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Abstract

One popular approach to improving the performance of fine-grain concurrent lan-
guages is to partition programs into threads. This requires static analysis to determine
dependencies between tasks, to avoid placing a cycle within a thread. In the context
of concurrent logic programming (CLP) languages, dependency analysis requires mode
analysis. Simple argument modes are insufficient because dependencies can be hidden
within complex terms.

This paper describes and compares four compile-time analysis algorithms, based
on seminal work by Ueda and Morita, for deriving the path modes of concurrent logic
programs. A path describes a subterm of a procedure argument. The analyses are based
on constraint propagation over graphs, path partitioning, and model generation theorem
proving. All four analyses were implemented in KL1 to allow critical comparisons. We
discuss the issues of completeness and complexity, and present empirical performance
measurements for a benchmark suite, to determine utility. We show that the time and
space requirements of the analysis is comparable to compilation, and that completeness
is not problem for the programs studied.

This paper was submitted to the Journal of Programming Language Design and
Implemeniation.

DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE
UNIVERSITY OF OREGON






Contents
1 Introduction
2 Background: Paths and Modes

3 Constraint Propagation Algorithm

3.1 DataStructures . . . . . . . . v vt e e e e e e e e e e

3.2 GraphCreation . . . . . . . . . . . . .. e e e

3.3 Abstract Unification . ... ... ... .. . .. . .

34 OnCompleteness . . . . . . . v v v v it it e e e e e
4 Process Network Analyzer

4,1 Distributed Unification . . . . . . .. ... . . o e

4,2 Terminating Unification . .. .. ... ... .. ... .. ... ... ...

4,3 AccessingtheGraph . . ... .. ... ... .. ... oo,

4.4 Comparison with Static Analysis . . ... ...................
5 Finite Domain Analysis

51 On Completeness . . . . .. ... ... ... ...
6 Mode Inference Method

6.1 Model Generation . .. ... .. .. ... ... ... e e

6.2 Mode Analysisin MGTP . . .. .. ... i i et

6.3 On Completeness . . . . . v v v v vt v v vttt e e e e e e

7 Performance Comparison
7.1 Execution Measurements. . . . . . . . . . . .. 0 it e

8 Summary and Conclusions

References

13
14
15
15
15

16
18

19
19
20
22

23
24

29

30



1 Introduction

Mode informatjon has been shown to be quite useful in the efficient compilation of logic
programming languages. In concurrent logic programs, the logic variable is overloaded to
perform synchronization. Mode information can thus be used to optimize code generated for
argument matching, to avoid suspensions [20]. Pure demand-driven execution, also enabled
by mode information, can lead to better resource allocation and minimal work expended
[9]. Another optimization that can be driven by mode information is static partitioning of a
concurrent logic program into threads of higher granularity, for more efficient multiprocessor
execution [6, 8]. Mode information is useful not only for compiler optimization but also for
static bug detection. In the latter, the analyzer warns the programmer that variable usage
disobeys conventions (discussed below) and is thus likely to be erroneous.

In general, possible variable modes are ‘in’ (meaning that a variable will not be bound
by the current goal) and ‘out’ {meaning that a variable will not be bound outside of the
current goal). Traditionally, mode information facilitates the strength reduction of unifica-
tion operators into matches and assignments. There are numerous methods for automatic
derivation of mode information from logic programs, e.g., [1, 3, 4, 11]. Another option is
user declarations [2, 14], which we consider either incomplete or too much burden on the
programmer.

We are interested in concurrent logic programs in the FCP(:, | ) language family {13] that
include ask (passive unification for input matching) and tell (active unification for exporting
bindings) guards. This represents a broad class of flat committed-choice programs. Figure
1 shows a sort program used throughout the paper to illustrate the analysis techniques
discussed herein. A sample query would be: ?- ¢([2,1,3], y, [ ]), returning ¥ = [3,2,1].

A committed-choice logic program in this family is a set of guarded Horn clauses of
the form: “H - 4, ..., An : Th..., T | By, ..., By” where m,n,p > 0. H is the clause
head, A; is an Ask guard goal, T; is a Tell guard goal, and By is a body goal. The ¢’
operator separates the guard types, and the commit operator ‘|" divides the clause between
the guards and body. If p = 0 the clause is called a unit clause. A procedure is comprised
of a set of clauses with the same principle functor and arity for H. The guards are “flat”
when they are system-defined builtins.

Informally, a procedure invocation commits to a clause by matching the head arguments
(passive unification) and satisfying the guard goals. When a goal can commit to more than
one clause in a procedure, it commits to one of them nondeterministically (the others
candidates are thrown away). Structures appearing in the head and guard of a clause
cause suspension of execution if the corresponding argument of the goal is not sufficiently
instantiated. A suspended invocation may be resumed later when the variable associated
with the suspended invocation becomes sufficiently instantiated.

The satisfaction of the ask guards requires matching whereas the satisfaction of the tell
guards requires full unification. There are basically two types of tell unification: atomic
and eventual. TFor practical reasons [17, 13] we consider only eventual tell, where in effect
the unifications are executed after commit. This corresponds to languages such as Strand
and FGHC. Throughout this paper we show only normalized programs that explicitly list
tell guards to avoid any confusion.
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Figure 1: Quicksort FCP(:, | ) Program: Normalized Form (Clauses 1-5)

A program successfully terminates when, starting from an initial user query (a conjunct
of atoms), after some number of reduction steps, no goals remain to be executed, nor are
suspended. Alternatively, the program deadlocks if only suspended goals remain. A third
result is program feilure, which in a flat language is an exceptional occurrence that signals
program error.

Ueda and Morita [21] proposed a mode analysis scheme for such programs, based on
the representation of procedure paths and their relationships as rooted graphs (“rational
trees”). Unification over rational trees combines the mode information obtainable from the
various procedures. For example, in a procedure that manipulates a list data stream, we
might know that the mode of the car of the list (that is the current message) is the same
mode as the cadr (second message), caddr (third message), etc. This potentially infinite
set of “paths” is represented as a concise graph. Furthermore, a caller of this procedure
may constrain the car to be input mode. By unifying the caller and callee path graphs,
modes can be propagated. The analysis is restricted to “moded” flat committed-choice logic
programs. These are programs in which the mode of each path in a program is constant,
rather than a function of the occurrences of the path. This is not regarded as a major
drawback, since most non-moded flat committed-choice logic programs may be transformed
to moded form in a straightforward fashion.

The quicksort program is moded and in fact is fully moded, i.e., the modes of all paths
are known. Quicksort can be used to illustrate the power of mode analysis. Quicksort can
be entirely sequentialized (i.e., partilioned into a single thread), in the body goal order
shown, by using the modes to derive goal dependencies. A sequential implementation
can outperform a parallel implementation by better utilizing the underlying architecture
by reduced procedure invocation overheads, better register allocation, and other benefits.
We wrote an experimental FGHC-to-C compiler in another research project [8] to do this
sequentialization, with the result that our compiler-generated C program sorted a list of
500 integers in 2.2 sec. compared to 10.5 sec. on Monaco, a fast parallel FGHC system [18])



(on Sequent Symmetry). A handwritten C quicksort program (using the same list-based
algorithm) ran in 1.5 sec., only 50% faster than the translated code.

We chose this example to motivate the point that significant performance improvements
over traditional systems (Monaco is the fastest multiprocessor implementation of FGHC
that we know of ) can be achieved with this technique, and the speeds are getting closer to
optimized C. Although more sophisticated partitioning, based on granularity estimation [6]
or profiling [12], is needed to retain multiple threads for parallelism, mode analysis is still
required for safety, i.e., to keep cyclic dependencies out of a single thread.

This article presents a detailed description and empirical performance evaluation of four
alternative algorithms for implementing this basic mode analysis concept. The three most
significant results of this work are: 1) The analyzers presented are the first implementations
of the underlying theory; 2) The first empirical performance measurements of such analyses
are presented; 3) The analyzers proved to be competative with compilation in terms of
execution time and memory use requirements, and 4) It was found that the superior analysis
techniques are based on graph unification implemented by process networks, and model
generation theorem proving (MGTP) implemented by meta-compilation. These analyzers
are either fastest or use the least memory, and proved to be complete for the benchmarks
studied. We have already started to incorporate the most promising of these prototypes
within a full compiler to enable some of the optimizations previously discussed.

This article is organized as follows. Section 2 reviews the notions of paths, modes, and
Ueda and Morita’s original concept of mode analysis. The following four sections describe
specific algorithms and implementations performing mode analysis: constraint propagation
over a static graph (Section 3), constraint propagation over a dynamic (process network)
graph (Section 4), partitioning a finite-domain (Section 5), and model generation theorem
proving (Section 6). The algorithms are empirically evaluated and compared in Section 7
and conclusions are summarized in Section 8.

2 Background: Paths and Modes

Ueda and Morita’s notion of “path” is adopted as follows: a path p “derives” a subterm s
within a term ¢ (written p(t) - s) iff for some predicate f and some functors a,b,... the
subterm denoted by descending into  along the sequence {< f,i >, < e,j >, < b,k >,...}
(where < f,i > is the #** argument of the functor f) is s. A path thus corresponds to a
descent through the structure of some object being passed as an argument to a function
call. f is referred to as the “principal functor” of p. A program is “moded” if the modes
of all possible paths in the program are consistent, where each path may have one of two
modes: in or out. The following definitions are from Ueda and Morita [21].

Definition: Payom is a set of paths which begin with predicate symbols. Prern
is a set of paths which begin with function symbols. o

Ezample: Considering the quicksort example, < ¢/3,1><./2,2><./2,1> €
Patom, <./2,2><./2,1> € Preem (]



Definition: We define the set of modes M = Pyyom — {in,out}. This means
that a mode assigns either in or ouf to every possible path of every possible
instance of every possible goal. m]

Frample: Considering quicksort, the cadr of the first argument of procedure
¢/3 has an input mode specified as: m({< ¢/3,1>,<./2,2>,<./2,1>}) = in.
o

Definition: For a mode m € M and a path p € Pyyorm, a submode of m, denoted
m/p, is a function from Prerm to {in,out}, such that Vg € Pr.,.,,((m/p)(q) =

m(pq)). O

Example: Considering the quicksort example, when p = < ¢/3,1><./2,2>,
m/p represents a function from a set of the paths from the cdr of the first
argument of procedure ¢/3 to {in, out}. a

Analyses presented in this paper exploit the rules outlined by Ueda and Morita. Their
axioms are clarified and reformulated in Figure 2 (m(p) means the mode of path p).

3 Constraint Propagation Algorithm

In the constraint propagation algorithm [19], a graph is constructed representing the entire
program.! hierarchically, we compute and combine graphs at three levels: modules, proce-
dures, and clauses. Top-down, we envision first constructing such a graph for each module
of the program, and then connecting the graphs via imported /exported procedures. Within
a module, we utilize this same strategy of first constructing procedure graphs (“local” anal-
ysis) and then combining graphs via inter-procedure call sites. Within a procedure, we first
construct clause graphs, and then combine them via the heads. )

Graph combination is formally unification, as described in section 3.3. The method-
ology is guaranteed to terminate because graph unification can only reduce the structural
complexity. Termination occurs when no further reduction is possible. However, the scheme
is not guaranteed to terminate in the minimum number of graph reductions. In the future
we intend to experiment with heuristics to guide graph reduction to quicker termination
(see Section 3.3).

3.1 Data Structures

A program graph is a directed, multi-rooted, (possibly) cyclic graph composed of two types
of nodes. To clearly illustrate the following definitions, Figure 3 presents a portion of the
quicksort program graph. This portion corresponds to the initial graph for procedure ¢/3
(clause 2).

1To simplify the description of all the algorithms we discuss the analysis of a single program, rather than
a collection of program modules. Currently all the implementations globally analysis a single program at
one time. However, proper software engineering of these prototypes can easily produce incremental tools
that can analyze single modules in isolation (given mode information stored away from previous analyses of
other modules).



§1. For some path p in a clause, m(p) = in, if either

1. p leads to a non-variable in the head or bedy, or
2. p leads to a variable which occurs more than once in the head, or
3. p leads to a variable which also occurs in the guard at path py and m{pg) = in
§2. Two arguments of a tell unification have opposite modes, for all possible p, or more
formally: Vp m({<= /2,1>}-p) # m({<=/2,2>}-p)

§3. If there are exactly two “occurrences,” we have two possibilities:

1. If both occurrences are in the body, the modes of their paths are inverted.

2. If there is one {or more) occurrence in the head and one in the body, the modes
of their paths are the same.

4. If there are more than two “occurrences” of a shared variable (i.e., at least two occur-
rences in the body), the situation is even more complex:

1. If the body contains more than two occurrences of the shared variable and the
head has no occurrences, then one of the modes is oui, and the others are in.
This means that one of the occurrences is designated as the producer of this
variable.

2. If the head contains one (or more) occurrences of the shared variable (so the
body has two or more occurrences), then the modes are as follows:

(a) If the mode of the head occurrence is in, the modes of all body occurrences
are in as well.

(b) If the mode of the head occurrence is oul, then one of the body occurrences
is out, and the other body occurrences are in.

Figure 2: Ueda and Morita’s Mode Derivation Axioms (for Moded FGHC)
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Figure 4: First Local Unification of ¢/3 (Clause 2)
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Figure 5: Minimized Graph of Quicksort

Definition: A structure node (drawn as a square) represents a functor with zero
or more exit-ports corresponding to the functor’s arity. If the node corresponds
to a procedure name (for clause heads and body goals), there are no associated
entry-ports (i.e., it is a root). If the node corresponds to a data structure,
there is a single entry-port linked to a variable node unified with that term. A
structure node contains the following information: a unique identifier, functor,
and arity. (m}

Frample: Consider node 8 in Figure 3 holding the list functor of arity two.
The entry-port connects to variable node 6 (1) and the two exit-ports connect
to variable nodes 9 and 15 (z; and vs; respectively). m]

Definition: A variable node (drawn as a circle) represents a subset s of (unified)
variables in a clause. Intuitively we think of these variables as aliases, and upon
initial construction of the graph, s is a singleton (i.e., each unique variable in
the clause has its own variable node initially). A node contains k£ > 1 entry-
ports and 7 > 0 exit-ports, upon which directed edges are incident. A unique
entry-port corresponds to each clause instance of each variable in s. An exit-
port corresponds to a possible unification of the variable(s) to a term (exit-ports
connect to structure nodes).?

2 An invariant preserved by unification is that no two child (struciure) nodes of the same parent (variable)
node can have the same functor/arity (see discussion in Section 3.3).



A variable node contains the following information: a unique identifier and a
mode set m. An element of m is a vector of length £ containing self-consistent
modes for the variable instances of s. To facilitate the implementation, each
entry-port has a name: the identifier and exit-port number of its source node.
Elements of m are alternative mode interpretations of the program. Initially m
is computed by Ueda and Morita’s rules.® intuitively, graph reduction results in
removing elements from m as more constraints are applied by local and global
unifications. A fully-reduced graph, for a fully-moded program, has a singleton
m in each variable node. u}

Ezample: Consider node 15 in Figure 3 with entry-ports named (8/2,4/2).
node 15 holds variable vs; with mode set {(in,out),(out,in)}. this set derives
{from rule §3.1 in Figure 2. a

In general, initial graphs, like that in Figure 3, will be multi-rooted directed acyclic
graphs. The initial roots correspond to clause head functors, body goal functors, and
unification operators. In addition to the program graph, a partitioned node set is kept.
Initially, each node is a singleton member of its own partition (disjoint set).

The mode analysis consists of three phases: i) creating a normalized form and initial
graph; ii) removing unification operators from the graph, and iii) reducing the graph to a
minimal form. These are described in the following sections.

3.2 Graph Creation

Phase 1 converts a flat committed-choice program into normalized form, an example of
which is shown in Figure 1. Normalized form ensures that all variables are renamed apart
among clauses within the same procedure and that each clause is flattened, i.e., all head
structures and body goal structures are moved into ask and tell guards, respectively. An
initial program graph is created from the normalized form, including mode sets for each
variable node. The normalization implies a graph invariant that structure nodes cannot
point to structure nodes (and variable nodes cannot point to variable nodes): the graph is
a “layered network” (with cycles).

There is a minor trick required to deal with certain unification operators in phase
I. Naively, a goal z = f(y) would result in a structure node (=/2) pointing to another
structure node (f/1). To guarantee the invariant of a layered network, a dummy variable
node is place as an intermediary between these two structure nodes. This is effectively a
nameless placeholder.

In phase II we remove all root nodes corresponding to builtin predicates. Intuitively,
these predicates have fixed modes and thus their reduction acts as the boundary conditions
anchoring subsequent constraint propagation by unification. After phase II, the resulting
graph contains roots named only by clause heads and user-defined body goals. We list the
reduction methods below.

3The size of m increases with the complexity of the rules, e.g., rule §4 (figure 2) can produce several
vectors. By explicitly enumerating all possible modes initially, we simplify the analysis immeasurably.



e Passive unify operator in the ask guard (all head unifications have been normalized
into the guard). The structure node corresponding to the operator has two exit-
ports indicating the operands of the unification. The two variable nodes attached to
these exit-ports can be merged as follows. A cross-product of two mode sets is taken,
resulting in a set of vector pairs. We retain those pairs that have in mode for both
entry-ports arriving from the unification node, and discard all other pairs. The two
vectors in each remaining pair are concatenated, forming a new mode set. The two
variable nodes are fused into one node containing the new mode set just computed.
The entry-ports and modes corresponding to the unify operator are removed.

o Active (tell) unification goal. A similar merging operation is performed, keeping only
those vector pairs that have opposite modes at the positions corresponding to the
entry-ports arriving from the unification node (rule §2 in Figure 2).

o Other builtins. The modes of the variables in builtin goals are assigned by definition.
For example, arithmetic assigns all RHS variables to in and the LHS variable to out.
Vector builtins are assigned assuming that vectors remain fully ground throughout
their lifetimes — this assumption is usually correct, but of course can lead to incorrect
analysis. Unfortunately, given the aliasing problem, there is no way we know of to
guarantee correct mode assignment to vector elements.

3.3 Abstract Unification

Phase III of the analysis is to reduce the graph to a minimal form by successive node uni-
fications. We perform “local” reduction first by collapsing recursive call sites (by abstract
unification) with associated clause heads. Next we perform “global” reduction by unify-
ing root nodes from different procedures. The abstract unification algorithm is the same,
however, for any two (node) arguments, local or global.

Figure 6 gives the general graph unification algorithm (a particular feature of the al-
gorithm has been purposely removed to simplify the exposition: this is discussed in the
next section). We use the notation that a variable node v has the fields: v.in (vector of
entry-ports, each of the form id/index, where id is the parent’s node identifier and indez is
the parent’s exit-port index), v.out (set of exit-ports), and v.modes (set of mode vectors).
a structure node s has the fields: s.out (vector of exit-ports), and s.fun (functor/arity).

Unification is invoked as unify(a,b) of two nodes a and b (necessarily root structure
nodes). The result is either failure, or success and a new graph (including the node parti-
tioning) that represents the most general unification (mgu) of the two operands. implied
data structures used by the algorithm include the graph, the disjoint sets (i.e., node parti-
tioning), and a mark table associated with pairs of nodes.*

*Note that the new graph returned by unify has the same number of nodes as the original graph. However,
for practical purposes either of the input roots can be discarded, turning unneeded nodes into garbage. The
key point is that the graph must always be traversed according to the node partitions, so as the partitions
grow larger, effectively the graph shrinks. To ensure that the graph shrinks in practice, unneeded nodes
must be explicitly removed {rom the graph, an operation that we do not detail here.



unify(a, b) {
Ya, b clear mark({a,b})
sunify(a, )

sunify(a, b) {
if a.fun £ b.fun
return(failure)
if mark({a,b}) clear then {
set mark({a,b})
Yk € [1, arity(a)] {
if vunify(a/k, a.out[k], 6/k, b.out[k]) failure then
return{failure)

}

return{success)

} o}

vunify(i, ay, j, by) {
a = find_set(a,)
b = find_set(by)
if mark({a,b}) clear then {
set mark({a,b})
¢ = union(a,b)
— compute the compatible mode set
define u s.t. a.infu}=1
vs.t. binfv)=j
p = a.modes X b.modes
o ={(st)€p | 5] =[]}
if (p' empty) then
return(failure)
c.modes = { s || (my, ma, ..., My—1, Myt1, oy M) |
(s,0) €p', t=(my,ma,..,my,..mp) }
— compute the entry-port identifiers
let (p1,p2, .0y Py oy D) = buin

cin= a.an || (p1, P2, - Pu=1)Po1y oy M)
— compute the exit-ports identifiers

u=a.oul U b.out
Jfa={s.fun | s € a.out}
Jo = {s.fun | s € b.out)
i={s | fun€ fa N fi, 5.fun € u}
cout=a.oul U i
— unify children with the same functor/arity
Y(z,y) | = € a.oul,y € b.out {
if z.fun = y.fun
if sunify(z, y) fatlure then
return(failure)

}

return(success)

o)

Figure 6: One-Pass Rationail(-)Tree Unification Algorithm
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Procedures sunify (structure node unification) and wvunify (variable node unification)
follow recursive descents. Initially all marks are cleared (1). Circular structures that repre-
sent infinite paths are handled properly by marking node pairs at first visit (2). If a given
node pair has been previously marked, revisiting them immediately succeeds. Note that we
mark pairs instead of individual nodes to handle the case of unifying cyclic terms of unequal
periodicity.

Two important aperations for the disjoint sets data structure are union(z,y) and find_-
set(z). Function union(z,y) unites two disjoint sets, where z belongs to the first disjoint set
and y belongs to the second disjoint set. Procedure union returns the canonical name of
the partition (3), i.e., the least identifier of the nodes. This facilitates reusing graph nodes
while rebuilding the graph.® function find_set(z) returns the canonical name of the disjoint
set containing z.

The major complexity in the algorithm is in procedure vunify, where the abstract uni-
fication must merge the modes of the two argument nodes. First, mode vectors that are
contradictory are discarded (4). If all mode vectors are contradictory then a mode error
has occurred and unification fails. Otherwise redundant modes are removed and the two
mode vectors are concatenated (5). Next we create the entry-port identifiers associated
with the new mode vector (6). Lastly, children of the argument nodes that share equal
functor/arity must be recursively unified (8) The exit-port identifiers consist of a single
exit-port for each pair of children unified, included with exit-ports for all children for which
unification does not take place (7). Intuitively, a variable node forms or-branches with its
children, whereas a structure node forms and-branches with its children. In other words,
the least-upper-bound (lub) of the abstract unification semantics at a variable node is a
union of the structures that potentially concretely unify with the variable node.

Local analysis continues with unification of roots among clauses composing a single
procedure definition. Local analysis terminates when no two roots have the same functor
and arity within a procedure graph. This is perhaps not a time-optimal strategy, but was
selected, in our prototype, for its simplicity. Analyzing non-recursive clauses first, and then
unifying these clause-head roots with recursive call sites in other clauses, is expected to
terminate faster. The rationale is similar to quickly reaching a fix point in abstract in-
terpretation by approximating recursive calls with their corresponding non-recursive clause
input/output relationships.

After local analysis we perform global analysis which unifies roots among different pro-
cedure graphs. Global analysis terminates when each root in the entire program is unique.

Erample: Reconsider the quicksort program (Figure 1) to illustrate the unifi-
cation algorithm. First, we consider the second clause of ¢/3 and construct the
graph in Figure 3. Each node of the graph is assigned a unique identifier. Then
entry-ports, exit-ports, and modes are shown.

We start the local analysis for this graph by unifying the node 1 with node 3.
The result of this unification is shown in Figure 4.5 that is we unify all three

5Optionally, the canonical name can be defined to be a new identifier, aveiding node reuse. T'his might
facilitate searching for the modes of top-level variables, e.g., for data-dependency analysis.
8By convention we remove nodes 3, 12, and 13 from the illustration to clarify that they represent redun-

11



corresponding argument positions of both nodes. The first pair of arguments
unified is node 5 (entry-port 1) with node 13 (entry-port 2}. Initially these nodes
belong to their own partitions, so find_set returns 5 and 13. The union returns
the canonical name 5, the minimum of the two. Thus node 5 is overwritten with
the new (fused) variable node.

For example, all possible modes of node 5 entry-ports are {(in)} and the mode
set of node 13 is {(in,out),(out,in)}. the cross-product set is {(in)} x {(in,out),
(out,in)} = {(in,in,out), (in,out,in)}. Element {(in,in,out)} is discarded because
the first and the third positions (instances, or entry-ports, of the unified argu-
ment) do not match. Thus, the legal cross-product set is {(in,out,in)}. This is
reduced to the mode set {(in,out)} and entry-port vector (1/1,2/3), removing
redundancies. Note that by fusing the entry-port vectors, the edge from node 2
to node 13 has effectively been rerouted to fused node 5.

Exit-ports need to be traversed in a recursive descent. In this case, the exit-port
of node 5 is simply inherited by the new node since node 13 has no children.
Then the second and third arguments of nodes 1 and 3 are unified, resulting in
Figure 4. Node 1 and node 4 are then unified (not shown). This is the final
local unification possible for clause 2 since all roots now have unique functors.
We then do inter-clause analysis of ¢/3, unifying the roots of the two clauses of
g/3 (not shown). This represents the most information that can be derived from
q/3 alone. The s/4 modes are similarly derived locally, and then global analysis
is performed, unifying the s/4 graph with node 2 of the ¢/3 graph. We show
only the final resultant graph with all mode ambiguities removed in Figure 5.

Note that proper interpretation of the path modes requires the use of Ueda and
Morita’s “polarity rule” [21]. Thus if the path from a root passes through an odd
number of out modes (each attached to some variable node in the path), then the
final mode is the opposite of that listed. For example, {<¢/3,2>, <./2,2>}
passes through mode out at node 6 (Figure 5) and terminates at mode in at
node 6. Thus its correct mode is out. ]

3.4 On Completeness

Unification as previously specified is not complete in degenerate situations of the type
illustrated in Figure 7. In this case, variable X within procedure f/2 must not produce
output for the program to be moded. Il it did produce output, it would be sent out through
the head and into the self-recursive call: a contradiction. Note that procedure /1 induces
X to produce output a. However, our previous unification algorithm will notf detect the
mode conflict. The heart of the problem lies within f/2 which does not explicitly mention
structure s/1. If s/1 were introduced into this clause:

AXY) = X=3(), Y =0X) : true | f(X,).

dant information. In the implementation, these nodes might be kept in the graph if space was not a critical
resource.
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g = true: tree | f(-, Z), K(Z). (1)
FX,Y) = Y =bX) : true | f(X,.). (2)
h(b(s(W))) = true: W=a | true (3)

Figure 7: A Program with a Mode Contradition

the contradiction would become apparent to our analyzer. In general, however, it is impos-
sible to determine which structures are relevant to a given clause.

The key point is: whenever a shared variable is passed, perhaps indirectly, to both a
procedure head and a corresponding self call, we must not lose sight of rule §4 in Figure 2.
This is a2 degenerate form of the rule because the occurrences within the head and self call
must have identical modes.

To ensure that this constraint is enforced, in the complete algorithm variable nodes
potentially go through three states: normal, multiway, and shared. Initially, a variable
node is marked multiway if it is moded by rule §4, otherwise it is normal. If during graph
reduction a multiway node is unified with itself, its status changes to shared. Unification of
normal and multiway variable nodes proceed as previously described. However, unification
of a shared variable node with another variable node (of any type) is treated specially. This
is precisely the case that captures X in the example above.

First, the unification of the variable nodes themselves is performed as usual. However,
the recursive descent is modified. If all mode vectors within the fused variable are in on the
unification path, then this particular variable occurrence (represented by the entry port) is
a consumer in all possible scenarios. In fact, all variables within terms bound to that variable
must be consumers also because any producers would cause contractions as illustrated in
the previous example.

During the unification’s descent from the fused node, recursive unifications of child pairs
proceed normally ((8) in Figure 6). However, singleton children for which unification does
not take place are no longer inherited (cf. (7) in Figure 6). These children are not safe: they
may erroneously be producers. Thus we descend each such child, removing all mode vectors
with out along our path. This removes all contradictory senarios, potentially resulting in
an empty mode for some node, i.e., unification failure.

4 Process Network Analyzer

The previous constraint propagation algorithm was alternatively implemented by a process
network wherein each node of the graph was an active, concurrent process. Nodes communi-
cated by message passing over streams to accomplish reduction. The motivations for moving
the graph from a static data structure to an active process network are: 1) concurrency is
increased because updating the graph no longer bottlenecks the computation; 2) unification
of graph nodes corresponds to merging node processes, thus resource requirements made
by the analyzer decrease as execution proceeds, and 3) an active process network is an
elegant paradigm for this problem. This is an implementation alternative for the previous
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algorithm: it inherits completeness from that algorithm.

Translating the previous algorithm (Figure 6) requires the specification of how recursive
unification can proceed via message passing, how the distributed unification can terminate
(both successfully and by failure), and how the final mode information can be read from
the reduced graph. These issues are described in detail in the following sections.

4.1 Distributed Unification

A node process is defined manage a graph node (either a variable or structure node). The
node process contains state holding a unique integer identifier, a symbol (functor/arity for
structure nodes and the atom *$VAR? for variable nodes), mode information, and a flag
indicating if the node is from a clause head. Mode information consists of a set of mode
vectors and a vector of entry ports, as described in Section 3.1. In addition, a node has an
input stream, a list of output streams to children, and a global termination flag.

A node process acts on the following messages:

o unify(+Id,+50,~51,+Parents,+Ans,+Done): receipt of this message indicates that
this node is requested to initiate a unification with node Id on input stream 50.
Parents are the two parent nodes who made this unification request. The results of
the unification are St which is the tail of the stream to node Id and Ans, a short-
circuit chain for unification termination. Done is the short-circuit chain for message
termination.

¢ who(-Info,-In,-Dut,+Done): receipt of this message indicates that this node is to
be unified with another node, and therefore this node is to be terminated. Before
termination, the state of the node is passed back to the initiator node via back-
messages: Info, In, and Out. Done is the short-circuit chain for message termination.

¢ echo(+Path,+Done,+Parent,+Polarity,~Dut): Path is a list of steps representing
path from the root. the output Out is produced by joining this path with the mode
of this node. The mode at this node is dependent on inputs parent and Polarity.
The parent is needed to select the proper element of the mode vector(s): if all vectors
agree in mode, the node’s mode is in or out. if the polarity is odd, the mode toggles.
Otherwise, if any two vectors disagree, the mode is dk (don’t know). Done is the
short-circuit chain for message termination.

e kill: terminate this node process after sending kill messages to all children. This
message only appears during destruction of the entire graph after algorithm comple-
tion.

e [1: if the input stream is closed, this node closes all of its child streams. Closing
streams simply shuts down mergers associated with this node but does not terminate
the children, cf. kill.

The implementation shared phases I and II with the previous algorithm, and then
spawns a node process network from the static graph definition. The root list is grouped
into pairs which are unified, then these resulting trees are unified and so on, forming a
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logarithmic tree of unifications. There is no attempt to sort the unifications to reduce the
necessary work.

A node that receives a unify/6 message is the “active” member of a reduction. It sends
a who/4 message to the “passive” member, who returns all its state information on a back
message and terminates itself. For structure-structure unification, the node symbols are
compared and if matched, the active node sends unify/6 messages to one member of each
pair of children. otherwise failure occurs.

For variable-variable unification, first the mode sets must be merged as described in
Figure 6. If the merge is successful, then only children with matching functors are unified,
by sending unify/6 messages. Non-matching children are simply appended to the output
stream list of the active node. If the mode set merge is a failure, then the unification fails.

4.2 Terminating Unification

There are two levels of termination occurring within the analysis: termination of an indi-
vidual (tree) unification and termination of the entire (graph) unification. The former is
accomplished by stringing a short-circuit chain through all nodes involved in a root-to-root
unification. The far left-hand link is bound to ‘yes’. Each successful node reduction shorts
the chain. An failing reduction binds the right-hand link to ‘no’ which propagates to the
far right-hand link.

Termination of the entire graph reduction is accomplished in two ways. successful
termination must be indicated only after all messages have been processed. We string a
short-circuit chain through every message to handle this. When a message is read, its link
is shorted, and when all messages are read, the far left-hand link and far right-hand link are
shorted. Additionally, if an individual tree unification fails, a global termination variable
is set appropriately. All node processes share this termination variable and will discard all
incoming unify/6 messages once it is set.

4.3 Accessing the Graph

As described above, the graph can be accessed by echo/5 messages. A node must be careful
not to propagate an echo message if it already appears in the path contained in that message.
This rather arbitrary method cuts cycles in the graph immediately. We could elect to dump
out cyclic paths of any depth, but for the purposes of comparing the algorithms in this
paper, all the analyzers were normalized to produce the same non-cyclic output.

4.4 Comparison with Static Analysis

Both of the previous analyses are complete, and being based on the same underlying al-
gorithm, deserve qualitative comparison here before we introduce later empirical measure-
ments in Section 7. The primary difference between the two implementations is that the
active graph is fully concurrent. The static graph is sequentialized by necessity to update
the graph consistently. One fix would be to partition the graph into independent sub-
graphs (finding the strongly-connected components of the call-graph), allowing concurrent
reduction.
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In general, the process network analyzer was more difficult to build than the static
graph analyzer because the active graph confuses debugging. However, compared to other
distributed algorithms, debugging was not overly burdensome because our abstract unifica-
tions monotonically approach the final state,

From profiling information we determined that the active graph analyzer spends most
of its time checking for self-unification of a node (necessary for circular unification) and (to
a lesser degree) manipulating mode vectors. To check for self-unification, we instituted a
naming scheme wherein the identifiers of two nodes to be unified are concatenated to form
the identifier of the new node. Thus node identifiers grow in size during reductions, and
although we use difference lists to concatenate cheaply, the cost of checking membership
within an identifier list grows. An alternative would be to allow both nodes tolive (currently
we terminate one of them to save space), and update the state in each to indicate the current
minimum identifier of the alias set. We have not yet experimented with this option (it is
very similar to method used in static graph implementation).

Mode vector manipulation requires finding the indices (within the vectors) of the mode
elements being compared, and concatenation of the two vectors (less the duplicate mode
element which is removed). Time is spent about equally between these main functions.
Quickly finding indices requires a more sophisticated data structure than the current list.
Quick concatenation requires either difference lists or bit vectors. Both are complicated
by the removal of duplicate elements. In fact, the static graph implementation elected
to forgo duplicate removal and used difference lists for mode vectors. This contributes
to the increased space requirement for the static graph analysis (Section 7). The active
graph implementation uses standard lists with removal. We need further experimentation
to determine the best solution.

The space complexities of the active graph analyzer lie in spawning a process for each
graph node. This working set churns through memory more quickly than the static graph
implementation (which can exploit local memory reuse in PDSS to keep data copying low).
Currently we do not constrain the number of processes, but this could be accomplished
in the manner opposite to parallelizing the static graph analyzer: first finding groups of
strongly-connected components of the program’s call graph, and then analyzing only one
group at a time. I'or example, a short-circuit chain could be used to force synchronization
between one group and the next. In a multiprocessor system, explicit load distribution of
the groups would be needed.

5 Finite Domain Analysis

In an effort to avoid circular unification altogether and much of the overheads of maintaining
the graph, either statically or actively, a radically different algorithm was developed [7]. The
first stage of this alternative algorithm generates a finite set of paths whose modes are to
be considered. Omnly “interesting” paths are generated in the first stage of the algorithm:
effectively those paths locally derived from the syntactic structure of the procedures. There
are three classes of interesting paths. The first class consists of paths that directly derive a
named variable in the head, guard, or body of some clause. All such paths can be generated
by a simple sequential scan of all heads, guards, and body goals of the program.
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input output

user builtin user builtin
1<s/8,15} (<<72,25] {<4/3,2>) <=0/2,1>)
{< s/4,2>} {<<’/2,1>} {<s5/4,3>} {<=1/2,1>}
{< q/3,1>} {<>/2,2>} {< s/4,4>} {<=2/2,1>}
{</3,3>} {<'2'/2,1>} {<5/4,3>, <., 1>} | {<=3/2,1>}
{<q/3,1>, <., 1>} | {<=0/2,2>} {<s/4,3>, <.,2>} | {<=a4/2,1>}
{<q/3,1>, <.,2>}|{<=1/2,2>} {<s/4,4>, <., 1>} | {<=3/2,1>, <., 1>}
{<a/3,3>, <., 1>} [{<=2/2,2>} {<s/4,4>, <.,25} [ {<=3/2,1>, <.,2>}
{<a/3,3>, <.,2>}|{<=3/2,2>} {<=4/2,1>, <., 1>}
{<s/4,1>, <., 1>} | {<=4/2,2>} {<=4/2,1>, <.,2>}
{<s/4,1>, <.,2>} | {<=3/2,2>, <., 1>}

{<=3/2,2>, <., 2>}

{<=4/2,2>, <., 1>}

{<=4/2,2>, <., 2>}

Table 1: Interesting Paths of Quicksort (23 input, 16 output)

The second class consists of paths which derive a variable » in some clause, where a
proper path through the opposite side of a unification with v derives a variable v'. More
formally, consider a unification operator v = ¢ where v is a variable and ¢ is some term
other than a variable or ground term. Let »' be a variable appearing in ¢ at path ¢,
i.e.,, q(t) F v'. Then if pis a path deriving v (by which condition p is also interesting),
then the concatenated path p . ¢ is also an interesting path. All paths in this second
class may be generated by repeated sequential scanning of all unification goals until no
new interesting paths are discovered. The necessity for repeated scans is illustrated by
such clauses as “a(X,Z):~ true: Y = (X), Z = b(Y) | true.” where the interesting
path {< a/2,2>, <b/1,1>, <c/1,1>} given by the first tell unification goal will not be
generated until the interesting path {<a/2,2>, <b/1,1>} in the second tell unification
goal is generated. Such repeated scans should occur infrequently in practice. In any case
not more than a few scans are necessary — no greater number than the syntactic nesting
depth of expressions containing unification operators.

The third class of interesting paths is generated by noting that if a path starting on the
right-hand side of a tell unification goal (i.e., a path of the form {<=/2,2>}-5) is interesting,
then so is the corresponding path starting on the left-hand side of that unification (i.e.,
{<=/2,1>}3).

In general, all interesting paths of a program are generated in a few sequential passes.
The 39 interesting paths of quicksort, shown in Table 1, are generated in two passes. Note
the correlation between these paths and the infinite paths represented in Figure 5. A
depth-one traversal of the graph (which we call the “broken” paths in Section 7) pro-
duces all the interesting paths, in addition to two other paths: {<¢/3,2>, <./2,1>} and
{<q/3,2>,<./2,2>}. These two paths are “hidden” because they cannot be derived from
clause 2 of g/3 alone. However, the set of interesting paths produced is sufficient to mode
the program in the sense of assigning an unambiguous mode to all syntactic variables. An
important question is whether a finite set of paths represents a minimal and complete set of
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paths for the mode analysis in general. Unfortunately, this is not the case, as is discussed
below.

Once we have generated a set of interesting paths, our algorithm proceeds by simply
noting the modes of paths, first directly, and then by examining relationships between paths.
There are essentially four different stages in the algorithm:

1. Assert absolute modes for some paths.
2. Assert that all paths on opposite sides of a tell unification have opposite modes.

3. Proceed sequentially through the variables derivable from interesting paths, asserting
all binary relations between paths.

4, Repeatedly consider multiway relations (rule §4 Figure 2) asserted by the clauses.

The first three stages have linear complexity. The multiway analysis is exponential in the
number of variables, but by the time it is actually performed, most alternatives contradict
the known modes, and thus are not explored. We found multiway analysis contributed
only 11% on average to the total analysis execution time, with one benchmark showing an
extreme of 33% (see Section 7.1).

5.1 On Completeness

Some important practical and theoretical issues are raised by this algorithm. Some of these
issues include the consistency, completeness, and safety of the mode analysis. It is not
difficult to prove that the mode analysis algorithm is consistent in the sense that if, at some
point in the analysis, path p is shown to have mode m, and if some subset of the interesting
paths implies that p does not have mode m, then the algorithm will derive and report this
contradiction.

The major barrier to the consistency of this algorithm is somewhat subtle: the non-
modedness of a program may not be detectable il the analysis uses the wrong set of paths!
This leads directly to a reasonable definition of a complete set of paths. A set of paths
generated for a program is complete iff the existence of a consistent moding for the set of
paths implies that the program is fully moded. (Recall that we say a program is “fully
moded” if the modes of all paths are known, and “moded” if the modes of some paths are
known).

Thus, the infinite set of all possible paths is a complete set; however, we are interested
in finite complete sets and in particular in a minimal complete set of paths for the pro-
gram. Our path generation algorithm is incomplete; because of this incompleteness in path
generation, the mode analysis algorithm we constructed is unsafe. It is a consequence of
the incomplete set of generated paths that even if the program contains information about
the mode of a path, that information may not be derived by the mode analysis algorithm.
Thus, the analysis is unsafe in the sense the compiler may not detect mode contradictions
in erroneous (not fully-moded) programs, and thereby produce erroneous mode information
for programs that should be rejected altogether. Nonetheless, most generated paths in typ-
ical programs are moded by the analysis, and if the program being analyzed is known to be

18



moded, all modes derived are correct. Thus, the analysis algorithm can be a practical tool
for many compiler optimizations.

In the next section we introduce another analysis technique that also loses completeness,
but in a rather different way. Here we map the cyclic constraint graph onto axioms for
theorem proving, which proves to be incomplete when limiting the nesting depth of axiom
invocation. The analyzer is quite interesting and is shown to be “more” complete than the
finite domain method.

6 Mode Inference Method

This section describes mode analysis for concurrent logic programs with a Model Gener-
ation Theorem Prover (MGTP) [5]. Mode analysis is a kind of fixed-point computation
what corresponds to generating a model in MGTP. The generated model includes informa-
tion which let us know the variable’s mode and the mode consistency of the program. In
this section we first describe how model generation theorem proving works and how the
problem of mode analysis is mapped onto the theorem prover. We then discuss the issue of
completeness how it relates to the finite domain analysis.

6.1 Model Generation
An MGTP clause is represented by an implicational form:

A Ag. Ay =Gy Cas ool Gy

where 4; (1 € i< n)and C; (1 <j < m) are atoms (atomic formula) ; the antecedent is
a conjunction of {43, Ag, ..., An}; the consequent is a disjunction of {C1,Cy,...,Crn}. A
clause is said to be positive if its antecedent is true (n=0), negative if its consequent is false
(m=0), and otherwise mized (m # 0, n # 0). The following two rules act on the model
generation method:

¢ Model Extension Rule: If there is a clause, 4 — C, and a substitution o such that
Ao is satisfied in a model candidate M but Co is not satisfied in M, then extend the
mode] candidate M by adding Co to M.

o Model Rejection Rule: If there is a negative clause whose antecedent Ag is satisfied
in a model candidate M, then reject M.

Model generation attempts to construct a model for a given set of clauses, starting with
a null set as a model candidate. A model candidate M is a model of the given set of clauses
if the above two rules cannot be applied to M. If the clause set is satisfiable, a model should
be found. This method can also be used to prove that the clause set is unsatisfiable, by
exploring every possible model candidate to ensure that no model exists for the clause set.

Fzample:  To illustrate, Iigure 8 shows a proof tree for toy problem. We
start with an empty model candidate, My = ¢. My is first expanded into two
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¢

Ci: pX),s(X)— false. A
Ca: ¢(X),s(Y) — false.

Cs: q(X)— s(f(X)). p(a) q(b)
Cy: r(X)— s(X). A Cs
S S e a@)  rl@)  s(f(6)
Ce: true — p(a); g(b). c c C
s(f(a)) s(a) x
o (@
x X

Figure 8: Sample MGTP Program and its Proof Tree

cases, My = {p(a)} and M, = {q(b)}, by applying the model extension rule
to Cs. Then M, is expanded by C5 into two cases: Ma = {p(a),q{a)} and
My = {p(a),r(a)}. Ms is further extended by C3 to M5 = {p(a), ¢(a),s(f(a})}.
Now with M5, the model rejection rule is applicable to Cs; thus Mj5 is re-
jected and marked as closed. On the other hand, M, is extended by Cj to
Mg = {p(a),r(2), s(a)}, which is rejected by C. Similarly, the remaining model
candidate M, is extended by C3 to M7 = {q(b), s(f(b))}, which is rejected by
C5. Now that there is no way to construct any model candidate, we can con-
clude that the clause set is unsatisfiable. m]

6.2 Mode Analysis in MGTP

In the mode inference method, formulae representing mode constraints are translated into a
set of MGTP clauses. Mode analysis of the entire source program is reduced to computing
a model of this set of clauses. We outline transformation from mode constraints to a set
of clauses for MGTP using the quicksort program (Figure 1). The left column of Table
2 lists the mode constraints which are derived from quicksort. The right column lists the
corresponding clauses.

The mode constraints have two forms: m() = in (or m() = out) and m/p = m/q (or
m/p = m/q).” Roughly speaking, m() = in is translated to a pasitive clause true — m() =
in,and m/p = m/qis translated to two mixed clauses m/p — m/q and m/q — m/p. Within
MGTP clauses, m{Path,Mode) is a relation showing that the mode of path Path is Mode.
A path is represented in list notation, e.g., {<¢,1><.,1>} is translated to [¢/1,./1]. Here
we refrain from including arities in order to simplify the exposition (recall that in Section
2, this path would be noted: {<¢/3,1><./2,1>}). Some MGTP clauses are eliminated

"Recall that the definition of m/p is given in Section 2.
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Mode Constraints

MGTP Clauses

m(<q,1>)=1in

mi<q,2>= m{<q,3>
mi<q,1><.,1>= m/<p,2>
mi<q,1><.,1>= mf{<q,3><.,1>
mi<p,2>= mf<q,3><.,1>
mf<q,1><.,2>= m/<p,1>
mf<q,2>= mf<q,2>
m/<q,3>= mf<q,3>
m/<p,3>= mf<q,1>
mi<p,4>= mi<q,1>
m(<q,3>)=1in
mi<¢,3><.,2>= mf<q,2>
m(<p,1>)=1in
m{<p,3>) = out
m{<p,4>) = oul

mi<p,1><.,1>= mf<p,3><.,1>
m(<p,1><.,1>)=in
m(<p,2>)=in

mi<p,1><.,2>= m/<p,1>
mf{<p,2>= mf<p,2>
mi<p,3><.,2>= m/<p,3>
mi<p,4>= mf{<p,4>
mf{<p,3>= mf<p,3>
mi<p,4><.,2>= m/<p,4>

true — m([g/1],in) o
m([g/21X], M) ~ m([g/3|X), M)T
m([g/1,./1]X], M) — m([p/2|X], M)

m([g/1,./1|X], M) = m([q/3,./1}X}, M)

m([p/2|X], M) < m([g/3,./1| X}, M)
a1, /21X1,) = mi(p/ 11,41
eliminate

eliminated

m([p/31X], M) < m([a/1|X], 7T
m([p/41X], M) o m(lg/11X], 31
true — m([g/3],in) o
m((q/3, /2|X], M) = m([q/21X], )
true — m([p/1],in)

true — m([p/3], out)

true — m([p/4)], out)

m([p/1,./1|X], M) = m([p/3,./1|X], 3T)

true — m([p/1,./1),in)

true — m([p/2], in)
m([p/1,./2|1X], M) = m([p/1|X], M)
eliminated

m(lp/3,/21X1, M) = m({p/31X], b1
eliminated

m([p/4, /2| X], M) ~ m([p/4]|X], M)

(1)
(2)
(3)
(4)
()
(6)

(7)

(8)

(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)

(20)

i m(P,M) — m(P', M) represents two MGTP clauses:
m(P,M) — m(P', M) and m(P', M) — m(P,M).
{ M is the inverse mode of M i.e., in = out and oul = in.

Table 2: Mode Constraint — MGTP Clause Transformation (Quicksort)
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because their mode constraints represent the reflexive law.® Mode consistency is ensured
by the inclusion of a negative clause: m(P, M), m(P, M) — false which means that the
mode is inconsistent when a path P has two modes: in and out.

Ezample: Tor quicksort, we have 7 positive (one literal) clauses and 24 mixed
clauses. We start with an empty model candidate My = ¢. Mp is first expanded
to My = {m([g/1],in), m({a/3], in), m([p/1], in), m([p/3], in), m([p/4], in),
m([p/1,./1],in), m([p/2],in)}, by applying the model extension rule to the 7
positive clauses.

One direction of rule (2) m([q/3|X]), M) — m([q/2|X], M) is applicable to M,
because m([q/3], in) (€ M1) can be unified with the antecedent m([q/3|X], M)
by substitution {[ ]/X,in/M}. So we get the consequent m; = m([q/2], out).
This means that M is extended by (2) to M2 = M;U{m;}. Repeating a similar
production of mode information, we get the final result: My U {m([q/2], out),
m([q/1,./1],in), m([q/3,./1),in), m([¢/2,./1], 0ut), m({p/3, ./ 1], 0ut),

m({p/4, /1], out)}.

Note that straight application of model generation to mode analysis can cause an
infinite generation. For example, the positive clause (11) true — m([p/1],in)
and the one direction of (17) m([p/1|X], M) — m([p/1,./2|X], M) causes an
infinite generation. We have an infinite sequence m([p/1],in), m([p/1,./2],in),
m((p/1, /2, /2], in), ..

To avoid infinite generation, MGTP needs extra information with which it can
detect the infinite loop. In its current implementation, MGTP attaches trace in-
formation.to each model element. The trace information is a sequence of applied
rules which let us know how to derive the model element. In the previous ex-
ample, m([p/1], in) is directly from a positive clause, m([p/1,./2],in) is derived
by applying (17) to m([p/1], in), and so on. Here, extended MGTP derives the
sequences < m({p/1],in),[]>, <m([p/1,./2),in), (17)>, <m([p/1,./2,./2],in),
[17,17] > where the second element of the tuple is the trace.

When MGTP derives the last element <m([p/1,./2,./2],in),[17,17] >, MGTP
regards the sequence as infinite and discard not only the last element <m([p/1,
./2,./2],in),[17,17] > but also the previous one < m({p/1,./2],in),[17]>. It
does so because m([p/1,./2],in) can be regarded as the same information as

m([p/1],in) because both elements indicate the same node of the mode graph
[21]. 0

6.3 On Completeness

The mechanism to avoid infinite generation introduces incomplete analysis. Consider the
program listed in Figure 9. From this program, we translate the MGTP clauses listed® in
Figure 10. The program invocation “ 7= f(X), h(X).” causes a unification failure between a

8They can be also eliminated by the tautology-elimination rule which is a theorem-proving technique.
9This list includes only clauses related to the discussion.
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F([]) := true: true | true. (1)
f([A|B]): true: A = a|g(B). (2)
g( []) = true: true | true. (3)
g([b)A]) = true: true | f(A). C)]
XY true: X =[Ab,Abb] | true. (5)

Figure 9: A Program with Failure {Mode Contradition)

(2-1) true — m([f/1,./1], out)

(2-2) m([f/1,./21X], M) — m([g/1]X], M)
(4-1) m([g/1,./2|X], M) — m([f/1|X], M)
(5-1) true — m([h/1,./2,./2,./2,./2, /1], out)
Q1) m([h/11X], M) — m([f/1|X], M}

Figure 10: A Subset of MGTP Clauses for Sample Program

and b, indicating a mode contradiction in path {</,1><.,2><.,2><.,2><.,2><.,1>}.
MGTP, however, doesn’t detect the possibility of error.

From (5-1) and (Q-1), an element m([f/1,./2,./2,./2,./2,./1],in) is derived. And the
successive applications of (2-2) and (4-1) to the element yield m([f/1,./2,./2,./1],in). One
more application can yield m([f/1,./1],in), which disagrees with (2-1). The last application,
however, is prohibited to protect against infinite generation.

This shows that MGTP’s ability to avoid infinite generation is incomplete. For this kind
of example, protection can be relaxed. For example, the right side of m([g/1,./2|X], M) —
m([f/1|X], M) is simpler than the left side, having fewer symbols. The application of this
kind of clause to an element generates a simpler element, so the successive applications of
these clauses must terminate at some time. For these clauses, infinite generation is not a
problem. We have not yet ensured that generating a model with relaxation yields enough
mode information. Completeness will be proved in a future work.

7 Performance Comparison

In this section we examine the characteristics of the four algorithms by evaluating the
analysis of a benchmark suite on each implementation. A preliminary investigation of the
analyzers built at the University of Oregon is given in Tick [16). The benchmark suite is
summarized in Table 3. The programs include simpler, common benchmarks [15], as well
as more complex ones: rucs is a rule check system {written in KL1 by R. Ezaki from the
original Prolog by Y. Koseko); bestpath implements Dijkstra’s (sequential) single-source
best path algorithm with a heap data structure; waves (originally written in Strand by
I. Foster) builds a multidimensional torus using an iterative technique; waltz is Waltz’s
constraint satisfaction algorithm, and mandel (also from Foster’s Strand original) computes
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symbols broken paths
program | proc | clause | const | vars | total totals avg lengthi
msort 4] 11 54| 75| 129 36f 30 26 1.7
queens 6 14 77 119 196 71 43 43 1.8
cubes 9| 16 93| 159 252 224 79 361 2.7
pascal 11 22 143} 200( 343] 338 o6 147 2.0
mandel 18 26 170 | 334| 504 408 140 336 24
rues 16| 66 218 390( 608 79 46 131 1.6
bestpath 20 44 279 | 492 771 507 207 492 2.5
waltz 20 54 333| 630 963| 329 I 769 2.2
waves 20 45 352 690 1042 623 220 707 3.0
triangle 42| 80 315) 1226 [ 1541|1155 648 1036 2.0

} average path length for graph analyzers.
 bug in finite domain analyzer prevents calculation.

Table 3: Benchmark Suite Characteristics

the Mandelbrot function.

The algorithms tend to have complexity related to the number of symbols in the source
program, which we categorize as constants (including functor symbols) and variable in-
stances. Because paths can be cyclic, to calculate the number of paths, we break the cycle,
e.g., the car and cdr of a list will be counted, but not the cadr or eddr. We list, in order, the
number of paths produced by the graph analyzers (either static or active), the finite-domain
analyzer and the theorem prover.

We observe that the average path lengths are not long because the largest hard-wired
data structures within the benchmarks are not long. Path length can be arbitrarily manip-
ulated by such data structures, e.g., the size of the input graph in bestpath. None of the
analysis techniques have an effective method of dealing with this problem. Methods that
heuristically simplify such large data structures risk loss of completeness. We also observe
that whereas finite domain analysis and MGTP analysis are both incomplete, for the larger
benchmarks, the finite domain method generates significantly fewer paths. This indicates
that the finite domain method is more incomplete, i.e., since fewer paths are derived, there
is a greater chance that a mode conflict will be missed.

All the benchmarks are fully moded except for wave, which has a subtle mode conflict.
All the analyzers, except the finite domain method, detect the conflict. However, to calibrate
the timing measurements presented in the next section, we continue analyzing the program
even when a mode conflict is detected.

7.1 Execution Measurements

The analysis tools were all implemented in KL1 and run on the PDSS (V2.52.19) compiler-
based system, on a Sun Sparcstation 10/30. PDSS is a nonoptimizing compiler-based
emulator for KL1, executing about 34,000 reductions per second for the analyzers described
here. Figure 4
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static|active| finite|theorem
graph|graph |domain| prover
parser 787 484 484 1,265
reducer| 1,558 752 1,983 268
misc. 442 297 858 635
total 2,787 1,533 3,325 2,168

Table 4: KL1 Source Lines of Each Analyzer

gives the code sizes of the analyzers. The “reducer” size of the theorem prover is the
MGTP kernel prover: it does not count the meta-program being analyzed. One must
excuse the larger sizes of the static graph and finite domain analyzers: they were written
by novices, whereas the other analyzers were written by ourselves. The output produced by
all the analyzers for all the benchmarks was verified as identical (modulo slight syntactic
differences) by shell scripts written in UNIX.

It should be noted that no “early” termination is detected by any of the analyzers.
Such early termination might be defined when all top-level variable nodes (i.e., variable
occurrences appearing in the source program) have unique modes. Such an approach is
problematic because a concurrently executing unification may contradict the known modes,
resulting in global failure. In other words, our experiments pessimistically evaluate all
necessary unifications to guarantee full modedness.

Table 5 shows the breakdown, by phase, of the execution times (msec) of the benchmarks
for the static and active graph analyzers. Also given are the total number of KL1 reductions
and abstract unifications executed. Both analyzers use phase 1 to parse the program. The
static analyzer reduces tell unification nodes in phase II (a minor task), and reduces the rest
of the graph in phase III. The active analyzer reduces the entire graph in one shot during
phase IL

The vast difference in the performance of these analyzers is primarily because a novice
wrote one and an expert the other. We believe a “memory leak” in the static analyzer (i.e.,
incremental garbage collection cannot be done because of sloppy naming) is causing much
of this difference. Neither analyzer has been tuned for performance, and we expect both
can be significantly optimized. For reasons discussed in Section 4, we expect the active
analyzer to achieve better parallel speedup than the static analyzer, but we have not yet
conducted multiprocessor experiments.

Table 6 shows the breakdown, by phase, of the execution times (msec) of the benchmarks
for the finite domain and MGTP analyzers. For finite domain analysis, phase I is path
creation and subsequent phases are applications of Ueda's mode rules (phase II applies
rules 1 and 3; phase III applies rule 2; phase IV applies rule 4). For MGTP analysis, phase
I translates the source program into a set of MGTP clauses and further, MGTP’s pre-
processor converts the MGTP clauses into a KL1 program with which the MGTP engine
generates mode information. Phase II compiles the KL1 program (using the PDSS cross-
compiler written in SICStus Prolog) and links it with the MGTP engine. Phase I1I performs
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Static Graph

execution time (msec) red red/
benchmark phase I| phase IT phase III| total |x1000 {unify |unify
msort 300 (39.5%)| 50 ( 6.6%)| 410 (53.9%)| 760 33 60| 550
gueens 550 (45.5%)( 10 ( 0.8%)| 650 (53.7%)| 1,210 54 8] 720
cubes 620 (35.8%)| 30 ( 1.7%)| 1,080 (62.4%)| 1,730 82| 138| 594
pascal 890 (36.9%) (210 ( 8.7%)| 1,310 (54.4%)| 2,410 110¢ 124| B87
mandel 1,480 (39.8%) (240 ( 6.5%)| 2,000 (53.8%)| 3,270 171 222 770
rucs 1,290 (20.3%) 270 ( 4.2%)| 4,810 (75.5%)| 6,370 302 319| 946
bastpath 2,080 {18.5%)|180 ( 1.6%)| 8,960 (79.9%){11,220 526( 431] 1220
waltz 2,290 (19.5%)|180 ( 1.5%)| 9,260 (78.9%)|11,730 573 404| 1418
waves 3,540 (21.7%) {510 ( 3.1%)| 12,270 (75.2%) | 16,320 699 559| 1250
triangle 6,190 (12.0%)| 60 ( 0.1%)|45,190 (87.8%)|51,440| 1488| 1163| 1279
arith mean (28.9%) (3.5%) (67.5%) 884
Active Graph

execution time (msec) red red/

benchmark phase I phase IT|total | x1000 | unify | unify

msort 320 (65.3%)| 170 (34.7%)| 490 19 60| 317

queens 430 (69.4%)] 190 (30.6%)| 620 21 75| 280

cubes 750 (69.4%)| 330 (30.6%)| 1,080 40| 138 289

pascal 740 (68.5%) | 340 (31.5%)| 1,080 36 124 290

mandel 1,240 (70.9%)| 510 (29.1%)|1,750 621 222 279

rucs 1,670 (71.1%)| 680 (28.9%)] 2,350 T4 319 232

bestpath 2,070 (57.0%)| 1,560 (43.0%)| 3,630 142 431 329

waltz 2,830 (49.6%) | 2,870 (50.4%) | 5,700 241 404 597

waves 2,910 {62.0%)|1,780 (38.0%) | 4,690 182] 559 320

triangle 4,900 (50.7%) 4,760 (49.3%) | 9,660 370| 1163| 318

arith mean (63.4%) {36.6%) 326

Table 5: Performance of Static and Active Graph Analyzers (KLl on Sun Sparcstation
10/30)
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Finite Domain

execution time (msec) red
benchmark phase I phase I phase II1 phase IV | total | x1000
msort 660 (61.1%) 50 (4.6%) 310 (28.7%) 60 ( 5.6%) | 1,080 34
queens 1,350 (61.6%) 110 (5.0%) 660 (30.1%) 70 ( 3.2%) | 2,190 64
cubes 1,730 (57.1%) 110 (3.6%) 720 (23.8%) 470 (15.5%) | 3,030 RO
pascal 3,120 (66.2%) 170 (3.6%) | 1,230 (26.1%) 190 ( 4.0%) | 4,710 123
mandel 8,210 (45.6%) 410 (2.3%) | 3,430 (19.0%) | 5,960 (33.1%) | 18,010 572
rucs 6,410 (80.4%) 440 (5.5%) | 1,020 (12.8%) 100 ( 1.3%) | 7,970 208
bestpath 12,080 (58.2%) 700 (3.4%) | 6,090 (29.4%) | 1,870 ( 9.0%) | 20,740 489
waltz 10,810 (56.1%) 350 (1.8%) | 4,210 (21.8%) | 3,910 (20.3%) | 19,280 530
waves 22,600 (60.2%) | 1,120 (3.0%) | 12,150 (32.4%) | 1,670 ( 9.0%) | 37,540 853
triangle 29,440 (55.6%) 810 (1.5%) | 16,670 (31.5%) | 6,000 (11.3%) | 52,920 1196
arith mean (60.2%) (3.4%) (25.6%) (10.8%)
Model Generation Theorem Prover
execution time (msec) red

benchmark phase I phase IT phase IIT total { x1000

msort 600 (6.3%) 8,750 (93.1%) 50 ( 0.5%) 9,400 28

queens 920 (7.0%) | 12,170 (92.3%) 100 ( 0.8%) | 13,190 45

cubes 1,560 (7.0%) | 19,430 (86.8%) 1,400 { 6.3%) | 22,390 156

pascal 1,150 (7.4%) | 13,840 (89.2%) 530 ( 3.4%) | 15,520 87

mandel 2,700 (7.1%) | 34,410 (90.8%) 800 ( 2.1%) | 37,910 169

rucs 1,410 (8.6%) | 14,770 (90.6%) 130 ( 0.8%) | 16,310 66

bestpath 4,340 (6.3%) | 52,080 (76.0%) | 12,140 (17.7%) | 68,560 1029

waltz 3,670 (8.4%) | 38,140 (86.8%) | 2,120 ( 4.8%) | 43,930 303

waves 4,670 (7.7%) | 51,940 (85.2%) | 4,330 ( 7.1%) | 60,940 511

triangle 14,060 (8.4%) | 149,060 (89.3%) | 3,810 ( 2.3%) | 166,930 901

arith mean (7.7%) (86.7%) { 5.6%)

Table 6: Performance of Finite Domain and MGTP Analyzers (L1 on Sun Sparcstation

10/30)




PDSS | static | active finite | theorem
benchmark | compile | graph | graph | domain prover
exection time (msec)

msort 760 760 490 1,080 9,400
queens 1,140 | 1,210 620 2,190 13,190
cubes 1,570 | 1,730 1,080 3,030 22,390
pascal 1,660 | 2,410 1,080 4,710 15,520
mandel 3,340 | 3,720 1,750 18,010 37,910
rucs 3,010 | 6,370 [ 2,350 7,970 16,310
bestpath 6,160 | 11,220 | 3,630 20,740 68,560
waltz 4,510 | 11,730 | 5,700 19,280 43,930
waves 7,960 | 16,320 | 4,690 37,540 60,940
|_triangle 11,720 | 51,440 { 9,660 52,920 166,930
T static | active finite | theorem

PDSS | graph | graph | domain prover
memory consumption {(kbytes)

msort 158 795 281 381 198
queens 244 | 1,444 340 692 261
cubes 320 | 2,070 571 1,067 491
pascal 343 | 3,272 574 1,362 383
mandel 616 | 6,561 880 15,204 650
rucs 699 | 8,224 1,343 1,838 374
bestpath 922 | 17,298 1,779 8,501 2,023
waltz 803 | 17,696 | 2,278 6,394 831
waves 1,204 { 28,371 | 2,318 9,008 1,323
triangle 1,865 | 51,6566 | 4,437 17,339 1,845
analyzers 273 65 50 44 74 |

Table 7: Performance of Mode Analyzers (KL1 on Sun Sparcstation 10/30)

the MGTP proof and generates the mode information.!®

Curiously compilation takes the lion’s share of 89% of the MGTP execution time. Only
3% of execution time is attributed to doing the proof, compared to 40% of the finite domain
execution time. If MGTP compilation could be sufficiently sped up, this technique would
be faster than the finite domain method.

The performance of these runs, for all four analyzers, is summarized in Table 7. The
table gives the execution time and memory (data and code) consumption for each input
source program. Interestingly, MGTP is most space efficient, comparable with the PDSS
compiler.!l It competes favorably with the active graph analyzer for the reduction phase,
but loses overall because of its long translation time. Although the active graph analyzer

YMGTP reductions counts for are for phases I and III only.

11The PDSS compiler is relatively fast considering that is does not do any static analysis. For example,
the Monaco optimizing compiler [18] is considerably slower because it does data flow analysis. Thus because
mode analysis can compare reasonably well with naive compilation, it has even higher utility with respect
to more realistic optimizing compilation.
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does not use memory effectively because of its process network, stream mergers, and nu-
merous messages, it executes most quickly, comparable to PDSS compilation time. The
MTGP analyzer slows down for larger benchmarks because the translation procedure is
more complex with respect to program size than is parsing in the other analyzers. Clearly
the greatest performance improvements lie in reducing compilation time for MGT'P analysis,
and reducing memory consumption for active graph analysis. Currently, the large memory
requirements of the finite domain and static graph analyzers make them less desirable.

8 Summary and Conclusions

This paper described and compared four compile-time analysis algorithms, based on seminal
work by Ueda and Morita [21], for deriving the path modes of concurrent logic programs.
The analyses are based on constraint propagation over graphs, path partitioning, and model
generation theorem proving (MGTP). The former two techniques are complete in the sense
that they are guaranteed to detect a mode contradiction in the source program should one
exist. The latter two techniques are incomplete, although to varying degrees. The MGTP
analyzer is more robust than the simplistic finite domain analyzer because the limitations
placed on axiom nesting can be incrementally relaxed. There is no corresponding fine-tuning
for finite domain analysis as we have defined it.

We are currently working on a completeness proof for the graph analysis algorithm,
which is clearly needed before it can be used in many applications. However, all the an-
alyzers can be used when complete mode information is not required, for example in the
Diadora model [10}, a variant of “lazy task creation” which can break a deadlocking thread
inadvertently created by faulty mode information. Considering that unrestricted use of ar-
ray referencing will make any mode analysis technique incomplete, we may need to address
the completeness issue both from restricted langnage semantics and novel runtime systems.

Future work is proceeding along several dimensions. We seek to engineer an analyzer
that can pinpoint probable causes of a mode conflict more accurately than the current
systems, for use in programmer debugging. We seek to design extended mode domains that
capture more subtle nuances of producer-consumer relationships. Furthermore, the use of
vector builtins, which cause notorious aliasing, and the recovery of partially correct mode
information from a nonmoded program (by propagating “top” ) need to be addressed.
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