The Deevolution of Concurrent Logic
Programming Languages

Evan Tick
University of Oregon

CIS-TR-94-07
March 1994

Abstract

This article surveys the field of implementation of concurrent logic programming
languages. I briefly review language semantics and programming paradigms, before
summarizing the results of the past decade in compiler and runtime system implemen-
tation. A theme throughout the research presented is the deevolution of concurrent logic
programming languages due to the limitations of what systems designers and compiler
writers can efficiently implement, as well as the growing perception among programmers
that reduced expressivity is sufficient.

This paper will appear in the Journal of Logic Programming, 'Tenth Anniversary
Special Issue, 1995.

DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE
UNIVERSITY OF OREGON

Contents

1 Introduction 1
2 Language Semantics 2
3 Paradigms and Programs 4
3.1 Concurrent Prolog« i it e e 4
32 Parlog . . . v i i e e e e e e e 5
3.3 Flat Guarded Horn Clauses ¢ v v v vt i vttt ae o u e o 5
34 Strand s e e e e e e e e e e e e e e e e 6
T SO % 1 - S 7
3.6 Program Composition Notation 7
4 Implementation Issues 8
41 HistOTY . o o v v vt e e e e e e e e e i e e e e e e e 9
4.2 Principles and Trends e e e e e e e e 10
4.3 Synchromization i e 12
4.4 Guards and the Process Structure 14
4.5 Reading and Writing Logical Variables 16
46 Unification v i i i i it e e e e e e 17
4,7 Task Scheduling and Priority 19
4.8 Granularity Control i i e 21
4.9 Abstract Instruction Set Architectures 0L 22
4.10 Stream Communication, Arrays and Garbage Collection 24
5 Summary 26
References 28

1 Introduction

There are two main views of concurrent logic programming and its development over the
past several years. Most logic programming literature views concurrent logic programming
languages as a derivative or variant of logic programs, i.e., the main difference being the
extensive use of “don’t care” nondeterminism rather than “don’t know” (backtracking)
nondeterminism. Hence the name committed choice or CC languages. A second view is that
concurrent logic programs are concurrent, reactive programs, not unlike other “traditional”
concurrent languages such as ‘C’ with explicit message passing, in the sense that procedures
are processes that communicate over data streams to incrementally produce answers. A
cynic might say that the former view has more academic richness, whereas the latter view
has more practical public relations value.

This article is a survey of implementation techniques of concurrent logic programming
languages, and thus full disclosure of both of these views is not particularly relevant. In-
stead, a quick overview of basic language semantics, and how they relate to fundamental
programming paradigms in a variety of languages within the family, will suffice. No attempt
will be made to cover the many feasible programming paradigms, nor semantical nuances,
nor the family history. Excellent sources for this information are [22, 33, 34, 56, 72, 77).

The main point I wish to make in this article is that concurrent logic programming
languages have been deevolving since their inception, about ten years ago, because of the
following tatonnement:

e Systems designers and compiler writers could supply only certain limited features in
robust, efficient implementations. This drove the market to accept these restricted
languages as, in some informal sense, de facto standards.

e Programmers became aware that certain, more expressive, language features were
not critically important to getting applications written, and did not demand their
inclusion.

Thus my stance in this article will be a third view: how the initially rich languages gradually
lost their “teeth,” and became weaker, but more practically implementable, and achieved
faster performance.

The deevolutionary history begins with Concurrent Prolog (deep guards, atomic unifi-
cation, read-only annotated variables for synchronization), and after a series of reductions
(for example: GHC (input-matching synchronization), Parlog (safe), FCP (flat), Fleng (no
guards), Janus (restricted communication), Strand (assignment rather than output unifi-
cation)), and ends for now with PCN (flat guards, non-atomic assignment, input-matching
synchronization, and explicitly-defined mutable variables). This and other terminology will
be defined as the article proceeds.

This view may displease some readers because it presupposes that performance is the
main driving force of the language market, and furthermore that the main “added value” of
concurrent logic programs over logic programs is the ability to naturally exploit parallelism
to gain speed. Certainly the reactive nature of the languages also adds value, e.g., in
building complex object-oriented applications. Thus one can argue that the deevolution
witnessed is a bad thing when reactive capabilities are being traded for speed.

All is not lost in this regard: originating around 1988, a related family of languages and
implementations has been developing around the Andorra model of computation, specifically
Andorra I [16, 17], Andorra Kernal Language (AKL) [47], Pandora [7, 8], and ANDOR-II
[83]. A key goal of the research is to combine “don’t know” and “don’t care” nondeterminism
into powerful reactive programming languages. I cannot do justice to these rapidly evolving
systems in this paper, because of space limitations.

This article is proceeds as follows. Sections 2 and 3 review the semantics of the simplest
variant of CC languages, and present sample programs in a cross section of the language
family to see the deevolution first hand. Section 4 discusses the entire plethora of imple-
mentation issues and related empirical research data. The article is summarized in Section
5.

2 Language Semantics

A committed-choice logic program! is a set of guarded Horn clauses of the form: “H :- Ay,
veisAp :Ty..., Ty | By, ..., Bp” where myn,p 2 0. H is the clause head, A; is an Ask
guard goal, T; is a Tell guard goal, and Bj is a body goal. In general, goals are user-defined
and builtin procedure calls. However, in flat languages, guards are restricted to builtins.
Ask guards passively match incoming arguments, whereas Tell guards can create bindings
via unification. The ‘:’ operator separates the guard types, and the commit operator ‘|’
divides the clause between the guards and body. If p = 0 the clause is called a unit clause.
A procedure is comprised of a set of clauses with the same principle functor and arity for
H.

Informally, a procedure invocation commits to a clause by matching the head arguments
(passive unification) and satisfying the guard goals. When a goal can commit to more than
one clause in a procedure, it commits to one of them nondeterministically (the others
candidates are thrown away). Structures appearing in the head and guard of a clause
cause suspension of execution if the corresponding argument of the goal is not sufficiently
instantiated. A suspended invocation may be resumed later when the variable associated
with the suspended invocation becomes sufficiently instantiated.

A program successfully terminates when, starting from an initial user query (a conjunct
of atoms), after some number of reduction steps, no goals remain to be executed, nor are
suspended. Alternatively, the program deadlocks if only suspended goals remain. A third
result is program failure, which is defined more formally below.

The following operational semantics is a minor variation of the standard transition
system semantics for flat concurrent logic programs and is derived from Shapiro [77]. “Flat”
language variants restrict guards to be builtins, which simplifies our discussion of semantics.
In later sections, the implementation issues (but not formal semantics) of non-flat (deep)
guards are addressed.

A computation state is a tuple (G;#) consisting of a goal G (a sequence of atoms) and a
current substitution 8. The initial state (G;¢) consists of the initial goal G and the empty
substitution £. A computation of a goal G with respect to a program P is a finite or infinite

1The knowledgeable reader may wish to skip to the next section.

sequence of states Sp,...Si,...such that Sp is the initial state and each Siy1 € (5;) where
t is a transition function from S to P(S5) (defined below).

A state § is a terminal state when no transition rule is applicable to it. The state
(true; @) is a terminal state that denotes successful computation and (fasl; 8 } denotes finitely
failed computation. If no transition is applicable to a state § = (A;,...,A4,;8) (n 2 1)
where A; # fail, 1 < j < n, then the state is deadlocked. The meaning of a program P
is defined as the set of all computations of a goal G with respect to P. In the following, a
renaming function (to rename the clause variables apart from the goal variables) is required,
but is beyond the scope of this article.

Definition: Transition Rules

o (A1,e.osAjyennrAni8) "5 ((Ary.. .y Ajo1, Ajgr, Bay oo, Br)' 808')
if 3 a clause C s.t. rename(C) = “H :— Ask : Tell | By, ..., B,” and
tr'y(Aj,H,Ask, Tell) = g.

o (A1,...,Aj...,An;0) FLA (fail; 8} if for some j, and for all (renamed)

clauses “H :— Ask : Tell| By,...,By"”, try(A;, H, Ask, Tell) = fail.
(]

Function try is defined in terms of match which tests if the selected atom from a goal
matches the head of the selected clause without binding any of the goal variables.

Definition:
match(A;, H) =
fail if mgu(A;, H) = fail
6 if @ is the most general substitution s.t. A; = H#

suspend otherwise

Definition:
try(A;, H, Ask,Tell) =
fod if match(A;, H) =0 A test(Askf) = success A mgu(Telif) = ¢
fail if match(A;, H) = fail v (match(A;, H) =10 A test(Ask@) = fail) v
(match(A;, H) = 0 A test(Ask@) = success A mgu(Tellf) = fail)

suspend otherwise
a

The definition of test(Ask#), which is not important for our purposes, can be found
in Shapiro [77]. Note that these semantics, for FCP(:), include atomic tell unification. In
other words, the most general unifying substitution # of the tell guards is computed, and
if successful, composed with the entry substitution 8. If not successful, the clause try fails
or suspends; however, in these cases, no tell bindings are exported.

In the following sections, a weakened form of eventual tell guards is discussed. These tell
guards are not involved in the clause try at all, but rather are evaluated in the body. The
formal semantics change quite a bit (this is left as an exercise for the reader!). Essentially,

3

eventual-tell languages have two types of failure: head matching failure and body unification
failure. Either type of failure within a deep guard is not terminal in the sense that the parent
clause try will fail, but the parent procedure invocation may still succeed (or suspend).
However, either type of failure outside of a deep guard is terminal, i.e., the program fails.

3 Paradigms and Programs

In this section the CC language family and its deevolutionary history are illustrated by
means of examples. Sample programs are presented for representative languages, proceeding
from “most” evolved to “least” evolved. For example is meant to emphasize the added
expressivity of the language and its benefits. This is a broad, albeit brief, introduction and
the interested reader is encouraged to access the literature.

3.1 Concurrent Prolog

The following example of Concurrent Prolog is the dining philosophers problem [77]. The
code below spawns a ring network of n philosopher tasks that communicate by nearest-
neighbor shared Fork variables. A philosopher may receive an eating/2 message from
its neighbors (clauses 1 and 2), but can commit upon that message only if the second
argument in the message has been bound to done. Otherwise, while its neighbor is eating,
this philosopher suspends.

phil(Id, [eating(_LeftId, done) | Left], Right) :-
phil{ Id, Left, Right).

phil(Id, Left, [eating(_RightId, done } | Right]) :-
phil(Id, Left, Right).

phil(Id, Left, Right) :- true :
Left = [eating(Id, Done) | RewLeft 1,
Right = [eating(Id, Done) | HewRight] |
eat(Done),
phil(Id, NewLeft, NewRight).

7- phil(1, Forkil, Fork2),
phil(2, Fork2, Fork3),

phil(n, Forknm, Forkl }.

The key point is the atomic tell unification in the third clause. In this instance, the philoso-
pher attempts to send its own eating/2 message on its Fork streams. Although these
streams are duplex (read and written by neighboring tasks), the write attempt will fail if
another task is already eating because the identifier Id will not match. If both neighbors
are idle, then the tell unification to the duplex stream succeeds atomically. That means no
race can occur for the second fork, and hence deadlock is avoided. This algorithm cannot
be elegantly implemented without atomic tell unification. Other programming examples
illustrating the added expressivity of Concurrent Prolog can be found in Shapiro [77] and
Bougé [10].

3.2 Parlog

A bounded buffer in logic programming is represented as a difference list X~Y where the
head of X is the next item in the buffer and Y is the tail of the buffer. Consider a bounded
buffer as represented in Parlog:
mode receive(~,?7,”)
receive(X, [M | Ms]-Tail, Ms-NewTail) :- nonvar(M) |
M=,
Tail = [_Slot | NewTail J].

mode send{?,7,"}
send(X, [M | Ms]-Tail, Ms-Tail) :-
¥ =X.

mode init_buffer(~)
init_buffer{ [_, _, ..., _ |} Tail J-Tail).

Procedure receive/3 accepts a buffer (second argument), reads the head M of the buffer
into output X, and writes a new unbound slot into the tail of the buffer. The new buffer is
returned (third argument). The mode declaration, “mode receive(;?,)” states that the
first and third arguments are written and the second argument is read by the invocation.
It does not refer to the modes of any subterms within the arguments stated, e.g., it does
not declare the mode of M (although the nonvar guard implies that M is input).

Procedure send/3 accepts a message and a buffer, and writes the message into the head
of the buffer, returning a new buffer. Sending will suspend if the second argument D-list is
empty, i.e., Tail-Tail. This means the buffer is full. Receiving will suspend if the head of
the buffer M is unbound, meaning the buffer is empty.

An interesting application is a buffered merge, switching two streams into one (clauses
for termination are not included):

mode merga(7, 7, 7)
merge(Inl, In2, OQut) :-
receive(M, Ini, NewInil),

send{ M, Out, NewDut) |
merge(NewInl, In2, NewOut).

merge(Ini, In2, Out } :-
receive(¥, In2, NewIn2),
send(M, Out, NewOut) |
merge(Ini, NewIn2, NewOut).

The critical point is the use of deep guards to conditionally receive a message from either
input stream and write it to an output stream. Since all ports are buffered, message output
may suspend even if message input succeeds. Furthermore, inability to read from one input
buffer will attempt to read from the other input buffer.

3.3 Flat Guarded Horn Clauses

A simplified form of the classic bounded buffer example is shown below in Flat Guarded Horn
Clauses (FGHC). The programming paradigm is a toy version of a process network with

5

two tasks: a consumer and producer. The tasks are reactive in the sense that rather than
computing a value, they are perpetually rescheduled as dictated by dataflow constraints.
The consumer suspends until an instantiated Car arrives, and the producer suspends until
an unbound slot appears in the buffer.

The program has been purposely written so that the consumer requires both the buffer
and its tail, as separate arguments, whereas the producer requires only the buffer. Of critical
interest is the call to init_buffer/1 which is passed an instantiated D-list Buffer-Tail.
This is permitted because FGHC supports (eventual) tell unification, cf. simple assignment
(as in Strand, coming next).

init_buffer(Buffer) :-
Buffer = [_, _, ..., - | Tail 1-Tail.

producer{ [Car | Cars]) :-
Car = ferrari,
producer(Cars).

consumer({ [Car | Cars], Tail) :- nonvar(Car) |
ride(Car),
Tail = [_NewSlot | HewTail],
consumer(Cars, NewTail).

?- init_buffer(Buffer-Tail),
consumer{ Buffer, Tail),
producer({ Buffer).

There is some preliminary work aiming at formalizing the difference in expressive power
between atomic and eventual tell unification [23].

3.4 Strand

The Strand version of the previous bounded buffer code requires the following changes.
The key point is that full tell unification is disallowed: assignment (:=/2) only is supported.
Thus a new predicate decompose_buffer/3 is needed to split the D-list into its components.

decompose_buffer(Buffer-Tail, B, T) :-
B := Buffer, T := Tail.

7- init_buffer(Buf),
decompose_buffer(Buf, Buffer, Tail),
consumer(Buffer, Tail),
producer(Buffer).

Strand is similar to moded FGHC [96] which restricts a variable to have a single producer.
At runtime Strand enforces the requirement that an assignment’s LHS be initially unbound.
Moded FGHC correspondingly requires that corresponding LHS and RHS variables in tell
unifications have opposite modes, and requires this verified at compile time. Furthermore
moded FGHC restricts a given argument position in a procedure to be consistently moded
in all clauses comprising that procedure, as does Janus, discussed next.

3.5 Janus

The bounded buffer example, in a slightly different form, is formulated below in Janus [71].
In this version, cash is exchanged for a ferrari. The syntax is different from the previous
languages, but is essentially a disguised form of Horn clauses.

The critical point to note is that a logical variable X is annotated as a “teller” !X or an
“asker” X. A teller can make bindings whereas an asker can only read bindings. A variable
is restricted to two occurrences, enforcing single-producer single-consumer streams. This
facilitates implementations that perform local reuse of memory. For example, in the code
below, the producer can reuse the list cell containing the cash for the ferrari.

producer(!Bs, Ds) ::
Ds = [cash | Da1] ->
Bz = [ferrari | Bsi],

producer{ !Bsi, Dsi).
ps=[0 ->Bs = [J.

consumer(Bs, !Ds) :

Bs = [ferrari | Bs1] ->
bs = [cash | Ds1],
consumer{ Bsl, !Ds1).

Be=0 ->0Ds8 = 0.

7- producer(!Bs [cash, cash, ..., cash | Ds]),
consumer{ Bs, !Ds).

3.6 Program Composition Notation

A non-buffered producer-consumer example is shown below in Program Composition Nota-
tion (PCN) [11]. The syntax is C-like, with two critical distinctions. First, there are both
logical (called definitional) variables as well as mutual variables. Second, control blocks
are annotated as either sequential (‘;') or parallel (‘||’). There are three rules supported
by the language implementation that guarantee correct management of the two types of
variables:

§1. A mutable variable can be shared by blocks in a parallel composition only if no
block modifies the variable.

§2, When a mutable variable occurs on the RHS of a definition statement, the
current value of that mutable variable is copied and the definition then proceeds
if a definitional variable were involved.

§3. When a definitional variable occurs on the RHS of an assignment, the assignment
suspends until the variable has a value and then proceeds.

In the example below, §2 is invoked at statement (1), allowing state to be mutated in
statement (2). However, state in statement (3) is definitional.
producer{ S)

double statel SIZE];
produce(S, state)

produce(S, state)
double statell;
{; S=[msg(state) | Ss 1], {1)
update{ state), (2)
produce(Ss, state)

consumer(S)
S 7= [msg(state) | Ss] —> (3)
{Il use(state),
consumer{ Ss)

}

goal()
{l| consumer(S),
producer(5)
¥

What a long, strange trip it has been! Atomic tell unification (and read-only variable
synchronization) in CP was weakened into eventual tell unification and input matching syn-
chronization in Parlog. Deep guards in Parlog were weakened into flat guards in FGHC.
Body unification in FGHC was weakened into assignment in Strand. Multiply shared vari-
ables in Strand were weakened into single-producer single-consumer (single occurance) vari-
ables in Janus, and declarative/mutable variables in PCN. In the remainder of the article,
I will discuss how these languages have been implementated.

4 Implementation Issues

Efficient implementation of CC languages, as that of more traditional languages (such as
explicitly message-passing imperative languages) hinges on low memory usage, compile-
time code optimization, and low-overhead runtime management of concurrency. By keeping
the program’s working set small, locality of the machine’s memory hierarchy can be best
exploited, reducing expensive faults farther from the CPU. The storage model selected,
e.g., stack or heap, is a critical design decision here. Compile-time code optimization also
centers around the memory hierarchy: efficient utilization of the available machine registers
and cache. This involves avoiding redundant computation (e.g., by strength reduction of
loops afforded by dataflow analysis [1]), which also saves CPU cycles. Finally, the runtime
overheads of concurrent task management must be significantly lower than computation
within tasks. This is often noted in terms of the communication to computation ratio,
assuming that the primary action of task management is transmission of messages between
processors. However, note that the cost of task creation, switching, and scheduling, are
very important as well,

Implementations to date of CC languages were targeted to the broad categories of
uniprocessor, shared-memory multiprocessor, and distributed-memory multiprocessor hosts.
Almost all of the implementations use storage models wherein tasks are allocated in an ad
hoc fashion from either global or local storage pools, i.e., procedure invocations are pack-
aged as individual tasks facilitating concurrent suspension and resumption. A stack-based

storage model, wherein a task is composed of procedure invocations executing on a stack, is
more efficient if average task lifetimes are sufficiently long. However, task suspension must
still be implemented, perhaps in a manner similar to implementations of the freeze prim-
itive in certain Prologs [58]. In the long-run, although not seen yet, implementations for
multiprocessor hosts must also move to stack-based models, perhaps adopting ideas from
partitioning of threads in dataflow languages [21, 92]. In this section I review the main
themes and efforts in the implementation of CC languages over the past decade. Let us
begin with a brief historical overview.

4.1 History

The past ten years witnessed an explosion in the research productivity in developing parallel
logic programming systems. The specific subfield of concurrent logic programming system
development was quite active with primary research groups at the Weizmann Institute of
Science, the Imperial College of Science and Technology, and the Institute of New Gen-
eration Computer Technology (ICOT). One milestone was 1982, the first year of ICOT’s
operation, when E. Shapiro during a visit designed Concurrent Prolog (CP), the seminal
committed-choice language [76]. This work was influenced by the Relational Language by K.
Clark and S. Gregory [15], which had elements of committed-choice languages. But it was
Shapiro’s much-cited ICOT TR-003, published in winter 1983, that formed the blueprint for
much of the language and operating system design work that followed, similar in impact to
D. H. D. Warren’s abstract machine (WAM) definition [98], published in summer 1983. The
history and influences of the family of languages is described best in Shapiro [77]. Language
evolution was so riotous that system implementation could hardly keep up.

Some interesting comparative work done at the University of Edinburgh by R. Trehan
(93] and H. Pinto [70] summarized the experiences of programming and interpreting these
languages in the “early days.” These concurrent languages could be differentiated primarily
by their synchronization mechanisms and how they managed multiple local environments.
There are various other attributes, such as granularity control and goal scheduling, unifi-
cation, etc., that affect implementation complexity and efficiency. These are discussed in
depth in the following sections.

Trehan and Pinto’s studies focused on interpretation, whereas further evolution of im-
plementation efforts led to compilation and hardware support. The first abstract machine
designs for this family of languages were the WAM-like Flat Concurrent Prolog (FCP)?
machine (Emu) by A. Houri [43, 80], Sequential Parlog machine (SPM) by S. Gregory et
al. [36, 38], and the KL1 machine by Y. Kimura [48]. These systems represent the first-
generation compiled implementations of concurrent logic languages, evolving into more so-
phisticated systems. The sequential FCP machine was refined first by S. Taylor into a
distributed-memory multiprocessor implementation on a hypercube [85] and by S. Kliger
into a RISC-based abstract machine and optimizing compiler [51). The SPM led to J.
Crammond’s Abstract Machine (JAM), the first parallel Parlog implementation [20], and
the PPM [12]. The KL1 machine was implemented on shared-memory machines as Panda

*There are several variants of FCP as defined by Shapiro {77]. In this paper I leave the precise vatiant
unspecified unless relevant.

[74] and evolved into the abstract machine shared among the “parallel inference machines”
(PIMs). A hybridization of a few of these projects was I. Foster and S. Taylor’s flat Parlog
machine [28] leading to the Strand Abstract Machine (SAM) [29], ported to several types of
multiprocessors. these systems represent the second-generation parallel implementations,
the first comparative study of which was by Foster and Taylor [28]. The community is now
completing the construction of third-generation optimized compiler-based, portable systems,
e.g., the jc Janus system [39], Monaco [88], and a portable KL1 system [13].3

Specialized hardware efforts were concentrated mainly at ICOT with the decade-long
FGCS project and their aim of building PIMs. The personal inference machines (PSI-
LILIII) (84, 63] were followed by mockup PIMs (Multi-PSI-V1 built of 6 PSI-Is, and Multi-
PSI-V2 built of 64 PSI-IIs), and finally PIM/{c,i,k,m,p} [61, 75, 6, 64, 54]. The main efforts,
PIM/{m,p}, are large multiprocessors (2°~2% processors) based on specialized hardware for
“direct” execution of KL1 (either by microcode or RISC-based intermediate machine lan-
guages). Other notable hardware implementation efforts include the Carmel microproces-
sors [41] and a related microprocessor proposed by Alkalaj [3]. A full analysis of hardware
issues in concurrent logic language implementations is beyond the scope of this article (see
Tick [87] for instance), although I do correlate the instruction set designs of the software
and hardware oriented implementations in Section 4.9.

In summary, the seminal research results in CC language implementations are:

o Shapiro [76] and Mierowsky [59]: first interpreters.
Emu [43, 80], SPM [36, 38], and KL1-B [48]: first abstract machines.

Taylor [85]: first distributed implementation.

Strand [26, 29]: first robust, high-performance, scalable, compiler-based implementa-
tion.

JAM [18] and Panda [74]: first implementations optimized for shared-memory multi-
Processors.

PIMs [6, 54, 61, 64, 75]: first custom hardware implementations.

4.2 Principles and Trends

Efficient implementation of concurrent logic programs requires strong foundations in sev-
eral areas. As in any parallel system, task? switching and task creation are the primitive
operations that must be made fast. Furthermore, as in any computational system, task
invocation, variable binding, and memory reclamation must also be made fast. For concur-
rent logic programs, task switching means suspending one task and substituting (resuming)
another; task creation means building a body goal task from its parent’s arguments and
perhaps spawning it on a remote processor. Task invocation is extended here to include the

3nteresting comparisons of the execution performance of many of these first, second and third generation
systems can be found in Taylor [85]) and Tick [88, 89).
*The words task, process, and goal are used interchangeably in this article.

10

action of executing a goal to the point when it commits, i.e., performing the clause tries
needed to commit, suspend or fail.> Variable binding incurs added overheads to guarantee
atomicity (i.e., locking around the update to avoid races among competing writers). Not
only is fast memory reclamation critical, but moreover so is efficient use of memory in the
first place, since the single-assignment nature of the languages can be quite profligate in
touching memory.

By far the most complex implementation aspect of these basic operations is task switch-
ing and task invocation because of language synchronization semantics that require implicit
synchronization on potentially incoming procedure arguments. This places a burden on the
compiler and generally bloats procedure invocations with respect to sequential languages
and implementations. The various nuances of language semantics, e.g., deep or flat guards,
atomic or nonatomic tell unification, impact implementation efficiency.

Orthogonal to these primitive operations are intelligent task management policies that
are desirable: balanced load, balanced granularity, and fair scheduling. These concepts
are not unique to concurrent logic programs, and are required independent of how fast
the primitive operations can be made. Looking at underlying multiprocessor hosts, an
additional requirement exists to achieve full efficiency: latencies must be hidden. Memory
latency in distributed multiprocessors is the major problem to dealt with. As Arvind showed
(4], hiding latency effectively is directly traded-off against switching tasks quickly. We shall
see (Section 4.5) that current concurrent logic programming systems can hide latency, but
only within limits, and certainly overly-complex languages features cannot be effectively
hidden.

The past ten years have seen a trend towards deevolution of logic programming languages
driven by the practical need to build fast implementations. The most drastic step was
the definition of committed-choice languages that did not backtrack, enabling the first
pseudo-parallel interpreters to be built. The next deevolutionary step was from deep to flat
guards, and moving from synchronizing on dynamic read-only variables to synchronizing on
statically-declared arguments, enabling the first efficient implementations to be built. Next
were restrictions placed on how variables could be bound: Strand [29] abolished output
unification in favor of assignment, similar to moded FGHC [96] which constrains a logical
variable to have a single producer.® More strict, Doc [42], .A’UM [100], and Janus [71]
constrain a logical variable to have at most a single producer and single consumer. These
simplifications facilitate compile-time analysis and optimization of memory usage.

The progressions are further described in subsequent sections. The key point is that
languages are refined by reaching an equilibrium between what application writers demand
and what implementors supply. There is not yet full agreement as to where this equilibrium
point is for concurrent logic programs, and I think it will be most strongly influenced by
fast, portable, and parallel implementations.

5A concurrent logic program task is like a thread in threaded architectures. The task invocation creates
a main thread which may split into multiple threads during guard evaluation, all synchronizing at commit,
leading to a single clause body thread. The body calls spawn new threads, and so on.

8The two languages are dissimilar in that Strand checks at runtime if the LHS of an assignment is a
variable, while this is guaranteed at compile time in moded FGHC.

11

4.3 Synchronization

Concurrent logic programs synchronize on logical variables, similar to how non-strict data-
flow languages use I-structures [5, 55]. For a given clause, a required input variable (also
called a synchronizing variable) is informally a variable for which a value is necessary to
test matching in the head or guard. If a required input variable is unbound upon procedure
invocation, the corresponding clause cannot commit. Furthermore, if no clause defining the
procedure can commit and not all clauses fail, it implies some required input value(s) have
not been delivered, and the task must be suspended. Concurrently, if any of these required
input variables are bound, the task must be resumed.”

Input matching (synonymous with passive unification) is transformed by compilation
into instruction sequences that make matching efficient in general. The ability to syn-
chronize on variables requires temporarily binding certain unbound logical variables to a
suspended task to enable subsequent resumption. The efficiency of this infrastructure is the
main factor in synchronization performance.®

The FCP, JAM and KL1 machine architectures all use similar methods of “hooked”
variables, i.e., assigning indirect pointers from suspended variables to process structures
[43]. Indirection is required to allow both multiple variables to synchronize the same task,
and multiple tasks to be synchronized by the same variable. Unbound variables are in-
frequent data types: Imai and Tick [45] measured 1-15% of dynamic objects are unbound
variables across a KL1 benchmark suite. To our knowledge, no one has measured the preva-
lence of hooked variables, and the characteristics of those hooks. It is a widely-held belief
that hooks are quite simple in structure and rare in frequency.® Thus JAM Parlog [20] and
Strand [29] allow goals to be hooked to only one variable, thereby obviating the complex
bookkeeping structures needed for the general case. JAM exploits shared memory to imple-
ment a “hybrid” suspension list to gain this efficiency. Singly-suspended tasks are simply
linked together in a daisy chain emanating from the unbound variable (since resumption will
disperse the entire chain). Multiply-suspended tasks are “wired” into the chain via suspen-
sion notes and hangers, the standard indirection mechanisms [43, 20] needed to guarantee
that bindings to alternatively suspended variables do not chase dangling pointers. Strand
initiates all suspensions as if they are the single-variable type, and if this most frequent case
is violated, the suspended task is added to an exceptional (global) queue. This queue is ac-
cessed only if all processors become idle. No measurements have been presented indicating
the utility of this method.

An orthogonal issue is how to specify the input variables upon which to synchronize.
The most common method is “procedure level” representation wherein synchronizing vari-

T Reaumption is defined here as reattempting to execute the task, and therefore binding the variable is
sufficient to resume the task. However, the binding is not necessarily sufficient to permit the task to commit:
the task may suspend again.

%Early systems did not attempt to statically analyze logical variables, e.g., to determine if a variable can
possibly be hooked, and if not, how to generate more efficient code for the ask tests. Recent compilers, e.g.,
[51, 99], claim to do global static analysis to determine this and other information.

®The former assertion is more strongly supported than the latter — “object-oriented” programs can
create many suspensions, as discussed in the remainder of this section. The two such programs measured
by Imai and Tick produced far more variables than the other benchmarks.

12

ables are syntactically specified (explicitly as in Parlog or implicitly as in GHC) on a per
clause basis. Alternatively synchronization at a “data level” representation specifies syn-
chronizing variables, e.g., “read-only” variables in Concurrent Prolog. The latter method
has gone out of favor because, although it facilitates certain sophisticated systems pro-
gramming techniques, it complicates dereferencing and unification, and frustrates static
analysis. The elegant programming techniques it enables are rarely used in applications
programming [77], yet the cost of implementation is felt throughout the design [28], pri-
marily because it requires atomic unification support. Foster and Taylor [28] measured (for
small benchmarks executing on a sequential workstation) that trailing needed to support
atomic unification (discussed further in Section 4.6) in FCP(:) (with atomic unification
[77]) caused a 5% degradation in performance compared to flat Parlog (without atomic uni-
fication). For programs with suspension ratios (# suspensions/# reductions) of 19-56%,
additional degradation of 4-8% was observed, hypothesized as other overheads associated
with read-only variables (since flat Parlog and FCP(:) were calibrated except for that).

Another implementation issue is the actual control flow of checking the synchronizing
variables (discussed at length in Section 4.4). It was originally believed that parallel exe-
cution of the clause tries was beneficial because it implied faster invocation. However, if
deep guards are permitted, then parallel clause tries require the ability to sustain multiple
environments and incur most of the problems associated with OR-parallel management of
bindings under search for a single solution. Furthermore, with flat guards, the little amount
of work within the clause tries may not justify the overhead of executing them in parallel.
Crammond showed consistently negative speedups (3.8% to —32%) for small, flat-guarded
benchmarks on JAM Parlog (executing parallel clause tries) on a shared-memory multipro-
cessor [18]. In fact, compilation techniques such as decision graphs [51] remove redundant
computations among the clause tries, furthering the argument that parallel tries do not pay
for themselves.

Sato and Goto [74] showed, for the shared-memory Panda system, that suspension in-
duces execution overhead of 1-5% for small benchmarks, because of the necessity to redo
the clause tries on resumption. Especially with decision-graph compilation techniques, it
is not easy to avoid recomputation since there is more sharing among the code generated.
For Panda benchmarks with low suspension ratios of 1-8%, depth-first scheduling mecha-
nism effectively suppressed suspensions {with respect to breadth-first scheduling), but the
benchmarks were quite simple. The one Panda benchmark with a high suspension ratio of
42% was not suppressed by depth-first scheduling. Taylor [85] measured suspension ratios
of 0-56% on the hypercube for small programs, including an assembler. The higher ratios
are due to static pragma-driven scheduling on the hypercube, compared to the dyramic
scheduling on Panda. Imai and Tick {45] measured 14 medium-sized benchmarks ranging
from 0.3-67% suspension ratios, with a geometric mean of 3.7%.

All these statistics taken together indicate, among other things, that suspensions are not
infrequent and thus overheads associated with suspensions can seriously degrade execution
performance. The problem is total lack of knowing in what order or schedule the concurrent
goals will execute. However, given certain information, for instance knowledge of depen-
dencies among goals, suspensions can be effectively neutralized. Techniques to collect such
information include abstract interpretation {50, 51] and constraint propagation [96, 90].

13

For example, Kliger [51] reports that a set of 27 small-to-medium size FCP(:) bench-
marks achieved 21% geometric mean speedup due to a set of optimizations based on the
global schedule analysis. Knowing a partial order of execution engendered optimizations
including reduction of (atomic tell) unification into assignment, in-lining arithmetic, and
efficiently manipulating unboxed objects (i.e., conducting a chain of arithmetic operations
on data cells with tags masked out).

4.4 Guards and the Process Structure

Guards, similar in purpose to Dijkstra’s guarded commands, were introduced to logic pro-
gramming in the Relational Language [15]. They extend, from simple input matching, the
expressivity of how to commit to a clause. In their most general form, guards among clauses
defining the same procedure represent disjunctive processes racing to commit. Implemen-
tation difficulties occur 1) if these processes are allowed to bind (nonlocal) variables, and
2) even if binding is outlawed, if processes are permitted to make nested calls. The former
problem is indicative of “unsafe” languages, and the latter problem is indicative of lan-
guages with “deep” guards. Considering the range of complex to simple implementations,
the languages fall into three basic categories: unsafe and deep (e.g., Concurrent Prolog),
safe and deep (e.g., Parlog), and safe and flat (e.g., FGHC).1°

Unsafe clauses may compete with one another in the sense that each may wish to make
conflicting bindings to the same (nonlocal) variables. This is implemented by restricting
bindings to a local environment, for exportation upon commit. Exportation can, however,
conflict with concurrent bindings made nonlocally. If this happens, the clause try fails.
Detecting inconsistencies is a major implementation problem in these languages — there
is a choice among detection before commit (“atomic”) or after commit (“eventual”). The
former presents a clearer semantic model to the programmer, but is far more difficult to
implement (see Section 4.6). Programmers have a more difficult time debugging eventual-
tell unification languages because such body unifications can be executed (and fail) some
significant time after (due to scheduler delays) the parent procedure successfully committed.

Deep guards effectively form a process hierarchy or tree, with local environments at
each level. Local environments are needed, even if the language is safe, becanse incoming
bindings (to local variables) must be saved across deep guard evaluation. In other words, the
arguments must be cached in a unique environment because the evaluation of deep guards
may involve further procedure invocations (possibly recursive) with their own environments.
One severe implementation problem is the management of multiple environments (one per
deep-guard clause in the same procedure) if guards are evaluated concurrently. This value
access control problem is similar to that of OR-parallel implementations of Prolog: how to
efficiently ensure that only ancestor environments on a path to the root are accessible, and
that all other environments are hidden.

Another implementation problem is supporting fair execution while descending the hi-
erarchy, while retaining low complexity and cost. If fair execution is not guaranteed then

10 A subtle issue is how the languages are made safe. Whereas in Parlog body goals executed in deep guard
evaluation must not attempt to export observable bindings, in GHC body goals executed in deep guard
evaluation must suspend when they atiempt to export observable bindings.

14

eagerly executed guards may loop, preventing later guards from failing and freeing up the
computation. Shapiro [77] states that the inability to achieve fairness at low cost moti-
vated flat languages.!! He cites early CP implementations (e.g., [60]) as either unfair or of
“unacceptable” complexity.

JAM Parlog [20] constrains deep guards to be used only in clauses bracketed by se-
quentialized clause separators (in some languages called otherwise guards). Such separators
prevent subsequent clauses from being tried until all previous clause tries fail. This restric-
tion obviates concurrent evaluation of deep guards, simplifying management to that of a
single local environment per procedure. Crammond [20] states that this restriction allows
most of programmers’ intended uses of deep guards, e.g., as if-then-else conditionals.

Parlog offers the programmer a sequentialization operator g & b that guarantees goal
g executes to completion before goal b is executed. In JAM, the implementation views a
clause as compiled above with the guard g and body b. In other words, the same mechanism
used to implement sequential goal execution does double duty for deep guard execution.
Deep guards need to be evaluated concurrently to avoid deadlock; however, given mode
information, flat guards can often be executed in-line for efficiency. The environment nec-
essary for carrying local bindings over a sequentialization operator are not unlike a Prolog
environment in standard WAM implementations, cf. goal stacking in standard CC language
implementations.

Restricting the language to only safe, flat guards engendered decision-graph compilation
[51] because clause tries can be compiled in line without transfer of control nonlocally to
other goals. A decision graph is composed of if-then-else and switch nodes which transfer
local control conditionally upon a test. A graph is formed, rather than a tree, to guarantee
space proportional to the number of clauses in the procedure. To ensure space linearity, a
clause is propagated down one and only one branch of the graph as code is being generated.
Thus clauses ambiguous to a test are conservatively placed in a continuation branch, and
sibling branches jump to the continuvation upon failure.’? For a suite of 27 medium-size
benchmarks, decision graphs executed 3.2 times faster on average than WAM-like compi-
lation [51]. The code size expanded by 30% on average, with a particularly degenerate
program (Salt & Mustard [86]) doubling in size. An interesting problem is how to order
the graph nodes, and how to generate optimal code for the tests, conditional branches and
switches, to minimize execution time [24].

A main purpose of deep guards is to perform speculative computations that can fail
allowing alternative solutions to succeed. Unsafe languages enriched this paradigm allowing
bindings to be made along the speculative path. Experience has shown that support of both
of these operations is too expensive for the low frequency with which they are used. The
deevolution to flat languages is complete in the sense that almost all research groups opted
to reduce language expressibility in favor of easily-implementable flat guards. In a further

1177his problem still exists, in a less troublesome form, for unfair flat languages when early builtin guards
suspend, preventing or delaying later guard failure. This can only reduce the failure set.

12When generating a decision lree, testing a variable for which a group of clauses “don’t care” requires
copying those clauses to each branch of the test, thus failing to achieve space linearity. The space complexity
with respect io the number and type of guards cannol be easily formalized because of the potential of
nonmutually exclusive conditions.

15

extreme, Fleng [66] abolished traditional guards in an effort to streamline execution. In
general, guard (ask) tests must be pulled up and evaluated at each call site. This allows the
optimization wherein certain guard tests need only be evaluated at certain call sites. Global
analysis is needed to produce the information required for this optimization. Although FCP
has guards, a similar optimization is enabled by Kliger’s method of customizing decision-
graph clause tries for different call sites [51].13

4.5 Reading and Writing Logical Variables

The costs of reading and writing!? logical variables can be calculated as the frequency of
operations required, multiplied by the cost of the operations. For example, reading a logical
variable incurs the incremental cost of suspending the variable at the rate of suspension. In
shared-memory multiprocessors, all accesses are “local” (i.e., do not travel across a high-
latency network) so that the relevant overheads are lock traffic on the shared bus and
lock contention. Contention, i.e., multiple concurrent requests of the same lock, can be
exacerbated when the host does not supply enough physical locks for all objects needing
locks.1® For small benchmarks, Sato and Goto [74] reported that locking accounted for only
1-5% performance degradation on the Sequent Balance. This conveys both the relative
efficiency with which locks can be implemented with shared memory, as well as the retained
significance of lock overhead. Interestingly, although most of the lock traffic they measured
was for protecting bindings, most of the observed lock contention was for bookkeeping locks
for scheduling and termination.

Distributed-memory multiprocessors are significantly more problematic because of the
overheads incurred in reading and writing nonlocal variables. Nonlocal reading requires
sending a message requesting the variable’s value, and receiving a reply. Nonlocal writing
requires issuing the binding — the receiver can update the variable locally (without explicit
locking) and send either a success or failure acknowledgement. The incremental cost of
resuming tasks hooked to the bound variable must be accounted for in a macro view of
execution.

There are of course variations on both of these protocols. Taylor [85] discusses a protocol
on a hypercube where nonlocal writes first request a remote lock, and upon receiving the
lock, issue a remote write. He measured 61%-100% of all messages sent, for six FCP
benchmarks, are nonlocal reads. The four smallest benchmarks required an arithmetic
average of 99% reads. Although write frequency is seen to be very low, its amplified cost can
be felt. For example, Taylor demonstrated that for the incomplete message paradigm (where

33Practical definitions of Fleng allow the programmer to specify guards, which are then pulled up to the
call sites. Without global analysis, of the complexity required by Kliger, all guard tests must be pulled up
to each site.

" Throughout this section “read” and “write” refer to logical not physical operations. For instance “read-
ing” a variable may actually involve hooking a goal on that variable, which would involve a physical write
(store) operation.

15Por example, the Sequent Balance and SGI MIPS-based multiprocessors offer a limited number of locks,
whereas the Sequent Symmetry allows every memory location to be locked. Because this hardware attribute
cannot be easily modified for a given host, studies of lock contention vs. lock granularity have not been
performed for concurrent logic languages.

16

nonlocal reading and writing occur with equal frequency), the main execution overhead on a
multiprocessor was not the sender reading the return value, but rather the receiver locking
and writing the return value. In this simple example, locking proved to be extremely
expensive (performance degradation of two times on two hypercube nodes) because the
latency could not be hidden.

Reducing the cost of reading is critical in distributed implementations. If a complex
term is to be read nonlocally, an important design consideration is how much of the term
should be eagerly transferred. Taylor also examined the affect of this copy depth parameter
on performance. For standard paradigms such as producer-consumer and incomplete mes-
sages, performance improved significantly for initial increases in copy depth, after which
no improvement was seen.'® The interpretation of these results is that the consumer is
“brought up to speed” by increasing transfer size until the point at which it outruns the
producer, after which no further improvement can be achieved. Because these are such
pervasive programming techniques in concurrent logic programs, it is imperative to find
ways to speed them up. Hardware support for message management (packing and unpack-
ing, merging active messages straight into the execution pipeline) to more effectively hide
latencies is one approach, similar to the goals of threaded architectures (e.g., Nikhil et al.
[65]). Another idea is to reduce the number of messages sent, either by introducing new
programming paradigms, or by dynamically migrating tasks and streams so that communi-
cation is local. Yoshida [100] took the latter approach in the design and implementation of
A' UM, discussed in Section 4.10.

4.6 Unification

Unification is somewhat controversial because it stands out as one of the few unbounded-
time operations required by logic programs compared to conventional languages. In many
cases unification can be compiled into simple instructions, as was elegantly shown in the
WAM [2, 98]. Unification in committed-choice languages can be categorized as either input
(also: passive and ask) or oulput (also: active and tell), reflecting the exportation of bindings.
Ask unifications implement head matching either as explicitly compiled match instructions
or as invocations of a fully general passive unify routine. Luckily, full passive unification
is rarely executed: it occurs only when checking the equality of two incoming arguments.
For example, Foster and Taylor [28] measured the execution of 153,800 matching operations
and 15,300 general passive unifies (9% of total) in an Assembler benchmark written in Flat
Parlog. Furthermore, if sufficient type information is inferred, general passive unifies can
be reduced to simpler tests.

At the leaves of unification’s recursive descent, rules for unifying primitive data types
come into play. Read-only synchronization requires an extended set of rules [60, 85] com-
pared to procedure-level synchronization, potentially reducing performance.

Whereas ask unification occurs before commit, the location of tell unification varies
among the languages. Unsafe languages require atomic tell unification wherein no cutput
bindings are seen until commit. This means that bindings must be locally trailed, and per-

¥The determination of the copy depth parameter may possibly be done at compile time with strictness
analysis of data, e.g., Wadler [97).

17

haps undone upon failure. Furthermore, atomic unification can bind two variables which
are inputs of the same procedure invocation. This raises the issue of whether such bindings
should be eagerly acknowledged, although such an implementation causes a performance
degradation of 1-29% [28]. This and trailing overheads led to the abandonment of atomic
unification for implementation reasons alone. Safe languages place tell unifications after
commit (called body unification). The implementations are thus free to perform body uni-
fications on the fly, with unification failure causing the unification goal’s parent procedure
to fail.

Even body unification is complex when considering multiprocessor implementations.
The main problem is to avoid potential race conditions among concurrently executing tasks.
Thus any logical variable that needs to be bound must be locked first. Even if two variables
are to be unified, both must be locked to prevent a competing task from creating a cyclical
binding. Furthermore, they cannot be locked in an arbitrary order under threat of deadlock
with the competing task trying to lock them in the reverse order (very unlikely, but possible,
unless mode restrictions are known, as discussed below). Some ordering must be made, e.g.,
exploiting the nature of a shared-memory name space.

By making the most frequent case fast, general unification on multiprocessors can be
implemented efficiently,. The most common case by far is binding a non-variable to an
unbound logical variable that does not require dereferencing. A fast stub can be constructed
that tests if one operand is a non-variable, and one is unbound and not hooked. On a
shared-memory machine, the variable is then locked, checked if still unbound (i.e., that
some competing task didn’t race to bind it), the binding is made, and the cell is unlocked.
This sequence can be significantly sped up in a safe language on a multiprocessor with
atomic exchange.

Otherwise, if the initial condition is not met, full unification is required: the two
operands to be unified must be locked if unbound, dereferenced, and compared or bound.
On distributed-memory multiprocessors, the same algorithms can be naively used, poten-
tially with nonlocal accesses required for each simple unification.

Because of the implementation complexity and potential execution overheads of output
unification on distributed-memory multiprocessors, and the evidence that it is infrequently
used in its full generality, output unification further deevolved in Strand to assignment.
Thus recursive descent is obviated, and the left-hand side of the assignment is required to
be a variable. However, this does not rule out the need to test for exceptions, or hooked
variables for which the associated task(s) need to be resumed. Thus binding is still expensive
compared to imperative assignment.!? Recall (Section 3.6) that PCN offers both definition
(logical) and mutable variables. Thus safe and efficient assignment to mutable variables
can be guaranteed by the programmer. Furthermore, memory usage can be reduced by
destructive update of mutable variables. In a sense, PCN is the farthest deevolution has
progressed in concurrent logic languages.

""With compile-time freeness analysis, e.g., [96], and hookedness analysis, e.g., [99], these tests can be
safely removed.

18

4.7 Task Scheduling and Priority

There are various philosophies for automatic scheduling of parallel tasks. Compile-time
analysis can be attempted to determine a fixed schedule mapping tasks to processors. Run-
time profiling information can aid the static analysis. A radical departure is to perform all
scheduling dynamically without any static aid, or a hybrid combination of static and dy-
namic. Another approach is to avoid automation and require the programmer to explicitly
distribute tasks.

Automatic scheduling in concurrent logic programming systems is usually dynamic and
process-oriented (e.g., JAM, Panda, Monaco) because tasks are too small, undifferentiated,
and numerous to allow practical static analysis. For shared-memory multiprocessors, the
main implementation issue is how to efficiently manage the goal queues. A single shared
queue would eliminate the need for load balancing, but contention for this scarce resource
is too costly. Splitting the queues up, one per processor, removes contention but leads
to potential unbalancing. Once queues have been split, there emerges the implementation
paradigm, on large-grain process systems such as UNIX, of fask farming. Here a single
UNIX process, often called a “worker,” is responsible for coroutining between the execution
and scheduling of goals. In on-demand scheduling, goals are not eagerly distributed among
workers and only an idle worker searches for work, thereby minimally disturbing busy proces-
sors. Sato and Goto [74] and Crammond [19] examined variations of on-demand scheduling
involving further splitting the local queue into private and public queues and allowing idle
workers to steal only public work. Crammond reported that for eight medium-sized Par-
log benchmarks, private/public queues offered slightly better and more consistent speedups
than public-only scheduling, on the Symmetry and Butterfly II (on 16 Symmetry PEs,
geometric mean efficiencies, i.e., speedup/16, of 86% and 83%, respectively). These early
studies measured multiprocessors with far slower processing elements than are available
today.

There has also been much work within the ICOT FGCS Project exploring automatic
load balancing methods, e.g., [32, 44, 61, 74, 81]. The most successful experiment has been
the multi-level load balancing (MLLB) scheme for balancing OR-parallel search programs on
a distributed-memory multiprocessor [32]. The idea is to partition the available processors
into groups, and allocate one distribution master per group. Slave processors within these
groups request work from the master. The master receives work from a global master whose
function is to distribute “super” work granules to the group masters. There is a method of
merging groups, and given the regular nature of OR-parallel search, this method has been
shown to be quite effective, e.g., speedup of 50 on 64 processor Multi-PSI for the pentomino
benchmark [32].

The drawback of MLLB is its limited application domain. Thus even ICOT resorted
to explicit user-defined “pragma” in the KL1 language for remote task scheduling on dis-
tributed multiprocessors. Strand and PCN also require pragma. In these latter languages,
the user is encouraged to design load-distribution management networks, called motifs, e.g.,
MLLB could be specified as such [27, 30]. In PCN, motifs consist of several programming
constructs implemented in the source language with libraries providing support. Simple
pragma are enriched by allowing the definition of virtual topologies, which can be embedded

19

within physical topologies. Topologies are collections of nodes, such as a hypercube net-
work, implemented by process structures. User-defined tasks are mapped onto the nodes by
passing the tasks as messages for meta-execution. A user program can be written to inter-
face to a single virtual topology, which can then be automatically mapped onto whatever
physical topology is offered by the hardware organization. There are several other con-
structs, such as templates and ports, which facilitate program creation, but do not present
major implementation difficulties.

An issue related to task scheduling is task priority. Early concurrent logic languages
specified that goals were required to be executed in a fair manner, Fairness is difficult to
define in a manner that can be easily implemented. One weak definition is that all tasks
which can execute are attempted at some time. This guarantees avoidance of spurious
deadlock, i.e., deadlock not due to cyclic dependencies introduced by the programmer.
Normally, tail-recursion optimization (TRO) is implemented wherein a selected body goal
is directly executed and all others are wrapped up as goal records and enqueued. By
extending the life of a thread through a selected child in this manner, efficient use of
registers for argument passing can be achieved. Fair execution is emulated in a number
of systems by a time-slicing technique, wherein every k reductions, TRO is replaced by
enqueueing all body goals at the back of the queue, and switching in a goal from the front
of the queue. Implementation incurs the overhead of updating a counter comparing it to k
for each reduction, as well as enabling queue access from both the front and back.

The KL1 PIM systems took a different approach, discarding the notion of task execution
fairness altogether. It is replaced by a goal priority scheme, wherein the scheduler makes its
best effort to abide by priorities. This allows programming techniques such as speculative
exploration of alternative solutions.”® KL1 allows goal pragma that set priorities relative
to a parent goal or a collection of goals called a shoen. These logical priorities, potentially
ranging from 0 to 232, are retained in goal records, but also mapped into a smaller physical
range for purpose of sorting, For example, if the physical range is 0 to 214, then the KL1
implementations use an array of 2'* queues. The non-empty queues are linked to allow effi-
cient dequeueing across priorities. Insertion of a goal into an empty queue requires a linear
search up to the nearest non-empty neighbors to update the links. This algorithm is suffi-
ciently simple for its microcoded implementation, although software-based implementations
might be better served by balanced, priority trees.

All the statistics given in Section 4.3 taken together indicate, among other things, that
a not insignificant number of programs use “active” tasks, i.e., process groups are spawned
to implement active objects that compute and communicate until the termination of the
algorithm. For example, instead of implementing a heap data structure as a complex term
to be passed as a procedure argument, the heap can be implemented as a group of node tasks
connected by streams. Heap management algorithms proceed by message passing on these
streams. This object-oriented programming style causes frequent suspensions because the
processes composing the active objects are normally suspended, awaking only upon receiving
a message upon a stream. Yet all the parallel systems previously mentioned implement
process-oriented scheduling wherein a goal reduction leads to the enqueuing of its body goals

18 An alternative method for enabling speculative search in CC languages proposes a guard that succeeds
only if the executing processor is idle [37].

20

onto runtime work queues, with one of the goals selected for local execution (analogous to
tail recursion optimization). Such a scheduling model executes active programs inefficiently.

Ueda and Morita proposed an alternative model called message-oriented scheduling
(95, 96] for more efficient active program execution. The main idea is to transfer control to
a stream consumer at the point when the producer sends the message. In the case where
buffering can be avoided, this method of task switching to an active process has less overhead
than the standard execution mechanism. Ueda and Morita implemented this method for
shared-memory multiprocessors by scheduling from a global work pool. Since control is
transferred immediately upon message sending, effectively independent chains of message
sends are executed by the processors. Their initial performance results are extraordinarily
good: naive reverse executes on a single Symmetry 80386 processor at 3.3 seconds (cf.,
jc (Janus) [39] runs at 3.1 seconds and Monaco (FGHC) [88] runs at 15.4 seconds!?).
Furthermore, almost linear speedups are achieved, as well as comparable performance to
optimized ‘C’. Ueda and Morita go further, comparing message-oriented to process-oriented
systems on the VAX11/780. Three small benchmark programs achieved —300%, 40%, and
360% speedups using message-oriented execution, indicating that the idea is viable.

4.8 Granularity Control

Concurrent logic programs are fine grained: Alkalaj [3] measured from “20 to several hun-
dred single-cycle instructions” per average goal reduction. Taylor [85] measured FCP gran-
ularity on a hypercube as a ratio of reductions/messages-passed,?® ranging from 3.5-220.
It is clear that granularity is very much dependent on application and programming style,
but even in the best case, granularity is still low compared to conventional approaches to
parallel programming in imperative languages.

The advantage of fine-grained concurrent languages is the abundance of potential par-
allelism. However, the main disadvantage is that too-fine granularity can lead to excess
overheads in task management. Alkalaj [3] has shown that 50% of the execution time
of large FCP applications is spent on goal management for a reasonable machine execu-
tion model. His recommendation was a specialized hardware organization to support this
efficiently. Such directions are promising, as echoed for instance in the hardware imple-
mentations of threaded architectures, mainly predicated on dataflow languages (e.g., [69]).
Special hardware or not, it is necessary to boost efficiency by “collecting” granularity at
compile time [73, 92].

Ideas along these lines were developed for logic programs by Debray et al. {25], King
and Soper [49], and Tick and Zhong [91]. Debray’s design seeks to construct, at compile
time, estimators of input argument size, and formulate these estimates into granularity
estimations. At runtime, a granularity estimate is evaluated for each procedure invocation,
and the estimated value is used to make dynamic scheduling decisions. For example, if the

19The latter two times were calibrated downwards from raw measurements (3.9 sec and 19.2 sec) made
by the author on a 16 MHz Symmetry, since Ueda and Morita's measurements were made on a 20 MHz
Symmetry.

%1n a distributed memory multiprocessor implementation, messages would be used for communicating
values down a stream from producer to consumer, for example.

21

weight is below a threshold, a task will not be spawned because of excessive overhead.

King [49] discusses an analysis technique with no runtime component. Similar to De-
bray’s method, granularity is modeled as a function of argument size; however, these sizes
are estimated by abstract interpretation. The analysis associates argument types in the
concrete domain with a finite abstract domain of argument sizes. Another analysis sug-
gested by King associates control structure in the concrete domain with a finite abstract
domain of procedure complexities. The results are purely static determination of granu-
larities. King uses these analyses, as an alternative to profiling for example, to drive task
sequentialization (see Section 4.9).

Zhong’s approach [91] attempts to remove the complexity of argument-size estimation
(both at compile time and subsequent runtime evaluation costs) by introducing an abstract
“jteration parameter” which is a proxy for relevant granularity information. The remainder
of the scheme is similar to Debray’s, with the major distinction that the estimators are
easier to formulate, cheaper to evaluate, but far less accurate. Furthermore, the weights
computed are relative, e.g., it can be estimated that one task is half the weight of another
task, but it cannot be determined if either are below some absolute threshold weight.

The verdict is not yet in on the utility of these granularity analyses, because empirical
data is sparse. Robust analyzers and larger benchmarks are needed.

4.9 Abstract Instruction Set Architectures

The Warren Abstract Machine (WAM) [2, 98] had a great influence on the various concurrent
logic language implementations discussed in previous sections. The important differences
among the abstract machines developed for committed-choice languages are in their storage
models. The primary distinction is whether the heap is based in shared memory [20, 39, 43,
48, 51, 88), or distributed memory [54, 64, 75, 85]. In general, all variables and terms are
stored in a heap, and memory is reclaimed by explicit, periodic garbage collection. Goals
are usually represented by heap terms that can be linked into work queues for scheduling.
A goal that is suspended can “float” on the heap, to be relinked to a work queue upon
binding its hooked variable.

There are several variations to this basic model to gain efficiency. Goal records can be
constrained to be fixed size and queued in free lists facilitating memory reuse. Furthermore,
all data structures can be partitioned onto heaps corresponding to size, each with its own
free list for ease of (de)allocation. Crammond [20] split arguments away from goal records,
allocating them on their own stacks to improve locality and reuse. With arguments allocated
separately from goal records, goal-record locality improves, and arguments no longer need to
be of fixed size if allocated in a stack-based fashion. However, this results in the creation of
“holes,” i.e., deallocated frames trapped below the top of stack, which can require general
garbage collection if they grow too large. Crammond [18] illustrates the extent of this
problem for some small benchmarks.

In addition, bookkeeping structures for evaluating deep guards and suspension manage-
ment are necessary. Recall from Section 4.4 that deep guards and sequential conjunctions
require the use of environments which hold values of variables active throughout the clause
try or sequential body evaluation. The environment is needed for sequential body evaluation

22

because unlike goal-stacking implementations, depth-first sequential procedure evaluations
requires environment stacking.

Practical implementations require at most one environment per invocation [20], which is
deallocated upon body completion?! or guard failure (to be reallocated for the next clause
try). In addition, a trailis needed for atomic tell unification wherein failure and suspension
during unification must “back out” all bindings generated. Suspension management requires
a suspension stack holding pointers to input arguments that are needed but are as yet
unbound.

A less important distinction among the systems are their abstract instruction sets. The
instruction sets of the various machines follow the general WAM model, passing arguments
through dedicated registers, and having a set of additional state registers for control and
storage management. The instruction sets can be broken down into similar groups. Older
models use WAM-like indexing control instructions, whereas decision-graph compilers for
flat languages avoid shallow backtracking and much of the required control instructions.
Head matching (ask unification) is compiled with wait instructions that will push their
corresponding argument onto the suspension stack if it is not instantiated. Tell unification
is compiled into get instructions that will make assignments or invoke a general unifier.
Finally, body goals are generated with put instructions for loading arguments and enqueue-
ing goal records. As mentioned in Section 4.7, usually a form of tail recursion optimization
(TRO) can be implemented by loading the arguments of one of the body goals directly into
the argument registers and jumping to the goal code.

Additional instructions are needed for the {de)allocation of local environments (for non-
flat languages and /or sequential conjunctions) and heap storage. Goal-management instruc-
tions are responsible for terminating a thread (in unit clauses), enqueueing a goal (creating
threads), directly executing a goal (TRO, called promoting a thread in JAM), and initiating
deep guards. Note that flat languages have threads that live very short lives, not counting
promotions. Sequential conjunctions, introduced in Parlog, do not lengthen threads in prac-
tice because they are necessarily implemented with trees of local environments (see Section
4.4). This stems from the fact that within a sequential conjunction, concurrent goals may
execute. If total sequentialization of a goal and all its children can be specified or derived,
then these local environments can be stacked, resulting in superior space and execution time
efficiency. This would be a true elongation of threads, resulting in increased performance
[50, 57). Such an implementation requires a sequential call as well as stack (de)allocation
instructions.

Arithmetic instructions and builtin predicates must be able to suspend if executed be-
fore commit, or be enqueued as bonefide goals if executed after commit. In a shared-memory
multiprocessor where latencies are short, JAM optimizes this by checking arithmetic oper-
ator inputs in the body, and if available, executing the arithmetic in place. Otherwise, a
goal is created. In distributed memory multiprocessors where nonlocal access latencies are
long, it pays to spawn arithmetic goals in any case, as is done in threaded architectures
for dataflow languages. Similarly, array accesses are spawned as independent goals. This
is done even on shared-memory multiprocessors because static analysis of array indicies to

1More precisely, after all instructions, in the immediate thread, that access the environment, have been
executed.

23

determine dependencies is very difficult [9].

A trend towards reduced abstract machine design, following the principles of RISC
design, has led to instruction sets such as Carmel [41], SAM [29], the jc machine [39],
Kliger’s machine [51], and the various PIM architectures [54, 64, 75]. For example, Strand,
FGHC, Fleng, Janus, and FCP(|) [77] sufficiently simplify the execution model, obviating
trailing, environments, atomic tell unification, and a process hierarchy for deep guards and
sequential conjuncts. This allows these compilers to concentrate on optimizations, such
as decision-graph generation, in-line arithmetic, and global register allocation. Sequential
implementations offer further performance gains, obviating locking and allowing the leverage
of compilation into ‘C’. Debray and Tick measured a mean speedup of 2.4 comparing jc with
Monaco for six small benchmarks [88], illustrating the potential advantages of sophisticated
register allocation, and streamlined binding mechanisms.

Readers interested in concurrent logic language instruction-set design are referred to
Crammond [20], Foster and Taylor [28], and Kliger [51] for the most complete expositions.

4.10 Stream Cormmunication, Arrays and Garbage Collection

A major defect in concurrent logic languages and their implementations is inefficient use of
memory. This problem is prevalent in the treatment of communication streams and data
arrays, and is exacerbated in distributed-memory multiprocessors. A general, after-the-fact,
solution to the problem is the construction of ever more efficient garbage collectors, about
which I comment at the end of this section. I first discuss pre-emptive solutions, such as
making stream communication efficient with buffers and migration.

Streams are second-class citizens in most logic programming languages. Stream commu-
nication is programmed by having a producer write messages into a difference list, the head
of which is read by a consumer. To nondeterminately merge multiple streams, a chain of
active merge processes is needed. This methodology was stressed in the original literature
because it is elegant and all that is offered at the language level. However, straightfor-
ward implementation of streams defined in this manner can be highly inefficient. First,
merged streams incur extra process reductions, lengthening transmission delay. Second,
naive stream merging can result in unfair data transmission. Third, if the memory cells
comprising a stream and the reader of that stream are located on different processors in a
distributed-memory system, then reading a value requires the overhead of sending a request
message.

The fairness problem can be solved with more sophisticated, dynamically-balanced
merge trees [78], although this is expensive in time. The delay problem has been solved both
in software and hardware. In software, a data type, called a mutual reference, interfaces
multiple writers to a single reader [79]. Writing to one of the streams will atomically write
the merged output stream and update the mutual reference to point to the new output
tail. This scheme, originally designed for FCP, is the essence of implementing streams as
buffers in other languages also. For example, the PIMs implement mergers, in microcode,
in a similar manner [46, 94]. The critical difference is that the new data structure is hid-

32 Analogous to driving all over town to pick up mail at different post offices, instead of having all mail
delivered directly to your house.

24

den from the language definition. Furthermore, with MRB (discussed below), memory can
potentially be reused when merging a new writer into the stream.

The indirection problem could be corrected by locating the buffer with the consumer
(similar in intent to message-oriented scheduling, see Section 4.7); however, in most con-
current logic languages, multiple consumers are permitted, and single consumers are not
recognized as such by the compiler. Global analysis might be used to determine single
consumer streams, or the languages can be restricted. The latter solution is another deevo-
lutionary step (notably Janus {71] and A’Z{M [100]) with a “single writer/single reader”
restriction and abstract stream semantics that constrain implementations to a lesser degree.

Janus defines a bag data type that can be used as a multiple-writer stream, with no
constraint on write order (i.e., writers nondeterministically add items to the bag and order
is not guaranteed). Janus also defines standard arrays; however, the restriction permits
an implementation to automatically reuse array locations. Neither bags, nor reusable ar-
rays, have yet been implemented for Janus. A’ UM-90 is called a Stream-based Concurrent
Object-Oriented programming Language (SCOOL) by its authors [53], emphasizing the
first-class citizenship of streams. Streams are implemented as buffer objects that can mi-
grate. The migration policy moves buffers to their (unique} consumers, thereby obviating
the overhead of sending read requests. This is implemented by having the producer and
consumer initially communicate with where and here messages, allowing them to locate
each other and begin message copying. Future messages are forwarded automatically to the
new location. For a generate-&-test prime-number generator, migration achieved a speedup
of 12% (on 10 Symmetry processors) compared to no migration [53]. This increased to 70%
speedup on two Sparcstations connected over an Ethernet.

The general topic of garbage collection is too large to cover here, but it is important
nonetheless. There are fundamentally two approaches to garbage collection: static and dy-
namic. Static collection requires compiler analysis to determine the guaranteed reusability
of a data structure. Code can then be generated directly for memory reuse. Incremental
dynamic collection involves runtime checking to determine reusability of structures. Fur-
thermore, dynamic garbage collections across an entire memory (local or global) are required
when the previous incremental methods fail. Examples of these collection types within con-
current logic programming are abstract interpretation for local reuse [82], binary reference
counting with multiple reference bits (MRB) [14, 67], and several stop & copy schemes {e.g.,
[35, 45, 46, 62]).

The MRB scheme [14] is a one-bit approximative reference count per data cell. If the flag
is off, the cell can be reused because it is guaranteed to have a single reader. However, once
the flag is set, it becomes stuck and no reuse is possible. Setting the flag requires nontrivial
rules for many of the KL1 abstract instructions that manipulate memory. The advantages,
however, can be significant, for example, array copying can be dynamically converted to
destructive update by exploiting the MRB method. Nishida et al. [67] demonstrated the
effectiveness of the MRB scheme for a shared-memory multiprocessor model. Depending
on data cache configuration, two small benchmarks displayed bus traffic reduction from
20%-57% on 16 processors. The least beneficial result of 20% reduction clearly showed a
drastic increase in cache-to-cache traffic that was indicative of reused cells being transferred
between processors. Overall the method achieved significant reduction in memory-to-cache

23

(“swap in") traffic, indicating success at improving locality by reuse.

Other types of static garbage collection for concurrent logic programs include “local
reuse” techniques wherein reference information is collected at compile time and used to
destructively update data objects at run time. Sundararajan et al. [82] describe one such
analysis scheme and Foster and Winsborough [31] give an associated code generation method
for local reuse of reclaimed cells. Essentially abstract reuse registers are used to cache
pointers to dead objects which can subsequently be effectively reallocated. Gudjonsson and
Winsborough [40] describe “update in place” analysis for Prolog, which can achieve even
higher efficiency than the previous local reuse techniques. Essentially the performance gain
is achieved by avoiding rewriting subterms in the dead object that are needed in the newly
allocated object. However, it is not entirely clear if this scheme can be applied to concurrent
logic programs.

Dynamic schemes still have utility because such static analyses usually have inaccuracies
in order to guarantee that the information is conservative. This occurs primarily because of
array indexing and inaccurate aliasing information. Further research is needed to empirically
ascertain the practicality and accuracy of the static analyses.

The challenges of implementing efficient garbage collection schemes for concurrent logic,
object-oriented, and functional programs are similar. There are several garbage collection
schemes proposed (and some prototyped) for concurrent logic languages. These efforts have
concentrated on stop & copy schemes for shared-memory multiprocessors, mirroring the
general sophistication of the corresponding runtime systems. Research has recently focused
on 1) distributed memory garbage collection schemes that do not require barrier synchro-
nization of all processors within the collector [52]; 2) efficient, parallel stop & copy garbage
collectors for shared memory [18, 45], and 3) generation-scavenging garbage collectors for
reducing collection latency by interning long-lived objects [68].

For generation-scavenging schemes, an object that is assumed to have a long life is
interned or cached in an additional space that is not involved in the standard two-space
copying. A problem arises when the “old” space (the interned space) points into the “new”
space because, garbage collection roots are not kept for old space objects and thus an object
might miss being copied and erroneously become garbage. This can occur for interned logical
variables and reused objects (e.g., via MRB) in the old space, pointing into the new space.
Methods of trailing these unsafe cells (in the old space) and implementing indirection tables
are costly [62], but seemingly unavoidable.

5 Summary

Concurrent logic programming languages have been deevolving since their inception, about
ten years ago, because of the fatonnement that balances what systems designers and com-
piler writers can supply with what features applications writers demand. The implemen-
tation history traces a steady improvement in execution performance at the price of ever
weakening language. This historical cycle between evolving and deevolving languages is not
unique to logic programming: it was seen in Lisp moving into Scheme, as well as Algol
moving into Pascal. The deevolution is positive in the sense that the shakedown is market

26

driven, because you can’t sell what you can’t practically construct. Furthermore, recent re-
search in combining “don’t know” and “don’t care” nondeterminism in Andorra-like systems
represents an upward swing back to evolution, perhaps towards a Renessiance.

Acknowledgements

E. Tick was supported by an NSF Presidential Young Investigator award, with matching
funds from Sequent Computer Systems Inc., and a grant from the Institute of New Gener-
ation Computer Technology (ICO'T). I thank referees C. Palamidessi and K. Ueda, and the
anonymous referees, for their particularly inciteful and plentiful comments. I also thank
T. Chikayama, J. Crammond, and S. Debray for sharing their expert knowledge, greatly
assisting in the completion of the article.

27

References

[1] A. Aho, R. Sethi, and J. Ullman. Compilers, Principles, Techniques, and Tools.
Addison-Wesley, Reading MA, 1985.

[2] H. Ait-Kaci. Warren’s Abstract Machine: A Tutorial Reconstruction. MIT Press,
Cambridge, MA, 1991.

[3] L. Alkalaj, T. Lang, and M. Ercegovac. Architectural Support for the Management of
Tightly-Coupled, Fine-Grain Goals in Flat Concurrent Prolog. In Iniernational Sym-
posium on Computer Architecture, pages 292-301, Seattle, June 1990. IEEE Computer
Society Press.

[4) Arvind and R. A. Iannucci. Two Fundamental Issues in Multiprocessing. In DFVLR:
Conference on Parallel Processing in Science and Engineering. Bonn-Bad Godesberg,
June 1987.

[5) Arvind, R. S. Nikhil, and K. K. Pingali. I-Structures: Data Structures for Parallel
Computing. ACM Transactions on Programming Languages and Systems, 11(4):598-
632, October 1989.

[6] S. Asano, S. Isobe, and H. Sakai. The Unique Features of PIM/k: A Parallel Inference
Machine with Hierarchical Cache System. Technical Report TR-767, ICOT, 1-4-28
Mita, Minato-Ku Tokyo 108, Japan, April 1992.

[7] R. Bahgat. Pandora: Non-deterministic Parallel Logic Programming. World Scientific
Publishing Co., Singapore, 1993.

[8] R. Bahgat and S. Gregory. Pandora: Non-deterministic Parallel Logic Program-
ming. In International Conference on Logic Programming, pages 471-486. Lisbon,
MIT Press, June 1989.

[9] U. Banerjee. Dependence Analysis for Supercomputing. Kluwer Academic Publishers,
Norwell MA, 1988.

[10] L. Bougé. On the Existence of Symmetric Algorithms to Find Leaders in Networks
of Communicating Sequential Processes. Acta Informatica, 25:179-201, 1988.

[11] C. Chandy and S. Taylor. An Introduction to Parallel Programming. Jones and
Bartlett, Boston MA., 1991.

[12] A. Cheese. Parallel Ezecution of Parlog. Number 586 in Lecture Notes in Computer
Science. Springer-Verlag, Berlin, 1992.

[13] T. Chikayama. A Portable and Efficient Implementation of KL1. In Inierne-
tional Symposium on Programming Language Implementation and Logic Program-
ming, Madrid, September 1994. Submitted.

28

[14] T. Chikayama and Y. Kimura. Multiple Reference Management in Flat GHC. In
International Conference on Logic Programming, pages 276-293. University of Mel-
bourne, MIT Press, May 1987.

[15] K. L. Clark and S. Gregory. A Relational Language for Parallel Programming. In
Conference on Functional Programming Languages and Computer Architecture, pages
171-178, Portsmouth NH, October 1981. ACM Press.

[16] V.S. Costa, D. H. D. Warren, and R. Yang. Andorra-I: A Parallel Prolog System that
Transparently Exploits both And- and Or-Parallelism. In SIGPLAN Symposium on
Principles and Practices of Parallel Programming, pages 83-93. Williamsburg, ACM
Press, April 1991.

[17] V. S. Costa, D. H. D. Warren, and R. Yang. The Andorra-I Engine: A Parallel
Implementation of the Basic Andorra Model. In International Conference on Logic
Programming, pages 825-839. Paris, MIT Press, June 1991.

[18] J. A. Crammond. Implementation of Committed-Choice Logic Languages on Shared-
Memory Multiprocessors. PhD thesis, Heriot-Watt University, Endinburgh, May 1988.

[19] J. A. Crammond. Scheduling and Variable Assignment in the Parallel Parlog Imple-
mentation. In North American Conference on Logic Programming, pages 642-657.
Austin, MIT Press, October 1990.

[20] J. A. Crammond. The Abstract Machine and Implementation of Parallel Parlog. New
Generation Computing, 10(4):385-422, August 1992,

[21] D. E. Culler, A. Sah, K. E. Schauser, T. von Eicken, and J. Wawrzynek. Fine-Grain
Parallelism with Minimal Hardware Support: A Compiler-Controlled Threaded Ab-
stract Machine. In Iniernational Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), pages 164-175, Santa Clara, April
1991. IEEE Computer Society Press.

[22] F. de Boer and C. Palamidessi. Concurrent Logic Languages: Asynchronism and
Language Comparison. In North American Conference on Logic Programming, pages
175-194. Austin, MIT Press, October 1990.

(23] F. de Boer and C. Palamidessi. Embedding as a Tool for Language Comparison.
Information and Computation, 1993.

{24] S. Debray, S. Kannan, and M. Paithane. Weighted Decision Trees. In Joint Interna-
tional Conference and Symposium on Logic Programming, pages 654-668. Washington
D.C., MIT Press, November 1992,

{25] S. K. Debray, N.-W. Lin, and M. Hermenegildo. Task Granularity Analysis in Logic
Programs. In SIGPLAN Conference on Programming Langusge Design and Imple-
mentation, pages 174-188, White Plains, NY, June 1990. ACM Press.

29

[26] 1. Foster. Systems Programming in Parallel Logic Languages. Prentice Hall, Engle-
wood Cliffs, NJ, 1990.

[27] 1. Foster. Information Hiding in Parallel Programs. Technical Report MCS-P290-0292,
Argonne National Laboratory, 1992.

(28] 1. Foster and S. Taylor. Flat PARLOG: A Basis for Comparison. International Journal
of Parallel Programming, 16(2):87-125, 1987.

[29] I. Foster and S. Taylor. Strand: A Practical Parallel Programming Language. In
North American Conference on Logic Programming, pages 497-512. Cleveland, MIT
Press, October 1989.

(30] I. Foster and S. Taylor. A Compiler Approach to Scalable Concurrent Program Design.
Technical Report MCS-P306-0492, Argonne National Laboratory, 1992.

[31] I. Foster and W. Winsborough. Copy Avoidance through Compile-Time Analysis and
Local Reuse. In International Symposium on Logic Programming, pages 455-469. San
Diego, MIT Press, November 1991.

[32] M. Furuichi, K. Taki, and N. Ichiyoshi. A Multi-Level Load Balancing Scheme for OR-
Parallel Exhaustive Search Programs on the Multi-PSI. In SIGPLAN Symposium on
Principles and Practices of Parallel Programming, pages 50-59, Seattle, March 1990.
ACM Press.

[33] H. Gaifman, M. J. Maher, and E. Shapiro. Reactive Behaviour Semantics for Concur-
rent Constraint Logic Programs. In North American Conference on Logic Program-
ming. Cleveland, MIT Press, October 1989.

[34] R. Gerth, M. Codish, Y. Lichtenstein, and E. Shapiro. Fully Abstract Denotational
Semantics for Concurrent Prolog. In Third Annual IEEE Symposium on Logic in
Computer Science, pages 320-335. IEEE Computer Society Press, 1988.

[35] A. Goto, Y. Kimura, T. Nakagawa, and T. Chikayama. Lazy Reference Counting: An
Incremental Garbage Collection Method for Parallel Inference Machines. In Interna-
tional Conference and Symposium on Logic Programming, pages 1241-1256. Univer-
sity of Washington, MIT Press, August 1988.

(36] S. Gregory. Parallel Logic Programming in PARLOG: The Language and its Imple-
mentation. Addison-Wesley Ltd., Wokingham, England, 1987.

[37) S. Gregory. Experiments with Speculative Parallelism in Parlog. In International
Logic Programming Symposium, pages 370-387, Vancouver B.C., October 1993. MIT
Press,

[38] S. Gregory, I. Foster, A. Burt, and G. Ringwood. An Abstract Machine for the
Implementation of Parlog on Uniprocessors. New Generation Computing, 6:389-420,
1989.

30

(39) D. Gudeman, K. De Bosschere, and S. K. Debray. jc: An Efficient and Portable Se-
quential Implementation of Janus. In Joint International Conference and Sympasium
on Logic Programming, pages 399-413. Washington D.C., MIT Press, November 1992.

[40] G. Gudjonsson and W. Winsborough. Update In Place: Overview of the Siva Project.
In International Logic Programming Symposium, pages 94-113, Vancouver B.C., Oc-
tober 1993. MIT Press.

[41] A. Harsat and R. Ginosar. CARMEL-4 The Unify-Spawn Machine for FCP. In
International Conference on Logic Programming, pages 840-854. Paris, MIT Press,
June 1991.

[42] M. Hirata. Programming Langnage Doc and its Self-Description, or, X=X is Con-
sidered Harmful. In Proceedings of the 3"¢ Conference of Japan Society of Software
Science and Technolog, pages 69-72, Tokyo, 1986.

[43] A. Houri and E. Y. Shapiro. A Sequential Abstract Machine for Flat Concurrent
Prolog. In E. Y. Shapiro, editor, Concurrent Prolog: Collected Papers, volume 2,
pages 513-574. MIT Press, Cambridge MA, 1987.

[44] N. Ichiyoshi and K. Kimura. Asymptotic Load Balance of Distributed Hash Tables.
In International Conference on Fifth Generation Computer Systems, pages 869-876,
Tokyo, June 1992, ICOT.

[45] A.Imai and E. Tick. Evaluation of Parallel Copying Garbage Collection on a Shared-
Memory Multiprocessor. IEEE Transactions on Parallel and Distributed Computing,
4(9):1030-1040, September 1993.

[46] Y. Inamura, N. Ichiyoshi, K. Rokusawa, and K. Nakajima. Optimization Techniques
Using the MRB and Their Evaluation on the Multi-PSI/V2. In North American
Conference on Logic Programming, pages 907-921. Cleveland, MIT Press, October
1989.

[47] S. Janson and S. Haridi. Programming Paradigms of the Andorra Kernel Language.
In International Symposium on Logic Programming, pages 167-183. San Diego, MIT
Press, November 1991.

[48] Y. Kimura and T. Chikayama. An Abstract KL1 Machine and its Instruction Set.
In International Symposium on Logic Programming, pages 468-477. San Francisco,
IEEE Computer Society Press, August 1987.

[49] A. King and P. Soper. Heuristics, Thresholding and a New Technique for Control-
ling the Granularity of Concurrent Logic Programs. Technical Report CSTR 92-08,
Department of Electronics and Computer Science, University of Southampton, 1992.

[50] A. King and P. Soper. Schedule Analysis of Concurrent Logic Programs. In Joint In-
ternational Conference and Symposium on Logic Programming, pages 478-492. Wash-
ington D.C., MIT Press, November 1992.

31

[51] S. Kliger. Compiling Concurrent Logic Programming Languages. PhD thesis, The
Weizmann Institute of Science, Rehovot, October 1992.

[52] H. Koike and H. Tanaka. Generation Scavenging GC on Distributed-Memory Parallel
Computers. In Proceedings of High Performance and Parallel Computing in Lisp.
EUROPAL Workshop, London, November 1590.

[53] K. Konishi, T. Maruyama, A. Konagaya, K. Yoshida, and T. Chikayama. Implement-
ing Streams on Parallel Machines with Distributed Memory. In International Con-
ference on Fifth Generalion Computer Systems, pages 791-798, Tokyo, June 1992.
ICOT.

[64] K. Kumon, A. Asato, S. Arai, T. Shinogi, A. Hattori, H. Hatazawa, and K. Hirano.
Architecture and Implementation of PIM/p. In International Conference on Fifth
Generation Computer Systems, pages 414-424, Tokyo, June 1992. ICOT.

[55] G. Lindstrom. Functional Programming and the Logic Variable. In SIGPLAN Sym-
posium on Principles of Programming Languages, pages 266-280. New Orleans, ACM
Press, 1985.

[56] M. J. Maher. Logic Semantics for a Class of Committed-Choice Programs. In Inter-
national Conference on Logic Programming, pages 858-876. University of Melbourne,
MIT Press, May 1987.

[67] B. C. Massey and E. Tick. Sequentialization of Parallel Logic Programs with Mode
Analysis. In 4** International Conference on Logic Programming and Automated
Reasoning, number 698 in Lecture Notes in Artificial Intelligence, pages 205-216, St.
Petersburg, July 1993. Springer-Verlag.

[58] M. Meier. Better Late Than Never. In E. Tick and G. Succi, editors, Implementations
of Logic Programming Systems. Kluwer Academic Publishers, 1994.

[59] C. Mierowsky et al. The Design and Implementation of Flat Concurrent Prolog.
Technical Report CS85-09, The Weizmann Institute of Science, Rehovot, Israel, July
1985.

[60] T. Miyazaki, A. Takeuchi, and T. Chikayama. A Sequential Implementation of Con-
current Prolog Based on the Shallow Binding Scheme. In E. Y. Shapiro, editor, Con-
current Prolog: Collected Papers, volume 2, pages 496-512. MIT Press, Cambridge
MA., 1987.

[61] T. Nakagawa, N. Ido, T. Tarui, M. Asaie, and M. Sugie. Hardware Implementation of
Dynamic Load Balancing in the Parallel Inference Machine PIM/c. In International
Conference on Fifth Generation Computer Systems, pages 723-730, Tokyo, June 1992.
ICOT.

[62] K. Nakajima. Piling GC: Efficient Garbage Collection for Al Languages. In IFIP
Working Conference on Parallel Processing, pages 201-204. Pisa, North Holland, May
1988.

32

[63] H. Nakashima and K. Nakajima. Hardware Architecture of the Sequential Inference
Machine: PSI-II. In International Symposium on Logic Programming, pages 104-113.
San Francisco, IEEE Computer Society Press, August 1987,

[64] H. Nakashima, K. Nakajima, S. Kondo, Y. Takeda, Y. Inamura, 5. Onishi, and K. Ma-
suda. Architecture and Implementation of PIM/m. In International Conference on
Fifth Generation Computer Systems, pages 425-435, Tokyo, June 1992. ICOT.

[65] R. S. Nikhil, G. M. Papadopoulos, and Arvind. *T: A Multithreaded Massively
Parallel Architecture. In International Symposium on Computer Architecture, pages
156-167. Gold Coast, IEEE Computer Society Press, May 1992.

[66] M. Nilsson and H. Tanaka. FLENG Prolog—The Language which turns Supercom-
puters into Parallel Prolog Machines. In E. Wada, editor, Proceedings of the Logic
Programming Conference, number 264 in Lecture Notes in Computer Science, pages
170-179. Springer-Verlag, June 1986.

[67) K. Nishida, Y. Kimura, A. Matsumoto, and A. Goto. Evaluation of MRB Garbage
Collection on Parallel Logic Programming Architectures. In International Conference
on Logic Programming, pages 83-95. Jerusalem, MIT Press, June 1950.

(68] T. Ozawa, A. Hosoi, and A. Hattori. Generation Type Garbage Collection for Parallel
Logic Languages. In North American Conference on Logic Programming, pages 291—
305. Austin, MIT Press, October 1990.

[69] G. M. Papadopoulos and D. E. Culler. Monsoon: an Explicit Token-Store Architec-
ture. In International Symposium on Computer Architecture, pages 82-91, Seattle,
IEEE Computer Society Press, May 1990.

[70] H. Pinto. Implementing Meta-Interpreters and Compilers for Parallel Logic Languages
in Prolog. Master’s thesis, University of Edinburgh, Artificial Intelligence Applications
Institute, September 1986.

[71) V. A. Saraswat, K. Kahn, and J. Levy. Janus: A Step Towards Distributed Constraint
Programming. In North American Conference on Logic Programming, pages 431-446.
Austin, MIT Press, October 1990.

[72] V. A. Saraswat, M. Rinard, and P. Panangaden. Semantics Foundations of Concurrent
Constraint Programming. In SIGPLAN Symposium on Principles of Programming
Languages. ACM Press, 1991.

[73] V. Sarkar. Partitioning and Scheduling Parallel Programs for Ezxecution on Multipro-
cessors. MIT Press, Cambridge MA., 1989.

[74] M. Sato and A. Goto. Evaluation of the KL1 Parallel System on a Shared Memory
Multiprocessor. In IFIP Working Conference on Parallel Processing, pages 305-318.
Pisa, North Holland, May 1988.

33

[75] M. Sato, K. Kato, K. Takeda, and T. Oohara. Exploiting Fine Grain Parallelism
in Logic Programming on a Parallel Inference Machine. Technical Report TR-676,
ICOT, 1-4-28 Mita, Minato-ku Tokyo 108, Japan, August 1991.

[76] E. Y. Shapiro. A Subset of Concurrent Prolog and Its Interpreter. In E. Y. Shapiro,
editor, Concurrent Prolog: Collected Papers, volume 1, pages 27-83. MIT Press, Cam-
bridge MA., 1987.

[77] E. Y. Shapiro. The Family of Concurrent Logic Programming Languages. ACM
Computing Surveys, 21{3):413-510, 1989.

[78] E. Y. Shapiro and C. Mierowsky. Fair, Biased, and Self-Balancing Merge Operators:
Their Specification and Implementation in Concurrent Prolog. In E. Y. Shapiro,
editor, Concurrent Prolog: Collected Papers, volume 2, pages 392-413. MIT Press,
Cambridge MA., 1987.

[79] E. Y. Shapiro and S. Safra. Multiway Merge with Constant Delay in Concurrent
Prolog. In E. Y. Shapiro, editor, Concurrent Prolog: Collected Papers, volume 2,
pages 416-420. MIT Press, Cambridge MA., 1987.

[80] W. Silverman, M. Hirsch, A. Houri, and E. Y. Shapiro. The Logix System User
Manual, Version 1.21. In E. Y. Shapiro, editor, Concurrent Prolog: Collected Papers,
volume 2, pages 46-77. MIT Press, Cambridge MA, 1987.

[81} M. Sugie, M. Yoneyama, N. Ido, and T. Tarui. Load-Dispatching Strategies on Par-
allel Inference Machines. In International Conference on Fifth Generation Computer
Systems, pages 987-993, Tokyo, November 1988. ICOT.

[82] R. Sundararajan, A. V. S. Sastry, and E. Tick. Variable Threadedness Analysis for
Concurrent Logic Programs. In Joint International Conference and Symposium on
Logic Programming, pages 493-508. Washington D.C., MIT Press, November 1992.

[83]) A. Takeuchi. Parallel Logic Programming. John Wiley & Sons, Inc., New York, 1992.

[84] K. Taki, K. Nakajima, H. Nakashima, and M. Ikeda. Performance and Architectual
Evaluation of the PSI Machine. In International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), pages 128-135. Palo
Alto, IEEE Computer Society Press, October 1987. '

[85] S. Taylor. Parallel Logic Programming Technigues. Prentice Hall, Englewood Cliffs,
NJ, 1089.

[86] E. Tick. Memory Performance of Prolog Architectures. Kluwer Academic Publishers,
Norwell MA., 1987.

[87] E. Tick. Appraisal of Parallel Processing Research at ICOT. Future Generation
Computer Systems, 9(2):127-136, 1993.

34

[88] E. Tick and C. Banerjee. Performance Evaluation of Monaco Compiler and Runtime
Kernel. In International Conference on Logic Programming, pages 757-773. Budapest,
MIT Press, June 1993.

[89] E. Tick and J. A. Crammond. Comparison of Two Shared-Memory Emulators for
Flat Committed-Choice Logic Programs. In International Conference on Parallel
Processing, volume 2, pages 236-242, Penn State, August 1990.

[90] E. Tick, B. C. Massey, F. Rakoczi, and P. Tulayathun. Concurrent Logic Programs
a la Mode. In E. Tick and G. Succi, editors, Implementations of Logic Programming
Systems. Kluwer Academic Publishers, 1994. In press.

[91] E. Tick and X. Zhong. A Compile-Time Granularity Analysis Algorithm and its
Performance Evaluation. New Generation Computing, 11(3-4):271-295, June 1993.

[92] K. R. Traub, D. E. Culler, and K. E. Schauser. Global Analysis for Partitioning
Non-Strict Programs into Sequential Threads. In Conference on Lisp and Functional
Programming, pages 324-334. San Francisco, ACM Press, 1992.

{93] R. Trehan. A Comparison of Committed Choice Non-Determinate Logic Languages
Parallelism in a Mathematical Equation Solver (PRESS). Master’s thesis, University
of Edinburgh, Artificial Intelligence Applications Institute, September 1986.

{94] K. Ueda and T. Chikayama. Efficient Stream/Array Processing in Logic Programming
Language. In International Conference on Fifth Generation Compuler Systems, pages
317-326, Tokyo, 1984. ICOT.

[95] K. Ueda and M. Morita. Message-Oriented Parallel Implementation of Moded Flat
GHC. In International Conference on Fifth Generation Computer Sysiems, pages
799-808, Tokyo, June 1992, ICOT.

[96] K. Ueda and M. Morita. Moded Flat GHC and Its Message-Oriented Implementation
Technique. New Generation Computing, May 1994. In press.

[97) P. Wadler. Strictness Analysis on Non-Flat Domains (by Abstract Interpretation Over
Finite Domains). In S. Abramsky and C. Hankin, editors, Abstract Interpretation of
Declarative Languages, pages 181-198. Ellis Horwood Ltd, Chichester, 1987.

[98] D. H. D. Warren. An Abstract Prolog Instruction Set. Technical Report 309, Artificial
Intelligence Center, SRI International, 333 Ravenswood Ave, Menlo Park CA 94025,
1983.

[99] K. Yanco. An Optimizing Compiler for a Parallel Inference Language. In H. Tanaka,
editor, Annual Report of the Research on Parallel Inference Engine, pages 71-94.
University of Tokyo, April 1992, (in Japanese).

[100] K. Yoshida and T. Chikayama. A'UM: A Stream-Based Object-Oriented Language.
In International Conference on Fifth Generation Computer Systems, pages 638-649,
Tokyo, November 1988. ICOT.

35

