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Abstract

The goal of this research is 10 formalize and antomatically support parallel performance diagnosis. Performance diag-
nosis is the task of identifying the principal flaws in a parallel program that hinder good performance.

An initial step toward this goal is to identify the performance diagnosis methodologies that are supporieed by current
performance evaluation tools. This talk presents preliminary results from a survey of ten such tools.
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What is performance diagnosis
Performance diagnosis is identifying the principal performance problems

in a program and their causes.
This information is used to guide repair of the program.
Supports a hillclimbing tuning strategy




How is performance diagnosed?

Numerous papers give hypothetical performance diagnosis scenarios.
Scenarios were intended to highlight an analysis tool.
Most (not all) written by researchers rather than programmers.

Scenario summary

Tool Targets Programs Papers
Predicates Shared memory. Parallel search [1]
(PTOPP) Clustered shared memory. (6) Perfect Benchmarks (2].[3]
w3 Shared memory. (2) Splash Benchmarks (4]
IPS-2 Shared and dist. memory. Simplex [5]
Chitra Shared and dist (?) mem. Parallel DEVS [6]
MTOOL Shared memory. Econometric model 7
(SPT) Shared, dist. memory. Quicksort 181,091
PIE Shared memory OS thread scheduler [10]
ChaosMon Shared and dist. memory Quicksort [11]
PEPP Shared and dist. memory Navier-Stokes solver [12]




Supporting Performance Diagnosis

Based on scenarios, the performance diagnosis process:
1.1Is hypothesis- and data-directed.
2.Generates many program versions and associated data.




Supporting Performance Diagnosis

Thesis: A machine- and program-independent diagnosis shell that
integrates:

1. An reactive, blackboard-like problem-solver.
2. A library of problem-solving goals, methods, and models.
3. An experiment and results management system.

can automate significant aspects of current performance diagnosis
methods.
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A Problem-Solving Model for Diagnosis

Claim 1: Performance diagnosis is best characterized as refinement of a
set of hypotheses that explain negative aspects of performance.

Refinement strategies range from planned to reactive.

Differing amounts of program- and architecture-specific knowledge are
used to generate and order hypotheses.
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Problem-Solving Model: Automated Support

Support the model with an expert system shell providing extensible
facilities for representing:

» Diagnosis state (hypotheses, experiments, and results).
» Diagnosis actions (rules for experimentation and updating hypotheses).
» Diagnosis strategies.

Blackboard framework will serve as a basis.
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Experiment Management for Performance Diagnosis

Claim 2: Tracking source/object code and input/output data is a
significant, difficult subtask of performance diagnosis.
Construction of correct experiments out of consistent program
versions, machine configurations, and input data sets is difficult.
Experiments and experimental results should be reused within and
across sessions where possible.




Experiment Management: Automated Support

Support experiment management by integrating the diagnosis shell with
facilities for:

 Linking program versions, data sets, and machine configurations into
experiments.

* Running experiments and incorporating results into the diagnosis
database.

» Retrieving past experiments and results guided by the current problem-
solving state
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Related Work

Performance analysis.
Diagnostic expert system shells.

Rule-based process programming environments.
Marvel.
Law-governed systems.




PTOPP Methodology

The hypothesis space, knowledge sources, and strategy are based on:
» The Cedar architecture and machine.

e The type of parallelism supported (DO-loop spreading).

» The programs being diagnosed (Perfect benchmarks).
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W3 - Neural Net Hypothesis Space

The hypothesis space is the cross-product of:
* Where (component)
e Why (fault).

Components
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PTOPP Hypothesis Space

The hypothesis space is the cross-product of:
e Where (which loops have problems)
¢ Why (what problem each loop has).
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PTOPP Strategy

1.Order loops by significance.

* Profile serial execution time, broken down by loops.

* Order hypothesis space along “where” dimension based on results.
2.Compute basic metrics for program.

3.Refine lead hypothesis.

» Generate hypotheses for longest loop.

* Order and prune using rules and metric results.

4.-> Repair based on diagnoses.

5.Goto 1.




PTOPP Hypothesis refinement

Order and/or prune possible performance problems using metrics:
e GP (O1g/01 - 1) indicates memory problems.

e XO (C1/O1g - 1) indicates cluster spreading overhead.
e XS (C1/C4) indicates effectiveness of cluster spreading.

Final refinements selected principally by static analysis of parallel code.

T \
global

lack of
memory «-g—>—— GP selup
cost

NN

synchronized unbalanced paging
prefeich problem(s) 1009 tmnsformauon sections  iteration  effects
pmblem(v counts
vector vector veclor non-
length stride  stride vectorized

too small  tpo small too large  loop

- 4
le-;ith(v) §ﬁ4 vit-::or-

instructions?(v)




PTOPP File Tracking

Source files:
» Sequential base version
¢ Sequential version instrumented for loop-level profiling (O1).

Compiler outputs:

¢ Restructured source code for O1, Olg, C1, C4.
¢ Restructurer static analysis report.

¢ Object codes.

Experiment results
e 01, Olg, C1, C4 loop-level profiles.
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