# A bestiary of performance diagnosis methodologies

B. Robert Helm

**CIS-TR-93-24** November 1993

#### **Abstract**

The goal of this research is to formalize and automatically support parallel *performance diagnosis*. Performance diagnosis is the task of identifying the principal flaws in a parallel program that hinder good performance.

An initial step toward this goal is to identify the performance diagnosis *methodologies* that are supported by current performance evaluation tools. This talk presents preliminary results from a survey of ten such tools.

Department of Computer and Information Science
University of Oregon
Anonymous FTP: ftp.cs.uoregon.edu:pub/malony/Papers/CIS-TR-93-24.ps.Z

|  | (× | * |  |  |  |
|--|----|---|--|--|--|
|  |    |   |  |  |  |
|  |    |   |  |  |  |
|  |    |   |  |  |  |
|  |    |   |  |  |  |
|  |    |   |  |  |  |
|  |    |   |  |  |  |
|  |    |   |  |  |  |
|  |    |   |  |  |  |
|  |    |   |  |  |  |
|  |    |   |  |  |  |
|  |    |   |  |  |  |
|  |    |   |  |  |  |
|  |    |   |  |  |  |
|  |    |   |  |  |  |
|  |    |   |  |  |  |
|  |    |   |  |  |  |

# What is performance diagnosis

Performance diagnosis is identifying the principal performance problems in a program and their causes.

This information is used to guide repair of the program.

Supports a hillclimbing tuning strategy



# How is performance diagnosed?

Numerous papers give hypothetical performance diagnosis scenarios. Scenarios were intended to highlight an analysis tool.

Most (not all) written by researchers rather than programmers.

### Scenario summary

| Tool       | Targets                  | Programs               | Papers  |
|------------|--------------------------|------------------------|---------|
| Predicates | Shared memory.           | Parallel search        | [1]     |
| (PTOPP)    | Clustered shared memory. | (6) Perfect Benchmarks | [2],[3] |
| $W^3$      | Shared memory.           | (2) Splash Benchmarks  | [4]     |
| IPS-2      | Shared and dist. memory. | Simplex                | [5]     |
| Chitra     | Shared and dist (?) mem. | Parallel DEVS          | [6]     |
| MTOOL      | Shared memory.           | Econometric model      | [7]     |
| (SPT)      | Shared, dist. memory.    | Quicksort              | [8],[9] |
| PIE        | Shared memory            | OS thread scheduler    | [10]    |
| ChaosMon   | Shared and dist. memory  | Quicksort              | [11]    |
| PEPP       | Shared and dist. memory  | Navier-Stokes solver   | [12]    |

# **Supporting Performance Diagnosis**

Based on scenarios, the performance diagnosis process:

- 1. Is hypothesis- and data-directed.
- 2. Generates many program versions and associated data.

# **Supporting Performance Diagnosis**

Thesis: A machine- and program-independent diagnosis shell that integrates:

- 1. An reactive, blackboard-like problem-solver.
- 2. A library of problem-solving goals, methods, and models.
- 3. An experiment and results management system.

can automate significant aspects of current performance diagnosis methods.



# A Problem-Solving Model for Diagnosis

Claim 1: Performance diagnosis is best characterized as refinement of a set of hypotheses that explain negative aspects of performance.

Refinement strategies range from planned to reactive.

Differing amounts of program- and architecture-specific knowledge are used to generate and order hypotheses.



# **Problem-Solving Model: Automated Support**

Support the model with an expert system shell providing extensible facilities for representing:

- Diagnosis state (hypotheses, experiments, and results).
- Diagnosis actions (rules for experimentation and updating hypotheses).
- Diagnosis strategies.

Blackboard framework will serve as a basis.



# **Experiment Management for Performance Diagnosis**

Claim 2: Tracking source/object code and input/output data is a significant, difficult subtask of performance diagnosis.

Construction of correct *experiments* out of consistent program versions, machine configurations, and input data sets is difficult. Experiments and experimental results should be reused within and across sessions where possible.

# **Experiment Management: Automated Support**

Support experiment management by integrating the diagnosis shell with facilities for:

- Linking program versions, data sets, and machine configurations into experiments.
- Running experiments and incorporating results into the diagnosis database.
- Retrieving past experiments and results guided by the current problemsolving state



## **Related Work**

Performance analysis.

Diagnostic expert system shells.

Rule-based process programming environments.

Marvel.

Law-governed systems.

# **PTOPP Methodology**

The hypothesis space, knowledge sources, and strategy are based on:

- The Cedar architecture and machine.
- The type of parallelism supported (DO-loop spreading).
- The programs being diagnosed (Perfect benchmarks).



# W3 - Neural Net Hypothesis Space

The hypothesis space is the cross-product of:

- Where (component)
- Why (fault).



# **PTOPP** Hypothesis Space

The hypothesis space is the cross-product of:

- Where (which loops have problems)
- Why (what problem each loop has).



# **PTOPP Strategy**

- 1. Order loops by significance.
- Profile serial execution time, broken down by loops.
- Order hypothesis space along "where" dimension based on results.
- 2. Compute basic metrics for program.
- 3. Refine lead hypothesis.
- Generate hypotheses for longest loop.
- Order and prune using rules and metric results.
- 4.-> Repair based on diagnoses.
- 5.Go to 1.

# **PTOPP Hypothesis refinement**

Order and/or prune possible performance problems using metrics:

- GP (O1g/O1 1) indicates memory problems.
- XO (C1/O1g 1) indicates cluster spreading overhead.
- XS (C1/C4) indicates effectiveness of cluster spreading.

Final refinements selected principally by static analysis of parallel code.



# **PTOPP File Tracking**

#### Source files:

- Sequential base version
- Sequential version instrumented for loop-level profiling (O1).

#### Compiler outputs:

- Restructured source code for O1, O1g, C1, C4.
- Restructurer static analysis report.
- Object codes.

### **Experiment results**

• O1, O1g, C1, C4 loop-level profiles.



