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Abstract

The plethora of concurrent declarative language families, each with subtly different
semantics, makes the design and implementation of static analyses for these languages
a demanding task. However, many of the languages share underlying structure, and if
this structure can be exploited, static analysis techniques can be shared across language
families. These techniques can thus provide a common kernel for the implementation
of quality compilers for this entire language class.

The purpose of this paper is to exploit the similarities of non-strict functional and
concurrent logic languages in the design of a common intermediate language (CIL).
The CIL is introduced incrementally, giving at each step the rationale for its extension.
As an application, we present, in CIL form, some state-of-the-art static partitioning
algorithms from the literature. This allows us to “uncover” the relative advantages and
disadvantages of the analyses, and determine promising directions for improving static
partitioning.
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1 Introduction

“Great wits are sure to madness near allied,
And thin partitions do their bounds divide.”
John Dryden

Absalom and Achitophel, 1680

The compilation of concurrent declarative languages, such as Id and Strand, for high-
performance multiprocessors depends fundamentally on increasing task granularity (parti-
tioning) and hiding various latencies such as memory accesses. The plethora of language
families, each with subtly different semantics, makes the design and implementation of
static analyses, the backbone of a good compiler, a demanding task. However, many of the
languages share underlying structure, and if this structure can be exploited, static analysis
techniques can be shared acress language families.

The process of identifying portions of a program that can be executed as threads, re-
ferred to as partitioning, has been a subject of growing interest to the implementors of
concurrent logic programming languages and functional languages, here referred to collec-
tively as concurrent declarative languages. In this paper, the important issues concerning
partitioning both concurrent logic programming languages and non-strict functional lan-
guages are presented, and some of the important partitioning techniques are discussed. The
similarities between non-strict functional languages with single-assignment features and
committed-choice languages with logic variables lead us to believe that partitioning tech-
niques applicable in one language domain will be successful in the other. The partitioning
algorithm and its associated static analyses are the kernel of any high-performance compiler
for concurrent declarative languages. We believe that a good first step in understanding the
state-of-the-art in partitioning and how to improve it is to define a common intermediate
language (CIL) for both non-strict functional and concurrent logic languages, and evaluate
partitioning algorithms with respect to the CIL.

This paper is organized as follows. Section 2 reviews the family of concurrent declarative
languages. Section 3 defines a CIL covering a slightly restricted subset of this family. Section
4 reviews the partitioning problem and three algorithms proposed in the literature, using a
CIL program as a comparative example. This comparison reveals strong and weak points in
each approach, and suggests directions for future exploration. A summary of the research,
conclusions, and discussion of future work is given in Section 5.

2 Review of Concurrent Declarative Languages

This paper focuses on the compilation of concurrent declarative languages containing what
we refer to as dynamic-single-assignment (DSA) variables. This family includes Id [21],
pH (5] (the parallel version of Haskell [14]), Strand [10], and many others. DSA variables
correspond to the “I-structures” of Id [6], and to the “logic variables” of Strand. A DSA
variable begins its life unbound, and may be bound only once during program execution.
However, in contrast to static-single-assignment variables, the point at which a DSA variable
is bound is not in general statically determinable: binding can occur at any time during
program execution. Attempts to read a DSA variable before it is bound will typically cause



the reader to suspend. Once bound, attempts to rebind a DSA variable will “fail,” and will
typically cause execution of the entire program to fail.!

In this section, we review two languages with DSA variables, chosen from the two
language families of principle interest in this paper: the concurrent functional language Id,
and the concurrent logic programming langnage Strand. We note some of the similarities
between these languages, and thus motivate the introduction of our CIL.

Id is a higher-order, non-strict, strongly-typed functional language, augmented with
I-structures [6] and M-structures (7]. I-structures are arrays whose elements get “refined”
during the course of computation: that is, it is possible to create an I-structure without
giving a definition for each of its elements. (In a purely functional language a variable is
given exactly one binding or definition at creation time.) For our purposes, single-element
I-structures are DSA varjables [20}. M-structures add non-determinism to the languages;
in this paper, however, we will not address this feature. Id has non-strict semantics, that
is, a function is invoked even though its parameters may not be completely evaluated yet.
However, unlike other modern functional languages, non-strictness is not implemented in
terms of lazy evaluation. Id has a parallel evaluetion strategy, that is, all computations
are performed in parallel, not merely those whose results are sure to be needed. Thus, the
parameters of a function are all evaluated in parallel with the evaluation of its body, even
though the body might not need some parameter. For example, consider the following Id
definitions:

Def nth (z: zs) n = If n == 1 then z else nth zs (n — 1)
Def Ints x =z : (Ints (z + 1))

and the main expression: nth (Ints 1) 5. (Note: The expression z : zs denotes a list whose
head is x and tail is zs.} The function nth is invoked even though the evaluation of the
first parameter does not terminate. The evaluation of the main expression will return 5
as a result. This is accomplished by evaluating the expression Ints 1 in parallel with the
body of the nth function. Note that the main expression returns a value even though its
evaluation does not terminate. In this specific example, we can safely assume that 5 is
the final answer. However, in the general case, due to the presence of single-assignment
variables, the result must be interpreted as a partial answer, since the answer could be
refined further. In particular, as mentioned before, the partial answer could be refined to
failure in case of multiple bindings; this condition cannot be checked statically.?

All variables in a Strand program are DSA variables, although some may be bound im-
mediately upon creation. Syntactically, a program consists of a sequence of procedures, each
of which consists of a sequence of clauses. Each clause is of the form “Head :- Guard | Body”
where the head is a term and the guard and body are sequences of terms. Execution is
defined by goels corresponding to procedure invocations, also called tasks and processes.
Each goal specifies a procedure and its arguments: the head and body of each clause of

'With regard to logic programs, we restrict ourselves to committed-choice languages with “eventual”
tell unification [24] or assignment, rather than “atotnic” tell unification, thus implying that binding failure
causes program failure.

?The reader may refer to Ariola and Arvind [2] for further clarification. The parallel evaluation of Id
has been adopted by the newly developed pH language (3], a parallel variant of the Haskell language [14].
Haskell is increasingly the standard language in the non-strict functional language research community.



the procedure are matched against the goal. If one or more clauses match the goal, one
clause is selected for commitment. The committed clause’s body will consist of a (possi-
bly empty) sequence of new goals, which are all evaluated concurrently. If a goal fails to
match because not enough information is available, the goal will suspend. If the goal fails
to match for other reasons, the goal will cause failure of the program. A program may also
fail by deadlock which occurs when all goals have suspended. Finally, as mentioned above,
a program may fail if a DSA variable is assigned to a second time, thus informally there are
three sources of program failure.

There are marked similarities among the members of this language family. Execution
is described in terms of eager concurrency: all program units will be executed concurrently
as soon as they are reached, the only source of delay being suspension due to an attempt
to read an unbound DSA variable. The concurrency in the languages is very fine-grained
— many concurrent tasks will be spawned, and each of these tasks will be relatively small,
such as a goal or function evaluation. Finally, the fact that tasks suspend when trying to
read an unbound DSA variable implies that the languages are subject to the possibility of
deadlock, and thus the semantics are truly concurrent. If an attempt is made at compile
time to decide the order of execution of tasks (e.g., for uniprocessor execution), care must
be taken to ensure that some latter task is not responsible for providing a binding which
some earlier task needs to proceed.

This problem of static scheduling to increase task granularity while avoiding deadlock
is a main component of compilers for executing these languages on high-performance muiti-
processors (11, 16, 19, 22, 23, 29]. Comparative analysis of different partitioning techniques
is best achieved by first developing an intermediate language common to the DSA language
family. A common language allows us to accurately compare currently proposed analy-
ses, as well as develop a single, unified analysis technique. The latter will help concurrent
declarative language researchers to avoid unconsciously duplicating past research. The ad-
vantage of defining an intermediate language as opposed to an intermediate form (i.e., a
non-executable structure) is that the operational semantics of the language can assist us in
formalizing and showing correctness of the static analyses.

The common intermediate language (CIL) or kernel language presented attempts to
draw together the functional and logic programming communities. By sharing a CIL foun-
dation, it will be easier to share ideas and implementations, exchange programs and reduce
harmful diversity. However, we do not seek uniformity. There are clear differences between
these languages. But having a common framework will allow us more easily to highlight
and study these differences. In the next section, we develop the CIL incrementally, with a
rationale for each extension.

3 Common Intermediate Language

In this section we introduce the main features of our kernel language through examples. In
particular, we are interested in capturing the essential features needed to support DSA vari-
ables. At the outset we assume that a CIL program produces a unique result, independently
of evaluation order. Thus, for instance, we disallow Prolog programs that produce multi-
ple solutions, and concurrent logic procedures with non-mutually exclusive guards that are
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sum({Xs, §} — sum’(Xs,0,5). §1

sum’([], S, 5). §2
sum’([X | Xs], P, S) « plus(X, P, P'), sum'(Xs, P', 5). §3

plus(0,0,0)
plus(0,1,1)
plus(1,0,1).
plus(2,0,2)
plus(2,1,3)

Figure 1: Sample Prolog Program

sum({Xs) — sum’(Xs,0) §1

sum'([ ], P) —» P 52

sum'([X | Xs],P)— { P’ plus(X, P) £3
S sum'(Xs, P')

}

W

in

plus{0,0) — 0
plus(0,1) =1
plus(1,0) = 1
plus(2,0) — 2
plus(2,1) — 3

Figure 2: Sample Program in Kernel Language

truly indeterminate, e.g., stream mergers (which can easily be relegated to system-defined
builtins).

Both concurrent logic languages and functional languages have gone through some evo-
lution (and deevolution [27]) to support both parallelism and determinacy. Functional
languages, on the one hand, restrict the handling of state, while concurrent logic languages
restrict unification and backtracking. Consider the Prolog program in Figure 1.

Given a list of numbers,? sum computes the sum of its elements. Two selection rules are
in play: clauses are selected top-down, and body goals are selected in left-to-right order.
Backtracking undoes bindings that lead to local and nonlocal failures. In this example,
even if the body goals of sum’ were reversed, or the clauses of plus were reordered, a query
with a ground input list would be guaranteed by backtracking to produce a correct solution
(although possibly very inefficiently!)

We can rewrite the above example program in a committed-choice language, removing

¥We represent a list as [ X|Xs |, where X is the head and Xs is the tail of the list.



backtracking and restricting the clause selection to matching. In Parlog [8] or Strand
the program remains textually identical to the one in Prolog, with the inclusion of mode
declarations: sum(?,7), sum’(7,7,”), and plus(?,?,”). The input mode ‘?”’ indicates that
the passed parameter must be bound and the **’ indicates that the argument binding is
produced by the procedure itself. Other committed-choice languages indicate these ask and
tell unifications in syntactically different ways, but the idea is the same.

In functional language terminology, we say that plus is sirict in both of its input ar-
guments. We can translate the above clauses into our kernel language as shown in Figure
2.

A typical query is written as {Res = sum([1,2]) in Res}. The kernel language semantics
allows a variable to appear on the left-hand side of only one equation (the output instance),
and on the right-hand side of multiple equations (the input instances). The key point
enabling this translation is the determination of variable modes. This is difficult to do in
many cases, and impossible in general for an unrestricted language, as we discuss in the
next section.

Note that the kernel language is essentially a greph rewriting system |1, 4]: each clause
is translated into a rewrite rule. Note also that in order to respect the communication
pattern expressed in a logic program via logical variables, the kernel language must allow
assignment of a name to each computation. For example, in the atom plus(X, P, P'), P’
denotes the result of the operation. We make this explicit by saying P’ = plus(X, P). Thus
the right-hand side of our rewrite rules are not just simple terms, as in rule §1, but can
be a set of equations of the form oy = #;,++,a, = t,, where all left-hand-side variables
are distinct. The in keyword denotes the result of the term: for example, the result of rule
§3 is S. Note that in the term {a; = #;,---,an = t, in o;} the order of the equations
is irrelevant. We discuss graph rewriting semantics in Section 3.2, after first dealing with
mode analysis.

3.1 Mode Analysis

In logic programs, including committed-choice programs, no syntactic distinction is made
between variables and their subterms which have output mode and are thus being bound in
an occurrence, and those which have input mode and are thus being read in an occurrence.
Thus, some form of mode analysis (e.g., 28, 31]) or mode declarations [26] are required for
translation into our kernel language. However, these methods are not perfect. For example,
array elements can be aliased by indexing accesses, which means we might not be fully
knowledgeable about all modes in an array. Furthermore, without good general aliasing
analysis, these unknown array modes could “contaminate” the remainder of the program
(to date, no mode analyzers do the sort of aliasing analysis required to effectively control
this contamination).

Another point is that a certain class of automatic mode analyzers require language re-
strictions based on the concept of permissible modes [25, 31]. Sundararajan [25] defines a
static analysis technique for determining a minimal set of permissible modes for a Prolog
program. This is complicated by the lack of restrictions on Prolog unification. As discussed
earlier, committed-choice languages restrict unification to ask and tell, making mode analy-



sis considerably less complex. To further simplify the analysis, Ueda and Morita [31] restrict
the language family to a “fully-moded” subset wherein each logic variable can have only a
single producer. Furthermore, the subset requires equal modes in corresponding argument
positions of a procedure’s defining clauses (and all corresponding subterms within those
arguments). These restrictions enable efficient, practical mode analysis [28].

Note that in the concurrent logic program of Figure 1 the processes spawned in clause
§3 communicate through the logical variable P/, while in our setting the communication is
rendered via a data dependency, as shown in clause §3 of Figure 2. This provides a hint
for later phases of compilation that it is safe to sequentialize plus and sum’. However, if
the implementation desires to execute plus(X, P) and the call to sum’ in parallel then P’
will have to be implemented as a DSA variable. The key point is that instead of restricting
programs to use only DSA variables (as in concurrent languages), programs written in
the kernel language may explicitly indicate points where synchronization is not needed to
respect the language semantics. The kernel language implementation may still eliminate
some synchronization points through static analysis, as well as inserting synchronization
points if desired.

There are programs that canrnot be consistently moded, and thus cannot be translated
into the kernel language as it now stands. Furthermore, even fully-moded programs can
have variable occurrences in which some portion of the occurrence’s term structure is read,
and another portion written. This condition also precludes translation. We discuss an
extension to deal with both of these problems in Section 3.4, after first discussing the basic
rewriting semantics.

3.2 Rewrite Semantics

Let us now present the execution of a query to the previous example following a rewrite
semantics. We start out with the term {Res = sum([1,2]) in Res}, by applying rule §1 we
obtain:

{Res = sum'([1,2],0) in Res}

by applying rule §3 we have:

{ Res = { P" = plus(1,0)
S = sum'([2],P")
in S’}
in Res}

By pattern matching sum’([1,2],0) with the left-hand side of rule §3 we have created the
bindings X = 1, Xs = [2] : we then create an instance of the right-hand side of the rule.
This corresponds to the renaming done before matching in concurrent logic languages, and
can also be seen as the allocation of a frame in the context of a procedure call. In the
kernel language we want to eliminate all syntactic sugar, and thus we will consider the



SE € Simple Expression

Varigble = X|Y|Z]|-..

Constant = Integer | Boolean | ---

SE := Variable | Constant

Term = SE|f*(SE,,---,SE,)

Block = {[Veriable = Term|]* in SE}
Clause := Term — Block | Term — Term
Program  := [Clause|*

Figure 3: The Grammar of Kernelg

above program equivalent to:

{ Res = &
P’ = plus(1,0)
S = sum'([2],P")
in Res}

That is, the internal nesting of blocks does not matter. In the above program we can now
execute, for example, the third expression, obtaining:

{ Res = &
P" = bplus(1,0)
s = sum((],P")
P" = plus(2,P")
in Res}

No conflict of names will arise, because at each step of the execution new names are intro-
duced. Note also that plus(2, P") cannot be executed until P" gets a value, that is, until
plus(1,0) has executed.

There is a major difference between the computational model presented here and the one
usually employed to give the operational semantics of concurrent languages. In our approach
we do not keep a separate component describing the current value of each variable. Instead,
these “substitutions” are kept directly in the term itself. Our preliminary kernel language
is basically a system of recursive equations over a first-order signature ¥, as illustrated in
Figure 3. Note that each functional symbol is applied to simple expressions only: that
is, we assume that each expression has been given a name. It is possible to show that the
term-rewriting system of Figure 3 is confluent, though this is outside the scope of this paper.
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3.3 Multiple Values

Concurrent logic procedures can also return multiple values, as shown in the following
Strand example:

distribute([send(1, X) | Xs], Outl, Out2) «

Outl! := [X | Outl’], distribute(Xs, Outl’, Qut2).
distribute([send(2, X) | Xs}, Outl, Out2) —

Out? := [X | Out?’], distribute( Xs, Out1, Out2’).
distribute([ |, Out!, Out2) — Ouil =], Out2 := [].

In order to translate the above clauses we need to extend Kernely by allowing multiple
return values. The need for multiple-return-value facilities in intermediate languages has
been illustrated in the context of functional languages [3). A new language, Kernel;, is
obtained by changing the production of the syntactic category Block as follows:

Block == {[Variable- - Variable = Term|* in SE - -- SE}

Thus the translation of the above program will be:

distribute([send(1, X') | Xs]) — { Out? = [X| Outl]
Outl’ Out2 = distribute(Xs)
in Qut! Cut2}
distribute([send(2, X) | Xs]) — { Out2 = [X| Out2"
Out! Out?' = distribute(Xs)
in OQut! Out2}
distribute([ ]} — [] [}

According to the semantics of the previous section, an invocation of a procedure with multi-
ple return values will be rewritten into multiple expressions. These expressions correspond
to the return values and are evaluated concurrently. If a concurrent program is fully moded,
t.e., if no occurrence of a variable corresponds to multiple modes, then the program can be
translated into a Kernel; program. In the next section, we tackle the problem of translating
programs that do not meet these constraints.

3.4 Dynamic-Single-Assignment (DSA) Variables

A more powerful way to synchronize concurrent expression evaluation in the CIL is via
dynamic-single-assignment (DSA) variables. Consider the following Strand program:

counter(X) « counter' (X, 0).

counter’([clear | Xs}, C) — counter’(Xs,0).
counter’([add | Xs|,C) « C'isC + 1, counter'(Xs, C").
counter’([read(X) | Xs],C) — X := C, counter’(Xs, C).
counter’([ |, C).



Mode analysis can detect that the (first argument) stream is input and also that the
variable C is inpuf; however, the stream contains further variables that need to be instan-
tiated. Kernel; does not allow this because procedure formal parameters are required to
be bound by the caller. In other words, a variable is simply a name of a value and every
variable is bound at the point where it is allocated. In order to translate the above program
into the CIL we now extend the kernel language with DSA variables.

A DSA variable can be allocated and bound at two different program points. It is
allocated via the Mk-Var primitive. Associated with a DSA variable there are two operations:
read and write. The read operation fetches the value of a DSA variable: however, if ne value
has yet been given to the DSA variable, the read is suspended until a write operation gives
the variable a value. Moreover, if an attempt is made to write a DSA variable that has
already been written, an error will be raised and execution of the program will fail. We thus
extend the set of predefined function symbols with two new operators: Store of arity two
(a DSA variable and the value to be stored), and Select, of arity one (the DSA variable).
Finally, we will relax the restriction that a block must return a value, since some blocks
may be invoked only for their side-effects. We use the special identifier “.” as indication
that the expression does not return a meaningful result.

The translated program will be:

counter(X) — counter’(X,0).

counter’([clear | Xs],C) — counter'(Xs, 0).
counter’([add | X5],C) = { C' = C+1
- = counter'(Xs,C")}
counter'([read(X) | Xs],C) — { . = store(X, ()
- = counter'(Xs,C)}
counter'([],C) — { }.

For example, we can invoke the counter with the following expression:

{ A = Mk-Var
B = Mk-Var
- = counter([add, add, read(A), add, read(B)])}

As with Kernely, it is possible to show that the extended term-rewriting system is confluent.

In order to express the notion of guards present in concurrent logic languages we need
to further extend the kernel language with the concept of conditional rewrite rules. Thus
for example, we will allow a rule to be expressed as: | — v P, where P is a set of “flat”
predicates, e.g., builtins such as </2. We will say that the above rule is applicable only if
P is true. The syntax of our final kernel language, Kernely, is given in Figure 4.

4 Partitioning Techniques

Compile-time partitioning of concurrent declarative languages is difficult, because any par-
titioning technique must be able to significantly increase the thread size while avoiding

9



Veriable = X|Y|Z]|---

Constant := Integer | Boolean | ---

SE := Variable | Constant

Term = SE|f*((SE),--,(SE)n) | Select(SE} | Mk-Var
Block := {[Statement]* in SE-..SE}

Statement = Binding | Command

Binding = Variable - - - Variable = Term

Commands :1:= Store(SE, SE)

Clause = Term — Block [Predicate]* | Term — Term [Predicate]*
Predicate = <(SE,SE)|>(SE,SE)|---

Program := [Clause]*

Figure 4: The Grammar of Kernel,

the accidental introduction of deadlock. Sometimes the correct order of execution of two
processes can only be determined dynamically. Such processes have to be identified and
placed in separate threads. This is especially intricate for concurrent logic programming lan-
guages, because of the prevalence of logic variables, which can cause hidden cycles through
aliasing.* Non-strict functional languages have analogous problems with hidden cycles
through I-structures.

Several researchers have explored the problem of thread partitioning of non-strict func-
tional languages [11, 16, 22, 23, 29]. While most of the techniques produce threads within
a function and in isolation from the rest of the program, the analysis of Traub et al. [30],
referred to in this paper as DD analysis, attempts to improve the thread size within a
function by propagating global dependence information. The analysis we call AB analysis
(after the sets A and B used in the analysis), proposed by Coorg [9], is a modification of DD
analysis which achieves better partitioning across recursive calls. Partitioning techniques
have also been proposed in the context of granularity analysis for concurrent logic program-
ming languages, most significant of which is the analysis proposed by King and Soper (18],
referred to in this paper as coloring analysis. This technique also uses global dependence
information to produce partitions.

Higher granularity threads lead to lower process-creation, management, and communi-
cation overheads. However excessive sequentialization could be detrimental to performance,
because useful parallelism may be lost. Unlike DD and AB analyses, coloring analysis at-
tempts to control the granularity of the threads by performing a rather crude granularity
analysis [17]. This is done by classifying terms as constant, linear, or non-linear depending
upon the estimated cumulative difference between the growth of computation and commu-
nication during the execution lifespan. The constant class corresponds to terms which are
builtins, or are defined in terms of constant terms. The linear class corresponds to either
non-recursive or linearly recursive functions. These are fine-grained, whereas the non-linear
class (neither constant nor recursive) corresponds to functions which are typically coarse-
grained. This classification gives a simple prescription for controlling granularity: two terms

4 Aliasing occurs when two or more identifiers are simultaneously bound to the same variable
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which are non-linear are allocated to different partitions, whereas any other pair of terms
can potentially be allocated to the same partition.

The similarities of non-strict functional languages with I-structures and committed-
choice languages with logic variables lead us to believe that partitioning techniques applica-
ble in one language domain will be successful in the other. While the techniques developed
for different language families differ in their methodology and input, there are also some
similarities. The translation of both non-strict functional languages and committed-choice
languages into the common intermediate language (Kernelp, introduced in Section 3) pro-
vides a common framework for examining the different analysis techniques. This facilitates
“uncovering” the relative advantages and disadvantages of the analyses, and determining
future directions for developing improved partitioning analyses.

In Section 4.1, we present the definitions of thread which are used in the analyses. We
present the three analyses discussed above in Sections 4.2, 4.3, and 4.4. These descriptions
are simplified from the originals for expository purposes. The similarities and differences
between the three partitioning techniques are discussed in Section 4.5. In order to com-
pare and contrast the different techniques, a single example will be used as an illustration
throughout. Figure 5 presents a Strand program with variables renamed apart. Figure 6
presents the program’s translation into the CIL. Though no DSA variables are needed for
the translation, the variables I’ and L' in the function f are defined as DSA variables for
the sole purpose of illustration.

4.1 Thread Definitions

The proposed techniques for partitioning differ in their formalizations of the notion of
“thread.” This difference has significant influence on the complexity of the techniques, and
on the results produced by them. It is thus important that the notion of thread used in
each technique be clearly defined.

o [Liberal Thread: A thread is defined to be a totally ordered set of atomic actions of
a program. Every function may have one or more threads. Thus a thread can itself
include calls to other threads, and also split-phase® memory accesses, which implies
that a thread may have to suspend and wait for other threads to complete before it
can continue.b

The liberal definition is commonly used in partitioning concurrent logic program-
ming languages, because it corresponds well to their operational semantics: since the
binding of logical variables is typically used for thread synchronization, threads will
typically suspend until some logical variable is bound, and then resume execution.

o Conservative Thread: A thread is defined to be a subset of the atomic actions com-
prising a program, such that: 1) the thread is contained within a single function; 2) a
compile-time ordering can be determined for the thread which is valid in all contexts

#Split-phase memory accesses involve separate request and response messages, potentially long latencies,
and potentially out-of-order responses.

%The inclusion of function calls in a thread could lead to more than one thread being spawned concurrently
in order to execute the callee. A stricter definition might require the callee to be completely sequentialized.

11



flA)={ H = Select(L)+1 81
f(A, B,G) « true | J = Select(l') +2 §2
His L+1, IM = g(AH) §3
JisI+2, L = h({A,J) §4
g(A, H,I, M}, B = I+M §5
h(A, J, L), G = M+L 86
BisI+ M, - = Store(I,I') §7
Gis M+ L. - = Store(L, L') §8
in B G}
g(C,D,P,Q) ~C>10|
Eis C - D, g¢C¢D)—»{E = C-D
FisC+D, F = C+D
g(ET F’ R? S)! R S = g(E! F)
PisR+1, P = R+1
Qis R+ S. Q = R+S
mPQ}YC>0.
g(C,PQ)—C< 0|
PisC-2, gC.)—={P = C-2
Qis C+3. Q@ = C+3
inPQR}C<O.
hK,,T)—K>0|
Tis K - 4. hK,o)—={T = K-4
inT} K > 0.
h(K,N,T) — K <0 |
Tis K — N. h(K,N)={T = K-N
inT} K <0.
Figure 5: A Sample Strand Program
Figure 6: The Sample Program in the CIL

in which the containing function can be invoked, and 3) once the first instruction in a
thread is executed, it is always possible to execute each of the remaining instructions
in the compile-time ordering without pause, interruption, or execution of instructions
from other threads.

The conservative definition is used in partitioning “dataflow” languages. Synchro-
nization only occurs at the start of the thread, and a thread, once scheduled, runs to
completion. Thus, function calls and split-phase memory accesses result in multiple
threads. Also, multiple clauses result in separate threads for each clause.

Both conservative and liberal threads wait until their input variables have values. Thus
synchronization is required for the input variables. In the case of liberal threads, synchro-
nization may also be required for variables accessed inside the thread. This synchronization
is achieved with a family of strict identity operators S, (after Coorg [9]). S, waits until all
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of its n arguments are defined, and then returns the arguments as its result.”

4.2 DD (Demand-Dependence) Analysis

The DD analysis technique proposed by Traub et al. [30] uses dependence and demand
information to reduce modified forms of dataflow graphs. Their partitioning technique is
based on a greedy algorithm which attempts to make the threads as large as possible. This
approach avoids the danger of oversequentializing because of the size limits imposed by the
conservative definition of the thread, the language model, the use of split-phase accesses, and
the control paradigm. The program to be partitioned is expressed as a structured dataflow
graph, which consists of a collection of directed acyclic graphs (DAGs) describing CIL blocks
and interfaces which describe how the blocks relate to one another. The predicate used to
select a clause of a multiple-clause CIL function is encoded in the interface.

A CIL program can be translated into this representation using a methodology similar
to the one described by Nikhil [21}. Figure 7 shows the structured dataflow graph repre-
sentation of the sample CIL program shown in Figure 6. The representation of function
h is not given in Figure 7 due to space limitations. The vertices of the DAGs describing
the basic blocks represent primitive operators, and edges indicate dependences. These are
augmented with annotations which encode information about some operators’ behavior and
interrelationships: these annotations are used extensively during analysis. In addition to
the arithmetic and logical operators, the operator set includes send and recv (“receive”) op-
erators which communicate values between basic blocks corresponding to function linkage
in the CIL. |-Fetch and |-Store are synchronizing split-phase memory operators, where the
response to an |-Fetch is not received until a value is written at that location. The response
of an |-Fetch is received by an |-F-Resp (*I-Fetch Response”) operator. Every Select term
in the source CIL program is replaced by an I-Fetch and I-F-Resp pair. Nodes 1 and 2 of
Figure 7 have been transformed in this way. Similarly, a Store command in the source CIL
program is translated into an |-Store operator.

Three forms of dependences are expressed in the graph representation: certain, indirect,
and potential [30]. A certain dependence, indicated by a straight edge between two nodes,
represents an ordering constraint due to a data dependence which holds for every invocation
of the function. In Figure 7 the edge connecting nodes 3 and 4 indicates a certain depen-
dence. An indirect dependence, represented by a squiggly edge, is a dependence completed
through one or more vertices in a different basic block. An indirect dependence exists be-
tween nodes 1 and 2 of Figure 7. A potential dependence represents an ordering constraint
due to a data dependence that may either differ depending on the context of function in-
vocation (say because of a query), or is otherwise unknown at compile time. All vertices
that may be end-points of incoming potential dependences are annotated with inlet anno-
tations and those that may be outgoing potential dependences are annotated with outlet
annotations. These annotations, represented by sets of names, link potential corresponding
outlets and inlets. In Figure 7 there is a potential dependency between nodes 29 and 23,
and between nodes 40 and 23 (via variable P'). These dependencies are completed through

"Thus, an S, operator is equivalent to n Sy operators, one for each variable. An S, operator is similar
to the Select operator of the CIL (Section 3.4).
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Figure 7: Structured Dataflow Graph Representation of the Sample Program
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the two clauses of function g. The dependencies are potential because it is not known at
compile time which of the two clauses will be selected by a particular call.

The overall partitioning technique consists of the iterative application of two stages:
basic-block partitioning and global propagation. We now explain each of these in turn.

4.2.1 Basic-Block Partitioning

Basic-block partitioning is used to group the terms of a CIL block into disjoint subsets
that are trivially mapped into threads. The basic-block partitioning algorithm, which is
applied to the DAG corresponding to each of the CIL blocks, consists of dependence-set
partitioning and demand-set partitioning. Dependence-set partitioning forms partitions by
grouping together all vertices that depend on the same set of inlets. Demand-set partitioning
groups together all vertices which are demanded by the same set of outlets. The basic-block
partitioning algorithm iteratively applies dependence-set and demand-set partitioning. This
is done by considering each thread formed during a partitioning pass as a node of a reduced
graph, and applying the next iteration to the reduced graph. Thus dependence-set and
demand-set partitioning algorithms are repeatedly applied, forming a reduced graph at
each stage, until the number of partitions does not change.

Since no distinction is made between certain and indirect edges, there may be two
vertices in the same partition which are connected by an indirect edge. Subpartitioning is
applied to divide such a partition into subsets so that the nodes connected by an indirect
edge are in different partitions. Subpartitioning is performed after each iteration of the
dependence-set and demand-set partitioning algorithms.

As an example of basic-block partitioning and subpartitioning, consider the graph repre-
sentation of function f in Figure 7 leading to the partitioning shown in Figure 8. A detailed
trace of propagation is shown in Figure 9. Initially the dependence set of nodes 14 and 15 is
{P,Q}. Similarly each pair of nodes {12,44}, {17,18}, and {16,45} have equal dependence
sets. Hence these pairs are placed in the same partitions during the dependence iteration
shown in the lower portion of Figure 9. These partitions are labeled T, Tk, Ty7, and Tig
in Figure 8. Node 13 is not placed in any of these partitions because its dependence set is
different from the others. Partitioning this portion of the graph does not require additional
iterations; however, in general multiple passes may be needed.

Simple demand-set partitioning would place node 1 which fetches L, in the same par-
tition as the nodes dependent upon it, .e., nodes 2, 3, and 4. Since a split-phase access
cannot be placed in a conservative thread, subpartitioning is used to identify the presence
of an indirect edge in a partition and then split the partition across the indirect edge. Hence
node 1 is placed in a separate partition, and not with nodes 2, 3, and 4.

4.2.2 Global Propagation

The effectiveness of the basic-block partitioning algorithm is limited by its inability to
propagate dependence and demand information across function call boundaries. Global
propagation derives dependence information across function call boundaries and uses it to
improve partitioning. The information gained during the partitioning of a function p may be
used to form larger threads when partitioning another function q which calls p, in contrast
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Figure 8: Sample Program After Basic-Block Partitioning
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Figure 9: Detailed Propagation of Dependence Sets

to partitioning q in isolation. If q is known to be the only caller of p, then the partitioning
information from q can likewise improve partitioning of p. This process is iterated to arrive
at mutually improved versions of both q and p.

As an abstract illustration, consider the partitions for function g in Figure 8. The input
variable P for partition T5, and the input variable @ for partition T are always produced
together, either by partition T13 or by partition T;4. If this dependence information were to
be propagated across the recursive call to function g, it would lead to merging of partitions
Ty5 and T, into one partition, say Ty7. Global propagation would then infer that the two
result arguments of the call to g from f are produced together. This new dependence infor-
mation would then be used to improve the partitioning of function f by merging partitions
Tg and T7. In a similar manner, demand information could also be globally propagated.

Unfortunately, DD analysis is not sophisticated enough to perform the above optimiza-
tion for recursive functions (it does fine for non-recursive functions). The problem lies in the
following: to combine basic-block partitioning and global propagation, a selection strategy

17



is needed to decide whether to repartition the basic blocks, or to globally propagate. The
selection strategy chosen by DD analysis is to form a call tree and alternately sweep from
the leaves to the root and from the root to the leaves. At each node, representing a function
composed of blocks, the node is repartitioned and the results are propagated alternately
upwards or downwards. The motivation behind using a tree is to facilitate termination. For
recursive programs, first a call graph is constructed. Next, a spanning tree is built from
the call graph. Finally, propagation is limited to function call interfaces in the spanning
tree, since propagating over a general call graph might result in non-termination because
of cycles.

For example, consider function g in Figure 8. In DD analysis, no information can be
propagated across the recursive call to g in the C > 0 clause. This prevents improvement
of the partitioning of blocks across the recursive call, because the dependence/demand
information has to be propagated through the certain and indirect edges of the callee,
which is function g itself. In contrast, the effect of this global optimization is obtained by
AB analysis (Section 4.4).

The CIL representation of the partitioned function f produced by DD analysis is given
in Figure 10. The program uses S, synchronization operators. There are 12 threads noted
in the function corresponding to those partitions outlined in Figure 8 (and also threads
Ti9 and Tpp representing the procedure calls). We purposely did not simplify the code to
emphasize its correspondence with the dataflow graph; however, assuming simple peephole
optimizations,® the code shown in Figure 11 can be produced. Although the CIL seman-
tics does not guarantee sequential execution within each thread, sequential execution is
acceptable. Certainly sequential code will be generated by most implementations, and the
synchronization operators specify just that.

4.3 Coloring Analysis

King and Soper’s coloring analysis [18] is an example of a partitioning technique that was
developed specifically for the family of concurrent logic programming languages. It was
motivated by the serial combinator proposed as the grain for parallelism in the context of
lazy graph reduction [13], which uses both data dependence information and granularity
information to build threads.

In all of the analyses considered in this paper, individual clauses of a program are con-
sidered in isolation, i.e., partitions do not include more than one clause. Coloring analysis
produces liberal threads, ¢.e., the partitions may include functions calls. In contrast, in DD
and AB analyses function calls break partitions.

Coloring analysis needs global information to infer the directionality of dataflow between
variables. To obtain this information, we perform mode analysis during the translation of
committed-choice logic programs to CIL programs (Section 3.1). King and Soper obtained
this information by means of abstract interpretation [18]. In DD analysis, global analysis
is performed during the actual partitioning step by propagating dependence information

BFor example, there is no need to issue a split-phase memory access for L (T}) because the result (L3)
will be strictly synchronized (T%).
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f(A) = { L3 = Select(L") T
L, = 5i(La) T,
H = Ly+1 f(A) - { Lz = Select(L’) T
A = 5(A4) T3 Ly = S)(L3) T
As = A H = Ly+1
Az = A; Ay = SI(A) T3
I3 = Select(I') Ty Iy = Select(I') Ty
I = 5:(13) Ts I, = 54(I3) Ty
J = Iy+2 J = ILh+2
I = 5 () Ts I = S5(I) Ts
= = Store(l;,I') - = Store(l},I")
Ity My = So(N,M3) Ty B = L+M; Ty
B = Iy+ M M; = Si(M) T
M; = S$1(M) Ty Ly = 5(I) Ty
L, = 5 (L) Ts - = Store(L, L’)
- = Store(L3, L") G = M3+ 1 Ty
LiMy = 5:(L1,M3) Tis IM = g(A H) Tig
G = Ml +L4 L = h(Ag,J) T20
I'M = g(Az, H) T]_g in B G}
L = h(A4s,J) T

in B G}

Figure 11: Peephole Optimized f

Figure 10: Partitions of f After DD Analysis

across function call boundaries. However in coloring analysis {(and in AB analysis) the
global analysis phase precedes the actual partitioning step.

A data dependence exists between two terms of a CIL function if one (or more) of the
results produced by one term may be consumed by the other term. This idea is formalized
by the data dependence relation Depend,, which is a relation defined over the set of terms
of a clause cof a function. A tuple of terms <t;,t; > € Depend,, if t; depends on ¢; (directly
or indirectly) for some invocation of clause ¢. Thus Depend, is a closure. Figure 12 presents
the unclosed version (for clarify) of relation Dependy of the sole clause of function f of Figure
6 as a cyclic directed graph.

A separation relation is derived from the data dependence relation, to isolate pairs of
terms which have to be allocated to different partitions because their data dependence can
only be resolved at run-time. Pairs of terms which have to be separated in this way are
indicated by a relation Separate,.. Specifically, <t1,t > € Separate, if <t;,t2> € Depend,
and < i5,#; > € Depend,. In function f of the sample program, closure of dependencies
create edges among nodes {1, 2, 3, 4, 7, 8}. Thus for instance <3,4> € Separate;. Figure
13 illustrates Separates.

King and Soper [17] define a similar separation relation Granular, based on the gran-
ularity of terms, so that two sufficiently coarse-grained terms can be placed in different
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Figure 12: Dependence Relation for f (Not Yet

Closed) Figure 13: Separation Relation for f
flA)= { H = Select(L')+1 8§ Ty
J = Select(IY+2 §2 T,
IM = g(AH) 83 Ty
L = h(4,J) 84 Ty
B = I+M §5
G = M+1L §6

Store(I,I') 87 Ty
% Store(L,L') §8 T;
in B G}

Figure 14: Partitions of f After Coloring Analysis

partitions. Their original analysis determined this relation by abstract interpretation over
a coarse domain, and proved somewhat inaccurate. However, their overall framework, dis-
cussed next, is quite intriguing.

Partitioning a clause of a function corresponds to computing a k-coloring with respect
to Tot. = Separate U Granular,, each color being interpreted as a separate partition. This
leads to partitioning the set of terms of the clause into

Partition, = { Partition.,, -, Partition 1}

in which ¢; € Partition., and t; € Partition, for m # n if <t;,t;> € Tot,. A minimum
of six colors (partitions) are needed to color Figure 13.

To turn a partition Pertition, into threads, a total order is assigned to each Partition, m,,
chosen not to contradict any data dependency in Depend .. This is done by topologically
sorting each partition. This step is common to all the techniques discussed. King and
Soper [19] describe a more general approach wherein a given partition can be split into
subpartitions, creating more threads. They warn that if the subpartitions are split such
that cycles are introduced in the data dependencies among the subpartitions, deadlock can
occur. We add that if subpartitioning is desired, subpartitions produced by a preorder
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traversal of the dependency graph are exactly those which do not contain such cycles.
Furthermore, simple analysis should be able to identify subpartitions of this form which are
both “safe” by King’s definition and contain maximal concurrency. Thus unless there are
compelling reasons to disobey the preorder, we suggest following it and thereby avoiding
the trial-and-error use of King's safety check.

Considering an example, function f of the sample program, application of the k-coloring
with respect to Tofs results in six partitions, only the fourth of which has multiple terms, as
shown in Figure 14.? The two clauses of function g result in two separate partitions because
their Tot. relations are empty. Clearly coloring does not produce an optimal solution for
f because a single cut through the dependency graph {Figure 12) can produce two DAGs
{see Figure 16). While DD analysis produces 12 partitions (Figure 10) for function f of
the sample program, coloring analysis produces only 6 partitions. However, this difference
is due to the different types of threads produced by the analyses, as further discussed in
Section 4.5.

4.4 AB (Above-Below)} Analysis

As was discussed in Section 4.2, DD partitioning technique does not handle recursion satis-
factorily. Strictness analysis [32] deals with recursion using fixed-point iteration. The AB
partitioning technique proposed by Coorg [9] attempts to alleviate this drawback of DD
analysis by incorporating the recursion handling property of strictness analysis.

4.4.1 Paths

The AB technique uses paths as a way of representing dependence-demand information.
Intuitively, a path of a term gives the set of inputs to a term which are required to produce
an output of that term. For example, in the term £ = X + Y, the path of Z is {X,Y}. In
the case of terms producing multiple outputs, a path is computed for each value returned.
In a function call, the outputs might be produced from different combinations of the inputs.
We use the special path L; to denote the case where a function call might infinite loop
in the i clause of the program (where the clauses are numbered in some order). In such
cases, a set of possible paths would be computed, only one of which would be valid during
any run-time call,

Figure 15 shows the set of paths of each term of the sample CIL program. Note that
the variables in paths resulting from function-call terms are the actuals of the call, rather
than the formals: thus in §4 the variables A and J appear rather than K and N. Call
§3 illustrates that terms with multiple output variables require multiple paths (although
in this case the paths happen to be the same). Call §3 also illustrates an interesting case
of path computation. From the second clause of g, we deduce that A is in the path set of
§3. The first clause of g, however, may not terminate due to the recursive call. In such a
case, we simply say that the path set should contain Lj, rather than {15, A, H}. In other
words, any path corresponding to a computation which “might compute L7 is itself L. This

*No granularity relations were assumed in this example.
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f(A) = { H = Select(L')+1 {{Z'}} §1
J = Select(I') +2 {{I'}} §2
IM = g(AH) {12, {A}} {12, {4}} §3
L = h(4,J) {{4},{4,7}} §4
B = I+M {{I,M}} §5
G = M+1L {{M,L}} 86
_ = Store(I,I') {{1}} §7
- = Store(L, L") {{L}} 88
in B G}
g(C,D)—>{E = C-D {{CTD}}
F = C+D {{C,D}}
RS = g(E:F) {-I-21{E}} {-LZ:{E}}
P = R+1 {{R}}
@ = R+S {{R,5}}
mPQYC>0.
§C,)—{P = C-2 {Hen
Q@ = C+3 {{Ch
i PQ}C L0
hK,)—={T = K-4 {{K}}
inT} K >0.
h(K,N)=-{T = K-N {{K,N}}
in T} K <0.

Figure 15: Sample Program with Paths

approximation is useful because it avoids nontermination of path analysis in recursive cases.
For an algorithm to construct paths from a program, see Coorg [9].

4.4.2 Preprocessing: Handling Cyclic Dependencies

The presence of cyclic dependencies in the program makes the task of propagating de-
pendence information difficult. Instead of handling cyclic dependencies in the step where
dependence information is propagated, AB analysis performs an initial step, dividing the
function into acyclic blocks: artificial clauses whose dependencies are well-ordered.

In the preprocessing stage, the terms of a block are formed into a block-graph, which
reflects the possible dependencies that can arise during execution. Nodes represent the terms
of the function block, and edges represent the dependencies between them. Edges which
represent dependencies through function calls are specially marked, so that subpartitioning
can be performed during analysis, by breaking threads across function calls. Figure 16
shows the block-graph of the function f. Node 9 corresponds to the input variable A4, while
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Figure 16: Dependency Graph of the Function f

f?(Aa HaL) - { IM = g(AiH) {J-21{A}} {-LQs{A}} §3
B = 1I+M {{I, M}} §5
G = M+L {{M, L}} §6
- = Store(,I"} {{1}} §7
inBGI'}

Figure 17: Example Acyclic Block With Paths

the other nodes correspond to the labeled terms shown in Figure 15.

Some technique of converting a cyclic graph to a DAG is used, e.g., standard depth-
first search [12]. For the function f, one partition of its graph contains the sets of nodes
{1,2,4,8,9} and {3,5,6,7}. This step, in which the call graph is transformed into two
DAGs, matches the graph-coloring step of coloring analysis. The DAGs produced may be
different than those produced by coloring; however, it is guaranteed that liberal threads
will be produced by both techniques. Nevertheless, for AB analysis, our goal is to produce
conservative threads, and therefore we need to do partitioning analysis over each DAG, as
explained in the next section. The analysis we will describe is different than DD analysis
and in practice seems to produce larger threads than DD analysis.

4.4.3 AB Partitioning Algorithm for Acyclic Blocks

The AB partitioning algorithm is applied to each acyclic block created by the preprocessing
step. As noted in in the previous section, one acyclic block resulting from the preprocessing
stage of AB analysis consists of terms {3,5,6,7} of function f. We display this block in
CIL clause format in Figure 17 and use if for illustration purposes throughout. The AB
partitioning algorithm groups together terms under one of two conditions:

23



Term | Term Cutputs | Term Inputs Path Tuples
§5 {B} {1, M} { (B,{{I,M}}} }
§6 {G} {M, L} {{G.{{M,L}}) }
§7 {I'} {1} ({1 }

Table 1: Abstraction of Acyclic Block

A: All the terms must completely execute before some particular set of outputs can be
produced.

B: Some particular set of inputs must be present in order to begin execution of any of the
terms.

'To achieve these conditions, the variables of the block are first divided into three categories:
input variables corresponding to inputs to the block, local wariables which are visible only
within the block, and output variables corresponding to results of the block. Next, each term
of the block is replaced by an abstraction consisting of a set of term oulput variables, a set
of term input variables, and a set of path tuples, one tuple for each term output variable.
Each path tuple has as its first element a term output variable, and as its second element
the path computed for this output variable. Our sample function f; has input variables A,
H and L, output variables B, G, and I', and local variables I and M. The abstract form
of fy is illustrated in Table 1.

For each variable in the block, both A and B sets are iteratively computed using a
standard dataflow technique.

The A set of an (block) output variable is the label corresponding to the variable itself (a
complete definition of label is given below). The A set of a local or input variable V'
contains the union of the A sets of all output variables of terms whose paths contain
V, together with labels introduced due to non-termination.

The B set of an (block) input variable is the A set of that variable. The B set of a local
or output variable V' contains the A set of V', and, if the path set associated with V'
does not contain any L paths, the intersection of the B sets of all the variables in Vs
path.

A label is either a variable name, or a variable name subscripted by a sequence of
clause numbers. The A and B sets are sets of labels. In the calculation of A and B
sets of the example, the labels I}, G2, and B, arise. The subscripts of a label indicate
that the production of the variable may depend on the termination of the program clauses
corresponding to those subscripts. When combining two labels with the same name, e.g., G
and Gy, the “extra” subscript is removed yielding G. In other words, {G} U {G2} = {G}.
In more generality, if one subscript is a prefix of another, e.g., G2, and Gy 34 only the prefix
is retained, yielding Ga. Furthermore, {G4} U {G3} = {G3,G4}.
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Var A B

Al {I',B,G} {I,B,G}
H | {1}, By, G2} | {13, B2, G}
L {G} {G}

I {#',B} {r', B}
M| {B,G} {B,G}
r {I'} {I', B}
B {B} {B}

G {G} {G}

Table 2: A and B Sets for the Example

Intuitively, the A set is very similar to the demand set of DD analysis. The main differ-
ence is that it contains labels rather than raw variables, so there is a bit more information
content. The B set serves the same function as the dependence set, but it is computed
indirectly from the A set rather than directly from the graph.

As an example of A sets, consider Table 2. (The reader is invited to trace through the
derivation of the B sets in a similar manner.) Output variables G, B and I’ have A sets
{G}, {B} and {I'} respectively by the first case of the A set definition. Input and local
variables are more complex. Consider M for example. Viewing Table 1, M is contained
in the term paths of path tuples belonging to terms §5 and §6. The corresponding term
outputs of these path tuples are {B} and {G} respectively. Thus we compute the union of
the A sets of B and G, which is {B} U {G} = {B,G}. Notice I and L sets are computed
in a similar manner. However, variables A and H require more heavy machinery. Because
these variables are consumed by a term that may not terminate (§3 of Table 1 has L in its
path tuples), we need to include outputs I and M in their A set calculation. Thus in this
example, the A sets of variables A and H are the same modulo label subscripts. H derives
its label subscript from the L, subscript, whereas A loses this subscript during the label
union operation.

Subpartitioning is used to guarantee that partitions themselves do not introduce a cycle
in the block, and that partitions do not contain any function call. Partitioning could
introduce a cycle within a thread in a block B given the following situation. Suppose there
are two terms T} executing after T; within the thread. It is possible that T; depends on Tj
indirectly through another thread or threads. Necessarily these threads will not be in block
B, but can arise nonetheless. Such scenarios are identified and the partitions are divided,
using the marked edges mentioned earlier. Also, partitions are broken at every call to a
function.

The AB partitioning algorithm proceeds iteratively, as follows:

1. The A sets corresponding to the current partitioning are computed.
2. Partitions that share the same A sets are combined.

3. Subpartitioning is performed.
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4. The B sets corresponding to the now-current partitioning are computed (using A from
step 1).

5. Partitions that share the same B sets are combined.
6. Subpartitioning is reperformed.

7. If the now-current partition is different from the initial partition (step 1), then go to
step 1.

The A and B sets calculated for our example during the first iteration of the AB analysis
algorithm are given in Table 2. The A set was calculated first, starting at the bottom of
the table, with the block output variables G, B, and I', and proceeding upward. From the
A sets, it was determined that the consumption of the block input L (not shown) could be
placed in the same partition with §6, so this merge was performed. Subpartitioning was
then performed, but had no effect. Next, the B set was calculated, starting at the top of
the table, with block input variables A, H, and L. From the B set it was determined that
§3 and §7 could be merged, since their B sets {I’, G} were identical. Subpartitioning was
again performed, and split §3 and §7 because of the function call to g in §3. Thus, after
one iteration, the partitions produced were identical with the initial partitions, except for
the combination of §7 and §6. Another iteration of the algorithm (not shown) produced no
change in this partitioning, and so analysis terminated.

Thus, the partitions shown in Figure 11 were produced by this analysis, i.e., the same
partitions produced by DD analysis with peephole optimization. Although no significant
improvement over DD analysis is seen here, AB analysis will partition g with threads T}5 and
Ti6 (Figure 8) merged, effectively doing global propagation optimization across recursive
calls that eludes DD analysis (Section 4.2.2).

4.5 Discussion

DD and AB partitioning techniques on one hand, and coloring analysis on the other, rep-
resent very different approaches developed for different programming language paradigms.
In order to accurately evaluate these approaches it is necessary to understand the issues
they address. These issues include the number of threads produced for a given program,
prevention of deadlock, simplicity, practicality, and the ability to tune the thread size to
the underlying implementation.

The translation of programs from various language families into the CIL provided us
with the same starting point for all the techniques discussed, facilitating a fair comparison.
All three partitioning techniques share the same basic analysis steps: collecting the data
dependencies between the terms of a function, grouping the terms into partitions, and
performing topological sort on the partitions to obtain threads.

The different stages in the three partitioning techniques are shown in Figure 18. Unlike
DD and AB analyses, coloring analysis attempts to control the granularity of the threads
(Section 4.3)., DD analysis infers the data dependencies in a program through dataflow anal-
ysis. Coloring analysis can use dependence information derived from a variety of sources,
such as mode analysis. AB analysis uses path analysis to derive dependence information.
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Figure 18: A Comparison of the Different Stages of DD, Coloring, and AB Analyses

DD analysis breaks threads at all points which could be involved in a cyclic dependency.
Coloring and AB analyses handle cyclic dependencies explicitly. Once the cycles have been
broken, coloring analysis proceeds to produce liberal threads. However, DD and AB anal-
yses, which produce conservative threads, attempt to improve the thread size by propagat-
ing dependence information across function call boundaries. Once partitions are produced,
threads are obtained in all cases by topologically sorting the partitions.

Different definitions of “thread” used in the analysis lead to a large difference in the
number of threads produced for the same program. In coloring analysis, a liberal thread
can include more than one function, and can have an arbitrary number of synchronizing and
long latency accesses (which may lead to suspensions). In DD and AB analyses, a thread is
a collection of instructions which does not contain procedure calls or synchronizing or long
latency accesses — synchronization occurs only at the beginning of the thread. Thus, in
DD and AB analyses, the requirement that split-phase accesses be kept in separate threads
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results in extra threads, and function calls split threads as well.

Another important reason for differences in the number of threads is that in DD and
AB analyses, a term will not be placed in a thread unless there is a dependency between
that term and some other term in that thread. Coloring analysis removes this constraint,
potentially leading to threads containing terms with no interdependencies. It is unclear
which of these two strategies produces optimal-size threads for practical programs: further
study is required.

DD analysis is based on a worst-case scenario. Inclusion of more than one function call
in a thread may cause deadlock, if the order of execution of the functions is determinable
only dynamically. To prevent introduction of deadlock, DD analysis breaks threads at all
function call boundaries. Similarly, inclusion of synchronizing accesses in threads may cause
deadlock, if each of two threads blocks waiting for bindings which can only be provided by
the other. In order to prevent any such possibility, DD analysis splits threads across all
synchronizing accesses. In real programs, not all functions require their scheduling order
to be determined at run time, not every synchronizing access results in deadlock, and not
every conditional produces cyclic dependencies. Instead of splitting threads only when
failing to split them might compromise the termination characteristics of the program, DD
analysis applies the same strategy in both safe and unsafe situations. This keeps the analysis
technique simple, but results in small thread size.

Moreover, in DD analysis there is no attempt to control the size of the thread. This is
based on the realization that, given the strict definition of a conservative thread, there is
practically no danger of over-sequentialization. In addition, the specialized hardware typi-
cally used for dataflow execution typically has low thread management overheads. However,
to efficiently utilize a conventional multiprocessor, thread size may need to be controlled
and load distribution may need to be performed.

AB analysis attempts to improve DD analysis while still retaining its simplicity. The
propagation of dependence information across recursive calls is improved by use of path
analysis, which identifies the presence of strict arguments in recursive calls using fixpoint
iteration, and uses this information to improve partitioning. To keep the partitioning tech-
nique simple, DD analysis breaks threads at all function call boundaries and synchronizing
accesses before applying the partitioning algorithm. AB analysis initially breaks threads to
remove cyclic dependencies. Later, it groups threads but ensures that function call bound-
aries and synchronizing accesses are not grouped during subpartitioning. This separation
facilitates better propagation of dependence information. AB analysis, like DD analysis,
does not include mechanisms for controlling the granularity of threads.

Coloring analysis alone produces liberal threads. The inclusion of multiple functions
and long latency accesses in liberal threads results in increased thread size. This can result
in inefficiency, for example thread state has to be stored and context switching has to be
performed on every suspension. If suspension is frequent, this overhead places a burden on
the underlying implementation. Coloring analysis provides no control over the number of
suspension points in a thread.

To summarize our results: DD analysis is a straightforward and very conservative
method of producing threads. The resulting thread size is small, especially given the global
nature of the analysis. AB analysis offers improvements over DD analysis in the handling of
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cyclic dependencies and recursion, while keeping its basic control structure. In contrast, col-
oring analysis obtains larger threads and has an integrated granularity control mechanism,
but the liberal threads it produces may have high overheads.

5 Conclusions and Future Work

Non-strict functional and concurrent logic languages seem to be strongly similar, although
this has not been widely recognized by researchers in these communities. Thus, solutions
to problems in one domain may well transfer to the other. In particular, the static analysis
problems encountered during compilation of these languages seem to be quite general: com-
parable solutions to these problems have been adopted independently in the two language
communities.

We thus suggest that translation of programs from both language families into a common
intermediate language has a number of attractive features. In particular, we note that 1) a
clear description of CIL semantics will permit easy definition of the semantics of traditional
languages in terms of the CIL; 2} optimizations performed on the CIL form will provide
compilation improvements for both language families, and 3) comparison between static
analysis algorithms for CIL programs is much easier than comparisons between algorithms
for static algorithms of programs written in a variety of different languages.

We propose a particular CIL, Kernelo (Figure 4), as a candidate. We note that its
semantics are easy to define via term rewriting, and that it seems to contain the important
features necessary for the straightforward translation of non-strict functional and concurrent
logic languages. While this language seems useful for illustrative purposes, one important
area for future work is in obtaining a final CIL design which satisfies all of our criteria, yet
is simple to understand, analyze, and implement.

By way of evaluation of our technique, and because it is important in its own right, we
consider a particular static analysis example, that of partitioning or threading concurrent
programs. A good partitioning strategy has to address several sometimes conflicting goals
[15]. The thread length has to be maximized in order to decrease thread switches, decrease
explicit synchronization, and increase pipeline utilization and locality. This however should
not be at the expense of exploitable parallelism, as the objective of partitioning is to create
threads containing little or no easily exploitable parallelism. It is also necessary to identify
portions of a program whose execution order is dynamically determined, so that they are
not statically scheduled in a single thread. The thread size should be flexible: the compiler
should be able to tune the size to the underlying hardware for efficiency.

We discuss three important thread-building algorithms. Our comparison was made a
great deal easier by the use of the CIL. We note some of the relative advantages and dis-
advantages of these techniques, and discuss their domains of applicability. The comparison
emphasizes that different thread definitions, motivated by different needs, lead to different
(though comparable) static analysis performance under various metrics.

Future work in the development of partitioning algorithms will have to address the issue
of obtaining optimal-sized threads based on a model that accounts for local vs. non-local
execution and communication for a given architecture. The resulting threads can then be
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efficiently executed on architectures designed to execute threaded programs as well as on
standard multiprocessors.
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