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Abstract

Developing robust techniques for visualizing the perfor-
mance behavior of parallel programs that can scale in
problem size and/or number of processors remains a chal-
lenge. In this paper, we present several performance visu-
alization techniques based on the context of data-parallel
programming and execution that demonstrate good visual
scalability properties. These technigues are a result of uti-
lizing the structural and distribution semantics of data-
parallel programs as well as sophisticated three-dimen-
sional graphics. A categorization and examples of scalable
performance visualizations are given for programs written
in Dataparallel C and pC++-.

1. Introduction

Visualization has been recognized as a valuable tool for
understanding the execution, correctness, and performance
characteristics of parallel programs. Indeed, many tools for
parallel program analysis have been developed that incor-
porate visualization techniques in a variety of ways (see [9]
for a good overview of the field). As a result, researchers
have identified important principles relating to the design
and use of visualization for parallel program evaluation
[2,6,14,17,18,20). These principles include:

Multiple views. To fully understand a parallel program’s
operation, data from the execution must be captured and
analyzed across different levels of observation and from
different perspectives [12,20,22]. A single visualization
can incorporate only a subset of the data analysis results
and show only one of several possible types of data dis-
plays. Different visualizations are possible depending
on choice of analysis data and display: e.g., program
[7], process [11], application [1,24], and machine [20].
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Tools bave provided alternatives via selectable sets of
views {6] or through an environment for view construc-
tion [19].

Semantic context. 1t is generally believed that visualiza-
tion interpretation is improved if the user is provided
with a semantic context for understanding the parallel
program data presented (2,11,24]. This context can be in
the form of program control and data abstractions, pro-
gramming model and system mapping, runtime execu-
tion and machine architecture, or computation
behaviors. A visualization supports semantic context in
how it is structured, its use of graphics, its interaction,
its correlation to other displays, and its support for
accessing the underlying raw information.

User interaction. For purposes of selecting alternative
views, changing the level of detail or the type of data,
and controlling display parameters, visualization tools
should provide adequate support for user interaction. In
general, the visualization environment should allow the
user to find the best possible visualization scenario for
data interpretation. Hence, user interaction can extend
to the construction of visuvalizations indirectly by using
a modular, data flow environment [19] or data spread-
sheet model [21], or directly through a graphical object
programming system {8,23].

Although the principles above provide constructive
guidelines for visualization design, it is still a challenging
undertaking to develop generally useful parallel program
visualization tools. Several projects have tried to deliver
general visualization solutions, leading to widely debated
concerns over usability. Miller addressed some of these
concerns in the essay What to Draw? When to Draw? An
Essay on Farallel Program Visualization [17] where he
provided criteria for a *“good visualization.” These criteria,
like the principles above, help to define general require-
ments that will guide the visualization designer to create ef-



fective visual displays.

However, the focus in the parallel programming tool
community on the guality of visualizations offered by end-
user tools has been, in part, at the expense of research into
developing improved visualization techniques that better
target specific end-user requirements. With the importance
of semantic context in enhancing visualization interpreta-
tion, it is good practice not to restrict visualization design
creativity by requiring visualizations to have broad user ap-
peal, particularly since a meaningful visualization for one
user may not be especially meaningful for another. Rather,
efforts are better directed at developing visvalization tech-
niques [4] that can be applied in building visualization tools
to address specific problems that users encounter in paraliel
program evaluation, while following general principles and
guidelines for good visualization design [10,17,25].

In this paper, we direct our visualization research to-
wards the problem of designing visualizations of parallel
performance information for scalable, data-parallel pro-
grams. In this context, we build upon Couch’s work in scal-
able execution visualization [2], and Rover's work in
performance visualization of SPMD and data-parallel pro-
grams [20], to propose techniques that may be effectively
applied in future parallel program analysis tools. We dem-
onstrate these techniques through visualizations that have
been produced for the Dataparallel C [5] and pC++ [16] lan-
guage systems using the IBM Data Explorer scientific visu-
alization environment [13]. Qur intent {as was Rover's with
the VISTA paradigm} is not to sell a general purpose tool,
but rather to offer research results that help to advance the
state of the art in parallel performance visualization. In Sec-
tion 2, we discuss a categorization of four scalable visual-
ization techniques for data-parallel programs. These
technigues are demonstrated in Section 3.

2. Scalable Visualization Methods

Data-parallel programming is a well-accepted approach
to develop programs that can scale in their performance.
However, to achieve scalable performance, users must be
concerned about how the data distribution across processors
of a system affects the load balance of the computation and
the overhead of processor interactions. The data-parallel
programming model and its execution model instantiation
on parallel machines provides a rich semantic context for
program analysis tools. Visualizations can be an effective
complement to program analysis if the problems of display
scalability can be overcome,

Through our research, we have observed four general
methods that can be used to achieve visual scalability. Some
have been introduced by other researchers, while others are
new visualization techniques. In either case, our integration
of these methods with sophisticated graphics represents a

significant advance in parallel performance visualization, in
particular as it is applies to data-parallel program analysis.
The following four categories represent a diverse set of vi-
sualization techniques that we have used to create scalable
visualizations:

* adaptive graphical representation,

*  reduction and filtering,

e spatial arrangement, and

*  generalized scrolling.

This classification is certainly not exhaustive. Rather,
this list represents a set of generalizations that have been de-
duced from several displays developed during the course of
our research effort. These methods are best illustrated by
the examples in the following section, however, we will
give a general description of each here.

2.1. Adaptive graphical representation

A series of visualizations that achieves scalability by
adaptive graphical representation accomplishes this by
changing the graphical characteristics of the display in re-
sponse to the size of the dataset. This transformation of the
graphical mechanism is performed within the bounds of the
following premise: Given a fixed level of detail that is to be
portrayed in a visualization, a view of a visualization
should (1) reveal as large a quantity of the detail 10 be rep-
resented in the display as possible, and (2) prevent visual
complexity from interfering with the perception of that de-
tail.

Thus, a visualization is developed around a concept that
can be represented by several different graphical represen-
tations. An appropriate technique is chosen that is consis-
tent with the visualization concept and the two properties
above. It is important to note that these criteria oppose one
another since level of detail and visual complexity are di-
rectly related in many displays. That is to say that the reve-
lation of more detail generally leads to a higher degree of
visual complexity, and less visual complexity usually im-
plies that less detail can be shown. The balance between the
two is subjective and dependent on many factors such as the
visualization concept being used and the viewer’s prefer-
ence.

2.2. Reduction and filtering

Reduction and filtering are established techniques for
achieving scalability. Traditional reduction methods per-
form statistical operations at the raw data level, such as
computing the sum, mean, standard deviation, and frequen-
cy distribution. Using these methods, a smaller dataset con-
taining some essential, summarized, or less detailed
information is presented in place of the original data. We
extend this notion to include graphical reduction, which in-



clude operations that help to reduce the complexity of the
visualization at the level of graphical representation.

2.3. Spatial arrangement

Spatial arrangement can be used to produce scalable vi-
sualizations by arranging graphical elements so that as a
dataset scales, the display size and/or complexity increase
at a much slower rate. In many instances, the spatial ar-
rangement of data in a visualization simply provides a
framework in which other graphical techniques (e.g., color-
ing, annotation) attempt to portray characteristics of the
performance data. A special type of spatial arrangement,
which we call shape construction, is a technique in which
one defines the properties of a three-dimensional structure
by the characteristics of the performance data to be visual-
ized. The shape of the resulting object captures the com-
bined characteristics of the performance data. What makes
shape construction a specialized type of spatial arrangement
is as follows. In general, the spatial arrangement of a dataset
is not the component of the display that conveys the charac-
teristics of that dataset. Rather, as mentioned above, some
additional graphical technique is employed within that or-
ganization to accomplish that task. In a visualization using
shape construction, the spatial arrangement of the data does
play a key role in conveying the characteristics of the per-
formance data. Other features of the “shape” may assist in
this function as well (e.g., color, surface properties).

2.4. Generalized scrolling

Finally, generalized scrolling refers to the use of a vari-
ety of methods to present a continuous, localized view of a
much larger mass of information. Localization allows a
greater level of detail to be presented, while continuity al-
lows relationships between nearby representations to be ob-
served. As an extension to the traditional notion of scrolling
which depends on spatial continuity, we consider how tem-
poral continuity can be used to perform screlling. In this
way, we classify display animation as a scrolling technique
that utilizes temporal continuity.

3. Application

This section offers several examples of data-parallel pro-
gram performance analysis that demonstrate the types of vi-
sualization scalability mentioned in the previous section.
Some visualizations illustrate more than one technique. The
Data Explorer environment in which these displays were
created provides standard display interaction techniques
such as panning, zooming, and fly-through. (The reader
should note that the relatively small, greyscale figures in
this paper do not do justice to the actual color renderings.)

3.1. Adaptive graphical techniques

To illustrate how visual scalability is achieved by adapt-
ing the graphical techniques used, consider the visualiza-
tions in Figures 1.1, 1.2, and 1.3. The data for this sequence
was generated by a Dataparallel C implementation of a
Gaussian elimination algorithm running on a Sequent Sym-
metry multiprocessor. For these displays, we were interest-
ed in evaluating the interleaved data distribution as problem
size scaled. To do this, we adopted a visualization concept
that uses vertical displacement from a reference plane (rep-
resenting the two-dimensional array data structure), double-
cued with color, to represent the differences in local and re-
mote accesses to elements of the data structure. A processor
performs a local access if it reads or writes data that resides
in its local memory, and it performs a remote memory ac-
cess if it reads or writes data that resides in the memory of
another processor. (Note that these examples view data ac-
cesses at the level of the virtual machine maintained by
Dataparallel C.) In all visualizations, the structures above
the reference plane represent the difference between local
and remote reads, while the objects below the plane repre-
sent the difference between local and remote write accesses.

For the small 8x8 dataset in Figure 1.1, discrete, colored
spheres floating above the reference plane minimize the ob-
struction of other objects in the view, while effectively rep-
resenting the performance information because of the small
size of the dataset. For example, elements in row 2 have en-
countered more remote read accesses than those in other
rows, Figure 1.2 shows a 16x16 dataset. Glyphs lack “con-
nection” to the reference plane, and when the number of el-
ements increases sufficiently it becomes difficult to
determine which glyph corresponds to which element. The
towers used in Figure 1.2 provide such reference informa-
tion by linking the vertically displaced top of the tower with
the reference plane. Finally, for the larger 64x64 dataset, a
continuous displacement grid minimizes the visval com-
plexity that would be caused by 4,096 discrete glyphs or
towers, but it does so at the expense of the quantity of detail
that is visible from a given view. (That is, with the small
dataset you could simultaneously see both sets of glyphs,
whereas with the large dataset this isn't possible.)

From these visualizations, the user can interpret the ac-
cess frequency among local and remote reads and writes.
However, detailed views are obscured as the dataset in-
creases in size. The sequence illustrates one method of
achieving scalability by adapting the graphical technique in
relation to the size of the dataset. Such adaptation often
manifests itself as a transition from a discrete, detail-reveal-
ing method to a continuous, complexity-reducing tech-
nique, echoing the two criteria set out in the premise for this
technique. With respect to the data-parallel program, the
discrete-to-continuous transition approximates the increas-



ing detail of the parallel data structure.
3.2. Reduction and filtering

In many instances, we need not visualize all the detail
present in a dataset to gain insight into what the dataset con-
tains, To this end, filtration and reduction can be used to de-
velop scalable visualization techniques.

The visualizations in Figures 2.1, 2.2, and 2.3 illustrate
this technique by using isosurfaces within a three-dimen-
sional structure, Isosurfaces, the three-dimensional analog
of (two-dimensional) contour lines, represent surfaces of
constant value (called the “isovalue™) within the structure.
In these visualizations, we portray local and remote access

information from a pC++ implementation of the random
sparse conjugate gradient computation in the NAS bench-
mark suite. We have arranged the elements of a BLOCK-
distributed data structure in a three-dimensional cube. Each
element has an associated number of remote data accesses
made to it in the last time interval. The isosurfaces within
the structure reveal areas of the data structure experiencing
similar levels of remote accesses. By animating the visual-
ization, the evolution of data access patterns during the pro-
gram’s execution are effectively revealed, allowing regions
of more intense access to be identified. Figures 2.1 and 2.2
represent two time slices from a 4x4x4 cube. Figure 2.3 isa
scaled version of this display, using a 16x16x16 structure
and showing local instead of remote accesses.

Figure 1.1




Scalability is achieved in these displays is by filtering
and reducing the displayed data. Isosurfaces perform an ef-
fective graphical reduction because several isovalues can be
used (each figure contains five) to create multiple surfaces
that span the range of the performance metric of interest and
represent all elements of the structure, yet do not cause un-
informative visual complexity.

1000

Figure 2.3

3.3. Spatial arrangement

Our research has found that certain spatial arrangements
of data elements can produce highly scalable visualizations.
To illustrate this, we present three sets of figures. First, we
return to the isosurface displays in Figures 2.1, 2.2, and 2.3,
We discussed previously that the isosurfaces provide scal-
ability by reducing and filtering the amount of data to be
represented in the visualization. However, the spatial ar-
rangement of the data structure provides another aspect of
scalability. Figures 2.1 and 2.2, each represent 64 data ele-
ments, organized in a 4x4x4 cube; Figure 2.3 represents
4,096 elements, organized as a 16x16x16 cube. Whereas
the problem size has scaled by a factor of 64, the axes of the
cube have only scaled by a factor of 4. Clearly, the scalabil-
ity of spatial dimensions is critical to the scalability of visu-
alizations in general.

The next displays that demonstrate the use of spatial ar-
rangement as a method of achieving scalability are in Fig-
ures 3.1 and 3.2. These displays implement a type of three-
dimensional scatter plot that relies on the perceptive abili-
ties of the human visual system to detect clustering and dis-
tribution patterns [2,10,25]. For this reason, this
visualization gains effectiveness for larger datasets. Thus,
the spatial arrangement (i.e., distribution) of the data yields
atechnique that scales well. Figure 3.1 portrays the quantity
and location of accesses by each processor. Processors are
identified by a glyph’ s color, with the vertical displacement
from the reference grid indicating the number of accesses
made to each of the 64 data elements (arranged in an 8x8
grid) during the last time interval of the pC++ application.
Figure 3.2 offers a prototype of a scaled version of this dis-
play on a 32x32-element structure.

From these displays, the analyst can derive several ob-
servations that are helpful in evaluating the memory access
patterns of an application as well as the data distribution
currently being used. For example, by using the vertical dis-
placement visualizations (Figures 1.1-1.3) for this pC++ ap-
plication, an analyst could easily learn about the
distribution of local and remote data accesses. This is also
seen in Figures 3.1 and 3.2 by noticing that the glyphs gen-
erally appear in two vertically separated clusters {particu-
larly when viewed from the appropriate orientation). The
displays reveals how the data was distributed among the 16
processors by the color distribution. However, a differenti-
ation between local and remote references is not made. The
analyst might notice such a division first, though, and then
be motivated to determine local and remote distributions
from the other displays. Alternatively, within the Data Ex-
plorer environment, the vser could change the color map-
ping so that local and remote accesses are distinguished.
This example shows how user interactions can be play a sig-
nificant role in scalable visvalizations.
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That such references are actually remote is confirmed
not only by the small degree of vertical displacement (indi-
cating the lower frequency of accesses associated with re-
mote accesses in this application), but by the presence of
glyphs having colors different than the corresponding
glyphs above representing local accesses.

The last set of visualizations that illustrate scalability by
spatial arrangement are in Figures 4.1, 4.2, 4.3, and 4.4,
These displays are extensions of the popular Kiviat dis-
plays, as used in ParaGraph [6], and come from the same
pC++ application described earlier. The construction of a
single time slice of these displays is achieved by arranging
the 64 data elements in a circle. The distance a given ele-
ment is from the center of the circle is directly proportional
to the number of local (Figures 4.1, 4.2, and 4.3) or remote
(Figure 4.4) data accesses made to that element during the
previous time interval. To construct the solid shown in Fig-
ure 4.1, adjacent elements in the same time slice and corre-
sponding elements in successive time steps are connected to
form quadrilateral surface patches. We call the net result a
“Kiviat tube.”

The arrangement of data elements in a circle provides a
moderately scalable (two-dimensional) spatial arrange-
ment. We will present some additional scalability issues for
this series of displays in the next section, but first, we will
discuss in more detail the construction of the Kiviat tube, an
example of shape construction. The unique feature of a
shape constructive spatial arrangement over the spatial ar-
rangement seen in the isosurface visualizations (Figures
2.1, 2.2, and 2.3) is that the former uses the shape itself to
capture the characteristics of the performance data, while
the latter simply provides a framework within which some
other graphical technique is employed to relate the perfor-
mance data. Figure 4.1 depicts a single graphical object that
captures the characteristics of an entire trace file, with time
travelling along the length of the cylinder. (The initial 53
time slices have been removed because no memory access-
es to the chosen data structure occurred during that time.)
We feel that such three-dimensional graphical representa-
tions can play an important role in providing global perfor-
mance information. For example, in Figure 4.1 the reader
may notice a very regular access pattern for the first part of
the trace, as indicated by the symmetry and constant diam-
eter of the tube. However, approximately two-thirds of the
way through the displayed trace data, a significant decrease
in the number of local memory accesses occurs. Such global
observations guide the program analyst to potential trouble
spots in the execution of the algorithm; such observations
tend to be more perceptual rather than cognitive [23]. As we
will see in the next section, the analyst can then examine
that portion of the trace in more detail.

3.4. Generalized scrolling

Scrolling is an established technique used to create scal-
able visualizations by representing smaller localized views
of the visualization as the quantity of data to be displayed
increases. Traditional scrolling provides a spatially contin-
uous view of the display by allowing the user to “move”
around the structure. We generalize this notion to include
temporal continuity and demonstrate animation as a gener-
alized scrolling technique.

The Kiviat tubes of Figures 4.1-4.4 serve to illustrate
both scrolling techniques. We have already discussed how
Figure 4.1 could guide the analyst to a particular region of
the trace file. Such a region is expanded in Figures 4.2-4.4,
The Kiviat tube displays we have developed allow the user
to specify an animation width to display a smaller portion of
the structure. Figures 4.2-4.4 all have animation widths of
15 time steps. The ability to zoom in on local regions of the
larger structure is an example of spatial scrolling. The dis-
play’s use of scrolling is, in fact, somewhat more general
than most uses of scrolling since it allows the user to view
just the desired portion of the tube. In addition, the dis-
played portion may be stretched or compressed to the view-
er’s preference,

To extend the notion of scrolling further, animating the
structures in Figure 4.2-4.4 provides additional insight into
the petformance data’s characteristics. Qur implementation
of this visualization allows the viewer to “slide” down the
length of the Kiviat cylinder at a given animation width.
Figure 4.3 represents the time step that follows Figure 4.2.
This section of the Kiviat tube reveals three intervals during
which the number of local memory accesses decreased sig-
nificantly. The analyst may then wish to examine the corre-
sponding structure for remote memory accesses. Figure 4.4
shows such an alternate view that corresponds to Figure 4.2.
One immediately notices the significant difference in the
distribution of remote memory accesses made to the ele-
ments of the data structure. In particular, the elements locat-
ed on the top and bottom sides of the tube experience larger
numbers of remote data accesses than the other elements.
One also immediately notices that remote accesses experi-
ence a decline similar to the local accesses during the same
three intervals. All of this is potentially meaningful infor-
mation for the analyst seeking to understand data distribu-
tion and performance characteristics of an application.

As we have demonstrated, generalized scrolling pro-
vides scalability by presenting a local view of the represent-
ed data, but allows global relationships to be observed by
providing a continuous transition from one representation
of the data to another.



4. Conclusion

The increasing sophistication and complexity of parallel
computing environments will continue to present new chal-
lenges to understanding the operation and performance be-
havior of parallel programs. Visualization has the inherent
capacity to facilitate parallel program evaluation only if its
graphical data presentation capabilities, routinely used for
scientific data analysis, can be effectively applied to reveal
important properties of parallel program execution data. We
believe that the most productive approach to developing
useful visualizations for inclusion in parallel programming
tools is to experiment with different visvalization tech-
niques in specific application contexts [3,4]. Our research
work has identified four categories of scalable visualization
techniques for data-parallel program analysis that can be
successfully applied to the Dataparallel C and pC++ lan-
guages. We are currently integrating these techniques into
performance and debugging tools that are part of the pC++
parallel programming environment.
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