(z;) or E(zy).

I(%_3)szeem I{x_3}eil]
11222} =, I(x 2’< TR,
———a B{x_3} gzt = B{x_3} .....
1{x_1}) T T I{x_1)
X_3) 2l B{x_2)
B(x_z)< e e I e
E(x_3}z:20]
Fix 3}y
r(x_n< Bix_1)
E(x_3)usn B
Bix :)/ : _3, " \E(x 2}'--..\_.
I{x 3y = B(x_3}..
\s(x_z)__-——" = 3.,
-""\.___ B(x_.j):::::
{a) (b)

Figure 8: Covering sequences of Qut,(v) = {z;, s, ..., 2} for I{v)

Suppose that I(z,), 3 < ¢ < k, is preceded by E(z;_;) (Fig. 92 with { = 3). Then we
can place z, in front of Out,(v) without affecting I(v). Hence, we can assume that all
I{x;) covers occur only in the beginning of the sequence Out;(v) (Fig. 9b).

By turning G,(z) inside-out at every child z of z;, the cover I{z;) becomes F(z;) (and
vice versa). Consequently, we can assume that no z;, 2 <i < k — 1, is covered by F(z;).
Otherwise, we could place z; in front of Out,(v) and cover it by I{z;) (Fig. 10 with z = 3).

It follows that at least one optimal covering sequence of Out,(v) in I(v) is a path in
the pruned forest shown in Fig. 8b with leaves being either /{z}) or E(xg).
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Figure 10: Equivalent covering sequences of Qut;(v) in I{v)

Given these restrictions, we can now determine the optimal covering sequence of
Quty(v) in I(v), provided that one exists.

Consider a complete undirected graph K with z,, z,, ...,z as its vertices. With every
edge (z,, z;), associate the cost

min{|/(z)| + [(z;)),|B(z:)| + | E(z,)], | E(z:)| + |B(=;)]}

For undefined covers, their cardinality is defined to be oo. This cost gives the minimum
cardinality of partial FIVCes of T;; and T, that are compatible if z; and z; were to be
placed consecutively in a plane embedding of G.

Suppose first that % is even. Solve the minimum cost perfect matching problem on K.
End-vertices of edges in this matching with costs determined by the first minimization
term are placed in front of Out;(v) in any order. The remaining end-vertices are then
placed pairwise. The order within each such pair (z;,z;) depends on whether the edge
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cost was determined by the second minimization term (z; precedes x;) or by the third
minimization term (z, precedes z;).

If k is odd, at least one of the subgraphs G(z), 1 £ m < k, must be covered by I(z,,).
For each choice of z,,, we need to solve the minimum cost perfect matching problem M,,
on the complete subgraph of K& induced by Out,(v)\ {z,}. Select the matching M,, such
that its cost together with |/(zy,)| is minimized. Place this z,, in front of Qut;(v). The
remaining nodes of Out,(v) are ordered as in the case k even.

Let us now look at how to cover Iny(v). G(y;) must be covered by either F(y,) or
E(y). If G(yr) is covered by F(y,), then G(yz) must be covered by either F(y,) or E(y,).
If G(yy) is covered by E{(y,), then G(y;) must be covered by either I(y,) or B(yz). If
G'(y2) is covered by I(y2), then G{ya) must be covered by either I{y3) or B{ys). If G(y2)
is covered by B(yz), then G(y3) must be covered by either Fi(y3) or E(y3). Note that G(y;)
must be covered by either I{y;) or E(y;). Hence, the covering sequence of y,, ¥, ..., 3 must
be a path in the forest shown in Fig. 11a with leaves being either I(y;) or E(y;).

--------

Fly_3) e Fly_3)::07
Fly z:< J l-‘(y_2)<
/ E(y_3)zo Ely_3)
Fly_1)

..........

F(y_ll\ S5
Iiy_ l::::.
E:(y 2)__.—-—_'_ E(y_zj
Bly_ 31z T——B(y_3)

< "‘\-.._B(y_S):::_':
Efy_l} E{y_1)
Fily_ 3}z
By e \B(y_z)

(a) (b)

-----

Figure 11: Covering sequences of Inq(v) = {y1, ¥2, .-, w1} for I(v)

Suppose that F(y;), 3 <i<1-1,is preceded by B(y;_,) (Fig. 12a with ¢ = 3). Then
we can place F'(y;) in front of Iny(v) without affecting I(v). Hence, we can assume that
F(z;} occurs only in the beginning of the covering sequence In,(v) (Fig. 12b).

As already mentioned, by turning I(y;) inside-out, we obtain F(y;) (and vice versa).
Consequently, we can assume that no y;, 3 <1< 1—1, is covered by I(y;). If it were, we
could place y, in front of Ina(v) and cover it by F(y;) (Fig. 13 with ¢ = 3).

It follows that at least one optimal covering sequence of Inj(v) in I(v) is a path in
the pruned tree shown in Fig. 11b with leaves being E(z;).

Given these restrictions, we can now determine the optimal covering sequence of In,y(v)
in I(v), provided that one exists.

Consider a complete undirected graph K with yy, 2, ...,y as its vertices. With every
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Figure 12: Equivalent covering sequences of Iny(v) in I{v)

edge (y:,y;) of K we associate the cost

min{|F(y: )| + [F(v;)], | Byl + |E(y;), [E(w:)| + | B(y;)1}

Suppose first that ! is even. Then there is a pair of nodes ym, yn, 1 S m < n <, that
have covers F(y, )}, £(yn). For each choice of the pair yn, ya, solve the minimum cost per-
fect matching problem M, on the complete subgraph of K induced by Ina(v)\ {¥m, ¥a}-
Select the matching M, such that its cost together with min{|F(ym )|+ |E(¥n)l, | E(ym )|+
| #(y-)|} is minimized. End-vertices of edges in M,,, with their costs determined by the
first minimization term (|F(y;)| + [F(y;)|) are placed in front of In,(v) (in any order).
If |F(ym)| + | E(y)| < |E(ym)| + |F(yn)|, then y., is placed in Iny(v), followed by y,. If
this is not the case, then y, is followed by #,,. The remaining end-vertices of edges in
M., are then placed pairwise. The order within each pair depends on whether the edge
cost was determined by the second minimization term (y; precedes y;) or by the third
minimization term (y; precedes y;).

Suppose now that [ is odd. At least one of the subgraphs G(ym), 1 < m < !/, must
be covered by E(y,,). For each choice of y,,, we need to solve the minimum cost perfect
matching problem My, on the subgraph of X induced by In,(v)\{ym}. Select the matching
M, such that its cost together with |E(y.)} is minimized. End-vertices of edges in M,
with their cost determined by the first minimization term are placed in front of Iny(v),
followed by y,,. The remaining end-vertices of edges in M,, are then placed pairwise. The
order within each pair depends on whether the edge cost was determined by the second
minimization term (y; precedes y;) or by the third minimization term {y; precedes y;).

19



Figure 13: Equivalent covering sequences of In;(v) in I(v)

4.1.2 FIVC for All but the Face Corresponding to v and to the Exterior Face
(B(v))

We employ an argument similar to that of the preceding section. Suppose that B(v)
exists. Let In,(v), Outy(v), Ina(v), Outs(v) denote the ordered partition of children of v
such that the corresponding embedding of G(v) admits this B(v). We can assume that
In(v) = Iny(v) = B. Suppose, to the contrary, that In,(v) # @ (Fig. 14a). Consider
the embedding of G(v) obtained by adding In,(v) at the front of Out,(v), i.e., Outj(v) =
In(v)||Outy(v) and Inj(v) = 0. B(v) is still a FIVC of G(v) covering all faces except for
the face corresponding to v and to the exterior face (Fig. 14b).

Figure 14: Equivalent covering sequences of I'n;(v) and Out;(v) in B(v)

Suppose therefore that In,(v) = Iny(v) = 0. Order of nodes within Out;(v) and
Out,(v) and the corresponding covering sequences can be determined in the same manner
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as the order and covering sequence of QOut,(v) for I(v) (Fig. 8).

4.1.3 FIVC for All but the Face Corresponding to v (F(v))

Suppose that F(v) exists. Let In;(v), Outy(v), Iny(v), Outy(v) denote the ordered parti-
tion of children of v such that the corresponding embedding of G(v) admits a minimum
cardinality F(v). We can then assume that In;(v) = Iny(v) = @. If this is not the case,
we can consider the embedding with Inj(v) = 0, Outi(v) = Outy(v)||Ini(v), Inf(v) = 0,
Outy(v) = Quty(v)||{ng(v) (see Fig. 6). F(v) is still a FIVC of G(v) for all but the face
corresponding to v.

Suppose therefore that In (v) = Iny(v) = @. The exterior face is covered either by
the covering sequence of Qut,(v) or by the covering sequence of Outy(v). The minimum
sumn of the corresponding covers’ cardinalities determines the desired FIVC as follows.

Assume that the exterior face is covered by a covering sequence of Out;(v). This
covering sequence of Out;(v) must be the same as the covering sequence of In,(v) for
I(v) (Fig. 11). The covering sequence of Out;(v) must be the same as the covering
sequence of Out,(v) for I(v) (Fig. 8).

Assume that the exterior face is covered by the covering sequence of Outs(v). The
covering sequence of Out,(v) must be the same as the covering sequence of Out;{v) for

I{v) (Fig. 8). The covering sequence of Out;(v) must be the same as the covering sequence
of Ing(v) for I{v) (Fig. 11).

4.1.4 FIVC for All Faces Using a, (L(v))

Suppose that L(v) exists. Let In,(v),Out,(v), Ins(v), Quty(v) denote the ordered parti-
tion of children of v such that the corresponding embedding of G(v) admits this L(v).

It can be easily verified that we can assume that In,(v) = @, Inz(v) = 8. The covering
sequence of Outy(v) must be L(z;), L(x7),..., L(zx). The covering sequence of Quty(v)

can be determined in the same manner as the covering sequence of Iny(v) for I{v) (cf.
Fig. 11).

4.1.5 FIVC for All Faces Using b, (R(v))

Suppose that R{v) exists. Let In (v}, Outy(v), Ina(v), Outy(v) denote the ordered parti-
tion of children of v such that the corresponding embedding of G(v) admits this R(v).

[t can be easily verified that we can assume that In,(v) = @, Iny(v) = 8. The covering
sequence of Outs{v) must be R(z,), R(z2),..., R(zx). The covering sequence of Out;(v)
can be determined in the same manner as the covering sequence of Iny(v) for I{v) (cf.
Fig. 11).
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4.1.6 FIVC for All Faces Using neither a, nor b, (£(v))

Suppose that F(v) exists. Let In,(v), Out,(v), Ins(v), Outy(v) denote the ordered parti-
tion of children of v such that the corresponding embedding of G(v) admits this £(v).

Suppose first that the exterior face and the face corresponding to v are covered by
c,- We can then assume that In (v} = In,(v) = 0. Let Out,(v) = {z;,zs,..., 24} and
Outs(v) = {1, ¥2, .-, 91} The covering sequence of Out,(v) must be R(z,), B(z2), ..., R(zk).
Similarly, the covering sequence of Quta(v) must be L(y), L(y2), ..., L{w1)-

Assume now that ¢, is not in E(v). If In;(v)]|Outi(v) = 0 and Iny(v)||Cutz(v) = 0,
then E(v) does not exist. Otherwise, we need to distinguish between the following cases:

e The exterior face is covered by a covering sequence of Out,(v), and the face cor-
responding to v is covered by a covering sequence of Iny(v). We can assume that
Outy(v) = Ini(v) = 8. Covering sequences of Out;(v) and In,(v) must be the same
as the covering sequence of Inq(v) for I(v) (Fig. 11).

o The exterior face is covered by a covering sequence of Outy(v), and the face corre-
sponding to v is covered by a covering sequence of In;(v). This case is analogous
to the previous case.

o The exterior face is covered by a covering sequence of Qut,(v), and the face corre-
sponding to v is covered by a covering sequence of In;(v). Then we can assume that
Ing(v) = . Let Outa(v) = {y1,%2, -, w1}. The covering sequence of Out;(v) must be
the same as the covering sequence of Out;(v) for I(v). Let Iny(v) = {z1, 23, ..., Zp}
and Outy(v) = {Zp41,Tpt2s -2k}, | £ p < k. H p =1 then G(z,) is covered by
E(z,). Suppose that p > 1. G(z;) must be covered by either F(z,) or by E(z,);
otherwise the face corresponding to v in the embedding of G(v) would be uncovered.
Suppose that G(z,) is covered by E(z,) (Fig. 15a). Then G(z;) must be covered by
either /(zg) or B(xy). Let Out}(v) = Cuty(v)||{z2,2ay..., 2} and In{(v) = {z,}.
E(v) is still a FIVC for all faces (Fig. 15b).

Suppose that G(z1) is covered by F(z,) (Fig. 16a). Then G(z,)} must be covered by
either F(z,) or E(z;). Let Outi(v) = {z,}||Outi(v) and Ini(v) = {zs, Z3,...,Tp}-
E(v) is still a FIVC for all faces (Fig. 16b). Hence, the cardinality of /n,(v) has
been reduced by one. Either [In,(v)| = 1 or one of the above two cases is applicable.

For each choice of a node = in I'n,(v)||Out,(v) as z; (the only node in In,(v)), we
find the covering sequence of nodes in Out;(v). It can be determined in the same
manner as the covering sequence of Iny(v) for I{v) (¢f. Fig. 11). We select the
covering sequence whose cardinality together with E(z)| is the smallest.
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Figure 15: Equivalent covering sequences of In,(v) and Qut;(v) in E(v)

e The exterior [ace is covered by a covering sequence of Quty(v), and the face corre-
sponding to v is covered by a covering sequence of Ing(v). This case is analogous
to the previous case.

The smallest among the above five covers is the desired E(v).

4.1.7 Final FIVC Determination

Suppose that I(r}, B(r), F(r), L(r), R(r), E(r) have been determined for the root node
r. Then the minimum cardinality perfect FIVC for G is the smallest of the covers L(r),
Ai(r), E(r).

4.2 Covering faces of partial 2-trees

The FIVC problem for a plane embedding of partial 2-trees is solvable in an almost
identical manner as that of 2-trees. Given a partial 2-tree H, one has to produce an
imbedding in a 2-tree G and then process G as for full 2-trees, with small modifications.
To avoid repetition, we only will give the basic case of covering the subgraph G(v), for
some node v of the in-graph of G, by I(v), i.e., a set of vertices covering all faces of G(v)
except for the exterior one. We will refer to the analysis of the section 4.1.1.

Let us assume that triangles corresponding to the children zy,...,z; of v in T(G)
(constituting, w.l.0.g., Out,(v)) have as the common base an added edge, (a,,c,), which is
in G but not in H and that triangles corresponding to children yy,.. .,y of v {constituting

Ingy(v)||Outz(v)) have as the common base the other edge of the triangle v of G, (b,,c.),
which is also in H. We will consider two cases of constructing an I(v) FIVC, depending
on the manner in which the interior face corresponding to v is covered.
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Figure 16: Equivalent covering sequences of In,(v) and Out,(v) in E(v)

Suppose first that the interior face corresponding to v is covered by a vertex from
G(zx). Then the analysis of the covering sequence of Out;(v) is the same as in the (full)
2-tree case for [{v). By considering the result of setting Out(v) = Outy(v)||Ine(v) (cf
Figure 6), we can assume that In%(v) = 8. Thus, the analysis of the covering sequence of
Quty(v) is the same as for Out,(v) in the 2-tree case.

Suppose next that the interior face corresponding to v is covered by a vertex from
G(y1). We can then assume that Qutj(v) = 0, setting Inf(v) to Iny(v)||Quita(v) (cf.
Figure 7). The covering sequence of Inj(v) must be the same as the covering sequence of
Ins(v) in the (full) 2-tree case. The covering sequence of Qut;{v) is almost the same as
in the /(v) covering of 2-trees. The only difference is that it must end in either B(z;) or
F(z¢). Since every F(z,) can be replaced by I(z;) and placed in front of the sequence, we
can assume that the sequence ends in B(z;). In the remainder of this section, we discuss
the analysis of the covering sequence of Qut;(v) in this case.

If k is even, then the feasible sequences are of the form

I(z1),. .., L(2i), B(Zis1), E{zisa), B(xiga), E(@iga), .. . B(zr_1), B(z)

where 7 is odd.
To find the minimum cardinality FIVC we define a graph K as for the 2-tree case, with

similarly weighted edges. For each choice of two vertices z,, and z, of KX, we find M.,
the minimum weight perfect matching for the subgraph of K induced by the remaining
vertices of A'. We then select the solution that minimizes the sum of the cost of M,
and [/{zm)] +|B(z,)|, and construct the minimum cardinality FIVC as in the 2-tree case

(with z,, and z, as the vertices z;, and z;4;, respectively).
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If £ is odd, the feasible sequences are similar as above but the number of initial T
covers, ¢, is even. To find the minimum cardinality FIVC, one has to remove a vertex z,,
of K, find the solution M,, for the matching problem for the subgraph of K induced by
the remaining vertices and then join with the removed vertex as z;, minimizing the sum
of the cost of M, and |B(zy,)|.

The other five types of covers for partial 2-trees can be constructed in a similar manner,
based on the analyses of the full 2-tree cases.
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