Practical Static Mode Analyses
of Concurrent Logic Languages

Evan Tick

CIS-TR-94-02
February 1994

Abstract

One popular approach to improving the performance of fine-grain concurrent lan-
guages is to partition programs into threads. This requires static analysis to determine
dependencies between tasks, to avoid placing a cycle within a thread. In the context
of concurrent logic programming (CLP) languages, dependency analysis requires mode
analysis. Simple argument modes are insufficient because dependencies can be hidden
within complex terms. One solution is path analysts. In this paper we first motivate the
analysis with performance results from our experimental FGHC-to-C compiler that se-
quentializes entire concurrent FGHC programs into C programs. We then review Ueda
and Morita’s proposed rational-tree mode propagation method, and present three novel
algorithms for realizing the technique. We present empirical measurements of the anal-
ysis times of a benchmark suite which indicate that the analysis can be comparable to
the compilation time on a simple, non-optimizing compiler. This study presents the first
empirical results concerning the practicality of mode analysis for CLPs in conjunction
with a system using the information to achieve significant speedups of source programs.

A shortened version of this paper appears in the Internaetional Conference on Parailel
Architectures and Compilation Technigues, Montreal, August 1994.

DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE
UNIVERSITY OF OREGON

1 Introduction

Concurrent logic programs, such as FGHC [12], as well as other dataflow languages such
as Id, are collections of fine-grain concurrent tasks that synchronize implicitly when input
data in not available to a procedure invocation. Naive compilation causes too many, too
small tasks to be generated. Improving execution performance by static partitioning into
threads is a currently developing technique e.g., [6, 16]. In contrast to functional languages,
logic languages have an additional problem that data dependencies are implicit, i.e., the
input/output characteristics of program variables are not explicitly declared or trivially
derivable. Conservative knowledge of dependencies is necessary to avoid placing a cycle
within a thread thereby causing erroneous deadlock.

There are numerous methods for automatic derivation of mode information from se-
quential logic programs, e.g., [1, 4, 5]. Another option is user declarations [3, 13}, which
we consider either incomplete or too much burden on the programmer. IFor CLPs, Ueda
and Morita [17] proposed a mode analysis scheme based on the representation of procedure
paths and their relationships as rooted graphs (“rational trees”). Unification over rational
trees combines the mode information obtainable from the various procedures. For example,
in a procedure that manipulates a list data stream, we might know that the mode of the
car of the list (that is the current message) is the same mode as the cadr (second mes-
sage), caddr (third message), etc. This potentially infinite set of “paths” is represented
as a concise graph. Furthermore, a caller of this procedure may constrain the car to be
input mode. By unifying the caller and callee path graphs, modes can be propagated. This
analysis is subtlely different than classical abstract interpretation, which could also be used
to generate identical information.

Mode information is useful not only for compiler optimization but also for static bug
detection. In the latter, the analyzer warns the programmer that variable usage disobeys
conventions and is thus likely to be erroneous. In this regard, the analysis constitutes a type
restriction on the language, called “moded” flat committed-choice logic programs by Ueda
and Morita. These are programs in which a variable has at most a single producer and the
mode of each path in a program is constant, rather than a function of the occurrences of
the path. This is not regarded as a major drawback, since most non-moded flat committed-
choice logic programs can be transformed to moded form in a straightforward fashion.

To motivate the importance of the static analysis, consider Table 1 comparing the
performance of our experimental FGHC-to-C compiler [8] using these techniques, to tradi-
tional multiprocessor and uniprocessor systems that are in common use. All measurements
were made on a 20-processor Sequent Symmetry running DYNIX V3.2.0. PDSS [2] is the
compilation-based FGHC system under which the analyzers described in this paper runs;
the PDSS system emulates parallel scheduling and execution order on a single processor.
Monaco [14] is a research compiler which produces native code executables capable of utiliz-
ing an arbitrary number of the processors of the Symmetry in a shared-memory multitasking
fashion. The sequential ANSI C code generated by our sequentializer (labeled “sequential
C”) was compiled using GCC 2.2.2 at optimization level 2 but with no other special opti-
mizations. Strand and JAM Parlog are other emulator-based compilers for CLP languages
— the benchmark was slightly different under these implementations to accommodate mi-

Problem | Time Problem | Time
System PEs Size (sec) System PEs Size (sec)
125 14
PDSS | 250 5.2 Strand 1 500 10.8
500 20.5
1 500 10.5
125 0.20
Monaco 4 250 0.75 JAM Parlog 1 500 13.1
500 2.9
8 500 1.5
125 0.14 125 0.10
sequential C | 1 250 0.58 handcrafted C| 1 250 0.40
500 2.2 500 1.5

Table 1: Performance of Sequentialized and Parallel QuickSort

nor language differences. The handcrafted C code was written to mimic the Quicksort
benchmark algorithm while retaining a natural C style — in particular, parameters were
passed with appropriate types whenever possible.

We chose this example to motivate the point that significant performance improvements
over traditional systems (Monaco is the fastest multiprocessor implementation of FGHC
that we know of)} can be achieved with this technique, and the speeds are getting closer to
optimized C. Although more sophisticated partitioning, based on granularity estimation [6]
or profiling [11}, is needed to retain multiple threads for parallelism, mode analysis is still
required for safety.

In this paper we discuss three algorithms for implementing Ueda and Morita’s technique:
the first implementations yet built and evaluated.! We present empirical measurements of
the analysis times of a benchmark suite which indicate that the analysis is comparable to
compilation time on a simple, non-optimizing compiler.

2 Background: Paths and Modes

Ueda and Morita’s [17) notion of “path” is adopted as follows: a path p “derives” a subterm
s within a term ¢ (written p(t) - $) iff for some predicate f and some functors a,b,... the
subterm denoted by descending into ¢ along the sequence {< f,i >, < a,7 >,< b,k >,...}
(where < f,i > is the i** argument of the functor f)is s. A path thus corresponds to a de-
scent through the structure of some object being passed as an argument to a function call. f
is referred to as the “principal functor” of p. A program is “moded” if the modes of all pos-
sible paths in the program are consistent, where each path may have one of two modes: inor
out (for a precise definition, see Ueda and Morita {17]). For example the cadr of the first ar-
gument of procedure g has an input mode specified as: m({< ¢,1>, <./2,2>, <./2,1>})
= in.

K. Koshimura is currently building an analyzer based on the Model Generation Theorem Prover (MGTP)

(7).

All analyses presented in this paper exploit the rules outlined by Ueda and Morita
[17]. For the purposes of following this paper, we grossly summarize these as three rules: §1
nonvariables and variables constrained in certain ways in the guard are immediately deduced
as in; §2 corresponding paths among left and right side of body (“tell”) unification goals
have opposite modes, and §3 variables have at most one producer thus multiple occurrences
have at most one out instance.?

3 Constraint Propagation Algorithm

In the constraint propagation algorithm [15], a graph® is constructed representing the en-
tire program.? Analysis proceeds by unifying all roots with the same functor and arity.
Termination, occurring when no further reduction is possible, is guaranteed because the
mode lattice is finite and monotonic. Checking for program “well modedness,” the analysis
cannot terminate even if all modes are derived, in anticipation of a later contradiction.’
Thus time complexity is simply a function of the size of subgraphs to be unified,[17] which
are usually small.

3.1 Data Structures

A program graph is a directed, multi-rooted, (possibly) cyclic graph composed of two types
of nodes. To illustrate the following definitions, Figure 1 presents a portion of the program
graph for Quicksort.

Definition: A structure node (drawn as a square) represents a functor with zero
or more exit-ports corresponding to the functor’s arity. If the node corresponds
to a procedure name (for clause heads and body goals), there are no associated
entry-ports (i.e., it is a root). If the node corresponds to a data structure,
there is a single entry-port linked to a variable node unified with that term. A
structure node contains the following information: a unique identifier, functor,
and arity. D

Definition: A variable node (drawn as a circle) represents a subset s of (unified)
variables in a clause. Intuitively we think of these variables as aliases, and upon
initial construction of the graph, s is a singleton (i.e., each unique variable in
the clause has its own variable node initially). A node contains & > 1 entry-
ports and 7 > 0 exit-ports, upon which directed edges are incident. A unique
entry-port corresponds to each clause instance of each variable in 5. An exit-
port corresponds to a possible unification of the variable(s) to a term (exit-ports
connect to structure nodes).

2This is not entirely precise: a variable produced in the body (out) can be exported in the head (also
out).

3Throughout the paper we informally refer to rational trees as graphs. Note that our graph grammar is
quite different than that of Ueda and Morita.

*It is straightforward to build an incremental analyzer; we do not go into details here.

5A program is “fully-moded” or “well-moded” if the modes of all paths are known, “moded” if the modes
of some paths are known, and “non-moded” if there is a mode contradiction.

q(T, ¥, Z2) :-T=[Xx12Xs1] |

=[x | Vvs],
s(Xs, X, L, G)},
q(L!YIU)l

q(G, Vs, 2).
partton ={ 1121314 5161718181101111121131 14115

1 2
g s q
Eini |\ (108.13,14) e 114.15,12)
{11} {33)
5
T
1)) {lim)}
7 8
Ly A
.10) (8.15)
on am h 3, (82.42)
mzm) (warz y ”3, (2/4411) s
xs (2) 3
inInin), (in in), i" in), (in |ﬂ) {in.out in,ou),
(ul.in out,out}} mLoutJI l out,oul}} %ou"l.hl)i ‘(:utgn),l lout i)}
(=]

Figure 1: Initial Graph of Procedure ¢, After Phases I-IT

partition=[1,3121415,1316,12171819110111114115})

1 2 4
q s a
{5,11.8) \ {10,9,5,34) / \\ (14,15.8)
{11,213) e
5 [
TL vzl
{tin.out))] = Alinin}}
7 8
(WA L
{8,10) {8.15)

)
engegn (772,211} (12) (2/4,41) ¢)
) 10 1 14 B
X Xs Y G \ig-

i in,in}, in), (out] in,out), in.out),
!,"&S.L"L i im.o«)n)l Hinhfout !«(:ul.inﬁ Lm in}}
lout.in,out))

Figure 2: First Local Unification of ¢

A variable node contains the following information: a unique identifier and a
mode set m. An element of m is a vector of length & containing self-consistent
modes for the variable instances of s. To facilitate the implementation, each
entry-port has a name: the identifier and exit-port number of its source node.
Elements of m are alternative mode interpretations of the program. Initially m
is computed by Ueda and Morita’s rules.® Intuitively, graph reduction results in
removing elements from m as more constraints are applied by local and global
unifications. A fully-reduced graph, for a fully-moded program, has a singleton
m in each variable node. a

Initial graphs, e.g., Figure 1, are multi-rooted directed acyclic graphs. The initial roots
correspond to clause head functors, body goal functors, and body unification operators.
In addition to the program graph, a partitioned node set is kept. Initially, each node is a
singleton member of its own partition (disjoint set).

The mode analysis consists of three phases: I) creating a normalized form and initial
graph; II) removing unification operators from the graph, and III) reducing the graph to
a minimal form. Phases I and Il (shared by the process network implementation) convert
a flat committed-choice program into a normalized graph with roots named only by clause
heads and user-defined body goals. Precise details of this transformation can be found in
[15). Phase III is described next.

3.2 Abstract Unification

Throughout this discussion of unification, consider the example shown in Figure 1 (initial)
and Figure 2 (after unification of roots 1 and 3). See [15] for details. Tigure 3 gives the
graph unification algorithm. We use the notation that a variable node » has the fields: v.in
(vector of entry-ports, each of the form id/index, where id is the parent’s node identifier
and indez is the parent’s exit-port index), v.out (set of exit-ports), and v.modes (set of
mode vectors). a structure node s has the fields: s.out (vector of exit-ports), and s.fun
(functor/arity).

Unification is invoked as unify(a,b) of two nodes a and b (necessarily root structure
nodes). The result is either failure, or success and a new graph (including the node parti-
tioning) that represents the most general unification (mgu) of the two operands. implied
data structures used by the algorithm include the graph, the disjoint sets (i.e., node parti-
tioning), and a mark table associated with pairs of nodes.

Procedures sunify (structure node unification) and wvunify (variable node unification)
follow recursive descents. Initially all marks are cleared (1). Circular structures that repre-
sent infinite paths are handled properly by marking node pairs at first visit (2). If a given
node pair has been previously marked, revisiting them immediately succeeds. Note that we
mark pairs instead of individual nodes to handle the case of unifying cyclic terms of unequal
periodicity.

“The size of m increases with the complexity of the rules, e.g., rule §3 (Section 2) can produce several
vectors. By explicitly enumerating initial modes, we simplify the analysis by obviating the need to actively
apply complex constraints implied by rule §3 thronghout reduction of the graph.

unify(a, b) {
Va, b clear mark({a,b})
sunify(a, b)

sunify(a, b) {
ifa.fun# b fun
return(failure)
if mark({a,b}) clear then {
set mark({a,b})
Vk € [1, arity(a)] {

if vunify(a/k, a.out[k], b/k, b.out[k]) failure then

return(failure)

}

return{success)

} o)

vunify(i, ay, 7, b.) {
a = find set(a,)
b = findset(b,)
if mark({a,b}) clear then {
set mark({a,b})
¢ = union(a,b)
— compute the compatible mode set
define u s.t. a.infu] =i
v s.t. bin[v] =3
p = a.modes x b.modes
P ={(sst)€p | slu]=1[v]}
if (p' empty) then
return(failure)
c.modes = { s || (m1, ma, ...y My—1, Myg1, ooy M) |
(s,t)ep’, t=(my,ma,..,my,..my) }
— compute the entry-port identifiers
let (p1, P2y ey Poy ooy Pr) = butn
can=a.n || (p1, P2y s Pom1s Pty o) M)
— compute the exit-ports identifiers
u=a.oul U b.out
Jfo = {s.fun | s € a.out}
fo ={a.fun | 5 € b.out}
i={s | fun€ fo N f3, s.fun€ u}
coul=a.oul Ui
— unify children with the same functor/arity
Y(z,y) | = € a.out,y € b.out {
if x.fun=y.fun
if sunify(z, y) failure then
return(failure)

return{success)

bl

Figure 3: One-Pass Rationa&-'l‘ree Unification Algorithm

(1)

(2)

(3)

(4)

(5)

(6)

(8)

Two important operations for the disjoint sets data structure are union(z,y)and find_sei(z).
Function union(z,y) unites two disjoint sets, where = belongs to the first disjoint set and
y belongs to the second disjoint set. Procedure union returns the canonical name of the
partition (3), i.e., the least identifier of the nodes. This facilitates reusing graph nodes while
rebuilding the graph. Function find_set(z) returns the canonical name of the disjoint set
containing z.

The major complexity in the algorithm is in procedure vunify, where the abstract uni-
fication must merge the modes of the two argument nodes. [First, mode vectors that are
contradictory are discarded (4). If all mode vectors are contradictory then a mode error
has occurred and unification fails. Otherwise redundant modes are removed and the two
mode vectors are concatenated (5). Next we create the entry-port identifiers associated
with the new mode vector (6). Lastly, children of the argument nodes that share equal
functor/arity must be recursively unified (8). The exit-port identifiers consist of a single
exit-port for each pair of children unified, included with exit-ports for all children for which
unification does not take place (7). Intuitively, a variable node forms or-branches with its
children, whereas a structure node forms and-branches with its children. In other words,
the least-upper-bound (lub) of the abstract unification semantics at a variable node is a
union of the structures that potentially concretely unify with the variable node.

4 Process Network Analyzer

The previous constraint propagation algorithm was alternatively implemented by a process
network wherein each node of the graph was an active, concurrent process. Nodes communi-
cated by message passing over streams to accomplish reduction. The motivations for moving
the graph from a static data structure to an active process network are: 1) concurrency is
increased because updating the graph no longer bottlenecks the computation; 2) unification
of graph nodes corresponds to merging node processes, thus resource requirements made by
the analyzer decrease as execution proceeds, and 3) an active process network is an elegant
paradigm for this problem.

Translating the previous algorithm (Figure 3) requires the specification of how recursive
unification can proceed via message passing, how the distributed unification can terminate
(both successfully and by failure), and how the final mode information can be read from
the reduced graph. These issues are described in detail in the following sections.

4.1 Distributed Unification

A node process is defined manage a graph node (either a variable or structure node). The
node process contains state holding a unique integer identifier, a symbol (functor/arity for
structure nodes and the atom ’'$VAR’ for variable nodes), mode information, and a flag
indicating if the node is from a clause head. Mode information consists of a set of mode
vectors and a vector of entry ports, as described in Section 3.1. In addition, a node has an
input stream, a list of output streams to children, and a global termination flag. A node
process acts on the following messages:

e unify(+Id,+S0,-51,+Parents,+Ans,+Done): receipt of this message indicates that
this node is requested to initiate a unification with node Id on input stream S$0.
Parents are the two parent nodes who made this unification request. The results of
the unification are S1 which is the tail of the stream to node Id and Ans, a short-
circuit chain? for unification termination. Done is the short-circuit chain for message
termination.

¢ who(-Info,-In,-0ut,+Done): receipt of this message indicates that this node is to
be unified with another node, and therefore this node is to be terminated. Before
termination, the state of the node is passed back to the initiator node via back-
messages: Info, In, and Out. Done is the short-circuit chain for message termination.

For lack of space we do not discuss additional messages for performing output and termi-
nation.

The implementation shared phases I and II with the previous algorithm, and then
spawns a node process network from the static graph definition. Similar to the static graph
analyzer, the root list is grouped into pairs which are unified, then these resulting trees are
unified and so on, forming a logarithmic tree of unifications.

A node that receives a unify/6 message is the “active” member of a reduction. It sends
a who/4 message to the “passive” member, who returns all its state information on a back
message and terminates itself. For structure-structure unification, the node symbols are
compared and if matched, the active node sends unify/6 messages to one member of each
pair of children. otherwise failure occurs.

For variable-variable unification, first the mode sets must be merged as described in
Figure 3. If the merge is successful, then only children with matching functors are unified,
by sending unify/6 messages. Non-matching children are simply appended to the output
stream list of the active node. If the mode set merge is a failure, then the unification fails.

4.2 Terminating Unification

There are two levels of termination occurring within the analysis: termination of an indi-
vidual (tree) unification and termination of the entire (graph) unification. The former is
accomplished by stringing a short-circuit chain through all nodes involved in a root-to-root
unification. The far left-hand link is bound to yes. Each successful node reduction shorts
the chain. An failing reduction binds the right-hand link to no which propagates to the far
right-hand link.

Termination of the entire graph reduction is accomplished in two ways. successful
termination must be indicated only after all messages have been processed. We string a
short-circuit chain through every message to handle this. When a message is read, its link
is shorted, and when all messages are read, the far left-hand link and far right-hand link are
shorted. Additionally, if an individual tree unification fails, a global termination variable
is set appropriately. All node processes share this termination variable and will discard all
incoming unify/6 messages once it is set.

See Shapiro [12] for discussion of CLP programming techniques such as short circuits and back messages.

4.3 Implementation and Comparison

The primary difference between the two implementations is that the active graph is fully
concurrent. The static graph is sequentialized by necessity to update the graph consistently.
One fix would be to partition the graph into independent subgraphs (finding the strongly-
connected components of the call-graph), allowing concurrent reduction.

In general, the process network analyzer was more difficult to build than the static
graph analyzer because the active graph confuses debugging. However, compared to other
distributed algorithms, debugging was not overly burdensome because our abstract unifica-
tions monotonically approach the final state.

From profiling information we determined that the active graph analyzer spends most
of its time checking for self-unification of a node (necessary for circular unification) and (to
a lesser degree) manipulating mode vectors. To check for self-unification, we instituted a
naming scheme wherein the identifiers of two nodes to be unified are concatenated to form
the identifier of the new node. Thus node identifiers grow in size during reductions, and
although we use difference lists to concatenate cheaply, the cost of checking membership
within an identifier list grows. An alternative would be to allow both nodes to live (currently
we terminate one of them to save space), and update the state in each to indicate the current
minimum identifier of the alias set. We have not yet experimented with this option (it is
very similar to method used in static graph implementation).

Mode vector manipulation requires finding the indices (within the vectors) of the mode
elements being compared, and concatenation of the two vectors (less the duplicate mode
element which is removed). Time is spent about equally between these main functions.
Quickly finding indices requires a more sophisticated data structure than the current list.
Quick concatenation requires either difference lists or bit vectors. Both are complicated
by the removal of duplicate elements. In fact, the static graph implementation elected
to forgo duplicate removal and used difference lists for mode vectors. This contributes
to the increased space requirement for the static graph analysis (Section 6). The active
graph implementation uses standard lists with removal. We need {urther experimentation
to determine the best solution.

The space complexities of the active graph analyzer lie in spawning a process for each
graph node. This working set churns through memory more quickly than the static graph
implementation (which can exploit local memory reuse in PDSS to keep data copying low).
Currently we do not constrain the number of processes, but this could be accomplished
in the manner opposite to parallelizing the static graph analyzer: first finding groups of
strongly-connected components of the program’s call graph, and then analyzing only one
group at a time. For example, a short-circuit chain could be used to force synchronization
between one group and the next. In a multiprocessor system, explicit load distribution of
the groups would be needed.

5 Finite Domain Analysis

In an effort to avoid circular unification altogether and much of the overheads of maintaining
the graph, either statically or actively, a radically different algorithm was developed [8]. The

first stage of this alternative algorithm generates a finite set of paths whose modes are to
be considered. Only “interesting” paths are generated in the first stage of our algorithm:
effectively those paths locally derived from the syntactic structure of the procedures. There
are three classes of interesting paths. The first class consists of paths that directly derive a
named variable in the head, guard, or body of some clause. All such paths can be generated
by a simple sequential scan of all heads, guards, and body goals of the program.

The second class consists of paths which derive a variable v in some clause, where a
proper path through the opposite side of a unification with » derives a variable v'. More
formally, consider a unification operator v = ¢ where v is a variable and { is some term
other than a variable or ground term. Let v’ be a variable appearing in t at path q, i.e.,
g(t) F v'. Then if p is a path deriving v (by which condition p is also interesting), then the
concatenated path p. g is also an interesting path. All paths in this second class may be
generated by repeated sequential scanning of all unification goals until no new interesting
paths are discovered. The necessity for repeated scans is illustrated by such clauses as
“a(X,Z) - Y = ¢e(X), Z = b(Y).” where the interesting path {< a,2 >,< b,1>,< ¢,1 >}
given by the first unification body goal will not be generated until the interesting path
{< a,2>,<b,1>} in the second unification body goal is generated. Such repeated scans
should occur infrequently in practice. In any case not more than a few scans are necessary

- no greater number than the syntactic nesting depth of expressions containing unification
operators.

The third class of interesting paths is generated by noting that if a path starting on the
right-hand side of a unification body goal (i.e., a path of the form {<=,2 >}-s) is interesting,
then so is the corresponding path starting on the left-hand side of that unification (i.e.,
{<=,1>}s).

In general, all interesting paths of a program are generated in a few sequential passes.
For example, the 39 interesting paths of Quicksort are generated in two passes. The in-
teresting paths could be generated from a depth-one traversal of the complete Quicksort
graph, except for two paths which are “hidden” because they cannot be derived locally.
However, the set of interesting paths produced is sufficient to mode the program in the
sense of assigning an unambiguous mode to all syntactic variables. This is not always the
case!

Once we have generated a set of interesting paths, our algorithm proceeds by simply
noting the modes of paths, first directly, and then by examining relationships between
paths. There are essentially four different stages in the algorithm: 1) Assert absolute
modes for some paths; 2) Assert that all paths on opposite sides of a “tell” unification have
opposite modes; 3) Proceed sequentially through the variables derivable from interesting
paths, asserting all binary relations between paths, and 4) Repeatedly consider multiway
relations (rule §3 Section 2) asserted by the clauses.

The first three stages have linear complexity. The multiway analysis is exponential in the
number of variables, but by the time it is actually performed, most alternatives contradict
the known modes, and thus are not explored. We found multiway analysis contributed
only 2-7% of total analysis execution time in simple programs, and 11-20% in complex
Programs.

Some important practical and theoretical issues are raised by this algorithm. These

10

symbols broken paths
program | proc | clause | const | vars | total total [avg length
gsort 2 [31| 40 71 19 (17) 1.6
primes 6 12 49 63 112 33(28) 1.5
msort 4 11 h4| 75| 120| 36 (30) 1.7
queens 6 14 7| 119(196 71 (43) 1.8
cubes 9 16 93| 159| 2521 224 (79) 2.7
pascal 11 22 143 200 343| 338 (56) 2.0
rucs 16 66| 218| 390 608] 79(46) 1.6
bestpath 20 44| 279 492 771! 507 (207) 2.5
waltz 20 54| 333{ 630 963| 320() 2.2
waves 20 45 352| 690| 1042| 623 (220) 3.0
triangle 42 80| 315]1226| 1541 [1155 (648) 2.0

Table 2: Benchmark Suite Characteristics

issues include the consistency, completeness, and safety of the mode analysis. It is not
difficult to prove that the mode analysis algorithm is consistent in the sense that if, at some
point in the analysis, path p is shown to have mode m, and if some subset of the interesting
paths implies that p does not have mode m, then the algorithm will derive and report this
contradiction. The major barrier to the consistency of this algorithm is somewhat subtle:
the non-modedness of a program may not be detectable if the analysis uses the wrong set
of paths! This leads directly to a reasonable definition of a complete set of paths. A set of
paths generated for a program is complete iff the existence of a consistent moding for the
set of paths implies that the program is fully-moded.

Thus, the infinite set of all possible paths is a complete set; however, we are interested
in finite complete sets and in particular in a minimal complete set of paths for the pro-
gram. The path generation algorithm is incomplete; because of this incompleteness in path
generation, the mode analysis algorithm we constructed is unsafe. It is a consequence of
the incomplete set of generated paths that even if the program contains information about
the mode of a path, that information may not be derived by the mode analysis algorithm.
Thus, the analysis is unsafe in the sense the compiler may not detect mode contradictions
in erroneous (not fully-moded) programs, and thereby produce erroneous mode informa-
tion for programs that should be rejected altogether. Nonetheless, most generated paths in
typical programs are moded by our analysis, and if the program being analyzed is known
to be moded, all modes derived are correct. Assuming it can be made faster than safe
analyses, unsafe analysis has utility for “lazy task creation” systems [9, 10] where cycles
can be broken at runtime.

6 Performance Comparison

A benchmark suite of KL1 source programs (Table 2) was analyzed using the three mode
analyzers. The analysis tools were all implemented in KL1 and run on the PDSS (V2.52.19)

11

PDSS finite | static | active finite static active

benchmark | compile | domain | graph | graph || domain graph graph
exection time {msec) memory consumption (kbytes)

gsort 410 460 390 330 206 695 321
primes 780 960 730 450 320 1,919 454
msort 760 1,100 940 570 381 2,358 519
queens 1,140 2,230 1,510 890 692 5,886 897
cubes 1,570 3,000 2,260 1,100 1,057 10,226 1,086
pascal 1,660 4,820 3,830 | 1,530 1,362 24,678 1,739
TUCs 3,010 8,130 17,830 2,690 1,838 119,774 2,617
bestpath 6,160 21,110 | 32,780 4,280 8,564 237,866 5,074
waltz 4,510 21,070 | 36,240 | 3,930 6,683 279,132 5,704
waves 7,960 37,490 | 88,500 6,230 9,107 526,110 8,406
triangle 11,720 53,380 | 567,970 | 12,100 17,339 | 1,600,770 19,373
analyzers 44 54 70

Table 3: Performance of Mode Analyzers (KL1 on Sun Sparcstation 10/30)

compiler-based system, on a Sun Sparcstation 10/30. PDSS executes about 34,000 reduc-
tions per second for the analyzers described here. The analyses tend to have complexity
related to the number of symbols in the source program [17], which we categorize as con-
stants (including functor symbols) and variable instances. Because paths can be cyclic,
we define the number of “broken™ paths, e.g., the car and cdr of a list will be counted,
but not the cadr or cddr. We list, in parentheses, the number of paths produced by the
finite-domain analyzer, since it may differ from the other three algorithms.

The execution performance of these runs is summarized in Table 3. The table gives the
execution time (an average over five runs) and data memory consumption for each input
source program. The last row gives the static code size of the tools themselves. The broken
path output of the analyses was verified as identical modulo the incomplete nature of the
finite domain method.

There are several interesting observations supported from the empirical measurements:

e Programs such as cubes and waltz contain ground lists of data that increase the
analysis complexity by lengthening the propagated paths. Although we can hope that
a ground data list of length one holds as much information as length 100, there is
always an outside chance that the 99** element will cause a contradiction somewhere
in the program. We are developing a method wherein we can cut ground terms and
then do post-analysis to ensure that we did not miss a contradiction.

e Development of the analyzers by novice programmers indicated some weaknesses of the
KL1 development environment. Notably, even after tuning, the finite domain analyzer
is still generating excess suspensions and the static graph analyzer has a memory leak,
albeit less significant than before. For example, although graph construction required
35% of total analysis time in the static graph analyzer, it was proportionally 68% in

12

the faster active graph analyzer (written by an expert). This leads us to believe that
the analyzers can be further tuned.

¢ Finite domain analysis does not appear faster than constraint propagation and there-
fore its utility is questionable. Although the reduction in paths decreases memory
consumption slightly, it can in some cases produce more paths than are necessary,
and in other cases delay resolution of multiway relations.

o The active graph analyzer demonstrates execution times ranging from 58% to 103%
of the PDSS compiler. The arithmetic mean over the benchmarks is 80%. For large
programs, garbage collection remains problematic and thus we must throttle task
creation.

7 Conclusions

We have described three alternative algorithms for rational-tree unification for the deriva-
tion of path modes in CLPs. We showed that mode analysis time was comparable to
compilation time, which we consider reasonable, especially since Monaco [14], our native-
code optimizing compiler (doing dataflow analysis, register allocation, etc.) has significantly
slower compilation than PDSS.

One use of the analysis is for partitioning fine-grain programs into higher-granularity
threads, as illustrated by the experimental FGHC-to-C compiler we developed [8]. The
main alternative is abstract interpretation, for example as examined by King and Soper
[6]. For our future work, we intend to extend the precision of the abstract domain to avoid
spurious dependencies when logical variables are passed “through” a procedure invocation
unbound (intuitively neither in nor out).

Acknowledgements

E. Tick was supported by an NSF Presidential Young Investigator award, with matching
funds from Sequent Computer Systems Inc., and a grant from the Institute of New Gener-
ation Computer Technology (ICOT).

13

References

[1} M. Bruynooghe and G. Janssens. An Instance of Abstract Interpretation Integrat-
ing Type and Mode Inference. In Infernational Conference and Symposium on Logic
Programming, pages 669-683. University of Washington, MIT Press, August 1988,

[2] T. Chikayama, H. Sato, and T. Miyazaki. Overview of the Parallel Inference Machine
Operating System PIMOS. In International Conference on Fifth Generation Computer
Systems, pages 230-251, Tokyo, November 1988. ICOT.

(3] K. L. Clark and S. Gregory. PARLOG: Parallel Programming in Logic. In E. Y.
Shapiro, editor, Concurrent Prolog: Collected Papers, volume 1, pages 84-139, MIT
Press, Cambridge MA, 1987.

[4] S. K. Debray. Static Inference of Modes and Data Dependencies in Logic Programs.
ACM Transactions on Programming Languages and Systems, 11(3):418-450, July 1989.

[5] §. K. Debray and D. S. Warren. Automatic Mode Inference for Prolog Programs.
Journal of Logic Programming, 5(3):207-229, September 1988.

[6] A. King and P. Soper. Schedule Analysis of Concurrent Logic Programs. In Joint In-
ternational Conference and Symposium on Logic Programming, pages 478-492. Wash-
ington D.C., MIT Press, November 1992.

[7] M. Koshimura and R. Hasegawa. A Mode Analyzer for FGHC Programs in a Model
Generation Theorem Prover. In Proceedings of the 47" Annual Convention IPS Japan,
1993. In Japanese.

[8] B. C. Massey and E. Tick. Sequentialization of Parallel Logic Programs with Mode
Analysis. In 4** International Conference on Logic Programming and Automated Rea-
soning, number 698 in Lecture Notes in Artificial Intelligence, pages 205-216, St. Pe-
tersburg, July 1993. Springer-Verlag.

[9] B. C. Massey and E. Tick. The Diadora Principle: Efficient Execution of Fine-Grain,
Concurrent Languages. In Hawaii International Conference on System Sciences, vol-
ume 2, pages 396-404, Maui, January 1994. IEEE Computer Society Press.

[10] E. Mohr, D. A Kranz, and R. H Halstead Jr. Lazy Task Creation: A Technique for
Increasing the Granularity of Parallel Programs. IFEFE Transactions on Parallel and
Distributed Computing, 2(3):264-280, July 1991.

[11] V. Sarkar. Partitioning and Scheduling Parallel Programs for Erecution on Multipro-
cessors. MIT Press, Cambridge MA., 1989.

[12] E. Y. Shapiro. The Family of Concurrent Logic Programming Languages. ACM Com-
puting Surveys, 21(3):413-510, 1989.

14

[13] Z. Symogyi. A System of Precise Modes for Logic Programs. In International Confer-
ence on Logic Programming, pages 769-787. University of Melbourne, MIT Press, May
1987.

[14] E. Tick. Monaco: A High-Performance Flat Concurrent Logic Programming System.
In PARLE: Conference on Parallel Archilectures and Languages Europe, number 694
in Lecture Notes in Computer Science, pages 266-278. Springer Verlag, June 1993.

[15]) E. Tick, B. C. Massey, I'. Rakoczi, and P. Tulayathun. Concurrent Logic Programs
a la mode. In E. Tick and G. Succi, editors, Implementations of Logic Programming
Systems. Kluwer Academic Publishers, 1994,

[16] K. R. Traub and D. E. Culler. Global Analysis for Partitioning Non-Strict Programs
into Sequential Threads. In Conference on Lisp and Functional Programming, pages
324-334. San Francisco, ACM Press, 1992.

[17] K. Ueda and M. Morita. Moded Flat GHC and Its Message-Oriented Implementation
Technique. New Generation Compuiing, May 1994.

