A bestiary of performance diagnosis
methodologies

B. Robert Helm

CIS-TR-93-24
November 1993

Abstract

The goal of this research is 10 formalize and antomatically support parallel performance diagnosis. Performance diag-
nosis is the task of identifying the principal flaws in a parallel program that hinder good performance.

An initial step toward this goal is to identify the performance diagnosis methodologies that are supporieed by current
performance evaluation tools. This talk presents preliminary results from a survey of ten such tools.

Department of Computer and Information Science
University of Oregon
Anonymous FTP: ftp.cs,uoregon.edu:pub/malony/Papers/CIS-TR-93-24.ps.Z

What is performance diagnosis
Performance diagnosis is identifying the principal performance problems

in a program and their causes.
This information is used to guide repair of the program.
Supports a hillclimbing tuning strategy

How is performance diagnosed?

Numerous papers give hypothetical performance diagnosis scenarios.
Scenarios were intended to highlight an analysis tool.
Most (not all) written by researchers rather than programmers.

Scenario summary

Tool Targets Programs Papers
Predicates Shared memory. Parallel search [1]
(PTOPP) Clustered shared memory. (6) Perfect Benchmarks (2].[3]
w3 Shared memory. (2) Splash Benchmarks (4]
IPS-2 Shared and dist. memory. Simplex [5]
Chitra Shared and dist (?) mem. Parallel DEVS [6]
MTOOL Shared memory. Econometric model 7
(SPT) Shared, dist. memory. Quicksort 181,091
PIE Shared memory OS thread scheduler [10]
ChaosMon Shared and dist. memory Quicksort [11]
PEPP Shared and dist. memory Navier-Stokes solver [12]

Supporting Performance Diagnosis

Based on scenarios, the performance diagnosis process:
1.1Is hypothesis- and data-directed.
2.Generates many program versions and associated data.

Supporting Performance Diagnosis

Thesis: A machine- and program-independent diagnosis shell that
integrates:

1. An reactive, blackboard-like problem-solver.
2. A library of problem-solving goals, methods, and models.
3. An experiment and results management system.

can automate significant aspects of current performance diagnosis
methods.

Diagnosis Shell

Methods
Models
PS

x Diagnosis Assistant
Expert

FW

Tools File System

JC)

Programming Environment

A Problem-Solving Model for Diagnosis

Claim 1: Performance diagnosis is best characterized as refinement of a
set of hypotheses that explain negative aspects of performance.

Refinement strategies range from planned to reactive.

Differing amounts of program- and architecture-specific knowledge are
used to generate and order hypotheses.

Reactivity
A
w
SPT
Chitra
IPS-2
ChaosMon

PEPP

Predicates
MTOOL
PTOPP

Program-
> Dependence

Problem-Solving Model: Automated Support

Support the model with an expert system shell providing extensible
facilities for representing:

» Diagnosis state (hypotheses, experiments, and results).
» Diagnosis actions (rules for experimentation and updating hypotheses).
» Diagnosis strategies.

Blackboard framework will serve as a basis.

/7 KS) ~

KB DB /
Strategies 2
>\\ H; o
Xo

PS

Experiment Management for Performance Diagnosis

Claim 2: Tracking source/object code and input/output data is a
significant, difficult subtask of performance diagnosis.
Construction of correct experiments out of consistent program
versions, machine configurations, and input data sets is difficult.
Experiments and experimental results should be reused within and
across sessions where possible.

Experiment Management: Automated Support

Support experiment management by integrating the diagnosis shell with
facilities for:

 Linking program versions, data sets, and machine configurations into
experiments.

* Running experiments and incorporating results into the diagnosis
database.

» Retrieving past experiments and results guided by the current problem-
solving state

S

Programming Environment

Related Work

Performance analysis.
Diagnostic expert system shells.

Rule-based process programming environments.
Marvel.
Law-governed systems.

PTOPP Methodology

The hypothesis space, knowledge sources, and strategy are based on:
» The Cedar architecture and machine.

e The type of parallelism supported (DO-loop spreading).

» The programs being diagnosed (Perfect benchmarks).

- 32°35
g 47 03

P P
P P

12:15 PN / \[%P P

S M
16:19P /MC N S P
20:23 p /// Mg K\\ P

24:27P | 6% P

163

28:31 P S
96:99 64:67
P
P P \ /P F P
» N\ Y
\Mc
P

M,
P ﬂ\
P P124:127 92:95 |

W3 - Neural Net Hypothesis Space

The hypothesis space is the cross-product of:
* Where (component)
e Why (fault).

Components
{Process) (SyncObiject) (Procedure)

PO pl p2 p3 p4 5 P6 P7 bamier critical init pais gen tain test wrile
section result

upd_actl upd_wt wupd_act2

Faults

cpuBottleneck ioBottleneck syncBottleneck vmBottleneck

excessive excessive
Blocking Sync
Time Rates

PTOPP Hypothesis Space

The hypothesis space is the cross-product of:
e Where (which loops have problems)
¢ Why (what problem each loop has).

WHAT hierarchy
DO k=1LAYERS
DOi=1N DOi=1N
DOj=IN
WHY hierarchy
T\
global/ \ . lﬂ.ﬂk?f
memory sp;{alcll;ng spreading
cost speedup
vector scalar small unnecessary synchronized unbalanced Paging
prefeich problem(s) foop wansformation sections iteration effects
mblenw\\ counts
vector veclor vector non-
length stride stride vectorized
toosmall o0 small too large loop

PTOPP Strategy

1.Order loops by significance.

* Profile serial execution time, broken down by loops.

* Order hypothesis space along “where” dimension based on results.
2.Compute basic metrics for program.

3.Refine lead hypothesis.

» Generate hypotheses for longest loop.

* Order and prune using rules and metric results.

4.-> Repair based on diagnoses.

5.Goto 1.

PTOPP Hypothesis refinement

Order and/or prune possible performance problems using metrics:
e GP (O1g/01 - 1) indicates memory problems.

e XO (C1/O1g - 1) indicates cluster spreading overhead.
e XS (C1/C4) indicates effectiveness of cluster spreading.

Final refinements selected principally by static analysis of parallel code.

T \
global

lack of
memory «-g—>—— GP selup
cost

NN

synchronized unbalanced paging
prefeich problem(s) 1009 tmnsformauon sections iteration effects
pmblem(v counts
vector vector veclor non-
length stride stride vectorized

too small tpo small too large loop

- 4
le-;ith(v) §ﬁ4 vit-::or-

instructions?(v)

PTOPP File Tracking

Source files:
» Sequential base version
¢ Sequential version instrumented for loop-level profiling (O1).

Compiler outputs:

¢ Restructured source code for O1, Olg, C1, C4.
¢ Restructurer static analysis report.

¢ Object codes.

Experiment results
e 01, Olg, C1, C4 loop-level profiles.

base ————p-instrumenter — g Q1 ———p-rest:-ucturer —-01
v * * ‘I —®»Olg
01 Olg Ci C4
| | | | = explainer —-C1
co liler —-C4
Y Y Y Y
01 Olg Ci C4
| I I I
X,
colloi'ctor
!I Olg C*l CYl
I | | |
e
3 e] kA

ﬁll
= iR

Refine
oﬁa

space

refine

evaluate _

-

wEEBal Processors

aults]
&o:ao_a £ />vwrowno= - EE.E%AHEEQH m™
Factor ™ qu__n:l Threads
wm%_. components L an%aA Implicit ™ =
Run
42%:8_3: -~ mu_.om.o%cEde ”
~—_ Run code it
Interval Blocks =
L k- . .
. Exhaustive ,,, Implicit
experiment < Screening ey m.w " objects ~ Classes
R
Implicit w & Mw.unsnou ekl
Source™ m Implicit =
" I
.:u?zSnEK Runtimef= umﬂuw“_mnw%ﬂ
Tracem Fault Event
collect Sample - Rates
. Application m
trics Metrics _ﬂ
Time y; oy aﬁ& sis — O:E_o
ZEN wOmBSnoE -
assess —— Threshold analyze
e >%awm_u
. prefnd cutoff User -
response —— Time m set
rturbations y—Delay m
collect ‘Worsen mm m ChaosMon m Quariz
. Improve = PTOPP m SPT
i . .
H““Mss s B3 a MTOOL

