Conversational Analysis and
Human-Computer Interaction Design

Sarah A. Douglas

CIS-TR-93.29
December 1993

Department of Computer and Information Science
University of Oregon

Conversational Analysis and Human-Computer Interaction Design

Sarah A. Douglas
Computer and Information Science Dept.
University of Oregon
Eugene, OR 97403
(503) 346-3974
douglas@cs.uoregon.edu

To be included as a chapter in: SOCIAL AND INTERACTIONAL DIMENSIONS
OF HUMAN-COMPUTER INTERFACES, Peter Thomas, Editor, Cambridge
University Press, 1994,

ABSTRACT

One area of concern common to all designers of interactive systems is
pinpointing where the design fails for the first-time user and how to
improve it. Many design methods are analytic-—-good at tearing apart
problems but unable to synthesize improvements. In this paper I will
describe research I have done using one method derived from
Conversational Analysis which not only aids in analysis but also provides
the necessary synthetic element. The paper discusses the method in detail
and its integration with standard software prototyping techniques and
usability studies. A detailed example drawn from a three year project
which developed a cardio-vascular simulation for use in teaching biology
illustrates the method. Finally, an informal confirmation of the learnability,
practicality and universality of the method was made through several
years of teaching it to programmers in user interface design classes.

INTRODUCTION
From Idealism to Anarchy: The real world of user interface design

How do we create successful designs for interactive systems? For ten

years this rather complex question was answered by a narrow definition of
the word “successful” in early and persistent efforts by Card, Moran and
Newell (Card, Moran et al. 1983; Newell and Card 1985; Newell and Card
1986) to create an engineering science of human-computer interaction
(HCI) based on a cognitive science of the individual user, In their
Tayloresque world “successful” meant reduction of the design to
observable and measurable user behavior: achieving minimal speed of

routinized performance, achieving minimal speed of learning, elimination
of user “errors” which were regarded as wasteful of time, and a
completeness of functionality. The designer performed a task analysis
involving the specification of the design as a set of user goals accomplished
by sequences of user mental or physical actions such as typing on the
keyboard. For an elaborated example of this approach to the design of text
editors, see (Roberts and Moran 1983).

During the past ten years the HCI community, including both researchers
and designers, has failed to accept this approach to design. In particular,
the Card-Moran-Newell approach has not been able to deal well with non-
routinized human behaviors of managing trouble, problem solving and
learning. For example, although a cornerstone of the theory depends on
the concept of goal-directed behavior, the designer does not actually
determine real human intentions but instead “discovers” a Socratic set of
ideal and complete goals based on an abstract analysis of what work is to
be accomplished, i.e. its functionality as a task environment. No attempt is
made to analyse the context of work such as what the users already know
or problems they have with existing products. This makes it devilishly
difficult to predict where the user will have trouble or make “errors.” The
entire design effort focuses on the creation of a perfect, i.e. error-free,
design rather than a design which can robustly respond to the infinite
possibilities of failure.

The design process is typically characterized by initial designs created by
programmers and then possibly reviewed by an expert in human factors
or psychology. The standard design aides are the prior experience of the
designer, expert designer heuristics published as user interface guidelines,
task analysis tools such as the keystroke model, and simulated user
behavior such as the cognitive walkthrough. There is no contact with real
users in real environments of use, in other words, this approach to design
is context-free.

Criticism of this context-free methodology has come from both
practitioners who have studied the effectiveness of different design tools
as well as from researchers with more theoretical interests. A study by
(Jeffries, Miller et al. 1991) compared three methods of evaluating designs
without actually involving the human user with a technique called
usability testing. The non-empirical methods were human expert
evaluation(Nielsen and Molich 1990), guidelines(Smith and Mosier 1986;
Apple Computer 1987; Mayhew 1992), and the cognitive
walkthrough(Lewis, Polson et al. 1990). Usability testing takes a working
version of the software and tries it out on a user. Observations as to

usability are made by the designers and used to make modifications to the
design. The technique seems to encompass any method of direct
observation of user performance with the purpose of discovering design
flaws. The Jeffries et al. study found that usability testing uncovers the
most serious interface failures, is very good at finding recurring and
general problems, avoids low-priority problems, and does not produce any
false problems. As a design tool it was preferable to the other three
(Jeffries and Desurvire 1992). It is clear that the effectiveness of usability
testing is that it attempts to create some kind of context when evaluating
the design.

Continuing the call for adding more context into the development of
software, Clayton Lewis, a leader in the HCI research community,
elaborates on the failure of the Card-Moran-Newell approach in his paper
“A research agenda for the nineties in human-computer interaction” (Lewis
1990). He cites three major reasons: the failure to accommodate the
context of use, lack of iterative design process and an inability of this type
of theory to modify itself from actual design experience. For Lewis these
failures, which he calls context, process, and systems, should become the
major issues for HCI design in the nineties. Due to their importance, brief
review of what Lewis means by context, process and systems is in order.

Context. Primary criticisms about lack of context have been mainly
ethnomethodological arguments (Suchman 1987; Whiteside, Bennett et al.
1988). Lewis does not define context in his paper other than to
characterize Suchman as saying that the “theory is inside out: that the
social context in which cognition occurs shapes behavior to such an extent
that what is needed is a theory of social interaction modified to account for
cognition not the other way around.” ((Lewis 1990) p. 129) In short the
Card-Moran-Newell approach fails to take into account interaction. Design
is based solely on an individual psychology of the user ignoring the
concept of interaction which requires at a minimum a pair of individuals,
be they human-human or human-computer. In some profound sense the
users seem like robots with routine procedures whose only contact with
their environment is some sort of triggering event that launches them into
an execution of pre-planned behavior.

Process. The second criticism of an engineering science approach involves
the process of design itself. The central idea is that it is more important to
worry about how to obtain and act on appropriate feedback on the
effectiveness of a design than to worry about the perfection of the initial
design. This is called an open-loop approach (Gould 1988).

Systems. The final failure cited by Lewis is the inability of design driven
by engineering science to reincorporate the lessons of implementation back
into the theory (Carroll and Campbell 1986; Carroll and Kellogg 1989).
Despite ten years of trying to work through designs based on the Card-
Moran-Newell model new designs are mostly shaped by the systems that
have already been built and the experiences with them. Graphical user
interfaces are an example of this.

In some sense, context, process and systems are very related to each other
and point out the complexity or even futility of any science of “applied”
human behavior. Providing a context of use to continuously inform the
design creates the possibility of improving design through feedback from
cumulative systems experience of both designers and users. This sounds
like anarchy to those schooled in the careful task analysis of engineering
science, but it emphasizes the design process rather than the design
product. It also requires that the focus of design shift from creating error-
free efficient human performance to creating consistency with users’
expectations and intentions and a support of the users’ own processes of
repair.

In the remainder of this chapter, I will discuss ideas based on
conversational analysis that I have been developing over a five year
period that attempt to create a systematic method of design which
seriously incorporates context, process and systems concerns.

METHOD
What does talk have to do with it?

In this section I describe this design method in detail. Briefly, a technique
called constructive interaction generates context information about the
usability of the design by first-time users. The choice of first-time users is
made because the trouble they encounter discloses the work required to
understand the system’s behavior that is masked by the experienced user.
Then using conversational analysis as both an analytic as well as a
synthetic technique, the designer detects the trouble and decides whether
it is a design failure. Further conversation analysis points to repair of the
trouble and ultimately offers suggestions for software design changes.
Finally, constructive interaction and conversational analysis are placed
within an overall design process.

Constructive interaction.

Constructive interaction uses two participants who are given a set of
problems to solve or tasks to perform. The participants’ activities are
recorded using both video, audio and possibly computer generated records
such as keystrokes and pointing actions. It is helpful to compare
constructive interaction to another method called protocol analysis, or
“thinking aloud” (Lewis 1982; Ericsson and Simon 1984) which has been
used extensively in the HCI community. Protocol analysis uses only one
participant. This participant is given a set of problems to solve or tasks to
perform and encouraged to “think aloud.” The participant is recorded in a
similar manner to that of constructive interaction. Both constructive
interaction and protocol analysis may be repeated with other participants.

The primary goal of protocol analysis is to uncover the underlying mental
life of the participant. Protocol analysis is useful in design studies because
it provides a method for identifying “problems” the user may have with
the design, some elaboration as to why and perhaps ideas for
improvement. Unfortunately this method has one major limitation familiar
to ethnomethodologists: it fails to recognize language itself as a social
process. The presence of the observer and the demand to talk may cause
participants to “make up stories”. Also, it is highly improbable that reports
of a person’s own mental processes are scientifically valid(Nisbett 1977).
Despite these limitations, protocol analysis provides the designer with two
critical pieces of information: Where the design fails to achieve what the
designer expects, and some insight into why.

Constructive interaction attempts to elicit verbal information about
problems in a more naturally occurring conversation. By using two
participants a situation of collaborative problem solving is created
whereby each participant must inform the other in an explicit verbal
record about problems, causes, and solutions. Although there is no doubt
that the technique derives from early studies of conversation by Sacks et
al. in the early 1970s, the method was first described in published
material in the mid-1980s by Miyake (Miyake 1986) who used it to study
human problem solving during the repair of a sewing machine. The person
most directly responsible for the development of this technique and its use
in the analysis of human-computer interaction is (Suchman 1987) who did
extensive work on an computer-based expert help system for a Xerox
copier.

Conversational analysis.

Once the constructive interaction is completed the designer is still left with
the problem of systematic analysis of a primarily verbal record. One

method is Conversational Analysis (CA). Unlike researchers like (Norman
and Thomas 1990) who have used CA and its “rules” to create design
guidelines, this use of CA centers entirely on the interpretation of human
communication (including so-called non-verbal language) at a very
detailed level with a focus on the detection of trouble and analysis of
repair.

(Suchman 1987) pioneered the use of CA to analyse human-computer
interaction. Her primary interest in doing this type of analysis was to
compare the behavior of human and machine as an interactive exchange
modeled on human-human communication. Suchman was interested in
where and why that exchange failed in the broadest sense and the
fundamental philosophical issue of whether it is possible to create a
software system that could know and explain its own behavior. Although
she borrowed heavily from the interactive emphasis of earlier
conversational analysts, she radicalized CA by including the computer as
one of the “social” participants. In a sense, the program of the machine
“stands in” for the human designer-programmer in the interactive
exchange. This requires that the programmer attempt to anticipate all
possible intentions of the other participant (the user) and states of
interactive communication.

Consequently Suchman reduced her original videotapes to a simple
framework of interaction between the user and the machine:

THE USERS THE MACHINE

I I1 111 J\Y
Actions not Actions Effects Design
available to available available rationale
the machine to the machine to the user
El
E2
E3

Table 1: Suchman’s Analytic Framework

The general process of Suchman’s analysis was to use this framework to
create a transcript of the major episodes of trouble, denoted “E1,” “E2,” and
“E3” above. Included in column I, “Actions not available to the machine,”
were all verbal and gestural events of the users. Column II recorded the
users actions at the semantic level of the interface program such as

“Selects START button.” The third column contained the presentation state
of the interface program in either visual or audio messages to the user or
other physical actions that represented behavior of the machine, such as
the sound of initiating a copying process. The final column gave the
designer’s rationale to the effects in column III. Suchman found this a

very practical framework since the center columns, II and III, were
essentially the “interface,” while the two outer columns, I and IV,
represented the interpretations of the user and the designer in response to
events in II and IIL.

Suchman found that the coherence of users’ actions was largely
unavailable to the computer. If the software designer had anticipated a
particular sequence of detectable user actions (for example, a button press)
and linked them correctly to the user’s intent, then the system would
respond correctly in spite of the lack of access to other user actions (for
example, gaze). At other times there would be a lack of coherence

between user intent and system response. These failures could be
categorized as follows:

-- false alarms, i.e. users assumed that things had gone wrong
when they hadn’t, and
-- garden paths, i.e. users didn’t know that or when things had
gone wrong, when in fact they had.

Suchman’s analysis was primarily theoretical and basically ended here.
However, this use of conversational analysis can be extended to more
detailed analysis of design failure. The major insight from the failure of
the engineering science approach was the inability to understand a context
of use which is primarily interactive and communicative. Suchman’s
constructive interaction method combined with conversational analysis
links user expectations and intentions to actions and in turn to system
response. As stated earlier, user expectations and intentions are revealed
during breakdowns. Breakdowns are signaled by repetitions and restarts
of a sequence of computer-based actions as well as talk about difficulties.
However, the record may or may not vield an expressed intent. If it does
not, the designer as an observer of patterns of talk and actions and as a
member of the cultural community must infer intention.

Although Suchman was interested in complete breakdown—false alarms
and garden paths—any breakdown yields valuable information for the
designer that can potentially be used for redesign. Additionally, from the
transcript the users own attempts to repair the breakdown by using the
interface as a resource can suggest to the designer appropriate changes.
For example, looking for instructions in a help subsystem, trying out a
particular interface item whose behavior suggests a repair (“undo” menu
item or an icon whose graphics suggest the appropriate function),
restructuring the task, rewording instructions, etc. This synthetic use of
conversational analysis has not been exploited in previous research. An
extended example demonstrates this in a later section.

Since designers are primarily interested in points of breakdown, an entire
transcript of the videotapes need not be made. After a brief review of the
videotapes selected areas may need to be transcribed. A transcription is
produced of both linguistic and physical actions and possibly descriptions
of the environment. This transcript may be coded using conventions of CA
which include pauses, breaths, overlaps in talk, stress and pitch changes,
gestures including pointing, gaze, etc. and computer input and output
events. The transcription conventions found in (Luff, Nigel et al. 1990) or
(Suchman 1987) may be used. An issue as to level of detail exists and
designers will need to trade off the time and expense of transcription with
importance. From my experience the transcript may reveal previously
unappreciated issues of users expectations and intentions.

When I first began to explore the use of CA in the analysis of human-
computer interaction design, I found it very difficult to understand exactly
what could be used. There did not appear to be a right way to do CA.
Ultimately, I found these themes of the most value:

-- Concept of episodes

-- Concept of sequentiality (turns, overlapping, etc.)

-- Concept of non-verbal communication (gesture, gaze,
pointing, etc.)

— Concept of breakdown and repair

-- Concept of retrospective intentionality

-- Concept of communicative resources

The first three themes, that of episodes, sequentiality, and non-verbal
communication, helped me to form a sense of how to create order out of an
otherwise almost indecipherable transcript of verbal utterances. These
elements can be found in any introduction to CA such as that by Robin
Wooffitt (Wooffitt 1990). The concept of using a machine as one of the

communication participants as Suchman does or even as a form of
communicative medium such as the telephone may require some additions
to the normal analysis. For example, Suchman uses the designer’s rationale
as the intentionality of the computer and Hopper when examining turn-
taking in telephone conversations (Hopper 1992)extends the Sacks et al.
model to encompass issues of syntax and prosody.

The second three themes, breakdown and repair, retrospective
intentionality and communicative resources, helped me to interpret what
was really going on in the interactions. Breakdown is critical in that it
reveals through retrospective intentionality the structure of human action.
And repair, through participants’ use of communicative resources,
demonstrates other aspects of the structure of interaction. For example,
because of the style of user interface most commonly used today user
intentions in interaction are expressed by the selection of objects and
actions. Breakdown occurs when the users can’t find expected objects or
they select the wrong objects (wrong in the sense that the designer did not
intend those objects to be an expression of that particular intention.)
Breakdown also occurs when users procedures for accomplishing actions do
not match the designer’s composition of subsequences or termination
conditions. Repair is expressed by searching for possible resources of
objects and actions available in the designed interface. The usefulness of
these concepts will be more apparent in the details of an example offered
in the next section.

The overall design process.
The information available from the prior analysis of context of use should

inform the design from the earliest stages and continuously during
development in an iterative model of design. From the programming
standpoint the rationale is that the greatest flexibility in design comes
earliest when it is much easier to change things on whiteboards than in
code. Designs can be implemented in paper storyboards and given to users
for a very crude simulation of interaction. Although paper simulations
allow earlier feedback on the success of the design, they cannot substitute
for the complexity of true interactive computing.

Rapid prototyping (Budde, Kuhlenkamp et al. 1984) and high-level
programming languages specially designed for user interfaces (Douglas,
Doerry et al. 1992) attempt to finesse this problem with automation
support designed for flexibility and incompleteness of a design. The
difficulty with a rapid prototyping tool is that it may not support all the
interface actions desired for the final product, generate efficient code or
generate code in a language that will interface to an application such as a

10

data base manager. All prototyping methods require a highly modular
implementation strategy for the software. Choosing that modularity may
be critical to the success of the prototyping approach.

Based on several years of experience with this method, I have come to use
three pairs of participants at each cycle of design analysis. My reasoning is
that it is the minimum number to differentiate universal problems from
those which are more unique to individuals. The design team, including
users in a participatory design approach, can review the video tapes
selecting problem areas for transcription. After the team discovers all the
problem areas and generates design solutions, these design changes are
prioritized trading off both severity and the complexity of programming.

A new prototype is produced and tested again.

AN EXTENDED EXAMPLE
Using CA to design the Cardio-Vascular Construction Kit

During one extensive software development project beginning in 1987 and
extending over a three year period, I experimented with the use of
constructive interaction and conversational analysis in informing design.
Previously I had used CA methods to analyze human-human tutoring
(Douglas 1991) in order to determine the feasibility of an Al tutor for
teaching Japanese. The success of that approach convinced me to use it
more extensively on development of a simulation program called the
Cardio-Vascular Construction Kit (CVCK) for use in teaching biology labs at
the university level. In the particular environment of the biology labs
students often shared computers in a collaborative way which made
constructive interaction very compatible with their actual context of use.
We were also charged with developing workbooks for the biology lab
exercises that used the software and thus were intimately involved with
the actual use of the software in a learning environment. This software is
now available nationally as a software product in the BIOQUEST biology lab
package (University of Maryland, 1992) and is thus not a “toy” example.
This software has also had almost no complaints about the design of the
interface or usability.

The design team consisted of myself as the primary designer, two
professional programmers and one biology teacher. Our use of
constructive interaction involved bringing two same gender, similar age
and ethnicity first-year biology students to our HCI laboratory. (We
discovered that we would get much more cooperative discussion if we paid
attention to potential social power asymmetries.) For each phase of the

11

design we would typically bring in three pairs of participants. Very early
in the design process, prior to software implementation, the participants
worked with paper prototypes. Later, while using rapid prototyping tools
(Douglas, Doerry et al. 1992), we worked with software implementations
until the final program was completed.

The two participants were left alone in our lab and instructed to follow the
instructions in the workbook. They were given a buzzer they could use to
summon help. Our HCI laboratory was arranged to have three video
outputs: one from a camera situated at a high elevation and acute angle
behind the pair in such a way that we could see the CRT monitor and
where they were pointing on it, a second camera at a side angle so that we
could see the upper half of the participants’ bodies with mutual gazes and
talking, and a third direct NTSC output from the CRT monitor which was
generated by the computer system running the software. (See Figure 1.)
We also recorded from lavaliere mikes on each person to each stereo
channel on the second camera output.

Participant

d:l.
@
NTSC from

camera
NTS
cam
PIP

Figure 1: Laboratory Setup

NTSC from
computer

12

After some experimentation we found that the first camera output from
the monitor was quite adequate for analysis and thus dropped the third
direct NTSC monitor output. We created a final videotape with a picture-
in-picture processor with integrated images from the first and second
camera. The image of the computer monitor with participants pointing
occupied the major portion of the final picture and a reduced version of
the long distance image of the two participants was placed in the upper
right hand corner. This tape was then viewed by the whole team freely
discussing possible problems, interpretations and alternative designs. For
some events which we could not interpret we produced a written
transcript which we would later individually analyze. This transcript was
coded using standard CA techniques for verbal data enhanced with coding
for participant pointing and gaze directed toward the computer monitor,
participant computer input actions and any significant computer-generated
user interface events using the transcription conventions found in (Luff,
Nigel et al. 1990). After the team had discovered all the problem areas
and had generated design solutions, we prioritized the fixes trading off
both severity and the complexity of programming. We then produced a
new prototype and repeated the constructive interaction method.

Our experience with the constructive interaction method is a valuable
source of information about the use of ethnographics in detailed software
design. Three primary aspects stand out. First, we were usually able to
easily detect events where trouble occurred. Second, although we were
able to usually detect trouble, we had difficulty diagnosing the cause.
Third, ascribing a cause to the breakdown was often a key to the design
solution. In addition, the repairs by the participants often provided us
with possible alternative design solutions.

Detecting trouble with the design as revealed by participants’ behavior is

etecting trouble with the design as revealed by participants’ behavior is
fairly straightforward since the talk will be laced with expressions easily
recognizable to the designers: “Oh my! What happened?”, “Wait, wait...” “I
don’t understand this.” What Suchman calls garden paths, i.e. users didn’t
know that or when things had gone wrong, when in fact they had, were
infrequent but more difficult to detect. At a more structural level of
analysis we found that we could detect trouble signaled by repetitions and
restarts of a sequence of computer-based actions. In fact it was often
difficult to pinpoint exactly where the problem started and a great deal of
reviewing of the videotape was often necessary.

We found that diagnosing the cause of trouble was often problematic for
the design team and dependent upon the ability of the design team to
recognize the user’s intent and the failure of the system to respond as
expected. At times intent was not verbally expressed and even when
expressed its intelligibility depended greatly upon the analysts’ ability to
place themselves in the context of the participants’ work as social actors.
This requires recreating rich visual and aural images from many sources,
not just the already coded transcript. (Although we did not code the whole
videotape because of cost and time constraints.) The group analysis of
intent frequently required argumentation based on empirical evidence. A
particular theory had to be convincing to the other members of the team.
The evidence which would disclose an underlying intent was often not
found in the verbal record, but in a complex interweaving of a history of
talk, computer monitor state changes and user input actions. Participants
frequently pointed to areas on the screen and used indexicals for reference
resolution both for the efficiency of communication as well as a lack of
lexicon. Again, the full video-tape and not a transcript was critical in the
analysis. The designers were often able to compare what they expected
the users intent to be, that is the design rationale, with the actual intent.
This underlines the domain knowledge necessary to really understand
what is going on. Showing the videotape to persons not members of the
design team and not HCI experts familiar with the domain, provided no aid
in analysis.

13

14

The following is an example of the richness available from this type of
analysis. In this particular episode after the participants have read a brief
tutorial description of how the software works, they are asked as the first
task to construct a model system that replicates Figure 2. The reader can
see that the CVCK interface is a standard tool palette with a central
workspace for model construction. The user selects model components
from the left edge of the palette and drags a copy into the workspace to
the appropriate position. Because components are used in four different
rotational positions, a design decision was made to have only one
orientation of each component and use a “rotate” icon to create the correct
orientation.

=———s Laborator) EEEEEES———————

0L §m

Figure 2: CVCK construction for study

The transcript begins after the participants have already placed one
“elbow,” i.e. right-angled vessel, component in the workspace. (For
readability, the transcript has been somewhat edited.).

15

THE USERS THE MACHINE
I 1 m v
Actions not Actions Effects Design
available to available available rationale
the machine to the machine to the user

L: OK. OK, what do

we need

(L & V read instructions)
V: We need another

(points to elbow

icon on palette)

L clicks elbow palette elbow
highlights add component
one = we need two L drags elbow elbow added to place in model
three more from palette workspace (selected object

= elbow)

The second elbow is successfully added to the workspace and placed into
position. They immediately discover that it is the incorrect orientation and
attempt to correct that.

L: No, wait
How do you //turn this L moves mouse elbow moves change position
thing around in circles in circles
//turn it
Oh oh shoot
That’s right, just
move it
No it won’t turn
(twists mouse to no effects
turn it)
V: OK.

£ <=

Here, the participants have attempted a direct mapping of their physical
actions using the mouse to rotate the object. The first is to move the
mouse around in a circle and the second is to actually rotate or twist the
mouse by keeping it in one place. Neither works since in the first place the
hardware recognizes moving the mouse in circles as a circular motion of an
object on the screen and not a rotation of that object and in the second

place, the hardware does not recognize twisting the mouse as a meaningful
action at all. Thus, these two repair strategies fail. (And cannot be used
by the designer as repairs to the design since they are outside the
possibilities of design.) They try another approach:

L: Oh wait
V: Putit over here
L: Oh wait wait
I have an idea
maybe this works L clicks on slider elbow un-highlights deselect component
(no object selected)

in control panel slider highlights change simulation
& moves rate
this wait,
where is that thing?
here we go L moves to rotate icon
clicks on highlights rotate icon rotate component
right arrow no effects (no object selected)

This second strategy is to try to find an action that maps to a control icon
that will rotate the elbow. Readers should note how the participants use
the interface itself as a resource in their interaction. First the slider in the
control panel is used and then L recognizes the “rotate” icon which is
intended by the designer to resemble a compass. The designers intended
that a component be selected, then rotated to the desired orientation by
selecting one the four different points of the compass which represents
that direction. Note that this is a compound procedure, first select the
component, then select the compass point. Unfortunately L deselects the
component accidentally by choosing the slider. She then recognizes this
and attempts to redo the procedure:

V: OK now, put this one
L clicks on eibow highlights elbow elbow selected
drags it to left change location
L points to rotate
icon, clicks just
outside right arrow unhighlights elbow deselect component
L: Darnit no effects (no object selected)

L’s failure here is interpreted by the designers as problem of designing the
compass points too small. They are very tiny and the user is unable to “hit
the target.” A possible design change is to make them larger, but then
they will exceed the maximum size of an icon in the interface software. L,
however, attempts to follow the advice of her partner and abandon the
task:

16

17

V: Tur it the opposite
way

L: It won’t turn

V: Then bring it back

over here
(points to elbow L clicks on elbow highlights elbow elbow selected
icon in palette) drags it next to elbow moves change position
elbow icon in
palette
L clicks on elbow unhighlights elbow deselect component
icon in palette component

highlights elbow icon add component
V: Where where’d that

thing go?

This is an unsuccessful attempt to put the elbow component from the
workspace back into the palette and start a completely new problem. It
can’t be done and L tries one last time to get the rotate icon to work:

L: There L clicks on elbow highlights elbow elbow selected
component
L points to rotate
icon, clicks right
Oh arrow elbow rotates to right rotate component
There we go
What'd I do?

Although L does finally complete the rotation problem, the designers have
enough evidence at this point to attempt a new approach to rotation of
components.

Once we, as designers, had determined the cause of a particular
breakdown, it often suggested design solutions. However, and more crucial
to this discussion, the repair efforts by the participants often suggested
possible design alternatives. Participants repairs can be found by
examining their detailed talk, and by their other actions in which they use
the interface itself as a resource for furthering a repair. The first attempts
by L & V to rotate the component, namely by direct physical actions with
the mouse, were not possible design alternatives. However, we were
impressed by L’s three attempts to use an icon to rotate the component
and thus remained committed to an icon command on the palette. (And
did not choose another approach such as a menu based command.) In
other words, the design rationale for accomplishing this action closely
matched the participants’ expectations and intentions. What failed was the
actual details of the objects and actions.

18

We observed three problems with the existing design: a failure to
recognize the rotate icon, a failure to select a component before selecting
the rotate icon, and a failure get the cursor inside of a very small target.
What we finally decided to do was change the rotate icon to a very simple
type of icon button labeled with the word “rotate” and which when
pressed, rotates a selected component. We also decided to add logic for
trapping an attempt to use the rotate icon without a selected component.
This trap then informs the user that a component must be first selected
before it is rotated.

We have found that constructive interaction and conversational analysis,
as I have described our usage above, is an invaluable tool in doing design.
Though the method takes time for analysis with the whole design team, it
also provides an arena and indeed creative environment for them to
mutually work out the design in the presence of real evidence about
human behavior.

EVALUATION
You can lead designers to water, but can you make them drink?

The previous example, [hope, has been compelling in arguing for the
usefulness of this method in interface design. It promises to provide for
the first time, a real method to an otherwise vague area called usability
testing.

The most difficult aspect of the method is that it is primarily qualitative
and is best learned through an apprenticeship with experienced analysts.
But any design method must prove its value in at least several different
ways. First, it must be learnable by those who stand the most to gain from
it. Second, it must be practical in that the method is not too costly or too
time-consuming. Third, it must be universally valid, that is that designers
are able to discover the same problems and derive the same
interpretations of cause, although not necessarily the same solutions.

In an attempt to respond to the first two concerns I have taught this
general method for several years to my senior/graduate computer science
course in user interface design where the students must use it in their
final project. Many students have told me that it was the most exciting
part of the design process and were very enthusiastic about it. Some of
my students are now working for commercial software development
companies and have implemented it within their design process. Few of
the methods I have taught have had this kind of acceptance.

19

I still felt unsatisfied with its success, particularly concerning the third
issue—universal interpretation. In order to test this out, I took my
advanced graduate seminar in HCI and gave them selected chapters from
Suchman’s book, namely, Chapter Six “Case and methods,” and Chapter
Seven “Human-machine communication” (Suchman 1987). I also had them
read Wooffitt’s chapter mentioned earlier (Wooffitt 1990). I then had
them review the videotape from the prior design session of CVCK. First, I
had them analyse a particular breakdown which I pointed out, and second,
I asked them to find all the remaining breakdowns in one hour of tape.

The format of the homework was the following questions:

1) In the videotape at approximately 1075, there is an example of
interface failure. Please do the following.

a) Using the framework presented in Chapter 7 (cf. 122) and the
notation of Chapter 5 (p. 96-97), create a transcript of the users’
breakdown with the system.

b) Suchman has stated that “. .. instructions rely upon the
recipient’s ability to do the implicit work of anchoring
descriptions to concrete objects and actions.” (p. 101)
Discuss where in this example the users seem unable to do this.

c) We have often discussed the problem of relating intent to
behavior. In this episode discuss the programmer’s expectations
of the user’s intent and actions, the actual user’s intent and
actions, and why there is a failure to match here.

d) In this episode the users are able to repair the trouble they are
in. How did they do this? What evidence do you have to support
your interpretation from the videotape?

e) Given your analysis of parts b-d of this problem, how would
you redesign the interface?

2) Find all other episodes in the tape where there is interface
design failure and answer parts a-e of question 1 again.

All twelve students in the class independently came to the same
identification of breakdowns and almost exactly the same interpretations
of causes. They were quite capable of doing the transcriptions although
there were minor variations in details, such as a mumbled word. They did
complain about the tediousness of transcription but felt that the transcript

20

was invaluable. The most difficult areas of breakdown for them were the
true garden path problems. They had difficulty identifying them and
difficulty interpreting them.

CONCLUSIONS

As a result of the informal studies conducted above, I have great
confidence in the design method proposed here. Only more general
utilization will test its ultimate value. However, in closing [would like to
address a few criticisms.

CA is an ethnomethodological approach and by its very nature takes a very
radical view of the basis of human action. Part of that view demands that
all action is context-based or “situated.” But anyone can see that the type
of situation created in constructive interaction is not the real situation of
use. The participants, while not actors, are recruited. They are given tasks
or problems by the designers. The environment in which they work has
video cameras and other controlled features. Thus, constructive
interaction is “situated action,” but not exactly the same one that the final
software product will encounter. The receding horizon of interaction itself
creates a context with its own unique history that will theoretically never
be identical to any other. How then, can I assert that this method is valid
as a method of creating designs using a context of use?

Ultimately, I am left with the conclusion that design itself is always
imperfect. This particular method stands to provide more direct
information about context of use since it focuses on actual interaction itself.
And, hopefully, I have shown in my informal evaluations that different
designers do share a common set of interpretations of action, because they
share a common culture with the participants.

There are also those critics that will say that this is not a new method; it is
already well-received in the HCI community as usability testing. For
example, a recent survey (Nielsen 1993) supports the estimate that 4-6%
of corporate and industrial software development budgets are spent on
usability engineering. But the most thorough analysis of usability testing
defines it in rather vague terms

...usability testing, in which the interface is studied under real-
world or controlled conditions, with evaluators gathering data on
problems that arise during its use. These tests can offer
excellent opportunities for observing how well the situated
interface supports the users’ work environment. The

usability tests were conducted by a human factors professional,
for whom product usability testing is a regular part of his job.
(Jeffries, Miller et al. 1991, pp. 119 & 120)

This decription to me suggests that usability testing is a black art. Using
the method I have proposed provides a systematic approach to it that has
been sorely lacking.

I have attempted to show in the beginning of this chapter the failure of
earlier approaches to human-computer interaction design which were
based on engineering science. Engineering science failed to provide
information about context of use for the design, an open-loop process
where feedback from context was integrated into improvements in the
design, and a recognition that systems design experience rather than
abstract scientific principles has created more successful design. I then
proposed a method of design usability information collection based on a
controlled context of use called constructive interaction. This information
is then analysed using techniques of Conversational Analysis which can
provide not only a record of breakdown of the interaction, but also user-
based strategies of repair which can possibly be incorporated by the
designer into design improvements. Finally, I discussed an in-depth
example of the method’s use in a long-term software development project
and my success at teaching it to several classes in user interface design.
The next step is for wider acceptance and use.

REFERENCES

Apple Computer, L. (1987). Human Interface guidelines: The Apple
Desktop Interface. Reading, MA, Addison-Wesley.

Budde, R., K. Kuhlenkamp, et al., Ed. (1984). Approaches to Prototyping.
Springer Verlag.

Card, S. K,, T. P. Moran, et al. (1983). The psvchology of human-computer
interaction. Hillsdale, NJ, Erlbaum.

Carroll, J. M. and R. L. Campbell (1986). “Softening up hard science: Reply
to Newell and Card.” Human-Computer Interaction 2: 227-249.

Carroll, J. M. and W. A. Kellogg (1989). “Artifact as theory-nexus.” CHI ‘89
Conference on Human Factors in Computing Systems, ACM.

Douglas, S. A. (1991). Tutoring as interaction: Detecting and repairing
tutoring failures. Teaching knowl nd intelligen ring. Norwood, N]J,
Ablex.

Douglas, S. A, E. Doerry, et al. (1992). “QUICK: A tool for graphical user-
interface construction by non-programmers.” The Visual Computer 8: 117-
133.

Ericsson, K. A. and H. A. Simon (1984). Protocol Analysis: Verbal reports as
data. Cambridge, MA, MIT Press.

Gould, J. D. (1988). “How to design usable systems.” Handbook of human-
computer interaction. New York, North Holland. 757-789,

Hopper, R. (1992). Telephone conversation. Bloomington, IN, University of
Indiana.

Jeffries, R. and H. Desurvire (1992). “Usability testing vs. heuristic
evaluation: Was there a contest?” SIGCHI Bulletin. 24: 39-41.

Jeffries, R., J. R. Miller, et al. (1991). “User interface evaluation in the real

world: A comparison of four techniques.” Human Factors in Computing
Systems, CHI ‘91, New Orleans, ACM Press.

Lewis, C. (1982). Using the “Thinking-aloud” method in cognitive interface
design. Technical Report RC 9265. Yorktown Heights, NY, IBM Thomas]J.
Watson Research Center.

Lewis, C., P. Polson, et al. (1990). “Testing a walkthrough methodology for
theory—based design of walk-up-and-use interfaces.” Human Factors in

Computing Svstems: CHI'90Q, Seattle, WA, ACM Press.

Lewis, C. H. (1990). “A research agenda for the nineties in human-

computer interaction.” Human-Computer Interaction 5: 125-143.
Luff, P., G. Nigel, et al., Ed. (1990). Computers and Conversation. London,

Academic Press.

Mayhew, D. J. (1992). Principles and guidelines in software user interface
design. Englewood Cliffs, NJ, Prentice-Hall.

Miyake, N. (1986). “Constructive interaction and the iterative process of

understanding.” Cognitive Science 10: 151-177.

23

Newell, A. and S. A. Card (1985). “The prospects for psychological science in
human-computer interaction.” Human-Computer Interaction 1: 209-242.

Newell, A. and S. K. Card (1986). “Straightening out softening up: Response
to Carroll and Campbell.” Human-Computer Interaction 2: 251-267.

Nielsen, J. (1993). Usability engineering. Boston, MA, Academic Press.

Nielsen, J. and R. Molich (1990). “Heuristic evaluation of user interfaces.”

Human Factors in Computing Systems: CHI’90, Seattle, WA, ACM.

Nisbett, R. E. &. W., T.D. (1977). “Telling more than we can know: Verbal
reports on mental processes.” Psychological iew 84: 231-259.

Norman, M. and P. Thomas (1990). “The very idea: Informing HCI design

from Conversation Analysis.” Computers and Conversation. London,
Academic Press. 51-66.

Roberts, T. L. and T. P. Moran (1983). “The evaluation of text editors:

Methodology and empirical results.” Communications of the ACM 26(4):
265-283.

Smith, S. L. and J. N. Mosier (1986). Guidelines for ignin r interface
software. Technical Report # MTR-10090, MITRE Corp.

Suchman, L. (1987). Plans and situated actions; The problem of human
machine communication. Cambridge, Cambridge University Press.

Whiteside,]., J. Bennett, et al. (1988). “Usability engineering: Our
experience and evolution.” Handbook of human-com r interaction. New
York, North Holland. 791-817.

Wooffitt, R. (1990). “On the analysis of interaction: An introduction to

Conversation Analysis.” Computers and Conversation. London, Academic

Press.

