Next-Generation Parallel
Performance Visualization:
A Prototyping Environment for

Visualization Development

Steven Hackstadt and Allen Malony

CIS-TR-93-23
October 1993

Department of Computer and Information Science
University of Oregon

L, Tt

Next-Generation Parallel
Performance Visualization:

A Prototyping Environment for Visualization Development

Steven T. Hackstadt and Allen D. Malony

{hacks,malony}@cs.uoregon.edu
Department of Computer and Information Science
University of Oregon
Eugene, OR 97403
QOctober, 1993

ABSTRACT

A new design process for the development of parallel performance
visualizations that uses existing scientific data visualization software is
presented. Scientific visualization tools are designed to handle large quantities
of multi-dimensional data and create complex, three-dimensional,
customizable displays which incorporate advanced rendering techniques,
animation, and display interaction. Using a design process that leverages these
tools to prototype new performance visualizations can lead to drastic
reductions in the graphics and data manipulation programming overhead
currently experienced by performance visualization developers. The process
evolves from a formal methodology that relates performance abstractions to
visual representations. Under this formalism, it is possible to describe
performance visualizations as mappings from performance cbjects to view
objects, independent of any graphical programming. Implementing this
formalism in an existing data visualization system leads to a visualization
protetype design process consisting of two components corresponding to the
two high-level abstractions of the formalism: a trace transformation (i.e.,
performance abstraction) and a graphical transformation (i.e., visnal
abstraction). The trace transformation changes raw trace data to a format
readable by the visualization software, and the graphical transformation
specifies the graphical characteristics of the visualization. This prototyping
environment also facilitates iterative design and evaluation of new and
existing displays. Cur work examines how an existing data visualization tool,
IBM’s Data Explorer in particular, can provide a robust prototyping
environment for next-generation parailel performance visualization.

ST T T T -

1 Introduction

Even though we navigate daily through a perceptual world of three spatial dimensions and
reason occasionally about higher dimensional arenas with mathematical ease, the world
portrayed on our information displays is caught up in the two-dimensionality of the endless
flatlands of paper and video screen. Allcommunication between the readers of animage and
the makers of an image must now take place on a two-dimensional surface. Escaping this
Slaitland is the essential task of envisioning information — for all the interesting worlds
{physical, biological, imaginary, human) that we seek to understand are inevitably and
happily multivariate in nature. Not flatlands.

~ Edward Tufte, Envisioning Information.

Performance visualization is the use of graphical display techniques for the visual analysis of
performance data to improve the understanding of complex performance phenomena. From the
opening chapter of his book Envisioning Information [24], Edward Tufte foretells the futwre of
performance visualizations. Tufte recognizes and demonstrates the necessity and effectiveness of
multi-dimensional information displays. While the graphics of current performance visualizations are
predominantly confined to the two-dimensional flatland described by Tufte, our work has as one of its
primary goals the development of new methods for rapidly prototyping next-generation,
multi-dimensional performance visualizations.

This paper proposes a design process for performance visualization development that greatly reduces
programming overhead, facilitates rapid prototyping, and allows for effective iterative design and
evaluation. By applying the tools of scientific visualization to performance visualization, we have
found that next-generation displays for performance visualization can be prototyped, if not
implemented, in existing data visualization software products using graphical techniques that
physicists, oceanographers, and meteorologists have used for several years now.

We proceed by motivating this research in Section 2. Next, we summarize related research in Section
3 and offer a brief description of the visualization package, Data Explorer, in Section 4. This is
followed by a detailed examination of the methodology (Section 5) and a description of the
visualization development process that we have developed by applying the methodology to a
particular implementation environment (Section 6). In Section 7, several examples of this process in
action are followed by a discussion of the strengths and weaknesses of the model. Finally, Section 8
summarizes our results and offers directions for future research.

2 Motivation

By now, the importance of graphical visualization in parallel performance evaluation has been
established by the success of tools such as ParaGraph [5][6], Seive [21], Pablo [17], Voyeur [22],
Seeplex [3], and Traceview [12]. These products offer the parallel programmer access to information
and insights that might otherwise go unobserved. Whether a parallel program is executing on 4 or
4,000 processors, the ability to view performance data in an useful way often enables the programmer
to identify anomalous behavior within a program. Subtle changes in the way a program performs its
computation, for example, could offer substantial improvements in performance. Without
visualization techniques to aid in the discovery of such problems, performance improvements might
never be found [5].

Clearly, performance visualization is not a panacea to the performance issues facing parallel
programmers. Visualizations have to be “useful” — as a way to elucidate performance behavior.
However, “useful” is certainly a subjective term. For instance, in the domain of scientific

visualization, a display that is “useful” to the scientist in a jet propulsion laboratory may be
inappropriate to the researcher analyzing ocean currents. The notion of “useful” as it applies to
scientific visualization applies to performance visualization as well. The important point is that if a
visualization helps a single person do their work better, then the visualization should be considered
“useful.”

Currently, though, developers must decide beforehand (i.e., prior to implementation) what set of
visualizations may be useful to the most people. Determining the effectiveness of visualizations is
difficult without usability case studies (such as [5]) and a more formal evaluation framework (which
might incorporate the ideas in [14]). While application-specific displays have their place in
performance visualization, displays can be meaningful to large numbers of people. The success of the
teols mentioned above is testimony to this fact. However, the degree to which a visualization can be
considered general-purpose or application-specific is a difficult quantity to determine. Nonetheless,
both theory and practice strongly suggest the need for a wide range of application-specific
visualizations to augment the general-purpose set. To dale, this need has been difficult to fulfill
because of the considerable overhead in creating, evaluating, and formalizing performance
visualizations, but its importance has been documented by Stasko and Kraemer [23]. Heath and
Etheridge [6], creators of the general-purpose ParaGraph displays, even acknowledge the importance
of application-specific displays when they state:

Ingeneral, this wide applicability is a virtue, but knowledge of the application often lets you
design a special-purpose display that reveals greater detail or insight than generic displays
would permit.

Unfortunately, such displays are not easily created in a tool like ParaGraph since they require special
programming skills [6]. Clearly, a development process that requires little overhead and programming
would enable developers to generate application-specific displays quickly in response to user needs,
as well as create and evaluate general-purpose visualizations.

Computer animations of the ozone hole, a thunderstorm, or ocean currents — all appropriately
described as application-specific displays — are commonplace in scientific visualization. How have
other scientists been able to overcome the overheads invelved in visualization development?
Scientists use generalized data visvalization software products that have most, or all, of the tedious
graphics and data manipulation programming already done, although there is still a creative process
involved in constructing scenarios for visualizing scientific data. Performance visualization
developers, on the other hand, have heretofore chosen to develop dedicated graphics and data
manipulation support from the ground up, inadvertantly reducing the type and variety of displays
available to the user.

As parallel computing architectures, environments, languages, and applications continue to advance,
performance visualization needs become more demanding. Most existing tools are limited to
two-dimensional displays, offer little customization and display interaction, and have strict data
formats. Three-dimensional visualization (plus advanced graphical techniques) applied in scientific
fields has opened up entirely new possibilities for researchers, and it stands to do the same for
performance visualization.

To determine whether the field of performance evaluation can benefit by such “next-generation
visualizations” will require a means for rapidly prototyping and evaluating new displays. To apply the
development process of existing performance visualization products to these new displays would be to
start coding hundreds of three-dimensional graphics routines and interaction techniques, not te
mention advanced data representation and manipulation capabilities. Many months later, the
researcher might be in a position to begin prototyping and evaluating new visualizations,

The methodology we propose is based on a formal foundation in which performance abstractions are
mapped to visual abstractions [13]. In general, the methodology we propose functions as an interface
to existing visualization systems, programming libraries, and other graphics resources. In this manner,
an existing visualization package is but a single means of implementing the formal, high-level
abstractions. While our work has focused on the use of IBM’s Data Explorer, any number of similar
products could also be applied. At the very least, our methodology allows visualizations to be
prototyped quickly with minimal overhead. Thus, displays are available for evaluation without
committing months of programming to the project. Even if the scientific visualization package isn’t
suitable for the final implementation, researchers will at least be able to determine if their displays are
useful before the final implementation begins.

This research hopes to address four primary questions:
® Why does the performance visualization development process need to be modified?

® Can existing data visualization software be used effectively to prototype performance
visnalizations?

® What overheads and costs are involved in using existing software to generate performance
visualizations?

® What are the strengths and weaknesses of this design and development process?

The first question has been addressed in the previous paragraphs. We intend to address the second and
third questions by documenting our experience with a particular visualization software package, Data
Explorer (DX) by IBM. A description of the product and its capabilities is given later in the paper.
Finally, in the discussion section of this paper we will attempt to illustrate some of the advantages and
disadvantages of this technique.

We have used Data Explorer to prototype performance visualizations in three categories:
® Existing two-dimensional performance visualizations,
® Enhanced three-dimensional versions of existing visualizations, and

® New multi-dimensional performance visualizations that include advanced graphical
rendering techniques.

Our experiences in each category offers insight to the advantages of this approach. As will be seen, we
were successful in developing techniques for rapid prototyping of displays with minimal overhead and
programming expense. The process avoids graphics programming completely, yet maintains access to
numerous display styles and interaction techniques. In essence, developers are able to focus on the
visualization design rather than the underlying implementation of data models and low-level graphical
operations,

This research, while greatly facilitating the evaluation of new and existing visvalizations, does not
have evaluation as its goal. Many visualizations will be presented in the pages that follow. Our goal is
not to evaluate these displays, but rather to develop tools and techniques for rapidly prototyping such
new and existing visualizations so that evaluation could more easily take place. In most instances,
appropriate interpretations of the displays are given, and we inevitably point out how a display might
help an user or be better than some other display, but any “evaluation” that we do is ultimately aimed at
the development techniques being explored, not the visualizations themselves.

3 Related Work

Tools such as ParaGraph [5](6], Pablo [17], and Seeplex (3] have become popular because of their
portability, scalable displays, and complete performance visualization environments. The displays
offered by these products can be very effective for general parallel performance evaluation. Typically,
however, the creation of application-specific displays either requires considerable progtamming (e.g.,
X Window programming) or is simply unavailable. With regard to ParaGraph, Heath and Etheridge [6]
admit:

Unfortunately, writing the necessary routines to support an application-specific display isa
decidedly nontrivial task that requires a general knowledge of X Windows programming,

A recent summary of current visualization tools for parallel systems can be found in [10] where
Kraemer and Stasko summarize the current state-of-the-art in visualization development for parallel
systems in general (i.e., parallel debugging, program visualization, and performance evaluation).

Many of the philosophies underlying our research are echoed in the work by Sarukkai and Gannon. In
[21], they conatend:

The lack of a generalized approach for the treatment of the performance data has lead to the
usc of ad-hoc means of developing performance visualization systems.

A truly programmable system should provide a means of casily obtaining the desired
visualizationand still not be tied to specific architectures or programs, To achieve this, the
visualizationmechanism should not be tied with the semantics of any event in the trace file.
Insteadit should provide a means of mapping subsets of all events inatrace fileand different
ficlds in these events to different axes of a figure and to different graphical objects such as
circles, points, lines or 3-D objects.

Finally, a powerful visvalization tool should provide some sophisticated graphical editing
capabilities such as zooming into specific locations of windows, multiple color maps,
overlaying of figures, etc.

Data Explorer coupled with the design process proposed herein provides some of the capabilities
identified by Sarukkai and Gannon. In general, the separation of data transformation and graphics
makes visualizations independent of the trace data’s semantics. The flexible data models offered by
most scientific visualization packages, including Data Explorer, simplify mappings between data and
graphical rendering techniques, and sophisticated display interaction techniques are also supported.

Sarukkai and Gannon also make a case for the importance of application-specific displays and rapid
prototyping for evaluation purposes:

Whileit is convenient to have predefined visualizations of programs, the problem with such
tools is that it is not easy to rapidly test new visualizations....

Stasko [23] explains the dire need for application-specific displays in the context of parallel program
debugging which he differentiates from performance evalvation by claiming that performance
visualizations do not focus on the semantics of a particular program. As explained in the introduction,
however, performance evaluation can be enhanced by creating visualizations which are linked 10 the
semantics of an application. In this way, the visualization concerns of parallel program debugging and
performance evaluation do intersect, and Stasko’s reasons for application-specific displays become
relevant to this work as well.

The use of prototyping tools has been established by systems such as Pablo [17] and Polka [23]. Pablo
promotes itself as a performance tool prototyping environment that allows and supports end-user

applications. That is, the prototyping environment is the same as the one used by the end-user, but
Pablo provides little support for new visualization prototyping. Polka can be used more effectively for
the rapid development of algorithmic animations but is primarily suited for sequential programs.

An essential feature of next-generation visualizations is customizability of the displays. Pancake
covers this topic as it pertains to parallel debugging in [16]. As with Staske’s work, many of the
concepts discussed are also relevant to parallel performance visualization. Pancake’s point is that
visualizations based on the user’s conceptual model can be more meaningful than those which are not.
Therefore, giving the user the ability to customize and/or control visualizations should result in more
meaningful displays. Clearly, this notion is applicable to both debugging and performance
visualizations. In [18], Roschelle argues that meaningful visualizations are not necessarily those that
are consistent with an expert’s mental model. Rather, users should be able to experiment with
visualizations and develop their own understanding of the data. Clearly, both researchers support the
importance of customizable displays.

In [19], Rover proposes a paradigm that treats performance data similar to any distributed data (i.e.,
program and system data) in the context of the data parallel programming model. Rover states:

Visualizationdisplays this performance data for perusal, employing the same presentation
techniques in place for data visualization, such as animation, image transformatiens, color
manipulations, statistical analyscs, etc.

In her conclusion, Rover states that existing scientific data visualization resources can be effectively
applied to performance visualization. In a similar manner, our work treats performance data like
scientific data, and we develop a methodology for applying scientific visualization tools which
contain the presentation techniques identified by Rover to the problem of parallel performance
visualization.

Finally, the literature shows at least one documented use existing visualization software products for
performance evaluation. In [20], Rover utilizes AVS and Matlab to generate performance displays.
Her approach is similar to the design process proposed in this paper in that performance data is
collected, transformed into a format readable by the software, and then displayed using that software.
The tools were used to generate simple two-dimensional displays. Our research both formalizes the
approach and extends the use of such products into the development of new, more complex
visualizations.

4 About Data Explorer

Before we go into the details of Data Explorer, it is important to emphasize that Data Explorer is not
unique in its capability to create sophisticated visualizations and to be integrated into the formal
methodology that we describe in Section 5. The high-level abstractions can manifest themselves
practically in any number of ways, including other data visualization software. Data Explorer was
available to us and seemed an appropriate test-bed for our research, though it is only one of many
products that could fulfill the role defined by our methodology. The end of this section offers a list of
several other similar products.

Data Explorer (DX) is an advanced data visualization software package produced by IBM which
accommodates both developers and end-users of visualizations. Visualizations can be built by
creating a visual program in the graphical user interface or by using a scripting language. The end-user
can control many aspects of a visualization through the interface, while more advanced users can
create new visualizations by adding, removing, or changing modules within the current visual
program. DX also allows the creation of new, high-level data-processing or graphical modules.

The DX data model is extremely flexible, though it requires some time to understand and use. It can
handle everything from rendering very regular, mesh-connected structures to completely arbitrary
sets of polygons. At its heart, the DX data model utilizes sets of positions, connections, and data
associated with one or both of these sets. This simple foundation offers tremendous flexibility in what
the model can represent.

In addition, Data Explorer supports a high degree of data and software reusability. Because DX data is
self-describing, visual programs retain significant generality and can consequently create a wide class
of visualizations. (Section 6.2 and Figure 6.5 explore this aspect of DX in more detail.) Furthermore, a
single DX data file can easily be processed by multiple visual programs, Several of the figures in this
paper were generated from the same data file. (As will be discussed in Section 6.2.5, different
visualizations are created by altering the trace transformation, the visual program, or both.)

The numerous graphical techniques available in DX can be combined in hundreds of ways, provided
that the data satisfies the requirements of the given techniques. DX modules generally “do the right
thing” for the data they receive; that is, the data is self-describing. For example, a module which
renders glyphs at a set of locations based on some data value will choose the appropriate graphical
technique depending on the dimension of the data (e.g., spheres for scalar values or vector arrows for
three-dimensional data).

The Data Explorer software runs on several architectures, including IBM RS/6000s, Hewlett-Packard
workstations, Silicon Graphics workstations, and Sun workstations. Additional information on Data
Explorer can be found in [8] and [11]. Obviously, Data Explorer is not the only scientific visualization
software available. Some other similar products include AVS by Advanced Visual Systems, Data
Visualizer by Wavefront Technologies, IDL by Research Systems, IRIS Explorer by Silicon Graphics,
and PV-Wave by Visual Numerics. In the public domain, there exists the Geometry Center’s
Geomview/OOGL and NCSA's Polyview products. Any of these packages could be integrated into our
methodology equally as well.

5 Methodology

The work described in this paper exists in the context of a high-level abstract model that is currently
guiding the performance visualization research being done at the University of Oregon [13]. At the
heart of this model is the claim that if performance visualization is to play a key role in the evaluation
of parallel computers and programs, then it must be established on a formal foundation that relates
abstract performance behavior to visual representations (i.e., a “visual performance abstraction™). The
binding of a performance abstraction to a view abstraction, mapping performance object outputs to
view object inputs, represents a performance visvalization [13].

A performance abstraction is the representation of how performance complexity is managed (i.e.,
desired performance dataz analysis) and the performance characteristics to be observed. A view
abstraction is a representation of the desired visual form of the abstracted performance data,
unconstrained by the limitations of the graphics environment. Together, these two descriptions can be
used to produce performance visualization software by generating interfaces to available graphical
programming libraries or existing dala visualization systems. Using this methodology, new parallel
performance visualization development environments can be developed and studied.

Figure 5.1 illustrates the methedology. Through a process of abstraction, performance data generates
specifications for the performance analysis and the visual representation of the data. In practice, these
abstractions would best be facilitated through a specification language which our research group is
developing; our particular implementation environment, Data Explorer, does not currently offer

support for this aspect of the methodology. Specifications are instantiated to implementable objects.
(The term objects is intentionally general to accommodate the many realizations possible in different
implementation environments.) Figure 5.1 indicates an overlap between performance and view
objects suggesting an interdependence between their implementations. In the ideal implementation
environment, performance and view objects would be totally independent, but our research has found
that the degree to which these entities can be implemented independent of one another is determined
by the environment in which the implementation is taking place. In Data Explorer, this overlap is
present in varying degrees. Next, the instantiated objects are combined to create the visual
representation of the performance data. Finally, the actual rendering of the visualization takes place
through a toolkit which interfaces with the various graphics resources being utilized. The explicit
existence of the toolkit is also dependent on the implementation environment (e.g., in Data Explorer,
the *“toolkit” interface is imbedded within the visualization system itself). For a more detailed
description of this methodology, see [13].

Performance Data

/ semantic-based \ Py
abstraction 'g
Performance Abstraclion View Abstraction a
Speciﬁcation Specification %
'-":o;".
abstraction)

instantiation

Performance View
Objects Objects
mapping

Visualization Instantiation a
)
3
32
o
Visualization Toolkit §

Visualization - Graphics Other
Systems Libraries Tools

Figure 5.1 — A high—level, absiract view of performance visualization. Performance dala feeds the cre-
ation of abstractions for both the performance analysis and the conceptual view. The representational
absliractions are instantiated to objects which combine to form the visualization, which is then imple-
mented by interacting with any number of supporting tools and sofiware through the loolkit interface.
The degree to which the implementation of performance and view objects is interdependent is deter-
mined by the implementation environment.

The research documented in this paper is concerned with the application of this methodology in a
specific implementation environment — a scientific visualization system,; in this case, that system is
Data Explorer. As mentioned above, realizing this methodology in a specific environment is not
always straightforward, and the correlation between abstraction and implementation is not always
cleanly defined. It was mentioned above that Data Explorer does not offer support for the specification
of abstractions, and consequently, this was not the focus of our research effort. On the other hand, we

have been able to implement the concepts of performance and view objects in the context of an
existing data visualization system. The process that has evolved implements performance objects by
structuring raw trace data so that the visualization system can process it. View objects manifest
themselves in the way a developer creates a visualization within Data Explorer. These correlations
will be explained further in the next section.

6 Implementation Environment

This section discusses one way that the methods described in Section 5 realize themselves in a
practical context. As mentioned before, Data Explorer represents a specific implementation
environment to which our methodology has been applied. The visualization development process that
has evolved from our work with Data Explorer is illustrated in Figure 6.1, Performance visualization
starts with raw trace data or statistics. The fundamental steps of this process transform the trace data
into a data object file and a visual program. While trace transformations manifest themselves

Visual

Program
Graphical Redesign
Transfonnatfon
— A 2N
1 .
(]

}
&) - @

Evaluation

Trace |—F=s
Data |———=

Trace
Transformation Visuallzalion
Prototype

DalaFglleblect Production

Figure 6.1 — The abstract methodology described in Section 5 is realized in the DX environment as
shown. Through a process of transformations, trace data leads fo the crealtion of a visual program and a
trace data object file. These components are, ideally, the realizations of performance and view objects,
respectively. In some cases, though, the abstraction implementation is not cleanly separated into inde-
pendent components (as indicated here by the dashed arrow between the visual program and the data
object file, and in Figure 5.1 by the overlap of the perforrnance and the view objects) because of the
underlying development enviranment.

physically (i.e., as some real program or function operating upon the trace data), graphical
transformations in this environment are a mental process by which analysts merge the capabilities of
the visualization environment, their knowledge of the performance data, and a visualization concept
— or, more formally, a view abstraction (the specification of which is not supported in this
environment) — to construct a visual program in DX that will drive the creation of the desired display.
It is important to note that the specification of a visualization in Data Explorer (by a visual program)
does nor fulfill the role of the view abstraction specification of Figure 5.1; that aspect of the
methodology is not explicitly defined in this environment, but is, instead, embodied in the mental
transformation process. The trace transformation may perform several operations and reductions on
the data, but it uitimately creates a data object file that can be interpreted by the data visualization
software. The content of these DX data object files maps nicely to the concept of performance objects.
In fact, that is exactly what DX data files contain — data objects that have been constructed by the
transformation of performance data. From this specially formatted data file, a visualization prototype
is created by executing the visual program. The resulting display can be manipulated in many ways,

including rotating, zooming, and travelling through or around the objects in the image by capitalizing
on the capabilities available in DX.

Figure 6.1 also shows how this process of prototyping performance visualizations can be integrated
into an iterative design and evaluation process. Though not explicitly shown in the figure, the redesign
of a visualization is accomplished by modifying the trace transformation, the graphical
transformation, or both. Eventually, the visualization will be ready for production. If the software
package is an insufficient environment for the final implementation (e.g., because of cost or rendering
speed), then actual coding of the visualization is appropriate at that point. Note that this occurs after
the iterative design and evaluation process is complete. Ideally, though, the prototyping environment
and implementation environment are the same, in which case the visualization prototype would be in
its production version immediately after evaluation of the prototype is complete. A combined
prototype and production environment can also be found in Pablo [17].

Figure 6.1 indicates the interdependence between the visual program and the data object file by a
dashed arrow between them. In an ideal development environment, performance objects and view
objects are implemented independently of one another. But we have found that dependencies between
data objects and visual programs exist in some cases. For example, much of the trace processing
required to create a visualization like Figure 7.3 is in representing the polygonal facets of the cylinder.
Essentially, the data object file is a precise specification for the graphical structure. Ideally, though, the
developer should be able to rely on the visualization environment to provide that transformation. In
other words, this sort of processing should really be part of the graphical transformation (i.e., the
creation of the visual program in DX). In an end-user visualization tool, such processing would be
inherent in the visualization development environment, not programmed by the user. However, in a
prototyping environment where new visualizations are created for evaluation and then modified, this
sort of processing is more easily managed as part of the general trace processing. Switching from
prototyping to production sees that type of trace processing ported to the implementation
environment. In fact, DX can accommodate the creation of user—defined modules that accept more
general, abstracted trace data and perform the necessary structural transformations. That is to say that
a developer could program a DX module that performs a specific transformation on trace data and
easily integrate it into the visualization environment. For example, in an end-user tool, the visual
program for Figure 7.3 might contain a KiviatCylinder module that accepts general performance
objects and builds the graphical representation of the data. The KiviatCylinder code would essentially
be the same as part of the trace transformation code done in the prototyping environment. Making this
transition would make our practical approach more consistent with our guiding methodology, but
since we are concerned with prototyping visualizations for development and evaluation, this aspect of
the implementation environment is not explored.

In this process, graphics programming is avoided prior to production, the developer is able to focus on
the visualization rather than the code that generates it, and visualizations are quickly created for
evaluation, modification, and redesign. This is possible because changes to visualizations are made
more easily and have fewer implications in the protolyping environment than in current performance
visualization tools.

Compared to existing performance visualization techniques, this method is different in that it
separates the development phase from the production phase. As the area of visualization evaluation
advances, a decoupled development process will be important so that modifications may be made
quickly and easily. The application of our methodology creates a process that is a step toward that goal.

The following subsections will explore more deeply trace and graphical transformations. We will also
offer a brief discussion of display interaction, a key component to next-generation performance
visualizations.

6.1 Trace Transformation: Creating the Data Object File

By using an existing software product, part of the visualization problem becomes one of frace
transformation. To take advantage of Data Explorer’s rich data model the trace files or performance
data must be transformed into a format that Data Explorer can process. A single trace file may take on
several different representations within Data Explorer depending on the visualization desired. On one
hand, a transformation may simply augment the existing trace data with the appropriate keywords and
structures. Alternatively, it may perform extensive computations and/or reductions on the data set
before it generates the Data Explorer file. It is important to note that the problem of trace analysis still
exists. That is, in most cases the trace transformation is responsible for any analysis or reduction of the
trace data, However, one of the advantages of the method being proposed here is that the
transformation of trace data is done independently of any graphical representation of that data, a
concept promoted by Reed et al. in [17], and a key characteristic of our high-level methodology. Thus,
transformations are easily modified and can be used with several different graphical techniques. In an
environment of creation, testing, and evaluation, the ability to make changes with minimal intrusion
on the rest of the system will allow for more rapid prototyping of the displays.

Trace transformations can easily be implemented in traditional programming languages, and do not
require any special programming skills. It is even possible that existing performance tools can be used
for more involved trace analysis problems and then to generate data files suitable for input to Data
Explorer. The underlying requirement, though, is an understanding of the data model for the product
being used. In the case of DX, our experience suggests that it should take no more than a couple weeks
of studying examples and experimenting for an individual to become comfortable with DX’s data
model. Once an understanding of the data model is achieved, trace transformation programming
follows quickly and easily. Data Explorer's data model is rich enough for general scientific
visualization and as a result, offers many aliernatives for performance visualization. The flexibility
gained by such a general model is advantageous and certainly worth the minimal investment in time.

6.2 Graphical Transformation: Creating the Visual Program
6.2.1 Overview of Visual Programs

Once a trace has been transformed into the DX data model, it can be imported using either DX’s visual
programming language or its scripting counterpart. The visual programs translate directly into a more
general scripting language, which is best described as functional and data-driven. Since the DX
programs we created were usually simple, the visual programming environment was adequate for our
needs. We could have switched between the two programming styles at any time if it had become
necessary. Programs generally consist of three phases: importing and selecting, processing, and then
rendering the data. One of the main advantages to using a product such as Data Explorer is that all of
the programming that is necessary to implement these three phases is already done for the developer.

Figure 6.2 contains a visual program created in Data Explorer. The graphical representation of a DX
function is a module with sets of “tabs” on its top and bottom, corresponding to inputs and outputs,
respectively. By connecting one module’s output tab to another module’s input tab, the user assembles
a network of madules — a visual program — that specifies and controls the visualization. Connections
between modules indicate the flow of data through the network.

6.2.2 Setting Module Parameters

The modules of a visual program usually have
default values that “do the right thing” to the data.
However, in certain cases, it is desirable (or
required) to set certain parameters. For example,
to import data, the user selects the Import module
from the DX menus and places it on the
programming canvas. (The visual program in
Figure 6.2, like most DX programs, utilizes the
Import module.) The Import module requires the
user to tell it which data object file is to be read. To
set the parameters of a module, the user begins by
double-clicking on the module, which opens into a
window like the one in Figure 6.3. Next, the user
types the appropriate information into the desired
fields (e.g., the “name” field in the Import
module).

limage

Figure 6.2 — A simple visual program in
Data Explorer that is capable of creafing
many different types of visualizalions; see
Figure 6.5.

i
.f
t;
|

Lok

Figure 6,3 — Data Explorer's Import module reads a data file into a visual program. In most cases, the
userneed only specify the name of the data set. The default values for the other parameters are usually
appropriate.

6.2.3 Visualization Control Panels

Data Explorer offers other techniques for controlling module parameters which allow the user to more
easily interact and “tweak” the characteristics of a display. By connecting objects called “interactors”
to input tabs, the user can create an adhoc “control panel” that allows for easy modification of any
number of different parameters. An interactor appears in the visval program as a simple module (no
inputs, one or more outputs) and in a control panel as a selector, a customizable field, or other
interaction object. (Note that the visual program in Figure 6.2 does not contain any interactors.)
Interactors are highly configurable yet easy to use, adding significant flexibility to the visualization
development process. An example control panel appears in Figure 6.4. As can be seen, the control
panel allows the user to select import data files, alter the graphical characteristics of the display, and
even change the quantities being visualized,

1

Figure 6.4 — Data Explorer allows the R b
visualization programmer o construct flataspt ; | Caption
control panefs capable of controliing sample~-data-1.dat i | ol
many aspecis of the visualization, in- : '
cluding the narne of the data set being - i
visualized and any number of the dis- r | View on Cri¢
play’s graphical characteristics. | [Average

View on Glyphs I i

Curnulalive i

6.2.4 Self-describing Data

Data Explorer’s data model offers significant advantages over traditional data representation
schemes. Because Data Explorer data is “self-describing™ and modules are designed with this in mind,
a single DX visual program can generate many different displays depending on the data it processes.
(The notion of self-describing data can also be found in Pablo’s Self-Describing Data Format (SDDF)
[17] and NCSA’s Heirarchical Data Format (HDF) [15].) The data files imported by DX contain
structural object information which determines a set of possible visualizations. It is up to the visual
program to extract and process the desired information from the data file. Many visual programs are
reusable, requiring only minimal changes, if any at all.

6.2.5 A Performance Visualization Example

The DX data model centers around sets of positions and connections. A simple DX program might
create a visualization that annotates positions with spheres and the connections between positions with
cylinders. Additional coloring might take place depending on the data being processed. Figure 6.2
contains a visual program that accomplishes these tasks for appropriately structured input data,

Performance visvalizations that intend to illustrate interprocessor communication often manifest
themselves in a visualization fitting the description given above. That is, processors can be
represented by a set of spheres in space, while the communication between processors can be realized
by links between the spheres. Such a display can be extended in many ways and is certainly not limited
to interprocessor communication.

To emphasize the use of reusable visual programs, the images in Figures 6.5{a-d) were all generated by
the visual program in Figure 6.2. The only program parameter that was changed was the name of the
data file in the Import module. All the other modules have default parameters that will do the right
thing for the data being visualized. The Data Explorer modules are able to figure out what to do with
the data without the user explicitly describing it; the trace transformation process is responsible for
augmenting the trace data with enough structural information so that Data Explorer modules can
construct the visualization from the data. Thus, the structure and content of the data file — which is the
result of a trace transformation — plays a key role in determining a visualization’s appearance. In this
way, a single visual program enables a set of displays to be generated. Practically, this is convenient,
but it violates the desired independence between performance and view objects, as described by the
high-level methodology.

12

Figure6.5(a-d)— Several different visualizations created by the same visual program (see Figure 6.2)
reading different data files. (a) represents communication between processors In a ring topology. {b)
can represent up to three different quantities on a mesh of processors or a distributed two-dimensional
data sfruciure, (c) exiends the idea in (b} to three dimensions. (d) is a novel visualization in which the
orientation of the “sails” emanating from the processors and the height of the sail's two upper points is
determined by a three-dimensional metric such as the percentages of lime processors spends in the
states busy, idle, and overhead.

Each of these displays could be used in a parallel performance selting. For instance, Figure 6.5(a)
could represent interprocessor communication in a ring topology. Similarly, Figure 6.5(b) could be
applied to a mesh architecture where giyph size represents communication overhead, link color
represents the communication load on a particular interconnection between processors, and the mesh
background shows a continuous interpolation of the discrete node data, potentially useful to observe
scalability characteristics. Figure 6.5(c) extends the previous example into three dimensions. The
interior of the solid is now volume-rendered to create a “cloud” of colors which can offer insight into
the possible results of a scaled-up version of the application. Finally, Figure 6.5(d} offers a novel
visualization where processors exist in a two-dimensional grid with “sails” emanating from the
glyphs. For each processor, the orientation of the sail and the height of the sail’s two upper points could
be controlled by a three-dimensional metric (e.g., busy, idle, and overhead percentages). While these
displays are significantly different graphically, they were all created by a single, simple visual
program processing different data files. In terms of our methodology, we are combining the same view
objects with different performance objects,

i3

Alternatively, the same dataset can be processed by different visual programs to generate different
displays, an approach common to scientific visualization. For example, a developer can apply
different realization techniques to the same data by using different DX programs. One visual program
may volume-render a three-dimensional structure while another creates contour surfaces within the
volume. The data is the same, but the different visual programs enable different types of displays to be
created. In this paper alone, Figures 6.5(d), 7.1, 7.3, 7.4, 7.5, and 7.9 were all generated from
essentially the same data file. In other words, the same performance objects can be combined with a
variety of view objects.

Thus, in this implementation the developer is presented with two levels at which visualization
development and modification can take place: the data object file {performance objects) and the visual
program (view objects). Both can be used to control certain aspects of the visualization process, but we
have found that one may be more appropriate than the other depending on the user’s goals. If the goal is
to investigate performance characteristics within a single set of performance data, then fixing the data
set and changing the visual program tends to work best. On the other hand, if the goal is to compare and
contrast several sets of performance data, then using a single visual program and changing the
structure of the imported data can be effective. Of course, in many situations, changing both the data
and the visual program generates the best results.

The strength and flexibility of a product like Data Explorer comes from both the programming behind
the modules and the powerful data model it uses. The result, in terms of prototyping performance
visualizations, is that displays can be created very easily and quickly. For the visualizations in this
paper, less than 100 lines of standard C code was necessary to implement the trace transformation. We
have found that the Data Explorer visual programs required to import and process the data files vary
minimally across a wide range of visualizations — a testimony to the self-describing capabilities of
the data model and the high degree of sofiware reusability supported by DX. In all, a new visualization
— trace transformation, graphical transformation, debugging, experimentation, etc. — can be
developed in less than a day. Modifications to existing displays require a few minutes or less. Given
that a single DX visual program may serve to create many visualizations, and of course, a single DX
data file can be used in many different visual programs, the overall result is a very flexible, easy-to-use
environment for creating and redesigning performance visvalizations.

To illustrate how this may benefit performance visualization developers, consider the following
scenario. Suppose a certain performance visualization tool was limited to two-dimensional displays in
the spirit of Figure 6.8(a). (Note that this supposition applies to almost all of the performance
visualization tools mentioned in the introduction.) To extend such displays into three dimensions
would require substantial work on the part of the tool designers and implementers. New graphic
routines would have to be written, additional methods of interacting with the display would probably
be necessary, and perhaps the data model would need to be extended. Using a tool such as Data
Explorer, which supports three-dimensional visualizations by default, the jump from 2-D (o 3-D is
simply a matter of changing the data!

6.3 Display Interaction

Next-generation performance visualizations are bound to take advantage of three-dimensional
displays. The additional information made available by this technique will be invaluable to
programmers using next-generation parallel languages. However, moving to three-dimensional
visualizations will necessitate additional functionality in visualization control and interaction. For
instance, consider the three-dimensional display in Figure 6.6, a different view of the visualization
appearing in Figure 6.5(d). As it appears, most of the useful information is obscured. However, if the

14

object is rotated slightly, a new image results (see Figure
6.5(d)) — an image that could potentially reveal needed
information.

Adding a third dimension to a visualization increases the
representation potential for the data associated with a given
display. Three-dimensional rendering techniques allow the
viewer to see more of that data, and display interactions
increase the access to and control of visual details and
display attributes. However, extending existing
performance visualization tools to three-dimensional

displays will require more than just adding a 3-D projection ngm‘g %5 ;A? ?_Xaﬂ';?fe_‘Of hO:[a
. . . : poor 3-D orientation limits a dis-
routine. Because three dlmel'lsmnal dlsp!ays are so play’s effectiveness. Tools offering
dependent on the angle from which they are viewed and the 3-D displays clearly require meth-
rendering techniques being used, tools offering 3-D will ods for rotation and zooming.

need ways for the user to interact with the objects in the

display. At a minimum, this would seem to include the ability to zoom infout on any part of an object,
to rotate the object arbitrarily, and to control graphical attributes such as color and transparency. More
advanced tools would include control over lighting models and the surface properties of display
objects (e.g., specularity and reflectance). As an example of the additional features provided by
scientific visualization tools, we consider Data Explorer’s color map editor, shown in Figure 6.7. This
tool allows the visualization developer to customize a visualization’s color map. In fact, multiple color
maps can be used for different objects in the display. The importance of these capabilities is
documented in the work by Donna Cox at NCSA [2]. She explains that visualizations can be given
completely new meaning simply by changing the color map(s) associated with the display. Such
features are not trivially incorporated into existing performance visualization tools but are standard in
many visualization packages.

Figure 6.7 — Data Explorer’s Colormap Editor allows the visualization developer to create a wide range
of color maps that can be used to highlight different features of the data being visualized. Tools such as
this will play an imporiant role in the development of nexi-generation visualizations, but they are difficult
and time-consuming for the visualization developer to program.

Another display characteristic that is extremely important to performance visualization is animation.
Most of the visualization packages offer this functionality. Data Explorer’s animation technique is
similar to that of a cartoon. The DX data file often contains time series data. Visuvalizations for each
member of the time series are displayed rapidly in successton, and an animation results, This is not as

15

flexible as the animation techniques found in some performance visualization tools (e.g., ParaGraph
[6] and Polka [23]) where, for example, a connection between two nodes may appear and disappear
without ever having to change the surrounding image. However, once displays become
three-dimensional, this becomes a much larger problem since connections may pass through, in front
of, or behind other objects in the scene, requiring complex hidden line and surface analysis algorithms
for a correct visualization.

idle busy send recv

Figure6.8(a,b)—(a)is a two-dimensional display genarated by the ParaGraph visualization ool show-
ing interprocessorcommunication. (b)is a three-dimensional prototype of the same display created with
Data Explorer. Moving to an inherently 3-D model introduces graphical complexities which require strict-
er metheds for animation. Nonetheless, 3-D displays have more depth and can be extended in ways
that 2-D displays cannot.

For instance, Figure 6.8{a) shows a display from the papular ParaGraph [5][6] visualization tool.
Figure 6.8(b) is a prototype of the ParaGraph display generated by Data Explorer. Both displays show
communication between processors. ParaGraph's display is twe-dimensional while Data Explorer's is
three-dimensional. In rendering the two-dimensional display, it is known that a connection between
two nodes will not interfere with any other objects in the scene (except other connections which are
safely ignored since they are pixel-wide lines) since the nodes are arranged in a circle. However, in the
three-dimensional visualization, the visibility of a given connection is dependent on the orientation of
the structure as well as the components making it up, which includes the other connections. As a result,
a much richer display can be developed with a true three-dimensional feel to it. Connections between
nodes are not simply lines which lack perspective and depth, but rather, they are “tubes” which clearly
allow the user to see where the connections reside in the structure. But this added graphical complexity
has its consequences. Such complexities necessitate a stricter method for animation in the generalized
data visualization software products.

In general, though, visualizing in three dimensions overcomes certain limitations inherent in two
dimensions. For example, in 3D there is more flexibility in layout than in 2D, making the creation of
scalable displays potentially less intractable. Advanced graphics rendering also offers more options
for combining global and detailed performance visualization in a single display. While the display in
Figure 6.8(b) may be perfectly acceptable, three-dimensional representations offer greater
possibilities to the developer and will play an integral part in the next generation of parallel
performance visualization tools.

16

7 Application
7.1 The Design Process in Action

This section will examine several examples of how the design process has been applied to the
performance visualization research being done at the University of Oregon. Three primary categories
of visualizations to which we have been able to apply this design process will be discussed in what
follows. Each will offer insight into this new performance visualization development model. To
reiterate, it was useful to categorize the prototypes as one of the following:

® Existing two-dimensional performance visualizations,
® Enhanced three-dimensional versions of existing visualizations, and

® New multi-dimensional performance visualizations that include advanced graphical
rendering technigues.

711 Existing Visualizations

By protoyping existing displays, we establish that the proposed design process can accomplish many
of the same tasks as existing visualization tools. As an example of this, consider the popular Kiviat
diagram [9]. The traditional form of this two-dimensional display has several spokes extending from a
center point whose lengths change as time passes. A spoke corresponds to a single member of an object
set aver which a scalar parameter (or a set of parameters) is being measured. As it has been applied in
ParaGraph [6], a spoke represents a processor in a parallel computer, and the measured quantity is the
percentage of computation for that processor. Then, when the ends of adjacent spokes are connected,
triangular regions result. If the quantity being represented by the length of the spokes is, say,
computation, then processor utilization would be “good” when the spokes are longest. (Spoke-length
is typically mapped onto the interval [0,1]. Thus, with a large number of spokes at maximum length,
the Kiviat diagram approximates a unit circle, which is sometimes used as a backdrop.)

Given the concept of a Kiviat diagram, the next step is to develop some method of representing it in the
Data Explorer data model of positions and connections. The minimal amount of information
necessary to create the visualization is a time series of data. Each time step contains a scalar value for
each processor in the system. It was mentioned above that triangular regions result when the
end-points of adjacent spokes are connected with one another. Thus, a Kiviat diagram can be
decomposed into a set of triangles. In Data Explorer, a triangle is represented as three points and three
connections. All triangles have the center point in common, and adjacent triangles share the end-point
of a common spoke. If there are n processors in the system, then for each time step in the animation,
n+! positions (the center point is also necessary) must be specified, followed by a list of connections,
which is given by referencing the positions list. In essence, the representation is 2 “connect-the-dots™
puzzle.

Conceptually, a Kiviat diagram is easily represented within the Data Explorer data model, and
consequently, coding and debugging the trace transformation took less than twa hours. Similarly, the
DX program necessary to render the data is only siightly more complicated than the examples
discussed earlier (Figure 6.2). Thus, in roughly half a day, a fully animated Kiviat diagram prototype
was developed from a raw trace file. Figure 7.1 shows a single frame of the animated visualization.
(We regret that the greyscale figures in this paper do not do justice to the actual color renderings
created in Data Explorer.)

Figure 7.1 — A prototype of the traditional two-dimensional Kiviat diagram is easily reproduced with
Data Explorer. Processors are represented as spokes arranged in a circle. A spoke’s length is con-
trolled by a performance metric such as percentage of time spent working.

After completing this task, the importance of this approach became more evident. The ability to go
from visualization concept to visualization prototype in just a few hours opens up entirely new
possibilities for visualization developers and evaluators.

7.1.2 Enhancing Existing Visualizations

Having successfully prototyped an existing display, the next step is to see how Data Explorer and its
data model allow us to extend or enhance visualizations. In this section, we continue to pursue the
Kiviat display.

Our visualization group has experimented with three-dimensional representations of existing
two-dimensional displays, among other parallel performance visualizations [13]. One of the potential
problems with a standard Kiviat animation is that the viewer sees only step at a time and can easily lose
track of how the performance at that step compares to the performance during the rest of the animation.
Thus, by removing the animation of the display and letting time run along the third axis, a Kiviat
“tube” results. Figure 7.2 illustrates this process.

Figure 7.2 — By al-
lowing time to lravel
along a third axis, the
traditional Kiviat dia-
gram can be ex-
tended to three di-
mensions, creating a
Kiviat “tube.” Dala Ex-
plorer and similar
tools can greatly sim-
plify this transforma-
tion.

18

This representation of the original Kiviat diagram is important because it gives the viewer a very
global view of the performance data, as opposed to the standard two-dimensional version which limits
the viewer’s ability to compare the relative performance of the application at different times during the
trace. However, the three-dimensional representation tends to obscure more detailed information
about individual processors at specific times, whereas the standard Kiviat display shows that
information more clearly.

It is interesting to note that the representation within the DX data model now changes considerably. To
render a tube with a solid exterior shell, the quadrilateral surface patches between time steps are now
rendered instead of the triangular sections emanating from a slice’s center. Still, the transformation is
only slightly more complicated than the standard Kiviat transformation. Figure 7.3 shows a Kiviat
tube generated by Data Explorer.

e —
PR

LS
T

Figure7.3— A three-dimensional Kiviat tube generated by Data Explorer gives the viewer a more glob-
al perspective of the performance data, but at the same time obscures detaifed information about cer-
tain processors or time steps.

Some of Data Explorer’s true power is revealed in the following example. It is possible that
individually, neither of the Kiviat displays generated thus far (Figures 7.1 and 7.3) wotally fulfills the
viewer's needs. The two-dimensional display allows the viewer to assess how processors relate to each
other during a given time slice, but makes it difficult to see how performance in one time step relates to
other parts of the animation. The three-dimensional display tends 1o do just the reverse; that is, seeing
trends over the life of the trace is easier, but it is difficult to see how processors relate to each other
during a given time step. It may be that by combining the two displays, both needs could be met. Thus,
the idea for an enhanced display is to let the two-dimensional Kiviat “slice” pass through the Kiviat
tube, which can be made partially transparent. The slice highlights the interprocessor relationships for
a given time step while the rest of the tube still reveals how a particular step relates to the rest of the

19

data. The display is animated by letting the slice slide through the tube. Alternatively, the viewer can
directly specify the time step at which to place the slice.

This is a complex visualization that combines several graphical techniques. However, having
previously specified the two pieces of the display individually, Data Explorer allows the developer to
combine the two trivially. In what literally took just minutes, the composite visualization in Figure 7.4
was created. (Please note that this display utilizes transparency and is very difficult to represent in a
greyscale manner.)

Figure 7.4 — A visualization which combines the Kiviat displays shown in Figures 7.1 and 7.3. The visu-
alization ulilizes several advanced graphical techniques, but by reusing the two simpler displays, Dala
Explorer allows the user to combine them effortlessly.

7.14 New Visualizations

New visualizations represent the last category of displays prototyped with Data Explorer. The reader
should note that the presentation of these new displays is meant to illustrate the usefulness of this
particular design method as opposed to that of the visvalizations themselves. This category is further
broken down into two methods for developing visualizations. The first approach is analogous to the
method presented in the examples above — that is, start with a concept for a visualization and then
translate that into Data Explorer’s capabilities. By definition, this is the only method applicable to
prototyping displays which have already been established. However, in prototyping new
visualizations, many scientific visualization packages offer another, potentially more powerful,
method. Essentially, the second method works in the opposite direction as the first — start with some
feature or graphical technique available in the software, and then develop a concept for a performance
visualization that uses that technique. Traditionally, visualizations have been developed out of a dire
need to see data presented in a certain way, but our earlier motivation of providing visualization
techniques that can better accommodate the rapid generation of new displays clearly supports this
alternative approach. At first, the thought of letting something other than need motivate a visualization
may seem blasphemous or, at least, odd. However, this technique can stimulate creative ideas that

20

might not otherwise be conceived. For the developer looking to create new and novel visualizations,
this technique may be helpful. Of course, the value of any new visualization is unknown until it is
thoroughly evaluated, and this is true regardless of how the visualization was created.

7.14.1 Working from Visualization Concept to Visualization Technique

In most cases, visualizations are created by starting with an idea for a display and then figuring out how
that could be accomplished wsing the visualization tool. Thus, the design process is the same as the
previous examples.

The first example is a three-dimensional visualization which reflects the state of a processor with three
commonly traced metrics: percentages of computation, overhead, and idle times. The concept behind
the visualization is to represent each processor as a sphere (or giyph) in space. The location of each
sphere is determined by the values of the three metrics corresponding to each processor. Thus, the axes
correspond to computation, overhead, and idle. As time passes, the spheres move around the space
[23].

The raw data represents a time series, and each time step contains values for the three metrics for every
processor in the system. In Data Explorer, the visualization can be modelled trivially, As discussed
before, Data Explorer works with sets of positions and connections. Consequently, this visualization
just degenerates to a set of positions that change over time. From a set of positions, the comresponding
spheres are created with the AutoGlyph module, as in the example earlier in this paper. So that
processors may be distinguished from one another, the spheres are colored, also easily handled by Data
Explorer. Figure 7.5 contains an example of this visualization.

Y

Figure 7.5 — Processors are rapresented by spheres whose locations in space are determined by the
percentages of time spent in each of the three states, busy, idle, and overhead.
As with the other examples, it took less than a day to develop the basic prototype for this display. After
that, Data Explorer’s flexibility allows the user to customize and *“tweak’ the display to no end. The
user has simple control over the size of the glyphs, animation speed and granularity, colors, and other
features that are typically fixed in most performance visualization tools. These types of interactions
are available directly from the DX program and do not require new transformations of the data.

The second new visualization was developed as part of an ongoing research project to develop
visualizations for new parallel languages that incorporate data distribution semantics, such as High
Performance Fortan (HPF) (7] and the parallel C++ language, pC++ [1]. The goal of these

21

visualizations is to provide performance information for programmers specifying data distributions.
In particular, the visualizations intend to (1) reveal patterns in how programs access data structures,
and (2} give information about whether the distribution of data is effective for that program. An upper
bound of three-dimensional matrices was placed on the problem.

To accomplish these goals, it is necessary to represent both the data structure and processor structure.
(In HPF, programmers declare sets of virtual processors which are the targets of data distributions. See
Data Distribution Visualizations for Performance Evaluation [4] and the HPF Language
Specification [7] for more detailed information.) The idea is to track the number of remote and local
accesses for reads and writes in terms of the data structure and the processor structure. Furthermore, it
is desirable to have access to both the average and accumulation of those quantities up to a particular
time step. These quantities are then mapped onto graphical representations of the data and processor
structures in a variety of ways.

This concept lends itself well to representation in Data Explorer, which offers concise methods for
creating regularly structured meshes and interconnections. Thus, positions correspond 1o nodes in the
data or processor structure. By annotating the positions with spheres, quantities could be visually
presented by altering both the size and color of the spheres. For two-dimensional structures, it was
possible to color the entire grid “behind” the spheres to represent another quantity. Data Explorer can
automatically interpolate data values (by using the connections) to create a solid sheet of color that
shows “hot” and “cool” spots in the respective structure. For example, the comulative number of
remote reads and writes could be mapped to the glyphs while the average number of remote reads and
writes could be mapped to the solid sheet behind the glyphs. Figure 7.6 illustrates such a display.

Figure 7.6 — This data distribution visualization, where distributed data elements are represented by
spheres whose size and color are controlled by the number and type of references made to the particu-
lar element, was created with DX. The interpolated background coloring offers a highly scalable tech-
nigue for larger dala structures.

When moving to three dimensions, such coloring becomes more difficult because the third dimension
is already being used. Thus, in many cases only a single quantity was represented, as in Figure 7.7.
(Note that a glyph’s size and color could be controlled by different quantities if so desired.) Also, as in
Figure 6.5(c), the volume of the structure in Figure 7.7 could be rendered, creating a “cloud” which
interpolates the data values at the nodes. This could potentially offer insight into the scalability of the
program under examination.

Out of this work on developing visualizations for data distributions evolved an experimental
environment where the user could control numerous aspects of the display beyond its appearance.
Data Explorer includes simple tools for constructing graphical interface-level interactors that can

Figure 7.7 — Two-dimensional dala distribution displays are easily extended to three dimensions.
While Data Explorercan interpolate colors within the volume (creating a “cloud” within the structure), itis
not shown in this display for clarity. Again, forlarger struclures, volume rendering may offer a more scal-
able technigue.

allow even novice users to perform complex modifications to the display. For instance, a simple
interactor allows the viewer to map a completely different data quantity (e.g., cumulative number of
local reads, average number of all reads and writes, etc.) onto the graphical display of the data or
processor structure. In addition, certain graphical characteristics could be toggled or controlled (e.g.,
whether to color the background grid, whether to draw glyphs, etc.). Figure 6.4 earlier in this paper
shows a control panel that was built within Data Explorer, allowing the user to control and change
many aspects of the visualization. Allowing a high-degree of control over the display is yet another
strength which results from using a product like Data Explorer.

7.1.4.2 Working from Visualization Technique to Visualization Concept

After using Data Explorer for a while, we were impressed by its flexibility, yet we knew that we had
only touched the surface of its graphical features. We gradually began to reverse the visualization
development process and started using Data Explorer not only as a tool to display a preconceived
visualization concept, but as an aid in generating that concept in the first place. This section will offer
an example of two such visualizations.

Data Explorer has the capability to realize data using a technique called a “rubber sheet.” The concept
is simple: a grid of positions and connections is interpolated to form a continuous *sheet”; the data
values associated with each position are then used to displace (and color) that position on the sheet a
distance proportional to the value in a direction perpendicular to the sheet. The resuit is a grid that is
distorted (and colored) to reflect the data values of the grid positions.

Thus, in examining this graphical realization technique, the idea for a visualization evolved. The
visualization’s goal was to extend the work on data distribution visualizations described in the
previous section. Using a rubber sheet, it would be possible to graphically represent the difference
between local and remote accesses made by processors. Having constructed the visualization’s
concept from a Data Explorer technique, all that remained was to create the trace transformation
necessary to realize the visualization. Figure 7.8 contains several frames of the animation of this
visualization.

In a manner similar to the example above, the visualization in Figure 7.9 was developed using a Data
Explorer realization technique called an isosurface. Isosurfaces manifest themselves as contour lines

23

lime=75 Ema e 12 time = 90 ~~ -—--../

Figure 7.8 — This sequence of images partially illustrates Data Explorer’s animation capabilities.
These data distribution displays show the difference belween local and remote accesses made fo dis-
tributed data elements over the course of a Gaussian elimination aigorithm. The higher the point , the
more local accesses it has received.

for two-dimensional data (like elevation lines on a topographic map) and contour surfaces for
three-dimensional data. In DX, an isosurface represents a set of data points (actual and interpolated) of
constant value (called an isovaine). Such a technique provides an interesting view of larger quantities
of performance data that are represented in a three-dimensional, volumetric structure such as a cube.
Using this visualization technique as a starting point, we designed the visualization seen in Figure 7.9.
It consists of a set of 64 processors arranged in a 4x4x4 cube. At each processor location is an arrow
which points in the direction determined by the three-dimensional performance metric (busy, idle,
overhead) mentioned earlier. From these three quantities, the “busy” compoenent was used to color the
arrows and create the isosurfaces. Each frame of Figure 7.9 contains a set of isosurfaces for five
isovalues distributed between O and I (the range of values covered by the “busy” metric). The surfaces
are colored by the same scale as the arrows. These surfaces give the viewer an interesting perspective
on the performance of the parallel application. In addition to revealing the global level of
performance, the visualization potentially offers insight to the scalability characteristics of the
application.

24

time = 68

Figure 7.9 — This sequence of images uses isosurfaces to explore the relationships between 64 pro-
cessors arrangedin a cube. This visualization was molivated by the availability of an Isosurface module
in Data Explorer. The presence of a rich set of graphical realization lools may give rise to new and useful
visualizations that might not be developed under traditional design processes.

In this section, sample visualizations falling into three categories have been presented. First, Data
Explorer was used to implement well-known visualizations like Kiviat diagrams. Next,
two-dimensional displays were enhanced, typically by adding a third dimension to the display. Finally,
Data Explorer was used to create new types of performance displays. Clearly, performance
visualization developers gain access to significant power and flexibility when using scientific
visualization software.

7.2 Evaluation

Having documented several examples, we now turn to a discussion of the possible benefits and
detriments of the proposed design process.

The most obvious benefits come from the minimal overhead that developers incur by using existing
software products. The primary overheads involved in the process are limited to the initial cost of the
software and learning the visuvalization environment and underlying data model. Traditional
development processes have a single, overwhelming overhead: programming. But evaluating this
new process must go beyond just the overheads that are encountered. In fact, if this type of
implementation environment is used for prototyping, but the final implementation is to be built from
scratch, then both overheads are incurred. Even in this worst case scenario, we feel that there are
advantages to be gained by using the proposed methods.

235

It was mentioned earlier that our design process fosters iterative design and evaluation by minimizing
the impact that modifications to either the data or graphical aspects of the visualization have on other
parts of the visualization process. This is perhaps the most important and relevant aspect of this project
to the field of performance visualization in general. Studies of performance visualizations have been
few because of the effort required just to create the display. Developers are forced 1o devote a majority
of their time to building the visualization tool rather than testing visualization usability [13][21].
Formal evaluation is apparently sacrificed for two primary reasons. First, once a tool is completed, so
much time has already gone into the project that developers can’t afford to extend their work to include
evaluation. Second, even if evaluations were done, modifications could impose additional significant
programming costs on the project. Even those tools which market themselves with buzzwords like
“modular” and “extensible” usually require considerable programming expertise [6]. Using software
like Data Explorer stands to refine the field of performance visualization by enabling researchers to
more easily conduct usability studies and perform formal evaluations of visualizations — to determine
what displays are indeed useful.

Scientific visualization packages by nature offer a high degree of user control. Thus, the ability to
customize displays is built into the package. Other features like display interaction, animation, and
modularity are also present. In particular, the ability to interact with what is shown on the screen will
become an absolutely necessary component of next-generation visualization tools as displays become
more complex and take advantage of multiple dimensions. In summary, these packages have many of
the more difficult-to-program features already established and allow visualization developers to focus
on the quality of their displays rather than the code needed to generate them.

On the other hand, it is conceivable that generalized data visualization packages contain too much
functionality, resulting in “environment overkill.” In other words, the software may be too general,
resulting in slower performance and unnecessary complexity. Our experience supports this to a limited
degree. Our work with Data Explorer was done on an IBM RS/6000 Model 730 which required
additional graphics hardware assistance and greater than 64 megabytes of memory to be acceptable;
all of our renderings were software generated. Tools built specifically for performance visualization
generally do not have such stressing requirements on the computing system.

Of particular concern to performance visualization developers is the capability of a tool to handle
animation (real-time or post-mortem) and dynamic display interaction. Our experience suggests that
without costly hardware, such usability requirements are not adequately met by simply applying
scientific visualization software. It is our opinion that certain of the limitations of the DX approach
will be overcome by technology, but for the time being, these limitations make practical use of this
technique more difficult. The hardware requirements made by scientific visualization packages are
not without reason, though. These sysiems offer extremely flexible and powerful graphical
techniques. For example, performance visualization developers would undoubtedly find the
capability to compose a new display from two or more simpler displays advantageous, as was done in
the Kiviat diagram examples discussed earlier. Furthermore, these products offer flexible and general
data models that can be used to generate a wide range of visvalizations and are designed to handle
large, multi-dimensional data sets. Finally, they are usually portable across many architectures.

8 Conclusion
This paper has proposed a design process by which performance visualization developers can
drastically reduce the costly and time-consuming overhead of programming, yet gain significant

power and flexibility in the displays they can generate. The application of a high-level visualization
methodology to general data visualization software, like IBM’s Data Explorer, leads to a design

26

technology that improves the visualization development process by increasing both the quality of the
displays and the speed with which they are created. The process lends itself to iterative design and
evaluation which is required to validate a display’s usability — techniques that up until now have not
been widely applied to the arena of performance visualization. Furthermore, the work being done at
the University of Oregon and other research sites strongly suggests that users will demand interaction
with and customization of next-generation performance displays. Existing data visualization software
products are designed with these very capabilities in mind.

The work presented in this paper can be extended in several ways. In terms of the high-level
methodology developed in Section 5, techniques that enable the specification of performance and
view abstractions and their subsequent instantiations to performance and view objects are needed.
This would entail automating the creation of trace and graphical transformations (i.e., the creation of
data object files and visual programs) from more abstract specifications. We also intend to develop
modules within Data Explorer that are dedicated to certain performance visualization techniques
(e.g., Kiviat diagrams and tubes, interprocessor communication displays, etc.). This extension would
make the trace and graphical transformations more independent, as well as improve the
implementation’s consistentency with the high-level methodology. In terms of the visualizations
themselves, we are interested in examining how other traditionally scientific visualization techniques
may assist in the development of scalable performance visualizations. This would include additional
work with graphical representations like isosurfaces and contour lines, for example. Also, for large
data sets, we are interested in representing the data in a continuous (i.e., interpolated) fashion rather
than trying to visualize thousands of discrete entities or values. Another area of interest is to exploit
more of the graphical capabilities of Data Explorer and to see what other types of visualizations are
possible. Finally, additional work is required to refine a methodology for evaluating visualizations in
this environment.

9 Acknowledgments

This work was supported by an IBM Research and Development contract (MHVU3704) from the IBM
Highly Parallel Supercomputing Systems Laboratory and a grant (ASC9213500) from the National
Science Foundation, Advanced Scientific Computing Program. The authors would like to thank John
Conery and Evan Tick for helpful comment on early versions of this paper, and Tom May for his
creative insights.

27

10

(1)

(2}

(3]

[4]

[3]

(6}

(7

(8]

9]

[10]

(]

[12]

[13]

[14]

[15]

[16)

References

F. Bodin, P. Beckman, D. Gannon, 5. Narayana, S. Yang. Distributed pC++: Basic Ideas
Jor an Object Parallel Language. University of Rennes.

M. Brown. ICARE: Interactive Computer-Aided RGB Editor, (A report on the work of
Donna Cox, NCSA). Access (NCSA newsletter), University of Illinois at
Urbana-Champaign, National Center for Supercomputing Applications, 1.3.10,
September-October, 1987, pages 10-12.

A. Couch. Categories and Context in Scalable Execution Visualization. Journal of
Parallel and Distributed Computing, 18, I, June, 1993, pages 195-204,

S. Hackstadt and A. Malony. Data Distribution Visualization for Performance
Evaluation. University of Oregon, Technical Report #93-21, October, 1993.

M. Heath and J. Etheridge. Recent Developments and Case Studies in Performance
Visualization using ParaGraph. Proceedings from the Workshop on Performance
Measurement and Visualization of Parallel Systems, Moravany, Czechoslovakia,
October, 1992.

M. Heath and J. Etheridge. Visualizing the Performance of Parallel Programs. IEEE
Software, September, 1991, pages 29-39.

High Performance Fortran Forum. High Performance Fortran Language Specification,
Version 1.0, Rice University, May, 1993.

International Business Machines Corporation. IBM Visualization Data Explorer, User's
Guide, 2nd ed. August, 1992.

K. Kolence and P. Kiviat. Sofrware Unit Profiles and Kiviat Figures. ACM
SIGMETRICS, Performance Evaluation Review, September, 1973, pages 2-12.

E. Kraemer and J. Stasko. The Visualization of Parallel Systems: An Overview. Journal of
Parallel and Distributed Computing, 18, 1, June, 1993, pages 105-117.

B. Lucas, G. Abram, N. Collins, D. Epstein, D. Gresh, and K. McAuliffe. An
Architecture for a Scientific Visualization System. Proceedings from Visualization *92,
Boston, MA, October, 1992, pages 107-114.

A. Malony, D. Hammerslag, and D. Jablonowski. Traceview: A Trace Visualization Tool.
IEEE Software, September, 1991, pages 29-38

A. Malony and E. Tick, Parallel Performance Visualization. Proposal to the National
Science Foundation, CISE/ASC, Grant No. ASC 9213500, February, 1992.

B. Miller. What to Draw? When ta Draw? An Essay on Parallel Program Visualization.
Journal of Parallel and Distributed Computing, 18, 1, June, 1993, pages 265-269.

NCSA. NCSA HDF, Version 2.0. University of Illinois at Urbana-Champaign, National
Center for Supercomputing Applications, February, 1989.

C. Pancake. Customizable Portrayals of Program Structure. Proceedings from the
ACM/ONR Workshop on Parallel and Distributed Debugging, San Diego, CA, May,
1993, pages 64-74.

28

(7]

[18]

(191

[20]

[21]

[22]

[23]

[24]

D. Reed, R. Aydt, T. Madhyastha, R. Noe, K. Shields, and B. Schwartz. An Overview of
the Pablo Performance Analysis Environment. University of Illinois Board of Trustees,
November, 1992.

I. Roschelle. Designing for conversations. Paper presented at the AAAI Symposium on
Knowledge-Based Environments for Learning and Teaching, Stanford, CA, 1990.

D. Rover. A Performance Visualization Paradigm for Data Parallel Computing.
Proceedings of the 25th Hawaii International Conference on Sysiem Sciences, 1992
(mini-conference on Parallel Programming Technology, Software Technology Track).

D. Rover and A. Waheed. Multiple-Domain Analysis Methods. Proceedings from the
ACM/ONR Workshop on Parallel and Distributed Debugging, San Diego, CA, May,
1993, pages 53-63.

S. Sarukkai and D. Gannon. Performance Visualization of Parallel Programs Using
SIEVE.I. Proceedings of the 1992 ACM International Conference on Supercomputing,
Washington, D.C., July, 1992, pages 157-166.

D. Socha, M. Bailey, and D. Notkin. Voyeur: Graphical Views of Parallel Programs.
SIGPLAN Notices 24, 1, January, 1989. Also, Proceedings of the Workshop on Parallel
and Distributed Debugging, Madison, WI, May, 1988, pages 206-215.

J. Stasko and E. Kraemer. A Methodology for Building Application-specific
Visualizations of Parallel Programs. Journal of Parallel and Distributed Computing, 18,
1, June, 1993, pages 258-264

E. Tufte. Envisioning Information. Graphics Press, Chesire, CT, April, 1991.

29

