Capturing and Automating Performance
Diagnosis: The Poirot Approach

B. Robert Helm
Alan D. Malony
Stephen F. Fickas

CIS-TR-93-25
November 1993

Abstract

This paper concentrates on the specific process of diagnosing performance problems - a process we call performance
diagnosis. The more general process of performance debugging applies diagnosis and performance tuning in an iter-
ative manner. We view performance diagnosis as a methodology (or set of methodologies) for producing an explana-
tion of performance phenomena (in particular, performance bottlenecks) that meets a set of diagnostic requirements.
It is our opinion that performance diagnosis is the key engineering issue in effective performance debugging, but that
there is a general lack of support for the performance diagnosis process.

This paper discusses the Poirot approach to providing process support for performance diagnosis. We discuss the
architecture of Poirot, and describe how Poirot can re-enact or rationally reconstruct a set of published performance
diagnosis strategies.

Department of Computer and Information Science
University of Oregon

Capturing and Automating Performance Diagnosis Methodologies: the Poirot
Approach

1.0 Introduction

The scientific method -- the systematic testing of hypotheses through controlled measurement of
observable phenomena, analysis of collected data, and modeling of empirical results -- has been
advocated as a working definition of “experimental computer science” [8] and as the basis of a
“quantitative philosophy of performance evaluation” [12]. In any field, computer science
included, progress in experimental science is inextricably coupled with advances in observational
technology; the ability to test hypotheses is critically dependent on the requisite measurement and
data analysis tools. In the performance evaluation of parallel computer systems, progress is made
through better understanding the performance optimization space and in developing practical
techniques that can be used to maximize the performance of real application programs. Better
tools to observe, model, and understand performance will lead to better solutions to performance
problems.

Although the scientific method’s systematic measurement and hypothesis testing is both desirable
and necessary for parallel performance evaluation, the limited understanding of parallel system
dynamics and the complexities of performance data make the construction of experimental appa-
ratus especially difficult. In general, a performance analysis environment should support the abil-
ity to 1) specify new parallel performance problems in terms of the characteristics of the parallel
system, the structure and parameters of the application program, previously stored performance
knowledge, and the current, empirical performance data (performance hypothesis formulation),
and 2) conduct performance experiments to assess performance behavior (performance observa-
tion and analysis). The first requirement reflects the notion that effective performance evaluation
should involve the iterative application of a systematic methodology, namely designing new per-
formance experiments based on cumulative system and performance data. In practice, this feature
is either implicit or lacking -- the data are most often maintained in the informal knowledge base
of the tools and the computer science community; rarely is the information codified in a knowl-
edge database. The second requirement, performance observation and analysis, focuses on build-
ing and using tools to test hypotheses conceming performance problems. In particular, the need
for performance data accuracy and detail to validate a hypothesis must be balanced against the
observational capabilities of the performance tools and their possible perturbations of the mea-
surement results.

Our general goal is to make advances in parallel performance evaluation more accessible in paral-
lel software development. As Ferrari [12] noted, computer performance evaluation research has
not yet significantly influenced the instruction and practice of software development. More
recently, Fox [14] has argued that performance issues are insufficiently considered during soft-
ware development and he advances the notion of performance engineering, defined by Smith
[36], as a critical component in large-scale software systems. Clearly, in parallel computing where
performance is paramount, a performance engineering methodology is required. Given the intel-
lectual ferment in high-performance, parallel processing, it is important to address what are the
fundamental performance engineering issues, the key problems, and the appropriate techniques
for their solution.

2

Our interests lie in empirical performance evaluation, and in the specific process of diagnosing
performance problems -- a process we call performance diagnosis. The more general process of
performance debugging applies diagnosis and performance tuning in an iterative manner. We
view performance diagnosis as a methodology (or set of methodologies) for producing an expla-
nation of performance phenomena (in particular, performance bottlenecks) that meets specific
diagnostic requirements. Diagnostic requirements specify the information needed -- including
level of detail and accuracy - and the resources committed to acquiring it. A good diagnosis
methodology is one that meets its diagnostic requirements, gathering the needed information
within the resource constraints.

It is our opinion that performance diagnosis is the key engineering issue in effective performance
debugging. This opinion is supported by the fact that many of the problems that performance tool
researchers have been attacking in recent years fall under the realm of performance diagnosis:
performance loss (bottleneck) models for different parallel systems and programming styles
[23]1[1]1[4][9]{27]; measurement techniques for parallel systems that control observational com-
plexity [331[41[251{26][19][37]; analysis methods that focus performance attention
[11(23]{16][281[29][38]; and experiment management and control [10][34][35].

However, the majority of the tools developed do not provide direct support for diagnosis method-
ology. Although significant advancements have been made in developing enabling technologies
for performance diagnosis application, the lack of a formal, engineered infrastructure for captur-
ing and automating diagnosis methodologies, we believe, has resulted in problems of flexibility,
extensibility, and retargetability in current performance tools. With respect to influencing parallel
software development practice, these problems make it difficult to address the following impor-
tant performance engineering concerns:

1. Programmers do not know how to select (or are unaware of) the appropriate performance diag-
nosis techniques for their problems;

2. Programmiers cannot use performance diagnosis tools effectively, due to the tools’ complex
functionality and system dependence;

3. Programmers cannot manage the large numbers of program files, configuration scripts, and
data files generated by the performance diagnosis process.

In sum, we see a general lack of support for the performance diagnosis process. While individual
tools may automate a particular diagnosis process, there has been no attempt to integrate the diag-
nostic techniques found in such tools into an automated diagnosis environment that is portable
across machines.We believe that this requires a diagnosis system infrastructure that is engineered
to provide flexibility, extensibility, and retargetability. Our research goal to create such an envi-
ronment for performance diagnosis, one that addresses the three automation issues of selection,
use, and management.

This paper discusses the Poirot! approach to providing process support for performance diagno-
sis.By reviewing the literature on performance diagnosis tools, we have identified a common set
of methodological principles and process building blocks, applicable across a wide range of lan-
guages, machines, and measurement environments. Additionally, we have identified research in
expert systems, software process modeling, and semantic databases which has partially addressed
capture and automation of diagnosis methodologies. After presenting this work, we then discuss
the architecture of Poirot, our initial definition of a performance diagnosis support environment.
We show how Poirot can create tools that re-enact or rationally reconstruct a set of published per-
formance diagnosis strategies. Lastly, we review the status of Poirot and outline future work.

2.0 Performance diagnosis assistance: research issues

Most programmers follow an iterative performance diagnose-debug cycle. They write an initial
paralle! version of a program, identify its principal performance problems, and then transform the
program in response to those problems, repeating diagnosis if necessary. We believe choice of
methodology -- a policy for setting up experimental program runs, collecting data, and analyzing
and interpreting results -- is key for successful performance diagnosis, and, as a consequence, per-
formance tuning. As evidence, programmers experienced with an application and its runtime
environment can quickly isolate many performance bugs by careful choice of measurement tools,
experimental conditions, and analysis techniques. Conversely, less experienced programmers can
waste time and machine resources gathering data of low utility [19]. We thus believe that parallel
performance research must identify and prescribe appropriate diagnosis methodologies for classes
of applications, architectures, and measurement environments.

Many researchers prescribe methodologies by building tools to automatically support them. For
instance, IPS-2 [29] and ParaGraph [17] prescribe event tracing for data collection, whereas
Quartz [1] and MTOOL [16] prescribes profiling with timers and sampled counters. Prescription
is not limited to lower-level decisions such as measurement technology, but also higher level deci-
sions such as what to analyze and where. MTOOL, for instance, automatically selects instrumen-
tation points in programs based on results from an initial time profile. IPS-2 [29] provides an
automated method of critical path analysis, to focus the programmer on sequences of events in a
program that determine its runtime. Crovella and Leblanc [23] show how to diagnose program
performance using their predicate profiling tools and speedup analysis. Kirkpatrick and Schwan
[23] show how to diagnose the behavior of a program by comparing its actual behavior to predic-
tions via an abstract model, and monitoring behaviors that fall outside the predicted range.

Tools that provide complete support for a methodology often provide programmers with substan-
tial automation of diagnosis; the programmer using MTOOL. need not decide which parts of a
program to instrument, for instance. They can also present a simpler interface 1o the programmer,
since many subsystems are integrated inside the tool. Thus, the programmer using MTOOL also
does not need to learn the syntax and file formats required by its profile displays, since they are
integrated with data collection. Finally the tool can relieve the programmer of many kinds of man-
agement tasks; a tool which automatically generated speedup analyses from a source program, for

1. Hercule Poirot, Agatha Christie's fictional Belgian detective, famous for explaining apparently inexplicable
crimes.

4

instance, could automatically keep track of which data set and executable file correspond to which
number of processors in the analysis.

However, by “hard-wiring” a methodology into code, integrated tools limit their applicability
across a broad range of architectures and programming environments. Clearly, no single method-
ology is appropriate for all systems and applications; certainly the choice of metrics to measure
[10], and of techniques for data collection [16][23] depends strongly on the target machine.
Higher level choices, such as the type of behavior to investigate in an application [23], are equally
dependent on the application and the programmer’s goals. Current tools frequently make
machine-dependent commitments in all of these areas. The code must be extensively rewritten to
change these commitments and to extend functionality. There is no formal means of describing
the services a diagnosis tool requires from its environment, or the services it provides to the user.
As a result, it is difficult to port tools among systems, or even to determine whether porting will
be useful.

Our goal is to allow expert programmers to integrate tools (often fine-grained and system-spe-
cific) into flexible, portable diagnosis methodologies. We have defined a development environ-
ment, called Poirot, for creating and automating such methodologies. We base our approach on
research in expert systems, software process modelling, and semantic databases. In particular, we
synthesize work from these fields to address three issues:

Issue 1: How can performance diagnosis tools formally encode methodologies to automatically
choose diagnosis actions, while remaining flexible and composable?

Research in knowledge-based systems has created implementation frameworks [24] [13] [11] that
fill this need, and very high-level languages for describing methodologies in these frameworks.
Knowledge-based diagnosis research has defined a library of building blocks for retargetable
diagnosis methodologies [21] [7] [32] [5]. We intend to adapt this work to program performance
in Poirot.

Issue 2: How can performance assistants interact with and integrate programming and measure-
ment tools to simplify their use for the programmer, while still being retargetable across program-
ming environments?

Environments for process-directed software development [22]{30][20] have developed tech-
niques for integrating externally developed programming tools into formally defined program-
ming methodologies. We intend to extend this work, which has focused to date on general
software development and group coordination issues, to apply to performance diagnosis and indi-
vidual problem-solving.

Issue 3: How can performance assistants manage data and programs generated by the program
environment, while remaining independent of that environment?

Research in semantic database support for programming environments [31] [2] [37] has devel-
oped mechanisms such as expressive type systems and access-directed invocation, that give appli-
cations flexible access to persistent data, independent of how and where those data are stored or
computed. We intend to adapt this work to represent and manage the state of the diagnosis process
in Poirot.

5

3.0 Poirot: An architecture for automating performance diagnosis

We have defined a prototype performance diagnosis environment called Poirot. Our goal is to for-
malize and automate performance diagnosis methodologies in a way that is extensible, flexible,
and retargetable.

In this section, we sketch the architecture of Poirot and its rationale. Figure 1 gives an overview of
Poirot and its role in the programming process. Poirot is a knowledge-based system (specifically,
a problem solver). It is structured around an interpreter called the engine which interprets a “pro-
gram” called the knowledge base. Poirot interacts with a target programming environment via the
environment interface. While Poirot is designed to do performance diagnosis autonomously, we
expect that in many cases there will be an active partnership with the user. The user can take any
actions the problem-solver can. In addition, the user can ignore the environment interface if nec-
essary and interact with tools directly. As in Glitter [13], the system on which Poirot is modelled,
we provide means for the user to document actions taken outside of Poirot’s problem-solving con-
text as if they were taken inside.

3.1 Environment Interface

Figure 2 shows the structure of Poirot in more detail. We focus first on the environment interface.

The task of the environment interface is to formally specify the diagnosis facilities of the pro-

gramming environment, while hiding system-specific details of their implementation. In this way,

Poirot can be installed in any system that supports the objects and operations of the interface.
Figure 1. The role of Poirot.

Programming
Environment — . N
: Interface _ _ ain ey

Programring &
Analysis To%ls

User

This has two benefits: (1) it ensures retargetability of methodologies, by allowing them to exam-
ine the state and to invoke the utilities of the environment without being tied to the peculiarities of
a particular data representation or tool (2) it presents a simpler view of the environment to the
user, by hiding many details such as command syntax and file formats.

The environment interface consists of a domain database, and the transformation library. The
domain database summarizes the state of the diagnosis project, using a uniform information
model which represents such diverse items as data sets, programs, and configurations files as

6

objects with attributes. Objects may also represent assertions about the target environment, such
as “The target system does not have a cache monitor.” Several programming environments have
similarly adopted a persistent, active database as a facility for data storage and tool integra-
tion.[34][23]. Poirot’s database supports associative retrieval of objects; the problem-solver relies
heavily on this ability.

Poirot interacts with the tools in the environment by representing them as a uniform library of
transformations. This is similar to the approach taken in Marvel [15]. Each transformation in the
library represents a low-level performance diagnosis action, such as inserting an instrumentation
point in a program. Each transformation has an interface that characterizes its requirements and
effects in terms of the domain database. Transformations can be used simply to update the data-
base. However, most transformations also have an action, a script that performs computation,
exchanges information with the user, or invokes a tool in the programming environment and
translates its results into objects in the domain database. In addition to hiding tool interfaces,
transformations support project management, by generating and maintaining links among entities
in the environment and objects in the database.

Figure 2. The structure of Poirot and its interface.

LT
Solver

Environment| | oo T'Knowledge |

Interface . |Engine| L Base

I I[)) bﬂjn o CC“;“{Ol :
atabase S cle S
1 Control Task
.| Database lﬁ‘ Vocabulary

......... e | "I

—_ Transformations ’ . ;T;;{ - S
— — oo e ' |Knowledge
B "~ ._._-. 1 : .
— — |
ot Fnn T T
l : I
User

3.2 Problem solver

Poirot’s problem solver selects diagnosis actions and carries them out via the environment inter-
face. The problem solver is based on the Glitter system([13]. Its actions are determined by its
knowledge base, which is divided into rask vocabulary and control knowledge.

3.2.1 Task vocabulary

The task vocabulary describes the goals and methods of methodologies. Goals represent tasks that
must be performed in a performance methodology. These tasks may be high- or low-level; thus,
“evaluate whether there is an synchronization bottleneck” and “instrument statement 1" could
both be goals.

7

Methods describe means for accomplishing the goals. For example, the goal “evaluate whether
there is an synchronization bottleneck” might be solved by the method “Measure synchronization
rate”, Methods are indexed by the goals that they address. The body of a method is a set of diag-
nosis actions, of two types. One type of action is to post subgoals, representing subtasks that must
be performed to carry out the method. The subgoals of “Measure synchronization rate”, for
instance, are “instrument with synchronization counters”, “run program”, and “collect data”. The
other type of action is to invoke transformations via the environment interface. For example, the
“Measure synchronization rate” method invokes a transformation that generates a new version of

the program to instrument.
3.2.2 Problem-solving engine and control knowledge.

Given goals and methods, the problem-solver automates selection of diagnosis actions by top-
down goal refinement. As an example, assume the system is pursuing the goal “evaluate whether
there is an synchronization bottleneck” introduced above. The problem-solving engine retrieves
methods which are indexed to this goal. If more than one method is retrieved, this creates a choice
point; the engine uses control knowledge to choose one of the competing methods. The chosen
method then executes its body, which (typically) posts subgoals. If there is more than one subgoal,
this creates another choice point: in which order should the goals be pursued? The engine uses
control knowledge to select one of the goals. The cycle repeats.

The process terminates successfully when all goals have been solved. The state of this process --
the goals that have been posted, and the methods that have been proposed or carried out -- is
stored in the problem-solver’s control database.

Poirot’s problem solving engine has no fixed policies for selecting among methods to execute or
goals to pursue. These policies are defined by the control portion of its knowledge base. The con-
trol knowledge is structured as a set of condition-action rules. For each control decision, relevant
rules are matched against the state of the control and domain databases. Rules with satisfied con-
ditions add or delete assertions in the control database, which the engine then interprets to resolve
the decision. The user may add assertions to the control database to influence the behavior of the
system. This provides a mechanism for specifying application-, architecture-, and environment-
specific diagnostic requirements to Poirot. This is discussed in more detail in section 4.2.1.

Poirot thus represents performance diagnosis methodology decisions explicitly as control deci-
sions, and separates the formulation of those decisions (the task vocabulary) from the policies for
resolving them (the control knowledge). This has several benefits for our implementation goals of
extensibility, flexibility and retargetability. We describe these benefits in more detail in the sec-
tions 4.2 and 4.3.

4.0 Using Poirot: Three reconstructions

In this section we evaluate the sufficiency and usefulness of Poirot, by rationally reconstructing
several proposed performance diagnosis methodologies. In rational reconstruction, we show how
Poirot can formally encode a methodology, execute that methodology on a well-defined external
interface, and produce comparable results. We do not make any claim about the appropriateness
or usefulness of the methodologies we reconstruct; we simply show that Poirot can at least imple-
ment the methodologies the performance diagnosis field has devised to this point.

8

We first show how Poirot can re-implement the W3 search model of Hollingsworth and Miller
[19]. We then demonstrate how Poirot can be retargeted to reconstruct the methodologies associ-
ated with ChaosMon [23] and PTOPP [10]. We chose these three because each includes one or
more idiosyncratic techniques for performance diagnosis. Despite their idiosyncracies, our results
suggest that these different methodologies share a substantial core of performance diagnosis
knowledge, knowledge we can formally capture in Poirot in a general and portable form.

4.1 Example methodology: W3 model.

The first methodology we reconstruct is the W3 search model of Hollingsworth and Miller [19].
Our aim in this section is not to justify the W3 methodology. We simply present it as an example
of the kind of methodology Poirot should be able to generalize, automate, and retarget. Our goal is
to cast W3 in terms of more general diagnosis models, which supports both reuse across diagnosis
contexts and integration with other methodologies.

We first describe the W3 model and some aspects of its current implementation. W3 performs
search in a space of possible diagnoses, called hypotheses, during an instrumented run of a pro-
gram. Each hypothesis represents an abstract performance problem that may be present in the pro-
gram. Search begins with the initial hypothesis that there is a performance problem. The W3
system investigates possible refinements of the hypothesis, where a refinement is a more specific
hypothesis about the performance problem. Hypotheses have three dimensions, “Why”, “Where”
and “When” (thus the term W3). The “why” portion of the hypothesis describes the nature of the
performance problem occurring. The “where” portion describes where in the program the prob-
lem is occurring, by giving coordinates of the form (procedure, process, object). Finally, the
“when"” portion of represents the time interval during a run that the performance problem is occur-
ring. Each hypothesis is associated with test code that checks whether the performance problem it
represents is present over a particular time interval of the run. The test enables sampled data col-
lection from relevant (pre-inserted) event counters in the program, collects data, performs analy-
sis, and returns results. The results are used during search to decide whether to refine the
hypothesis, or to discard it.

To illustrate the W3 model more concretely, we describe how it could (hypothetically) be used to
diagnose performance problems in a example program. The program is a neural network simula-
tion code written in Dataparallel C (DPC) [18], running on a Sequent Symmetry multiprocessor.
Dataparallel C code compiles to single-program multiple data (SPMD) code; that is, the program
is compiled to processes that share the same code but that operate on different portions of the data
space. Processes communicate through the shared memory, and synchronize via barriers and crit-
ical sections.

Figure 3 shows a portion of the pre-enumerated “why” and “where” spaces that W3 uses to gener-
ate hypotheses for the neural net program. Diagnosis with W3 cycles between (1) initiating a run
of the program to be diagnosed, (2) search for hypotheses whose tests are satisfied by data col-
lected during that run, and (3) refining the satisfied hypotheses. W3 focuses initially on bottle-
necks in one or more of synchronization, I/O, cpu utilization, and virtual memory for the entire
program. Assume, for example, the synchronization bottleneck test succeeds. The system then
refines the hypothesis to “critical section bottleneck™ and “barrier bottleneck™ and enables tests of
these hypotheses. Assume the critical section hypothesis passes. W3 then refines further to iden-

9

tify the procedures in which problematic critical sections lie, and the phases during those proce-
dure’s runs where the problems are acute. The final result of a W3 diagnosis session is a list of
satisfied hypotheses, each defining a particular performance bottleneck. The programmer’s task is
then to transform the program to remove these bottlenecks.

Figure 3. Why and Where axes for Dataparallel C neural net program.

Where
(Procedure) (Process) (SyncObject)
=/ O\ W SRR W
init pats_gen train test ppp P P? bafrier critical
\ :esult section
upd_actl upd_wt upd_act2
Why
/‘-—_—/ \
cpuBottleneck ioBottleneck syncBottleneck vmBottleneck
excessive excessive
Blocking Sync
Time Rates

4.2 Reconstructing W3

To itlustrate the sufficiency of Poirot, we trace its operation as it reproduces W3’s diagnosis
behavior on the Dataparallel C neural net program (called “nnet”) introduced in section 4.1. We
show how Poirot could achieve a level of automation comparable to that of W3, while at the same
time meeting our goals of flexibility, extensibility, and retargetability.

4.2.1 Flexibility and extensibility: responding to diagnostic requirements.

We stated in the introduction that methodologies should be chosen to meet explicit diagnostic
requirements. In current performance diagnosis tools, users state diagnostic requirements by set-
ting the values of a fixed set of control parameters. This often provides an overly restricted lan-
guage for specifying diagnostic requirements. It also leads to a conflict: if the tool provides too
few control parameters to express the user’s requirements, the end users must recode the tool to
get the control they need. Recoding tools difficult and time-consuming, even in those cases when
source code is available, Conversely, if the tool provides too many control parameters, the tool is
difficult to implement, learn and use. Poirot supports custom, extensible languages for stating
diagnostic requirements. Poirot also mitigates the conflict between simplicity and flexibility by
(1) separating contro! from other aspects of its knowledge base, and (2) by representing control in
the form of rules. We use the initial part of the diagnosis session with the neural net program to
illustrate these points.

The user begins diagnosis of the neural net program by posting the goal diagnose(nnet). Goals
include achievement conditions -- executable tests that query the domain database or the user to
determine whether a goal has been met. The achievement condition of diagnose(nnet), for

10

instance, takes a proposed diagnosis (a hypothesis) from the database and asks the user whether
the diagnosis is acceptable. The arguments of a goal (such as “nnet” in the diagnose goal), iden-
tify the objects the goal focuses on and distinguish different instances of the same goal.

Along with the goal diagnose(nnet), the user adds several assertions representing diagnostic
requirements to the control database. In particular, the user specifies that (1) the diagnosis
returned should identify the time when the performance problem is occurring (timedDiagnosis),
(2) the system should minimize the number of times the program is run during diagnosis (mini-
mize(runCount)), (3) the system should minimize data volume (minimize(dataVolume)), and (4)
the system need not investigate interactions of multiple performance problems (independent
Faults). The domain database already contains the assertion that “nnet” is a Dataparallel C pro-
gram.

Figure 4 shows Poirot’s initial response to the diagnose(nnet) goal, and introduces our notation
for depicting Poirot’s state in this paper. The figure shows the relevant parts of the domain data-
base and the control database. It summarizes Poirot’s interaction with the user, and with the envi-
ronment (via transformations). The goal structure part of the control database indicates the goals
Poirot is pursuing (indicated by “g:"), the methods it is considering (indicated by “m:”), and the
control rules it is applying (indicated by italics). The methods Poirot retrieves for a goal are
indented below the goal. Subgoals of a method (where they appear) are indented below the
method. The methods that Poirot has chosen for a goal are underlined.

Figure 4. Choice of diagnosis method.

Domain Database

- = Control Database
arget Environment
I language(nnet, DPC). l (Goal Structure) (Diagnostic Requirements)
g: diagnose(nnet) timedDiagnosis.
. m: i minimize(runCount).
Transformations IF independentFaults minimize{dataVolume)
THEN prefer Classify independentFaults.
m: Model-based

{Usser enters dlagnose goal and diagnostic requirements)

User Intertace

Poirot’s problem-solving engine first searches for a method that can address the diagnose goal.
Two methods, “Classify” and “Model-based” [7] are retrieved. Based on the user’s assertion of
“independentFaults”, a control rule posts a preference for “Classify”, which is then selected. Fig-
ure 4 shows this problem-solving state.

The choice between “Classify” and “Model-based” above corresponds (roughly) to the choice
between two major subroutines in a tool. However, to make this choice sensitive to “independent-
Faults”, it was not necessary for the user to locate the calling point(s) in the source, add a condi-
tional statement and variable, and recompile. Instead, the parameter “independentFaults” was
added into the control database schema, and the rule was added into the control database, immedi-
ately making the new behavior available. Poirot thus supports modular extension of its diagnostic
requirement language, without requiring wholesale recoding of its knowledge base. It automati-
cally selects diagnosis techniques based on requirements stated in the language.

11

4.2.2 Retargetability: Automating diagnosis using generic methods.

Poirot’s knowledge base incorporates techniques for automated diagnosis developed in the field
of expert systems and artificial intelligence [4](7]. Many of the techniques developed by these
fields are “domain-independent™; that is, they rely on certain kinds of knowledge being available
about the faults they are looking for, but whether faults represent diseases or short circuits does
not affect the basic structure and processing of the technique. We can package these techniques as
methods and retarget them to different platforms, as is shown in this section.

“Classify”, the method selected for the diagnose goal, implements diagnosis by top-down classi-
fication [4], a common approach when faults can be investigated independently (thus the control
rule discussed above). Applied to performance problems, it attempts to classify the program’s
behavior as refiecting one or more pre-enumerated classes of performance problems. It works by
refinement, starting with a most general class “performance problem” and then gathering informa-
tion to refine the classification. We can use this generic method to reimplement W3 by treating
W3’s hypotheses as classes.

As shown in figure 4, Poirot has chosen “Classify”, based on its control knowledge. The body of
the “Classify” method calls a transformation to add the most general hypothesis (called “top™),
then automatically posts an ordered list of subgoals: build(top), and classify(top). Poirot calls the
achievement condition of the first goal, build, which calls for the pre-enumeration of the hypoth-
esis space. As in W3, hypotheses in this space have “why”, “where”, and “when” dimensions.
Following more general diagnosis terminology [7], we call the “why” and “where” dimensions
“fault” and “component”, respectively.

Given that the goal build(top) has not been achieved at this point, Poirot retrieves the method
*Build Fault-Component-When” (BFCW), the only method for build that satisfies the user’s
requirement “timedDiagnosis”. Poirot chooses and executes BFCW, which adds the hypothesis
space to the domain database. Figure 5 summarizes the goal structure and results of the BFCW
method. Based on the assertion that “nnet” is a Dataparallel C program, BFCW invokes transfor-
mations that construct the space shown in Figure 3. Note that all but the lowest-level methods
used to achieve the build goal are independent of the target platform.

4.2.3 Retargetability: Separating local policies from reusable techniques.

A programmer often makes performance diagnosis decisions based on concerns that may be
called local: the current application’s demands, the target machine’s resources, the programming
environment’s tools, or the programmer’s own tastes. Current automated diagnosis tools often
mix local decisions with those based on more general concerns. The result is that one cannot
effectively retarget the tool, even though many of its methods are not, in principle, limited to a
particular local environment. Poirot attempts to remedy this problem by allowing users to separate
knowledge that addresses local concerns from knowledge that is more general. In particular,
Poirot can encode local policies in control knowledge, so that the task vocabulary remains maxi-
mally reusable.

12

Figure 5. Building the hypothesis space.

Domain Database Control Database
(Hypothesis Space) (Goal Structure) (Diagnostic Requirements)
nnet-top m: Classify ﬁqletdl?iagnosis.
(seg'; e 3) g: build(top) minimize(runCount).
. m: Build Fault-Component-When minimize(dataVolume)
: g: buildFCW({1op, faultSpace) independentFaults.
{ Ianguage(nnet, DPC). n: Build DPC Fault Space

g: buildFCW(10p, componentSpace)

Transformations m: Build DPC Component Space
(Transformations construct g: buildFCW(top, whenSpace)
hypothesis space) m: Manually Define at Runtime
g: doClassify(top)
{No interaction}
User Interface

This is illustrated by Poirot’s initial strategy for processing the doClassify goal (Figure 5). Poirot
selects the generic method “Refine and Evaluate” for this goal. It has two types of subgoals:
refine(hypothesis), which refines a hypothesis, and evaluate(hypothesis), which collects data to
evaluate a hypothesis. “Refine and Evaluate” does not, however, specify an order in which to do
these two goals. Recall that the user asserted “minimize(dataVolume)”, likely because of limited
resources in the target machine or in the monitor. The control rules respond to this assertion by
implementing a strategy for “Refine and Evaluate” that evaluates one hypothesis at a time, mini-
mizing the data generated. Specifically, Poirot proceeds depth-first under the constraint of mini-
mum data volume. It pursues evaluate for each hypothesis, until one is confirmed. It then
recursively investigates the refinements of the confirmed hypothesis, following the same strategy.
Figure 6. Choosing a processing strategy for the doClasslfy goal.

Control Database
{Goal Structure) (Control Strategies) (Diagnostic Requirements
m; Classify strategy(depthFusst, timedDiagnosis.
g: build(top) RefincAndEvaluate) minimize(runCount).
g: doClassify(top) minimize(dataVolume)
m: Refine and Evaluate independentFaults.
g: refine(top)
g: evaluate(top)

Poirot’s use would be limited in environments that tolerated high data volumes, if its problem-
solving engine hard-wired the depth-first strategy. One way around this would be to write multiple
versions of the “Refine and Evaluate™ methods that follow different strategies. However, there are
potentially a plethora of variants of this method, one for each conceivable interleaving of refining
and evaluating hypotheses. Poirot allows the tool builder separate general diagnosis strategies
from strategies that address local concerns, by placing the latter in control knowledge. This helps
keep its task vocabulary small and widely applicable.

13

4.2.4 Retargetability: Separating tool interfaces from too! implementations.

We rely on our library of transformations to insulate the performance diagnosis methodologies in
Poirot from the details of the tools in the environment in which Poirot is embedded. The next sec-
tion shows how this occurs in our example diagnosis session with “nnet”.

By pursuing depth-first search from the “top” hypothesis, Poirot eventually focuses on the goal
evaluate(syncBottleneck). We follow the processing of this goal in further detail to show how we
model the W3 measurement methodology. Figure 7 outlines the goal structure of this process.
Figure 8 shows the successive hypotheses generated during this part of the search.

W3 tests for a bottleneck by measuring a performance metric that directly correlates with that bot-
tleneck. For instance, given the hypothesized bottleneck, “syncBottleneck”, W3 would measure a
metric that indicates the level of synchronization activity. Poirot selects a method called “Directly
Measure” for the goal evaluate(syncBottleneck) that implements W3’s method of hypothesis test-
ing.

The “Directly Measure” method posts the subgoal experiment, which asks for an experiment to
perform the required measurements, Guided by the requirement to minimize the number of runs,
Poirot selects a method, called “Exhaustive”, that collects data from a single program run to test
all possible bottlenecks. The hypothesis space (pre-enumerated by the *“Classify” method earlier)
serves to identify which faults and components are possible in the target architecture. Working
with this hypotheses space, the “Fault-Component Metrics” method invokes transformations that,
given a fault and a component, select an appropriate metric for estimating the severity of the fault
in that component. In the example, a transformation posts “syncActivity” as the metric for the
hypothesis “syncBottleneck”.

When metrics have been selected, the “Exhaustive” experimentation method then generates a run
object [34] to represent the experimental configuration, For each metric, “Exhaustive” posts a
subgoal configure(run, metric), which requests that the run be instrumented to gather data for the
metric. Poirot chooses the method “Sample” for all configure(run, metric) goals, as sampling
generates the least data (satisfying minimize(dataVolume) and can handle the metrics in question.
The “Sample” method configures the run for data collection.

When configuration is complete, “Exhaustive™ posts the measure(syncActivity) goal for each
metric. Processing this goal confirms the “syncBottleneck” hypothesis. As a result, the depth-first
strategy begins to investigate the refinements of this hypothesis. Figure 8 shows the hypotheses
generated by that search.

We stated that the method “Sample” configures the run with instrumentation for each metric. It
does so with a standard set of transformations from Poirot’s environment interface. Depending on
the environment, each of these transformations may operate by inserting source-level counters, by
linking the program to an instrumented runtime system, or by asking the user to insert instrumen-
tation points. Each implementation presents the same transformation interface to the “Sample™
method. As a result, this “Sample” method remains reusable across any programming environ-
ment that can implement the transformations invoked by the method.

14

Figure 7. Measurement strategy for locating a synchronization bottleneck.

Control Database
Transformations S .
m: Refine and Evaluate ..processing of subgoals
(Sample: g: evaluate(syncBottleneck) configure(run, syncActivity)
For aachene'm'c m: Directly Measure m: Sample
instrument for' £: experiment IF minimize{dataVolume)
sampling) m: Exhaustive THEN prefer Sample o
IF minimize(runCount) g: measure{syncActivity)
Coll THEN prefer Exhaustive m: Collect on Subinterval
ect on . .
ubinterval; g: metrics . §: BSSESS
enable sampling m: Fault-Component Metrics m: Canned Test Code
for syncActivity g: configure(run, syncActivity) ~ m: Trace
over sampling (processing shown at right) - - -
interval} g: refine(syncBolttleneck) (Diagnostic Requirements)
: timedDiagnosis.
g: evaluate(excessiveSyncRate minimize(runCount}.
in (upd_actl, minimize(dataVolume)
criticalSection)) independentFaults.
|

4.2.5 Flexibility: changing diagnosis strategies for changing circumstances.

We have argued that different diagnosis strategies are appropriate in different environments. It is
often the case that, in addition, it is useful to change diagnosis strategy within a single environ-
ment. For instance, one might change strategy in response to new data. Poirot can implement such
dynamic shifts of methodology, as is illustrated by the next part of our “nnet” example.

After several iterations of measurement and refinement (summarized in Figures 7 and 8), Poirot
posts the goal refine(“excessiveSyncRate in (procedure upd_actl, criticalSection)”). The user
decides to investigate the dynamic behavior of this bottleneck. To do this, the user manually
invokes a method to refine “excessiveSyncRate in (procedure upd_actl, criticalSection)” along
the “when” axis, and partitions the remaining run time of “upd_act1” into four time intervals. This
results in four new excessiveSyncRate hypotheses for these time intervals, and corresponding
refine and evaluate goals.

These new timed refine and evaluate goals, and the user’s requirement to minimize the number
of runs, motivate a change in goal selection policy. Each timed hypothesis requires data to be col-
lected during a particular time interval; if that hypothesis is not tested at the appropriate time dur-
ing the current run, Poirot will have to re-run the program to test the hypothesis. To avoid this,
Poirot’s control rules change its strategy from depth-first to a time-sensitive strategy: pursue the
goal evaluate(hypothesis) when (and only when) the time of the current run matches the time of
the hypothesis. Thus, if the current program run is at time 1, Poirot will pursue the goal evalua-
te(“excessiveSyncRate in (procedure upd_actl, criticalSection) during interval 1”") over other
goals. This gives a better chance of catching the incoming data.

15

Figure 8. Hypotheses generated in locating a synchronization bottleneck.

Domain Database
{Hypothesis Refinements)
TR R — _ :
L Ir—{ SyticBoilencck] -__gexcessweSyncRate ugxce_ss.lveSym_:Raw ?gﬁmﬁmmw
T E— * —p- 110 °’;"°@13°°:“°ﬂ criticalSection)
. / C ;I excessiveSyncRate }~—
/ in (upd _actl, S
/ / f criticalSection) ! l
7 / / /
syncActivity ™ avgSyncRate —/angyncRaze i S avgSyncRate /
in nnet in nnet in eritical sections avgSyncRate in critical sections
in critical sections in procedure train
in procedure upd_actl
{(Hypothesis Test Metrics)

With this change, Poirot confirms the hypothesis “excessiveSyncRate in (procedure upd_actl,
criticalSection) during interval 3”. We assume the user accepts this as a diagnosis, ending the ses-
sion. Note that the user intervened only three times during the diagnosis session: (1) the user
posted the initial diagnose goal, (2) the user initiated dynamic analysis of the excessiveSyncRate
bottleneck, and (3) the user accepted the final diagnosis. Only the second action required the user
to use a tool other than Poirot itself. During the session, Poirot saved the intermediate results in
the domain database including the solution path, the instrumented program, and the collected
data, making them available for later queries. This illustrates the extent to which Poirot can sup-
port automation of selection, use and management, when provided with sufficient knowledge.

4.3 Reconstructing PTOPP and ChaosMon.

To assess the degree to which Poirot supports extensibility and retargetability, we briefly sketch
how the knowledge base described above could be extended to reproduce other performance diag-
nosis methodologies. We focus in particular on those associated with PTOPP [9], and ChaosMon
[23]. Further details and other reconstructions from our literature search may be found in [19].

The PTOPP methodology was designed to support tuning of parallelized Fortran programs for the
Cedar multiprocessor. It has several interesting features. First, it has a well-defined set of faults
and metrics, described in [10]. It uses perturbation analysis, a generalization of speedup analysis,
to detect performance problems. Finally, it addresses the issue of managing programs and data.
Naming conventions are used to identify whether a source program is (for instance) an uninstru-
mented sequential version or a 32-processor instrumented version. PTOPP includes a facility for
automatically building appropriate executables based on these conventions. PTOPP it also
includes a database for storing performance data.

We can represent the PTOPP methodology in Poirot as follows:

» Add Cedar Fortran equivalents of the DPC-specific methods for constructing the fault and
component spaces (see Figure 5).

16

« Define a perturbation method (a sibling of “Directly Measure” in Figure 7) for processing
evaluate goals.

« Add control knowledge that tests whether the target runtime system is Cedar Fortran-like,
and to choose the appropriate methods if it is.

The management functions of PTOPP are well-supported by Poirot. Program objects can have
attributes describing their state, obviating the need to for naming conventions and the build facil-
ity. The database schema can be extended for performance data.

It is thus possible to reuse components of the W3 knowledge base to handle significant features of
PTOPP. We also consider retargeting Poirot to integrate the distinctive features of the ChaosMon
monitoring environment. Chaos Mon’s methodology is driven by an application-specific monitor-
ing model. The monitoring model describes the structure of the program in terms of communicat-
ing objects with attributes. The methodology allows the user to create abstract views that filter
and aggregate performance data. Abstract views obtain their input data from monitoring views,
high-level data collection programs that describe how to update the monitoring model from pro-
gram variables during execution. ChaosMon provides a compiler which generates instrumentation
code from view specifications. This compiler includes a planning module which automatically
selects between tracing or sampling for data collection.

We add support for ChaosMon in Poirot as follows:

¢ Create new methods for building the fault-component space (Figure 5) that uses the appli-
cation-specific monitoring model, rather than the program and runtime system.

» Add a new counterpart of the method “Fault Component Metrics™ (Figure 7) that invokes
ChaosMon’s tools for editing views. For each fault and component, the method creates a
view to test for the fault in the component.

+ Add a method for the configure goal that compiles views. This method has two separate
subgoals. The plan subgoal causes the planning module to run and post its conclusions to
the database. Control rules then use these conclusions to select between “Trace” and
“Sample” for each instance of the instrument subgoal.

Note that we have subdivided Chaos Mon’s view compiler two independent pieces. This allows
us to substitute submodules in for one of the pieces when it does not apply. On a system that only
supports sampling, for instance, we can cut use a control rule to cut the planner out of the loop. By
providing facilities for flexible assembly of methodologies, Poirot encourages the creation of
more fine-grained, special-purpose tools. While this is in contrast with the current trend toward
integration of tools, we believe it is likely to lead to greater simplification of tools and their inter-
faces.

5.0 Status and Future Work

We are currently implementing an initial version of the Poirot solver, and a prototype of its envi-
ronment interface. Our near-term goal is to construct a knowledge base consisting of the three
methodologies described here, plus several others from our initial literature review (e.g., those

17

from Quartz and Mtool). We will test these methodologies in an advisory role (not initially requir-
ing them to interact with tools in the programming environment) on an actual tuning project. This
is intended to test the problem-solving aspects of the Poirot architecture, to provide a core task
vocabulary, and to help formulate an appropriate environment interface. Our first “applied”
implementation of the environment interface will be targeted to the pC++ programming environ-
ment [3]. The long-term goal of this effort is to work with end users of pC++ to experimentally
evaluate the benefits of the approach on selected code tuning and porting projects.

We view Poirot as a first step towards our long-term research plans of formalizing and automating
methodologies for parallel performance evaluation and optimization. Our research focuses not
only on automation of performance diagnosis, but also on the general principles that enable it --
knowledge-based system organization, generic problem-solving techniques, and high-level inter-
action with environment data and tools. We believe these could equally benefit other aspects of
performance engineering. For instance, work on the PTOPP methodology [10] encompassed per-
formance debugging proper, capturing process information for performance tuning as well as
diagnosis through transformational directives; this has close relation to Glitter’s original target
application [13]. Additionally, our work on a framework for knowledge-based performance opti-
mization will benefit from the Poirot results.

Finally, we believe that formalizing methodology in a framework like Poirot’s may benefit
researchers on performance evaluation, independent of its value to programmers. In particular, it
provides a means of documenting results in the field: formally characterize the issues (goals) a
performance tool addresses, identify the positions (methods) it takes on those issues, and specify
the rationale (control rules) for the choices it makes and its use. The result is a detailed encoding
of methodology that may be used to compare competing approaches. In addition, Poirot’s ability
to define methodologies independent of tool implementations suggests a new, *“need-driven” [9]
approach to performance tool design and development: formulate diagnosis methodologies based
on the diagnostic requirements, and then create new tools, or adapt existing tools, to support the
methodology. This approach could produce tools that more directly meet the needs of program-
mers by allowing them to create application-specific diagnosis assistants.

6.0 References

[1] Thomas Anderson and Edward Lazowska, “Quartz: a tool for tuning parallel program performance”, Proceed-
ings 1990 ACM SIGMETRICS, May 1990, pp. 115-125.

{21 Dennis G. Allard and David S. Wile, *Aggregation, persisience and identity in worlds”, in John Rosenberg and
David Koch (eds.), Persistent Object Systems, Berlin: Springer-Verlag, 1990, 161-174.

3] F Bodin, P. Beckman, D. Gannon, S. Yang, S. Kesavan, A. Maleny, B. Mohr, “Implementing a paralle] C++
runtime system for scalable parallel systems”, Supercomputing ‘93 (Portland, OR, November 1993), 10 appear.

[4) H.Burkhart and R. Millen, “Performance measurement tools in a multiprocessor environment”, JEEE Trans-
actions on Computers, Vol. 38, No. 5, May 1989, pp. 725-737.

[5] B. Chandrasekharan, and T. Johnson, “Generic Tasks and Task Structures: history, Critique, and New Direc-
tion”, in Jean-Marc David, Jean-Paul Krivine, Reid Simmons (eds.) Second Generation Expert Systems. Ber-
lin: Springer-Verlag, 1992, pp. 232-272,

18

(6l

7
(8]

9]

(10]

(1

[12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]

[20)

(21]

(22]

[23]

19

Mark Crovella and Thomas J. LeBlanc, “Performance debugging using performance predicates”, Proceedings
of the ACM/ONR Workshop on Parallel and Distributed Debugging, May 1993, pp. 140-150.

Johan de Kleer, Brian Williams, “Diagnosing Multiple Faults”, Artificial Intelligence32, 1987, pp. 97-130.

Peter J. Denning, “What is experimental computer science?”, Communications of the ACM, Vol. 23, No. 10,
October 1980, pp. 543-544.

Rudolf Eigenmann and Patrick McClaughry, “Practical tools for optimizing parallel programs”, Technical
Report 12-76, Center for Supercomputing Research & Development, Urbana-Champaign, IL, 1992,

Rudolf Eigenmann, “Toward a methodology of optimizing programs for high-performance computers”, Tech-
nical Report 11-78, Center for Supercomputing Research & Development, Urbana-Champaign, IL, 1992,

L. Erman, P. London, S. Fickas, “The design and example use of Hearsay-III", in [/CAI-7 (Vancouver, BC,
1981), pp. 409-415,

Domenico Ferrari, “Considerations on the insularity of performance evaluation”, IEEE Transactions on Soft-
ware Engineering, Vol. SE-12, No. 6, June 1986, pp. 678-683.

S. F. Fickas, “Automating the transformational development of software”, JEEE Transactions on Software
Engineering, Vol 11, No. 11 (November 1985).

G. Fox, “Performance engineering as part of the development life cycle for large-scale software systems” In:
Proc. of the 11th Int. Conf. on Software Engineering, (Pittsburgh, PA). IEEE Computer Society Press, 1989,
Pp. 85-94.

Mark A. Gisi and Gail E. Kaiser, “Extending a tool integration language”, in Ist International Conference on
the Software Process: Manufacturing Complex Systems (Redondo Beach, CA, October 1991), pp. 218-227.

Aaron J. Goldberg and John L., Hennessy, “Mtool: an integrated system for performance debugging shared
memory multiprocessor applications”, IEEE Transactions on Parallel and Distributed Systems, Vol. 4, No. 1,
January 1993, pp. 28-40.

M. T. Heath and J. A. Etheridge, “Visualizing the performance of parallel programs,” IEEE Software, Vol. 8,
no. 5, September 1991, pp. 29-39.

Philip Haicher and Michael Quinn. Dataparallel Programming on MIMD Computers. Cambridge, MA: MIT
Press, 1991,

B. Robert Helm, *“A bestiary of performance diagnosis methodologies™, Technical Report 93-24, Department
of Computer and Information Science, University of Oregon, Eugene, OR 97403.

Jeffrey K. Hollingsworth and Barton P. Miller, “Dynamic control of performance monitoring on large scale
parallel systems™, 1993 Proceedings of the International Conference on Supercomputing, July 19-23, 1993.

Karen Huff and Victor R. Lesser, “A plan-based intelligent assistant that supports the software development
process”, in Peter Henderson (ed.), SIGPLAN Notices, Vol. 24, No. 2, February 1988.

1. R. Josephson, B. Chandrasekharan, J. Smith, M. Tanner, “A mechanism for forming complex explanatory
hypotheses”, IEEE Transactions on Systems, Man, and Cybernetics, Vol. SMC-17, No. 3, May/June 1987, pp.
445-454.

Gail E. Kaiser, Peter H. Feiler, and Steve S. Popovich, “Intelligent assistance for software development and
maintenance”, JEEE Software, Vol. §, No. 3, May 1988, pp. 40-49.

[24]

[25]

[26]

27

[28]

[29]

(30

(31]

(32}

[33)

[34)

(35

[36]

(37]
[38]

(39

20

Carol Kilpatrick and Karsten Schwan, “ChaosMon -- Application-specific monitoring and display of perfor-
mance information for parallel and distributed systems", Proceedings of the ACMIONR Workshop on Parallel
and Distributed Debugging, May 1991, pp. 48-59.

J. Laird, A. Newell, P. Rosenbloom, “SOAR: an architecture for general intelligence”, Artificial Intelli-
gence33(1): 1987, pp. 1-64.

Allen D, Malony, “Performance observability”, Ph.D. dissertation, University of Illinois at Urbana-Cham-
paign, October 1990.

Allen Malony, Daniel Reed, and Harry Wijshoff, “Performance Measurement Intrusion and Perturbation Anal-
ysis”, IEEE Transactions on Parallel and Distributed Systems, Vol. 3, No. 4, July 1992, pp. 433--450.

Dan Marinescu, James Lumpp, Thomas Casavant, and H.J. Siege!, “Models for monitoring and debugging
tools for parallel and distributed software”™, Journal of Parallel and Distributed Computing, Vol. 9, No. 2, June
1990, pp. 171-184.

Margaret Martonosi, Anoop Gupta, and Thomas Anderson, “MemSpy: analyzing memory system bottlenecks
in programs”, Proceedings 1990 ACM SIGMETRICS, May 1992, pp. 1-12

Barton P. Miller, Morgan Clark, Jeff Hollingsworth, Steven Kierstead, Sek-See Lim, Timothy Torzewskd,
“IPS-2: the second generation of a parallel program measurement system”, IEEE Transactions on Parallel and
Distributed Systems, Vol. 1, No. 2, April 1990, pp. 206-216.

Naftaly H. Minsky and David Rozenshiein, “A software development environment for law-governed sys-
tems”, ACM SIGSOFT Software Engineering Notes, Vol. 15, No. 6, 1990, pp. 65-75.

David Ogle, Karsten Schwan, and Richard Snodgrass, “Application-dependent dynamic monitoring of distrib-
uted and parallel systems”, IEEE Transactions on Parallel and Distributed Systems, Vol. 4, No. 7, April 1993,
pp. 762-778.

Yun Peng and James A. Reggia, “A probabilistic causal model for diagnostic problem solving part II: diagnos-
tic strategy”, EEE Transactions on Systems, Man, and Cybernetics, Vol. SMC-17, No. 3, May/June 1987, pp.
395-406.

Daniel A. Reed, “Performance Instrumentation Techniques for Parallel Systems”, in L. Donatiello and R. Nel-
son {eds.), Models and Techniques for Performance Evaluation of Computer and Communication Sysiems.
Berlin: Springer-Verlag, Lecture Notes in Computer Science, 1993,

Zary Segall, Ajay Singh, Richard T. Snodgrass, Anita K. Jones, Danicl P. Siewiorek, “An integrated instrumen-
tation environment for multiprocessors”, IEEE Transactions on Computers, Vol. C-32, No. 1, January 1983,
pp. 4-14,

Zary Segall and L. Rudolph, “PIE: a programming and instrumentation environment for parallel processing”,
IEEE Software, November 1985, pp. 22-37.

Connie U, Smith. Performance Engineering of Software Systems. Reading, MA: Addison-Wesley, 1990.

Richard T. Snodgrass, “A relational approach to monitoring complex systems”, ACM Transactions on Com-
puter Systems, Vol. 6, No. 2, May 1988, pp. 157-196.

Cui-Qing Yang and Barton Miller, “Critical path analysis for the execution of parallel and distributed pro-
grams”, Proceedings 9th International Conference on Distributed Computing Systems, June 1988, pp. 366-
373.

