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Abstract

Concurrent logic languages have been traditionally executed in a “greedy” fashion,
such that computations are goal-driven. In contrast, non-strict functional programs
have been traditionally executed in a “dataflow” fashion, such that computations are
demoend-driven. The latter method can be superior when allocation of resources such
as memory is critical, which is usually the case for large, complex, and/or reactive
programs. Specifically, demand-driven execution results in more efficient scheduling and
improved termination properties. This paper describes a novel technique for demand-
driven execution of concurrent logic language programs.
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1 Introduction

The difference between goal-driven and demand-driven execution of concurrent languages
is a difference in execution focus: tasks or results? Goal-driven paradigms measure per-
formance as tasks erecuted per unit time and eagerly schedule tasks with regard for little
else. Demand-driven paradigms measure performance as answers delivered per unit time
and lazily schedule tasks only when they are necessary to transform data needed to produce
a result. The main advantages of goal-driven systems are simplicity of design and abundant
parallelism. The main advantage of demand-driven systems is better resource allocation
{e.g., memory usage) for resource-critical programs.

This latter advantage outweighs all others for programs that simply won’t run otherwise.
We illustrate this with an example comparing goal-driven execution of a concurrent logic
(Strand [6]) program and demand-driven execution of a non-strict functional (Lazy ML [2])
program. Concurrent logic programming languages (which we will refer to as CCLs for
committed-choice languages or concurrent constraint languages) are based on the idea that
implicit parallelism can be exploited via synchronization on logic variables [12].

A program to find the first five odd integers by generate-and-test, written in Lazy
ML and Strand, is given in Figures 1 and 2, respectively. The first program will almost
immediately report the first five odd integers (in reverse order), whereas the latter one
will always loop until it runs out of memory. The reason for this is that the traditional
CCL execution model is goal-driven: when a clause’s head tests succeed, all goals in the
clause body are immediately candidates for execution. By contrast, the traditional model
for non-strict functional languages is demand-driven: a function evaluation may be delayed
until that function result is actually needed by the computation. Thus, the Strand program
continues to generate more and more integers, whereas the functional program generates
an integer only when the test demands one. When five odd numbers have been found, the
program will immediately terminate.

The example is given in Lazy ML and Strand only to make it concrete. In general,
all CCL implementations of which the authors are aware are goal driven. The reason for
this is largely historical: CCLs used a goal-stacking model rather than an environment-
stacking model in order to obtain a high degree of parallelism from simple implementations
by eliminating backtracking. Existing CCL implementations usually share the following
characteristics: The compiler generates “goal stacking” code that creates goal records on
the heap, instead of creating environment frames on a stack (as in sequential Prolog for
instance). The goal records are managed as a pool or “ready queue” from which “worker”
processes! can extract and add tasks. All bindings are made in a shared, global name space.?
A procedure invocation suspends when a required binding is not supplied by the caller: the
required variable is linked to the suspending goal by some internal data structure, and later
the goal is resumed if the variable is bound. This implementation schema has evolved over

the years and has proved to be resilient, but can be quite inefficient, as discussed in Section
2.

'We can safely assume that one worker is associated with each processot.
2Both shared-memory and distributed-memory multiprocessor implementations have been built around
this model, using sufficient technology, such as import/export tables, io mimic the shared name space.



let rec generate n = n . generate (n + 1);

let rec test n (¢ . ¢8) 1 =
if (n > 5) then 1 else
(if (ch2=1)
then test (n + 1) cs (¢ . 1)
else tast n cs 1);

let five_odds = test 1 {generate 1) nil;

Figure 1: Generate-And-Test Program in Lazy ML

generate( N, L ) :- true |
Hi is N + 1,
L:=[¥]Lsl,
generate{ N1, Ls ).

test( N, _, L ) :-= N> 5 |
L =1[1.

test{ N, [C | ¢s ], L ) :- N=<5, Cmod 2 =:=1 |
Nl is N + 1,

L:=[C | Ls],
test( N1, Cs, Ls ).

test( N, [C| Cs], L) :- N =<5, Cmod 2 =\=1 |
test( N, €s, L ).

five_odds{ L } :- true |
generate{ N, L1 ),
test( 1, Li, L ).

Figure 2: Generate-And-Test Program in Strand



As Figure 1 illustrates, programs written in Lazy ML have nice synchronization prop-
erties. Unfortunately, the the demand-driven implementation of Lazy ML and similar lazy
functional languages is completely dependent on the purely functional nature of the lan-
guage, and thus cannot support logical variables. Therefore, the problem of demand-driven
execution of CCL programs cannot be solved by a mere embedding of a CCL in Lazy ML
— a new mechanism is needed.

Much work has been put into mode analysisof CCL programs. In its simplest definition,
a mode of a variable occurrence in a procedure is either “in” (this procedure will not bind
the variable) or “out” (external procedure will not bind the variable) [16]. Note that since
variables can be bound to complex terms containing variables, in general we compute the
modes of paths through terms to variables (at the leaves). There are several mode analyzers
under development to collect this information [14, 9, 10, 13], and we consider such analysis
technology “a given” for this paper. We call a CCL program fully-moded, if (among other
restrictions not relevant to this paper) there is at most one output occurrence of a variable
in a clause body. We call the family of fully-moded concurrent logic programs FM for
short. In an FM program, mode information always identifies the single occurrence of any
variable which produces the binding for the variable (namely the body occurrence with
output mode). It is this fact which makes demand-driven execution possible, thus, we limit
our attention to FM in this paper.

This paper illustrates a new technique for demand-driven execution of FM programs,
applicable to languages such as Strand, FGHC [12], and Janus [11]. The significance of the
work is that it is the first specification of a purely demand-driven mechanism for CCLs (see
discussion of related work by Ueda and Morita in Section 4). If successful, this mechanism
can lead to a quantum performance improvement and will facilitate reactive programming.
The paper is organized as follows. Section 2 gives an overview of the scheme, whereas
Section 3 lays out the technical details. The literature is reviewed in Section 4, and the
work is summarized in Section 5.

2 Demand-Driven Evaluation

Because traditional CCL implementations do not rely on mode analysis, they must add all
body calls of a clause to the ready set immediately upon execution of the clause. This leads
to several sources of overhead relative to a demand-driven model:

1. Body calls may be scheduled and executed even when the bindings they produce are
not needed elsewhere in the problem. While the example above illustrates an extreme
case of this, it is also true that even procedures which stop after producing a finite
number of bindings often produce more bindings than are actually used.

2. Because producers of bindings may run arbitrarily far ahead of their consumers, re-
source exhaustion, particularly memory exhaustion, may cause a program to fail even
though the language semantics imply its success, Thus, programmers have to be very
conscious of implementation details, and often must employ complex and specialized
workarounds, such as bounded buffer techniques [6], to keep producers in check.
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Figure 3: Transferring Control Via Continuations

3. The ready set is accessed very frequently, and may get arbitrarily large. While
workarounds exist for this problem, the ready set can nonetheless become a serious
performance bottleneck.

4. Because a procedure may suspend, and indeed, may suspend upon several variables,
a complicated system for suspension and resumption of procedures is necessary. This
mechanism typically introduces high overheads for variable binding, as well as for the
suspension and resumption itself.

We propose to solve these problems by implementing a demand-driven execution scheme
for FM programs. At the heart of this scheme is the use of continuations (e.g., [1, 4]). A
continuation consists of an environment, in this case a frame pointer, and a program point,
or instruction pointer. Thus, an executing worker may save its current frame pointer and
instruction pointer into a continuation. Later, that continuation may be invoked by load-
ing an executing worker’s frame pointer and instruction pointer from the continuation’s,
effectively continuing execution at the point where it was left off (hence the name). Contin-
uations have been used to great effect in programming language implementations {1], and
have even been made available to the user in some programming languages [3].

A reasonable way to implement demand-driven execution of FM programs, then, would
be to do something analogous to dataflow-style execution, as in Figure 3: 1) When a value
is needed for execution to proceed, the consumer of that value will ask the producer for the
value, by invoking a continuation in the producer. 2) The producer will supply the value,
by invoking a continuation in the consumer. Indeed, this is the first principle of our design:
control flow should follow dataflow.

The problem then, is how to provide the consumer with a continuation by which it
may obtain a value. The key is to realize that in logic programs, the value to be obtained
is inevitably the binding of a variable. Indeed, in traditional CCL implementations, it is
exactly this fact which is used to synchronize parallel execution: an invocation will suspend
when a variable the consumer wants to read has not yet been bound. Thus, it is sufficient
to make the following arrangement, illustrated in Figure 4: at the time a logic variable is
created, the variable’s creator® will bind the variable to a continuation which will produce
that variable’s value. 1) Since the producer and consumer of a variable’s binding are known
to share that variable, the consumer may bind to the variable the continuation which will

31t is certainly possible that the creator and the producer are one and the same task.
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Figure 4: Continuations Bound To A Variable

consume the value produced before invoking the continuation in the creator which will
eventually produce the binding. 2) The creator will arrange for a value to be bound to the
variable, usually by invoking a continuation in one of its body goals. 3) The producer will
bind the variable to a value before invoking the continuation which will consume the value.
This is the second principle of our design: consumers and producers of a variable’s binding
should communicate through that variable,

The implementation should allow parallel execution, but the execution model outlined
so far is sequential. To understand where the parallelism comes from, and the machinery
needed to handle it, it is necessary to understand some details that have been so far avoided.
First, where does the binding of a variable to a producer continuation come from? The
answer is that when the variable is created, it is allocated in the frame of the invocation
creating it, and is initialized to a continuation in this invocation. When this continuation
is invoked, as noted above, there exists enough information to determine which body call
will be necessary to produce a value binding for the variable.

Second, suppose that multiple consumers try to read the same variable before a binding
for it is produced? This can easily happen on parallel hardware: while one worker is in the
midst of producing a binding for a variable, other workers try to read the variable. The
answer to the question is twofold: the variable must always be labeled with a tag indicat-
ing whether a binding is currently being produced for it, and if a binding is pending the
consumer continuation must be added to a set of continuations bound to the variable. The
producer can invoke one of the continuations directly upon finally producing a value bind-
ing, but other workers searching for work must have access to the remaining continuations,
which implies a global ready set. Thus while a global ready set is apparently inevitable, a
global suspend set can be avoided, by erqueuing suspended threads of execution directly on
the variable causing suspension, as continuations. The third principle of our design might
be stated by analogy with an epigram attributed to Einstein: avoid global objects as much
as possible, but not more so.

(=1}



3 Implementation Model

Having sketched the principles of operation for demand-driven execution of FM programs,
we now discuss the technical details. Several preconditions must be met to make an FM
program suitable for the execution model: 1) each procedure will have the head and guards
of its clauses “flattened” and formed into a decision graph [8] which will select a clause body
for execution; 2) each clause body will be partitioned into a “tell” part, which contains all
body unifications, followed by a “call” part, containing all body calls; 3) similarly, each
output argument of a clause will be categorized as either a “tell” output argument, meaning
that its binding is produced locally by a tell binding, or a “call” argument, meaning that
its binding is produced by a body call; 4) the binding occurrence of each variable in the
clause body will be identified.

The execution model also has ramifications for FM semantics. Since execution is now
demand-driven, the notion that a computation terminates when there are no ready goals
no longer applies. Ior simplicity’s sake, the computation will terminate when all cutput
arguments of the query have been bound to ground terms.?

The demand-driven nature of execution allows a new guarantee about program exe-
cution: any deterministic program which could complete in a finite number of steps in a
traditional implementation will complete in a finite number of steps in this implementation.
Further, any program which will complete in a finite number of steps in this implementation
will complete having created a minimal number of procedure invocations. These guarantees
are basically a promise to the programmer that scheduling considerations are not part of
programming for the demand-driven implementation.

Once this groundwork has been laid, demand-driven evaluation can be achieved by our
model. The remainder of this section describes the model. The objects required by the
model are described in Section 3.1. The execution algorithm of the model is outlined in
Section 3.2. Finally, the detailed model and its implementation of parallelism is discussed
in Section 3.3.

3.1 Objects Required by the Model

It is easiest to characterize the objects required by the inodel in terms of their scope. There
are four kinds of state which are relevant. The global state is visible and accessible ev-
erywhere during execution. The worker state is information available only to a particular
worker during its execution. Variables are available both to their creator and to any pro-
cedure invocation which has received them as parameters. Frames are available only to a
particular procedure invocation. Each of these is now described in more detail.

Global State: The only global abject required by the model is the ready set ready. This
will be implemented as a tuple <lock, queue>, where ready.lock is a synchronizing
lock, and ready.queue is a queue of active messages [5, 15]. A message (for short) is
a tuple <continuation, contents>, where the contents of the message is merely

*If more complicated query termination conditions were required, new query syntax could be introduced
to achieve them.



some value to be communicated: the mr register is loaded from the contents during
message execution.

Worker State: The worker state is defined in terms of several registers, although local
memory could be used if desired. These registers are:

ip: The “instruction pointer” points to the next instruction to be executed.

fp: The “frame pointer” points to the context in which to execute.

mr: The “message register” is used for communication across continuations.
apg..ap,: The “argument pointers” are used to pass arguments to an invocation.
cr: The “call register” is used during frame creation.

Variables: A variable is a tuple <lock, state, binding>, where the lock is a standard
synchronizing lock, the state is an element of the set {unread, read,written}, and
the type of binding depends on the state:

¢ If state is unread, binding is a continuation.
¢ If state is read, binding is a continuation list.
o If state is written, binding is merely a value.

Note that the state always begins as unread and increases monotonically to written:
this corresponds to the single-assignment property, and allows readers of a bound
value to avoid locking the cell.

Frames: A frameis the environment of a particular procedure invocation, and as such, must
contain all invocation-specific information. A frame is a tuple <lock, commit.index,
tobind, params, locals, vars, calls>>, as follows:

lock: A synchronizing lock used during frame initialization.

commit.index: The index of a clause which the invocation has committed to, or nil
if the procedure has not yet committed.

suspcount: A count of variables which are waiting to be bound before decision graph
evaluation can resume.

tobind: A list of binding indices, which will be used to restart other suspended calls
to this invocation after commitment (see Section 3.3).

params: A save area for passed parameters of the invocation.

vars: A tuple of variables “created” (i.e., allocated and initialized) by the invocation
but externally visible to the invocation’s parent or children.

calls: A tuple as big as the maximum number of body calls in any clause of the
procedure, whose elements are a tuple <lock, callfp>. The calls structure
is used only after commitment: callfp; is either a pointer to the frame created
for the i** body call of the invocation, or nil if no frame has yet been created
for this call.

locals: A scratch area, used for objects which will not be visible outside the invoca-
tion.



3.2 Execution Algorithm of the Model

The objects required by the execution model are best understood by considering the exe-
cution algorithm of the model. In outline, the execution mechanism is essentially that of
the previous section, fleshed out below and illustrated in Figure 5. The heavy lines indicate
parent-child invocation relationships, with the dashed lines indicating possible intervening
invocations. The light lines indicate message passing. The entry points read, resume,
bind, and create mentioned in the following description are discussed in Section 3.3.

1. An invocation, which we will call the “consumer” of a value, needs a variable to be
bound in order to proceed with execution. This must be the result of the fact that
the consumer needs the binding in order to commit to a clause.

2. The consumer obtains from the variable a continuation in another invocation, which
we will call the “creator” of the variable being bound. This continuation will have the
creator’s £p, and the read entry point of the creator’s procedure as the ip.

3. The consumer changes the state of the variable from unread to read, and makes the
binding of the variable a resume continuation in the consumer, which will utilize
the bound variable when it becomes available.

4. The consumer places a pointer to the variable in the mr of the worker, and invokes
the read continuation in the creator.

5. The creator of the variable determines which body call is needed to bind the variable.
It then computes a “binding index,” denoting which output argument of the call is
being requested, and places the binding index in mr.

6. If the creator has previously created the frame necessary for the body call, it loads
fp with a pointer to this frame, and enters at the bind entry point of the procedure
being called. Otherwise, the creator allocates a new frame, loads £p with a pointer to
it, and enters at the create entry point of the procedure being called.

7. The previous step is repeated until an invocation, which we will call the “producer,”
actually produces a binding for the variable.

8. The producer obtains from the variable the resume continuation in the consumer
which will consume the value.

9. The producer rebinds the variable so that its state is written and its binding is the
variable’s value.

10. The producer invokes the saved resume continuation, and the consumer uses the
bound value.
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Figure 5: Control and Data Flow During Model Execution

3.3 Concurrency and Parallelism

The actual model, however, is more complicated than this! This complication is a necessary
consequence of the concurrent semantics of the language. The implementation is motivated
by the desire to exploit parallelism in the implementation. There are several places during
execution where more than one thread of execution may need to suspend until a condition
is satisfied, and all of these threads may be resumed in parallel. In addition, there is one
place in which new threads of execution need to be created, and may be started in parallel.

The first place in which threads may need to suspend is the consequence of the fact
that, between the time that a variables state goes to read and the time it goes to written,
other procedures may also need to read the variable’s value. The protocol described above
assures that only one thread will try to produce the value, but it is also necessary to assure
that, once the variable’s value is written, all threads which were waiting for the value will
resume. To this end, the variable’s binding when in the read state is a list of continuations
which should be placed on the ready queue when the variable’s value becomes available.
(Note that the ready queue is a message queue, not a continuation queue: According to
the protocol described above, the message register mr is not used during resumption of
suspended readers, so any value may be placed in the mr portion of the message.)

The second place where threads may need to suspend is a consequence of the fact that,
before a procedure invocation has committed to a particular clause body, several outputs of
that procedure may be requested. Thus, these threads must be suspended until commitment



is complete, then resumed. This is the purpose of the tobind element of the frame: it is used
to hold a list of binding indices which have been requested by callers. When commitment
is complete, each binding index is packaged up as the value portion of a message whose ip
points to code in the procedure which will bind the variable, and whose fp points to the
invocation’s frame. These messages are then placed on the ready queue, so that all of the
bindings may proceed in parallel.

New threads are created as the result of strict operations during commitment, i.e.,
operations which must have all argument values in order to proceed. An example of a strict
operation is the arithmetic operation +/2. This operation must have both argument values
before computing the result. Since all arguments are required, they should be produced in
parallel. Thus, messages which will produce all bindings are placed on the ready queue. The
frame’s suspcount is used to keep track of when all required bindings have been obtained,
at which point execution may resume.

The execution model is now complete. Due to space limitations, we omit some of the
details, especially those involving locking and variable update. TFirst, Figure 6 shows how
a thread switch is performed. Each procedure has three entry points: read, create, and
bind.

¢ The read entry point will always be reached through a continuation, when a consumer
attempts to bind an unread variable. The message register mr will contain a pointer
to the variable to be bound. The read procedure is detailed in Figure 7. read insures
that a variable’s binding will be produced, and arranges for execution to resume in
the consumer thereafter.

o The bind entry point will be called in order to bind an output parameter of the pro-
cedure. The message register mr will contain a binding index indicating the parameter
to be bound. The bind procedure is detailed in Figure 8. read performs body calls
necessary to obtain bindings for requested output arguments.

¢ The create entry point will be called in order to create a procedure invocation (typi-
cally by the creator of a variable). The frame pointer £p will point to a frame which is
uninitialized, except for the lock field, which will be locked. The message register mr
will contain a binding index. The call register cr will contain a pointer to the caller’s
call; tuple. call;.lock will be locked. The create procedure is detailed in Figure
9. create handles invocation initialization, and then starts the commitment process,
arranging to bind requested output arguments as soon as commitment completes.

To begin execution, the create entry point of the query is invoked, and each output
argument of the query becomes the target of a bind. As each argument is further instanti-
ated, read calls are used, until all output arguments of the query are fully ground. Then,
execution simply terminates.

4 Discussion

There are a number of optimizations possible in the basic execution model. First, there
are several places during execution in which messages are placed on the ready queue, and

10



To switch threads:
e Dequeue a message m from the ready queune.
¢ Load m.mr and m.fp.
¢ Jump to m.ip.

Figure 6: Thread Switch

To read a variable V passed in mr in a procedure p:
¢ If mr.state is written:
o Switch threads.
o If mr.state is read:
¢ I'ind the binding index bi denoted by mr.
e Place bi in mr.
¢ Invoke p.bind.

Figure 7: Procedure read: Request a Variable’s Binding

To bind an output argument of a procedure p:
e If mr refers to a tell argument:
e Switch threads.
o If mr refers to a call argument:
o Find the procedure q and binding index bi denoted by mr,
e Find the call index ci of q.
e Place bi in mr.
e If £p.call ;.callfp is non-nil:
¢ Invoke q.bind.
e If £p.call ;.callfp is nil:
¢ Set up the arguments of a call of q.
e Allocate and set up a new frame in £p.
e Invoke q.create.

Figure 8: Procedure bind: Bind an Qutput Argument
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To create a new frame and bindings in a procedure p:
¢ Initialize the frame’s commit_index, tobind, var, and call.
o Place fp in cr.£p, marking the frame as created.
e Jump to the decision graph for p.

To suspend decision graph evaluation:
s Set £p.suspcount to the number of variables being suspended on.
s For each variable ¥ whose binding is needed:
o If V.state is unread:
e Save the binding of V and a pointer to V as a message m.
¢ Mark V read, and add a resume continuation to V’s binding,.
o Add m to the ready queue.
e If V.state is read;
¢ Add a resumption continuation to ¥’s binding.
e Switch threads.

To resume a suspended decision graph:
® Decrement fp.suspcount.
o If fp.suspcount is non-zero, switch threads.
¢ If £p. suspcount is zero, resume decision graph execution.

To commit to a particular clause:
e Set £p.commit_index to the desired clause.
e For each tell output argument V:
o If V.state is read:
o Save the binding of V in some temporary register r.
e Bind ¥ to its value.
¢ For each continuation ¢ in r:
* Add a message containing ¢ to the ready queue.
s If V.state is unread:
¢ Bind V to its value.
o For each call output argument V:
o If V.state is unread:
¢ Set V.binding to p.read.
# For each non-tell binding index b1 in £p.tobind:
o Add a message <fp, p.bind, bi> to the ready queue.
¢ Switch threads.

Figure 9: Procedure create: Create a Procedure Invocation

12



then a thread switch is done. Instead, some ready queue traffic can be avoided if, in the
spirit of the original idea, one of the messages is selected for direct invocation rather than
enqueuing and then immediately dequeuing it. Second, rather than adding messages to the
ready queue individually, some efficiency can be gained by adding the entire batch at once.
Indeed, if appropriate data structures are used, this may be almost as cheap as enqueuing
an individual message. Third, although locking is not specified at this level of detail, it
is apparent that much locking can be avoided due to the monotonic progression of such
operations as variable binding and commitment — a thread can check to see whether a lock
is necessary and avoid the lock if not. Fourth, since the mr is unused during resumption, it
may be used by the producer to return the requested variable’s binding to the consumer,
avoiding an unnecessary variable reference.

The portion of the commit description labeled “o” in Figure 9 is optional: it is believed
that it constitutes an optimization, but empirical data must be gathered to support that
claim. Without this option, attempts to bind a variable will always start at that variable’s
creator, and must proceed downward through a series of bind continuations. With the
option, attempts to bind a variable will start instead at the first frame which would have
to call create instead of bind, avoiding the overhead of the chain of bind invocations.
On the other hand, with this option, every create procedure must perform a locked access
of the variable denoted by each of its unbound call output arguments. This creates a lot
of memory and lock traffic on unbound variables, which can be expensive, and may be
unnecessary, inasmuch as the bindings of these variables may be produced before they are
ever requested by a consumer.

There are several possible criticisms of the execution model. The most telling are:

¢ Nondeterministic programs may invoke procedures which do no useful work. But
any implementation must schedule these procedure calls: only an oracle could tell
which invocation will produce the bindings necessary for nondeterministic execution
to proceed.

¢ Because of the change in termination conditions to achieve demand-driven execution,
a few existing existing CCL programs might not run correctly under this model. In
particular, some programs may deadlock or livelock because they expect to produce
non-ground query outputs. However, the changes needed to make existing programs
aperable should be straightforward. Any slight incompatibility is outweighed by the
fact that scheduling and throttling of producers is no longer a concern, which should
make it considerably easier to write new code for this implementation.

¢ Compilation details such as the storage of temporaries in registers are outside the
scope of this paper. However, because of the frequent switching of environments
during execution, it may be difficult to fully utilize the large register set of modern
CPUs for efficient temporary storage. The efficiency increases due to demand-driven
execution should outweigh this loss. It is difficult to estimate the severity of this
problem without empirical evidence. Thus, empirical studies should be conducted
before considering solutions to the problem.

13



As noted in the Introduction, CCLs sacrificed backtracking in order to achieve effi-
ciency. A consequence was the elimination of all speculative or-parallelism: a worker will
not attempt to execute a given clause unless that clause will contribute bindings needed
to answer the query. Analogously, our demand-driven implementation eliminates all spec-
ulative and-parallelism: a worker will not attempt to execute a given body call unless that
call will contribute bindings needed to answer the query. This throttling of all speculative
parallelism can lead to great efficiency in problem solution, but it may not lead to the fastest
solution, as some speculative work may prove useful. It may be possible that this execution
model could be extended to handle speculative work when processors become idle, e.g., as
in Gregory [7], although this is a future research topic.

The only work related to our proposed scheme of which we are aware is that of Ueda
and Morita {15], who describe a model which uses active messages to improve the per-
formance of producer-consumer stream parallelism. Our use of active messages, as well
as some of our fundamental philosophy, is essentially the same as theirs. However, their
method has important differences from ours. First and foremost, Ueda and Morita’s tech-
nique still is producer-driven rather than consumer-driven: it only attempts to optimize the
overhead of producer-to-consumer communication. Thus, none of the benefits of automatic
demand-driven execution accrue (although some methods of using programmer annotations
to inhibit producers outrunning consumers are discussed). Second, their technique requires
a sophisticated type analysis in addition to mode analysis. Finally, it is an optimization for
certain limited situations only, in otherwise conventional execution. Conery [4], describes
the use of continuations and messages in the implementation of an environment-stacking
parallel logic programming language.

5 Conclusions

We have presented a novel execution model for flat concurrent logic programming languages
(CCLs), based on mode analysis and on continuation passing utilizing shared variables. This
model achieves demand-driven execution of CCLs, which at once achieves greater execution
efficiency and simplifies programming. This paper serves as a schematic for those wishing
to build high-performance demand-driven CCL systems. We hope to begin work soon on
an exploratory implementation of the technique, in order to gain insights into its benefits
and drawbacks.
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A Detailed Pseudocode

This appendix gives detailed versions of the pseudocode given in Figures 6, 7, 8, and 9.
The question of locking is addressed, and the details of message creation and storage are
given. It is hoped that this sketch is in sufficient detail to be implementable in a fairly
straightforward fashion.

To switch threads:
e Lock ready.queue.lock.
o Dequeue a message m from ready.quene.
e Unlock ready_guene.lock.
¢ Place m.mr in mr.
e Place m.£fp in fp.
e Jump tom.ip.

To read a variable V passed in mr in a procedure p:

e Lock mr.lock.

e If mr.state is written:
¢ Unlock mr.lock.
e Switch threads.

¢ If mr.state is read:
¢ Unlock mr.lock.
e Find the binding index bi denoted by mr.
e Place bi in mx.
e Jump to p.bind.

To bind an output argument of a procedure p:
o If mr refers to a tell argument:
e Switch threads.
o If mr refers to a call argument:
e Find the procedure q and binding index bi denoted by mr.
» Find the call index ci of q.
e Place bi in mr.
o Lock £p.call ;.lock.
e If fp.call ;.callfp is non-nil:
e Place fp.call,;.callfp in fp.
¢ Jump to q.bind.
o If £p.call ;.callfp is nil:
e Load ap,..ap, with q's arguments.
¢ Allocate a new frame f.
e Lock £.lock.
¢ Place £ in fp.
e Place call.j in cr.
¢ Jump to q.create.

To create a new frame (in £p) and bindings in a procedure p:
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¢ Initialize £p.commit _index to uncommitted.
e Initialize £p.tobind to a list containing mr.
e For i = 1..n where n is the number of variable table entries:
e Initialize fp.var; to <unlocked, unread, <fp, p.read>>.
e For i = 1..n where n is the number of body calls:
¢ Initialize £p.call; to <unlocked, nil>.
o Place £p in cr.fp, marking the frame as created.
o Unlock £fp.lock.
s Unlock cr.lock.
e Jump to the decision graph for p.

To suspend decision graph evaluation in a frame £p, resuming at address ra:
¢ Set fp.suspcount to the number of variables being suspended on.
e For each variable V whose binding is needed:

e Lock V.lock.

e If V.state is unread:
o Save the V.binding.fp in some register vEp.
o Save the V.binding. ip in some register vip.
# Set V.binding to a list containing <fp, ra>.
e Set V.state to read.
o Create a new message m.
e Set m.fp to vip.
e Set m.ip to vip.
e Set m.mr to V.
¢ Add m to the ready_queue.

o If V.state is read:
e Add <fp, ra> to V.binding.

¢ Unlock v.1lock.

e Switch threads.

To resume a suspended decision graph:
o Decrement fp.suspcount.
o If £p.suspcount is non-zero, switch threads.
o If fp.suspcount is zero, resume decision graph execution.

To commit to a particular clause in a frame £p:
e Lock £p.lock.
e Set fp.commit_index to the desired clause.
e Tor each tell output argument V:
e Lock V.lock.
e If V.state is read:
¢ Save the binding of V in some temporary register r.
e Set V.state to written.
¢ Set V.binding to its new value.
s Unlock V.lock.
¢ For each continuation ¢ in r:
s Add <c.fp, c.ip, nil> to the ready_queue.
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s If V.state is unread:
e Set V.state to written.
¢ Set V.binding to its new value.
e Unlock V.1lock.
o For each call output argument V:
o Lock V.lock.
¢ If V.state is unread:
o Set V.binding to p.read.
¢ Unlock V.1lock.
& For each non-tell binding index bi in £p.tobind:
e Add a message <fp, p.bind, bi> to the ready_queue.
s Switch threads.
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