Modes of Comprehension: Mode
Analysis of Arrays and Array
Comprehensions

B. Massey and E. Tick

CIS-TR-94-10a
November 1994

Abstract

A scheme is presented to enable the mode analysis of concurrent logic programs
manipulating arrays containing both ground and non-ground elements. To do this we
leverage constraint-propagation mode analysis techniques. The key ideas are to restrict
multiple assignments only to variables at the leaves of paths, and to extend the language
family with memo comprehensions. The result is a language not significantly different
than generic committed-choice languages, which can be safely mode analyzed, producing
useful (not overly conservative) information, even for programs that assign to unbound
array elements. An implementation of the scheme is presented.

This paper submitted to Internaetionel Conference on Logic Programming, Tokyo,
June 1995.

DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE
UNIVERSITY OF OREGON

Contents
1 Introduction
2 Memos and Constraint-Based Mode Analysis
3 Memo Comprehensions
4 Some Examples
5 Mode Analysis Of MCs
6 Semantics Of Memo Operations
7 Conclusions
References
A Sample Programs: Analyzer Output

B Mode Analysis Rules

11

14

15

17

20

“Given for one instant an intelligence which could comprehend all the forces by which nature
is animated and the respective positions of the beings which compose it, if moreover this
intelligence were vast enough to submit these data to analysis...to it nothing would be
uncertain...”

Pierre Simon de Laplace

Oeuvres, vol VII, Theorie Analytique des Probabilites

1 Introduction

Modes in logic programs are a restricted form of types that specify whether a logic variable
(or some subterm thereof) is produced or consumed by a procedure. For example, in a
pure logic program, a well-known feature of the list concatenation procedure are its two
permissible modes: either two input lists are consumed, producing their concatenation,
or a concatenated list is consumed, producing pairs of output lists (that if concatenated
equal the input list). For such nondeterminate logic programs, there are numerous methods
for statically determining modes [1, 2, 3, 9, 13] and several optimizations afforded by the
mode information, notably converting backtracking programs into functional programs, and
specializing unification operators into matches and assignments, and thereby making them
execute faster.

Mode information has also been shown to be quite useful in the efficient compilation of
indeterminate logic programming programs, i.e., committed-choice programs [5, 6, 14, 18,
21]. Mode information allows demand-driven execution {7, 20] and static partitioning of a
concurrent logic program into threads of higher granularity for more efficient multiprocessor
execution [4, 6]. Mode information is useful not only for compiler optimization but also for
static bug detection.

All the previous schemes and implementations (ours included) deal with the problem of
aliasing through array indices, which is a well-known stumbling block in many types of static
analysis, by restricting array elements to ground terms. Allowing arbitrary expressions for
both array elements and indices makes determining aliases undecidable; the restriction of
array elements to ground terms makes safe mode analysis possible. In other words: use
writable array elements at your own risk! The problem is more pervasive than it might
sound offhand — a program with even a single use of non-ground arrays cannot be safely
analyzed with currently available technologies.

This papers describes a novel concurrent logic programming language extension and
corresponding mode analysis extension that allow safe static mode analysis that is not
overly conservative for programs that use arrays with unbound elements. The objective of
the paper is to describe the problem and our solution, giving examples of the technique.
The method has been implemented as an extension to a previous mode analyzer that we
have built [14, 17].

This paper is organized as follows. Section 2 defines the array moding problem and
gives a series of increasingly flexible solutions. Section 3 discusses memo comprehensions, a
technique borrowed from functional languages, which allow constraint-based mode analysis
to be exploited. Section 4 gives some examples of the techniques described. Sections 5 and
6 formalize the extensions to the constraint-based mode analysis technique and describe an
implementation. Conclusions and future work are summarized in Section 7. Appendix A

illustrates the automated operation of our mode analyzer upon the examples in this paper.
Appendix B gives a formal version of the mode analysis rules, and shows how the memo
rules fit into this framework.

2 Memos and Constraint-Based Mode Analysis

We will refer to our arrays for flat committed-choice languages as memos. We first describe
the standard functional-style operations upon memos:!

e A memo is created by
memo_ini(N,M), where N is the number of elements, and M is the resulting memo. M is
initialized to contain unbound variables (in contrast to KL1).

¢ A memo element may be referenced by
memo.sel(M,I,E), where M is the memo, I is the element index, and E is the It
element of M.

e A memo may be updated by
memo_upd(M,I,E,M’), where M is the memo, I the index, E the new element, and M’
is a copy of M except that the I*" element of M is replaced by E in M’.

Before we discuss the semantics of these operations, let us review the mode analysis
technique we plan to exploit. Ueda and Morita [21] proposed a mode analysis scheme based
on the representation of procedure paths and their relationships as rooted graphs (“rational
trees”). Unification over rational trees combines the mode information obtainable from the
various procedures. For example, in a procedure that manipulates a list data stream, we
might know that the mode of the car of the list (that is the current message) is the same
mode as the cadr (second message), caddr (third message), etc. This potentially infinite set
of “paths” is represented as a regular graph. Furthermore, a caller of this procedure may
constrain the car to be input mode. By unifying the caller and callee path graphs, modes can
be propagated. The analysis is restricted to “moded” flat committed-choice logic programs.
These are programs in which the mode of each path in a program is constant, rather than a
function of the occurrences of the path. As a consequence of this restriction, such programs
can have only a single producer of any variable (although multiple consumers are allowed).
These are not regarded as major restrictions, since most non-moded flat committed-choice
logic programs may be transformed (by the programmer) to moded form in a straightforward
fashion {21].

Ueda and Morita define the subterm s “derived” via a path p within a term t (written
p(t) - 8) as follows: p derives s in ¢ iff for some predicate f and some functors a,b,... the
subterm denoted by descending into ¢ along the sequence {< f,i>,<a,j >, <bk>,...}
(where < f,i > is the i** argument of the functor f) is s. A path thus corresponds to a
descent through the structure of some object being passed as an argument to a function call.

'We adopt the names from Sastry et al. [11], although similar builtins can be found in languages such as
KL1, Strand, Parlog, etc. Many languages, such as KL1, instead provide a memo_sel. upd/6 primitive which
acts like a combination of memo_sel/3 and memo_upd/4.

f is referred to as the “principal functor” of p. A program is “moded” if the modes of all
possible paths in the program are consistent, where each path may have one of two modes:
in or out. For example the cadr of the first argument of procedure ¢ has input mode. We
represent this using the notation m({<q,1>, <,2>, <,1>}) = in. The notation m/p is
used to represent the modes of all subtrees emanating from (“below™) p.

The scheme described by Ueda and Morita has been implemented and tested in various
incarnations [5, 14, 17, 18] so we want to leverage this investment to solve the array alias-
ing/moding problem. We will go into further details of the mode analysis in Section 5, but
for now, let us discuss language restrictions.

To illustrate the sort of aliasing problems that can arise in the mode analysis of programs
containing arrays, consider the procedure:

bad :-
memo_ini(&, M),
memo_sel{ M, 0, E
memo_sel{ M, 0, E
El 3,
E2 4.

The second assignment will cause mode analysis to fail, i.e., the procedure will be determined
to be “nonmoded.” The key point is that static detection of aliases is undecidable if we
allow arbitrary ezpresstons as indices, unless we restrict the language somehow.

One language restriction which solves the aliasing problem is to keep all array elements
fully ground. Mode-analysis savants are aware of this solution, though it has never been
formalized or implemented. For example, KL1 initializes array elements with integers, and
if the programmer ensures they stay ground, then mode analysis could legitimately reject
programs which make assignments to any element. This restriction actually covers quite a
number of useful programs; however, our goal is to relieve the programmer of any burden
and to cover the more general case of arrays with non-ground terms.

QOur solution is to forbid multiple assignments to an element of a memo along any given
path “below” that memo. In the previously example, the memo M is a flat array of a single
element, so it is trivially disallowed. Consider the procedure:

good :-
memo_ini{ 1, M),
memo_sel{ M, 0, E
memo_sel(M, 0, E
El1 =£f(A, B),
bind{ E2).

1),
2),

bind(f(A, B)) :- A =1, B =2,

The three assignments bind paths in memo_sel/3:

{<memo_sel,1>, <*>}
{<memo_sel, 1>, <x>, <f,1>}
{<memo_sel, 1>, <x>, <f,2>}

Here <> is a placeholder representing the dereference of the memo itself.? The key point is
that each of the three assignments lands at a unique leaf in the tree of paths, and thus mode
analysis should deduce that the program is fully moded, which it is. To make this happen,
we extend the mode analysis rules to include a simple reduction rule for memo_sel/3: let
p = {<memo_sel, 1>, <*>}, and ¢ = {<memo.sel,3>}, then m/p # m/q.3 In other
words, ignoring the index, we alias all array elements of a given memo together. The details
of this and other extensions are discussed in Section 5.
However, this scheme will disallow the following moded procedure:
bad :-

memo_ini(2, M),
memo_sel({ M, 0, E1),
E2),

memo_sel(M, 1, E2
El = 3,
E2 = 4,

This is because we collapse indices and treat E1 and E2 as aliases. Thus the mode analysis
is overly-conservative, and reports a mode conflict. This example may seem tolerable if we
can still assign to unique paths, but actually this simple example is representative of a very
serious impracticality: there is no practical way to assign a top-level value to more than
one element of a multi-element array! The top-level indices are collapsed (as are all similar
internal functors). So what we have is a safe, but far-too-conservative scheme.

We need some coherent way to override the restrictions we placed on assignment, allow-
ing us to initialize whole arrays in some fashion digestible by the mode analyzer. Essentially
we need to ensure that the indices used to bind a given path are mutually exclusive. This
is one purpose of “array comprehensions” in functional languages, e.g., [10]. An array
comprehension typically is something like (fictional syntax):

int A[20] {0,1: A(i] = 1;
2..19: A[i] = A(i-2] + A[i-1]}

This example would create an array of 20 Fibonacci numbers. In the next section we expand
upon the concept of memo comprehensions and show how it meshes with the mode analysis
framework previously given.

3 Memo Comprehensions

We extend our language to support “memo comprehensions” (MC): procedures designed to
concurrently bind given paths in a given memo at more than one indez. Since the indices are
guaranteed to be disjoint, if any binding is guaranteed to be safe, all are. Our MC syntax
will be identical to that of normal procedures, except for a special guard memo_csel/4.
Presence of such a guard in a procedure indicates that the procedure is a MC.

2There is nothing corresponding to < * > in Ueda and Morita's path definitions: its lack of a name
reminds us that it represents an array or vector and its lack of an index reminds us that all indices are
collapsed into one.

3The inequality here may look odd. It derives from the fact that tell unification argument must have
opposite modes: What comes in from one argument must go out on the other argument. The same argument
holds for the memo M and its element E.

The semantics are those of concurrent invocation: when a MC is invoked on a memo
M, multiple invocations of the procedure are spawned, each with a unique index I of M.* A
formal semantics is given in Section 6. Informally:

e memo.csel(MO,M,I,E) is the aliasing MC guard where MO is the memo, M is a read-
only copy of MO, I is the element index, and E is the I** element of M. The memo is
input and the latter two arguments are produced by the guard for consumption in
the body of the MC. The memo MO may be further instantiated only by binding E:
performing a memo_sel/3 on M in the MC body produces a read-only alias into M.

e A procedure containing clauses with memo_csel/4 guards is a memo comprehension. A
memo commprehension is automatically invoked multiple times per call, one invocation
being produced for each unique element of the memo argument given to memo_csel/4.
If an invocation matches more than one clause in the MC, a clause will be chosen
nondeterministically in the usual fashion.

Four semantic restrictions on the use of MCs are designed to make compilation and
analysis easier and reduce the likelihood of programmer errors. First, all arguments
of a MC, other than the memo, must be input. Second, only one memo.csel/4 guard
is allowed per clause. Third, every clause of a MC must have a memo_csel/4 guard.
Fourth, the memo_csel/4 guard for each clause of a given MC must have the “same”
first argument, i.e., if some clause of a procedure g has a MC guard for a memo
at some argument path p, the MC guards of all clauses of g must be for the memo
argument at p.

The first restriction can be checked during mode analysis and all others can be checked
syntactically. The third restriction is meant to reduce programmer error: Without a
memo_csel/4 guard, clause arguments are read-only, and thus the clause cannot affect the
outcome of the program.

Thus memo comprehensions allow a variable at a given path within (or “below™) a
memo to be bound at more than one indexz, as long as the indices are part of the same MC.,
This is the fundamental contribution of this paper. Extension of the mode analysis system
to handle memos is reasonably straightforward, as discussed in Section 5.

4 Some Examples

As our first example, consider a hashed symbol table, sketched in Figure 1 (auxiliary proce-
dures hash/3 and symmatch/3 are not supplied). Symbol table entries are normally fully
ground and thus can be manipulated using memo functions only. Therefore, the initializa-
tion procedure init_symtab/2 uses the only memo comprehension of the program. Given a
memo consisting of unbound variables, init_symtab/2 calls null_table/1 to bind them all
to nil. Procedure null_table/1 can be reused for arbitrary-sized tables, and does not need

4Note that this is just semantics: there are a number of possible ways in which the concurrency might be
limited in an implementation, for efficiency reasons — this is a topic of future research. We are unaware of
any solution to date of the analogous efficiency problem in non-strict functional Janguage implementations
of array comprehensions.

init_symtab({ NBuckets, SymTab) :-
memo_ini{ NBuckets, Table),
null_table(Table),
SymTab = symtab(NBuckets, Table).

null_table{ Table) :-
memo_csel(Table, _, _, E } |

E=10.

insert_sym(symtab(NBuckets, Table), Sym, SymTab_p) :-
hash(Sym, NBuckets, Hash },
memo_sel(Table, Hash, Chainmn),
Chain_p = [Sym | Chain],
memo_upd{ Table, Hash, Chain_p, Table_p),
SymTab_p = symtab(NBuckets, Table_p).

lookup_sym(symtab{ NBuckets, Table), Name, Sym } :-
hash(Sym, NBuckets, Hash),
memo_sel{ Table, Hash, Chain),
follow_chain(Chain, Name, Sym).

follow_chain((1, _, Sym) :-
Sym = nomatch.

follow_chain{ [Sym | Syms], Name, Sym_p) :-
sym_match(Sym, Name, B),
follow_chain_1(B, [Sym | Syms], Name, Sym_p).

follow_chain_1(true, [Sym | _ 1, _, Sym_p) :-
Sym_p = Sym.

follow_chain_1(false, [_ | Chain], Name, Sym_p) :-
follow_chain{ Chain, Name, Sym_p).

Figure 1: Hashed Symbol Table Example

fib(M) :-
memo_ini(20, M),
fib_memo{ M).

fib_memo(MO) ;-
memo_csel{ MO, M, I, E),
I>=2 |
I1 := 1 -
12 :=1
memo_sel I1, V1),
memo_se I2, v2),
1

E: =V

¢=.‘=MH

(
1(
+
fib_memo{ MO) :-
memo_csel(MO, M, I, E)},

I <2
E=1.

Figure 2: Fibonacci Example

to reference the element index in its memo comprehension. The modes of init_symtab/2
are

m({< init_symtab,1 >}) =in

m{{< init.symtab,2 >, < symtab,1 >}) = out

m{{< init_symtab,2 >, < symtab,2 >}) = out

m({< init_symtab,2 >, < symtab,2 >, < * >}) = out

Note that the modes for null_table/1 are

m({< null_table,1 >})=in
m({< null_table,1 >, < * >})=out

Since the memo is initialized by null_table/1, the caller can safely read its elements.

Because the calls to memo_sel/3 in insert_sym/3 and lookup_sym/3 can be mode ana-
lyzed, we are guaranteed to get a mode error if Chain or any of its aliases are ever assigned
to. This is precisely Ueda and Morita’s “well-moded programs don’t go wrong” condition
[21]; we will get a static error rather than the runtime error which would otherwise result.

As a second example (Figure 2), we present a more complex memo comprehension to
compute the Fibonacci sequence. Already, we see important advantages of MCs over chains
of memo_upd/4 operations. First, the MC will update all elements in parallel rather than
sequentially if possible (although in this example only the first two elements can be updated
in parallel). Second, even if multiple references to the memo are held, the memo may be
updated in place rather than by copying.

conv(NInts, Ints, Base, V) :-
memo_ini{ NInts, V),
init_all{ Ints, V)},
trans_all{ Base, V).

init_all(Ints, VO) :-
memo_csel{ VO, V, I, E) |
memo_sel(Ints, I, N),
memeo_ini(32, D),
E = item(N, D).

trans_all(Base, VO) :-
memo_csel{ VO, V, _, E),
E = item(N, D) |
trans_int(N, Base, D).

trans_int(N, Base, DO) :-
memo_csel{ DO, D, I, E),
I =:=0|
Digit := N mod Base,
Residue := (N - Digit)} / Base,
E = pair(Digit, Residue).

trans_int(N, Base, DO) :-
memo_csel(DO, D, I, E),
I>0|
I1 :=1I-1,
memo_sel(D, I1, RL),
get_residue(RL, Residue_p),
Digit := Residue_p mod Base,
Residue := (Residue_p - Digit)} / Base,
E = pair(Digit, Residue).

get_residue(pair(_, Res0), Res) :-
Res = ResO.

Figure 3: Radix Conversion Example

QOur final example (Figure 3) illustrates binding of nested arrays, showing the generality
of the technique. The program conv(Ints,Base,V) converts an array of positive integers
Ints into an array V of radix Base numbers, by sequentially computing residues. A single
integer Int and its conversion is represented by the term:

item(Int, { DO-RO, Di-R1, ..., D31-R31 })

where Dn is the n'* radix Base digit and Rn is the residue at the n'* position. An array
of item/2 terms is initialized by conv/3 and init_all/2. Number conversion occurs in
trans_all/2 and trans_int/3 with nested comprehensions. The innermost comprehen-
sion is sequentialized by the dependency incurred by the memo_sel/3 goal. The process
computing the nt* digit must wait for the residue of the (n — 1)* digit to be computed.

5 Mode Analysis Of MCs

In this section, we informally describe cur extensions to mode analysis to handle memo
functions. A more formal description of the mode analysis framework appears to which our
extensions apply is given in [8]. A critical first step in mode analysis of memo functions
and comprehensions is to note that different memos may have different modes. Thus, for
instance, one cannot blithely unify all memo_sel/3 goals together! Though we cannot decide
precisely which memo is denoted by a variable occurrence, we can safely approximate this
notion. Thus, in the spirit of constraint-propagation mode analysis, we will initially assume
that all memo functions refer to unique memos, and find relationships based on shared
variable occurrences. This is similar to what is done in our current mode analyzers [14] to
deal with the unification operator =/2.

To accomplish this, we first separate all the occurrences of memo functions, by as-
signing a unique integer subscript to each static occurrence of memo_ini/2, memo_sel/3,
and memo_upd/4 in the program. We then apply mode analysis rules (Figure 4) giving the
relationship between the arguments of these functions.

Figure 6 graphically illustrates the rules using notation introduced in {18]. In brief,
constraint graphs are layered networks consisting of structure nodes (squares) and variable
nodes (circles). For example, memo_sel/3 has three children corresponding to its three
arguments. The first child is a variable M leading to a memo placeholder, leading to a
variable E. Variable E also has a parent extending from the third argument of memo_sel/3
because the abstract meaning of the function (in the mode domain} is to collapse all top-level
elements in the memo into one element. Each variable node in a graph is labeled with its
potential modes (one per input arc, since different input arcs can “see” a variable through
different moded “glasses”). For instance, variable E in memo_sel/3 has possible modes
[in,out] or [out,in|, enforcing the constraint that inputs in the first argument are seen as
outputs in the third argument and vice versa. In fact, from these two parent paths, all
graph nodes below E (represented as shaded subtree) are viewed as having opposite modes,
effectively implementing the tell unification “M[x] = E.” Further details of tell unification
and the graph reduction semantics can be found in [18]. Which representation of the moding
rules, axiomatic or graphical, is most understandable is a matter of taste. We wish to point

m{{<memo_ini;/2,1>}) =in
m{{<memo_ini;/2,2>}) = out
m/{<memo_ini;/2,2>, <*>} =in

m({<memo_sel;/3,1>}) =in
m/{<memo_sel;/3,1>, <*>}# m/{<memo_sel;/3,3>}
m({<memo_sel;/3,2>}) =in

m({<memo.upd;/4,1>}) = in

m/{<memo_upd;/4,1>} # m/{<memo_upd,;/4,4>}
m/{<memo_upd;/4,3>} # m/{<memo.upd;/4,4>, <*>}
m({<memo_upd;/4,2>}) = in

Figure 4: Mode Analysis Rules For Memo Functions

m({<memo_csel;/4,1>}) =in
m/{<memo_csel;/4,1>, <*>}=m/{<memo_csel;/4,4>}
m/{<memo_csel;/4,2>} =in
m({<memo_csel;/4,3>}) =in

Figure 5: Mode Analysis Rules For Memo Comprehensions

out that the graph segments defining the memo functions and comprehensions are built
from previously defined primitives.

The rules for moding a MC are similar in spirit to the rules for the simpler cases: the
key is the correct moding of memo_csel/4. The memo must be read-only in the body of
the MC, in order to ensure that the memo is updated only through the fourth argument of
memo_csel/4. For instance if there is a body goal in null_table in the previous example
which would alter Table;, a mode conflict would be forced. On the other hand, the caller
of the MC must have called the MC with the idea that the MC would bind some paths in
the memo. Thus we propagate the modes of the memo elements through (Table), but allow
the MC body to access the memo in a read-only fashion through the second argument to
memo_csel/4. An example of this is the use of D in the body of trans_int in Figure 3.

The mode analysis rules for the MC function memo_csel/4 are given in Figure 5. Note
that ell arguments to a MC are treated as input by the callee. This is because multiple

10

invocations of the MC will be created, and thus if more than one invocation tries to bind
some path beginning at an argument to the MC, some assignment will fail.

A prototype implementation of these rules was added to one of our current mode ana-
lyzers. This mode analyzer [17] operates upon a finite set of paths, attempting to construct
this set in such a way that the modes of all variable occurrences of the target program
are uniquely and correctly determined. The original mode analyzer consists of 4487 lines
of KL1 (including comments); 3362 lines of application-specific source code plus 1125 lines
of KL1 devoted to general-purpose data structures such as sets and lists. The modified
analyzer consists of 4021 lines of application-specific KL.1. Of the 659 lines of new code, 427
lines comprise a module giving the new mode analysis rules for memo functions and com-
prehensions, and the remaining 232 lines represent changes to the original code necessary
to integrate this module. There is no appreciable difference in the runtime performance of
the analyzer (see [17] for the performance of the original system). Appendix A shows the
previous three main example programs and their annotations as produced by the analyzer.

6 Semantics Of Memo Operations

To give a formal semantics to the memo operations, we give a reference implementation
of memo functions and memo comprehensions in KL1, representing memos as lists. The
reference language used is KL1 with the exception that names beginning with $ are not
visible by the programmer. This prevents the programmer from observing the internals of
the particular representation used in the reference implementation.

We first give a reference implementation of the “ordinary” memo functions, in Figure
7. These involve straightforward translations of indexing to recursion.

Next, we consider the semantics of memo comprehensions. Let p/k be a procedure of
arity k whose clause heads have been flattened and consistently renamed, and each of whose
clauses contain a memo comprehension guard memo.csel(MO,M, I,E). Our strategy is to
rewrite p to remove the memo comprehension as follows:

1. Construct a new procedure $p/(k + 2) by prepending the arguments I and E of the
memo_csel/4 guard to the head of each clause of p, and then replacing the memo_csel/4
guard in each clause with the guard “M0 = M.”

2. Let $length/1 be a special guard which returns the length of a memo. (It is easy to
see how to rewrite the program in terms of the reference implementation to remove
this guard if necessary.) Construct a new procedure $p'/(k + 1) as follows. Let the
second and succeeding arguments of $p’ be the same as those of p, and be denoted by
ellipsis. Then $p’ is given by

$p’($1I, ...) :-
$I < $length(MO) |
memo_sel(MO, $I, $E),
$p’($I, $E, ...),
$I1 := $I + 1,
$p($1I1, ...).

$P($I| PR) o

11

memo_ini/2 memo_upd/4

{in,out)
"
! out
'
P [[in,in],
Lo-a out out.]]
f \

[Bp—_—1
memo_sel/3 memo_csel/4
in in in in in

M
* * *
[lin,in],
out,out in
()
!] ‘\ ! 4 all in
L a2 J A [A

Figure 6: Mode Analysis Rules in Graph Constraint Notation

12

memo_ini(X, M) :-
K>0|
Ki :=K-1,
memo_ini{ K1, $memo(L)),
M=$%$memo([_ | L]).
memo_ini{ 0, M) :-
true |

M = $memo{ [J).

memo_sel($memo([_ | Es]), I, X) :-
I>0]|
I1 =1 -1,
memo_sel($memo(Es), I1, X).
memo_sel($memo((E | _J), 0, X) :-
true |
X =E.

memo_upd($memo([E | Es]), I, X, M} :-
I>0]|
I1 :=1-1,
memo_upd($memo(Es)}, I1, X, $memo(L)),
M=$memo([E | L1]).

memo_upd($memo([_ | Es 1), 0, X, M) :-
true |
M=¢%memo([X | Es]).

Figure 7: Semantics of “Ordinary” Memo Functions

13

$I >= $length(MO) |
true.

3. Replace all calls p(...) with calls $p(0,...).

7 Conclusions

We have described a new technique for permitting safe mode analysis of concurrent logic
programs that use arrays with both ground and non-ground elements. The implications of
this work are that a broader class of programs can thus be optimized by mode analysis. We
believe this is the first practical, implemented solution offered for this problem, particularly
because it leverages proven mode analysis technology that is efficient.

We extend the concurrent logic language family to include builtin memo predicates,
both guards and body goals, that allow memo comprehensions and standard memo updates
and assignments. Thus algorithms that use fully-ground arrays can be programmed in the
usual manner and are permissible under our mode analysis. In addition, programs that
use non-fully-ground arrays can be programmed using our extensions, and if safe, will be
accepted by our mode analysis.

We have implemented the memo rules within one of our mode analyzers: future work en-
tails implementions within our other constraint-based analyzers [14, 17], and implementing
comprehensions, via naive spawning, within the Monaco system [15]. We may also examine
non-naive methods for implementing comprehensions, although we believe that the naive
scheme uses no more process resources than existing vector implementations in concurrent
logic languages such as KL1. Finally, we may need to further extend our basic scheme as
we gain experience in its use, if we identify inflexibilities which make programming with
memos more difficult than we currently expect.

Acknowledgements

Bart Massey was supported by a grant by the Institute for New Generation Computer
Technology (ICOT). Evan Tick was supported by an NSF Presidential Young Investigator
award, with matching funds from Sequent Computer Systems Inc.

14

References

[1]

2]

[3]

(4]

(5]

{6]

[7]

(8]

9]

[20]

[11]

(12]

M. Bruynooghe and G. Janssens. An Instance of Abstract Interpretation Integrat-
ing Type and Mode Inference. In International Conference and Symposium on Logic
Programming, pages 669-683. University of Washington, MIT Press, August 1988. Ex-
tended version in Journal of Logic Programming, 1994.

S. K. Debray. Static Inference of Modes and Data Dependencies in Logic Programs.
ACM Transactions on Programming Languages and Systems, 11(3):418-450, July 1989.

S. K. Debray and D. S. Warren. Automatic Mode Inference for Prolog Programs.
Journal of Logic Programming, 5(3):207-229, September 1988.

A. King and P. Soper. Schedule Analysis of Concurrent Logic Programs. In Joint In-
ternational Conference and Symposium on Logic Programming, pages 478-492. Wash-
ington D.C., MIT Press, November 1992.

M. Koshimura and R. Hasegawa. A Mode Analyzer for FGHC Programs in a Model
Generation Theorem Prover. In Proceedings of the 47" Annual Convention IPS Japan,
1993. In Japanese.

B. C. Massey and E. Tick. Sequentialization of Paralle] Logic Programs with Mode
Analysis. In International Conference on Logic Programming and Aulomated Reeson-
ing, number 698 in Lecture Notes in Artificial Intelligence, pages 205-216, St. Peters-
burg, July 1993. Springer-Verlag.

B. C. Massey and E. Tick. Demand-Driven Execution of Concurrent Logic Programs. In
International Conference on Parallel Architectures and Compilation Technigues, pages
215-224, Montreal, August 1994. North-Holland.

B. C. Massey and E. Tick. Modes of Comprehension: Mode Analysis of Arrays and
Array Comprehensions. Technical Report CIS-TR-94-10a, University of Oregon, De-
partment of Computer Science, November 1994.

C. S. Mellish. Some Global Optimizations for a Prolog Compiler. Journal of Logic
Programming, 2(1):43-66, April 1985.

R. S. Nikhil. Id (Version 90.0) Reference Manual. Technical Report CSG Memo 284-
a, MIT Laboratory for Computer Science, 545 Technology Square, Cambridge, MA
02139, USA, July 1990.

A. V. 8. Sastry, W. Clinger, and Z. Ariola. Order-of-Evaluation Analysis for Destruc-
tive Updates in Strict Functional Languages with Flat Aggregates. In Conference
on Functional Programming Languages and Computer Archilecture, pages 266-275.
Copenhagen, ACM Press, June 1993.

E. Y. Shapiro. The Family of Concurrent Logic Programming Languages. ACM Com-
puting Surveys, 21(3):413-510, 1989.

15

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

R. Sundararajan. Daie Flow and Conirol Flow Analysis of Logic Programs. PhD
thesis, Department of Computer Science, University of Oregon, 1994. Also available as
Technical Report CIS-TR-94-08.

E. Tick. Practical Static Mode Analyses of Concurrent Logic Languages. In Interna-
tional Conference on Parallel Architectures and Compilation Techniques, pages 205-
214, Montreal, August 1994. North-Hoelland.

E. Tick and C. Banerjee. Performance Evaluation of Monaco Compiler and Runtime
Kernel. In International Conference on Logic Programming, pages 757-773. Budapest,
MIT Press, June 1993.

E. Tick and M. Koshimura. Static Mode Analyses of Concurrent Logic Languages.
Technical Report CIS-TR-94-06, Dept. of Computer Science, University of Oregon,
Eugene, OR 97403, March 1994.

E. Tick and M. Koshimura. Static Mode Analyses of Concurrent Logic Languages.
Journal of Programming Language Design and Implementation, 1995. Accepted. Also
available as University of Oregon Technical Report CIS-TR-94-06.

E. Tick, B. C. Massey, F. Rakoczi, and P. Tulayathun. Concurrent Logic Programs
a la Mode. In E. Tick and G. Succi, editors, Implementations of Logic Programming
Systems, pages 239-244. Kluwer Academic Publishers, 1994.

K. Ueda and M. Morita. A New Implementation Technique for Flat GHC. In Inter-
national Conference on Logic Programming, pages 3-17. Jerusalem, MIT Press, June
1990.

K. Ueda and M. Morita. Message-Oriented Parallel Implementation of Moded Flat
GHC. In International Conference on Fifth Generation Computer Systems, pages 799~
808, Tokyo, June 1992, ICOT.

K. Ueda and M. Morita. Moded Flat GHC and Its Message-Oriented Implementation
Technique. New Generation Compuling, May 1994.

16

A Sample Programs: Analyzer Output

Figures 8, 9 and 10 show the output of the extended mode analyzer. The annotation ‘-’
is output and ‘7’ is input. Constants and arithmetic goals are not annotated because
their modes are fixed. Some guards are not annotated in our current prototype, e.g.,
trans_all/2: although the modes are known internally and the analysis is correct, early
folding of such guards makes later annotation difficult.

Interestingly, our original version of the radix conversion program was ill-moded. The
origina! definition of trans_int/3 included:

memo_sel(D, I1, RL),
RL = pair(_, Residue_p),

which is a common type of moding error. The analyzer detected this error, leading us to
make the modification listed in Figure 10.

£ib(M™) :-
memo_ini(20,M7),
fib_memo(M7).

fib_memo (M0O?) :-
memo_csel (MO? ,M?,I7,E7),

I7 >= 2 |
I1 := 1 -1,
12 :=1 - 2,

memo_sel(M?,I17,V1"),
memo_sel(M?,I27,V27),
E := V1 + V2,

fib_memo (MO7?) :-
memo_csel (MO?,M?,I7,E7),
I7 <2 |
E- = 1.

Figure 8: Fibonacci Example as Annotated by Analyzer

17

init_symtab(NBuckets?,SymTab~) :-
memo_ini (NBuckets?,Table™),
null_table(Table?),
SymTab~ = symtab(NBuckets?,Table?).

null_table(Table?) :-
memo_csel(Table?,_,_,E”) |
E- = [].

insert_sym{symtab(NBuckets?,Table?),Sym?,S8ymTab_p~} :-
hash{Sym?,NBuckets?,Hash"),
memo_sel (Table?,Hash?,Chain"),
Chain_p~ = [Sym?|ChainT?],
memo_upd(Table? ,Hash?,Chain_p?,Table_p~),
SymTab_p~ = symtab(NBuckets?,Table_p?).

lookup_sym(symtab(NBuckets?,Table?),Name?,Sym~} :-
hash{Sym?,NBuckets?,Hash"),
memo_sel (Tabla?,Hash?,Chain”),
follow_chain(Chain?,Name?,Sym").

follow_chain([],_,S5ym") :-
Sym™ = nomatch.

follow_chain([Sym?|Syms?] ,Name?,Sym_p~) :-
sym_match{Sym?,Name?,B"),
follow_chain_1(B?, [Sym?|Syms?] ,Name?,Sym_p~).

follow_chain_1({true, [Sym?|_],_,Sym_p~) :-
Sym_p~ = Sym?.
follow_chain_1(false,[_|Chain?],Name?,Sym_p~) :-
follow_chain(Chain?,Name?,Sym_p~).

sym_match(Sym?,Sym?,B"} :-
B~ = true.
sym_match(Symi?, Sym27?,B~) :-
Sym1? \= Sym27 |
B® = false.

driver(T_p~,Sym™) :-
init_symtab(5,T7),
insert_sym(17,x,T_p~),
lookup_sym(T_p?,x,Sym").

Figure 9: Hashed Symbol Table Example as Annotated by Analyzer

18

conv(NInts?,Ints?,Base?, V") :-
memo_ini(NInt=s?,V"),
init_all{Ints?,V?),
trans_all{Base?,V?).

init_all(Ints?,v07?) :-
memo_csel(V0?,V?,I?,E™) |
memo_sel(Ints?,I?,N"),
memo_ini(32,D7),
E~ = item(N?,D?).

trans_all(Base?,V07) :-
memo_csel (VO?,V?,_,E?),
E = item(N,D) |
trans_int (N?,Base?,D?).

trans_int(N?,Base?,D0?) :-
memo_csel (D07?,D?,I7,E7),
I? =:= 0 |
Digit := N mod Base,
Residue := (N-Digit)/Base,
E™ = pair(Digit?,Residue?).
trans_int (N7 ,Base?,D0?) :-
memo_csel(D0?,D?,I7,E"),
17 >0 |
i1 :=1-1,
memo_sel(D?,I17,RL"),
get_residue(RL7,Residue_p~),
Digit := Residue_p mod Base,
Residue := (Residue_p-Digit)/Base,
E” = pair(Digit?,Residue?).

get_residue(pair(_,Res0?),Res”) :-
Res™ = Res07?.

driver(X~) :-
memo_ini(12,V")},
countup(V?),
conv(12,V?,16,X"7).

countup (X?7) :-

memo_csel(X?,_,I?,E™) |
E” = I7.

Figure 10: Radix Conversion Example as Annotated by Analyzer

19

B Mode Analysis Rules

In explaining the mode analysis rules, it is convenient to first develop some notation. Let
H be the set of all possible procedure/argument-index tuples of a program. Let S be the
(countably infinite) set of all possible sequences of functor/argument-index tuples of the
program {sequences are notated using surrounding curly braces {}). We define a path as
a sequence of the form {h} s, where h € H, s € S, and - is sequence concatenation, and
denote the set of all possible paths of the program by P.

Assume that the program’s variables have been renamed using unique names for the
variables of each clause, and that each occurrence of cach term of the program has been
given a unique subscript. We say that a path p = {<f,k>}-s derives a set T(p) of
occurrences of terms of the program, as follows: A term occurrence ¢ is in T(p) iff for
some clause or call of f the kit argument of f is a term occurrence ¢’ such that descending
into ¢’ via s leads to the term occurrence . The predicate var(t) is true iff ¢ is a variable
occurrence, and the function V() maps variable occurrences to variables. The predicates
head(t), guerd(t), and body(t) refer to the location of ¢, and hog(t) = head(t) V guard(t).

Associated with each path p € P is a mode m, a member of the set M = {n, out}.
The function m(p) : P — M gives the mode associated with p. For brevity, we also define
notation {due to Ueda) describing the mode of (possibly infinite) sets of paths. The notation

mfp=m'
where m’ € M (i.e., m' = in or m' = out), is shorthand for
VseS:mp-s)=m'

We define equality and inequality of modes in the ocbvious way. This allows us to introduce
the useful notation

mfp =m/fp

which is shorthand for
YseS:m(p-s)=mp -5)

and similarly for inequality.

We establish some standard variables which will be useful for brevity. Let p and ¢ range
over P, with p # ¢. Further, let ¢ range over T(p) such that —war(t), and let v and w range
over T'(p) and T(q) respectively, such that ver(v) and var(w) and v w, but V(v) = V(w).
Finally, let s range over S.

We are now ready to give a set of rules for determining the modes of paths of a program.
These rules are originally due to Ueda [19], although this formalization of them differs
somewhat in character from the original.

The first few rules are quite simple. The first rule says that paths leading to non-variable
terms must have input mode:

-war(t) = m(p) = n

20

The second rule says that paths leading to occurrences of any variable in the head or guard
of a clause must have the same mode:

hog(v) A hog(w) = m/p = m/q

This can be strengthened substantially in case guards all require ground arguments (as, for
example, in FCP(])[12]) to require:

hog(v) = m/p=1n

Even when the weaker form of the preceding rule is used, we can still say something about
repeated occurrences in the head: all paths here have input mode:

head(v) A head{w) = m/p = m/q=in

The rules involving paths leading to body variables are somewhat more complicated.
There are several alternative possibilities for formulating these rules, all based on the fol-
lowing intuition. Imagine that a clanse C has m head occurrences Xp,... X}, of a variable
X, and n body occurrences X,...X,,. Since, by the previous rules, all of X},...X},,, have the
same mode, we will simply select X}, as a surrogate for the others, and call it Xj. The basic
restriction on body variables is that there cannot be more than one out occurrence of X in
the body, since this would imply that X might be unified with two different values, leading
to program failure. By symmetry, we may thus choose to renumber the body occurrences so
that the output occurrence, if any, is X;. Finally we note that, by the definition of output
mode, if X is out, the binding for X is produced in the body of C, and thus X} should
be out. When X is in, since we know that X,...X,, are in, X must not be bound in the
body of C, and thus by the definition of input mode X, is in. All of the above reasoning
leads to the conclusion that there are really only two possible assignments of modes to the
occurrences of X:

L XX lX] X]
1 m | in | in mn
2l outiout| in |...| in

Note that the above reasoning doesn’t apply merely to occurrences of the variable itself: a
variable constrains the modes of all paths below it in exactly the same fashion. Thus, if the
modes of paths p and ¢ are somehow constrained, the modes of p- s and ¢- s will be likewise
constrained. With this understanding, we will speak informally of rules constraining the
modes of “variable occurrences.” Note also that there may not be any head occurrences of
X: in this case, row 2 of the table is the only possibility (X can only be bound by a caller
of a clause if it is visible to the caller, and thus some body occurrence must have output
mode in this case).

We will thus formulate the mode rules for body variables in a fashion that allows us to
draw conclusions about the modes of some occurrence of a variable from other occurrences
whenever possible. This form is thus amenable to automatic implementation. (The practical
difficulty in this approach is in finding a finite subset of the infinite set of paths of a program

21

for which the analysis is complete and safe. Koshimura discusses this problem in the context
of mode analysis using MGTP [16].) Intuitively, whenever we have enough information to
distinguish which of the two rows of the above table corresponds to the modes of occurrences
of X, and to identify which output body occurrence corresponds to X (if necessary), we
may fill in the missing information. Thus, the underlined columns of a row of the following
table are information which may be filled in when the rest of the columns in that row are
known.

L (X [X [X] .. | X)
all in | in| in |..| in
bl in | dn | tm{..| in
cllout |out| m | ... | in
d| out | out| in | .. | in

Rows of this table thus correspond to inference rules in a straightforward fashion:
(a) If a head occurrence of a variable is input mode, all body occurrences are input mode:

head(v) Am(p - s) = in A body(w) = m(qg-s) =in
(b) If all body occurrences of a variable are input mode, then the head is input mode:
(Vv : body(v) = m(p- 8) = in) A head(w) = m(g-s) = in

(c) If all body occurrences of a variable but one are input mode, and the head is output
mode, then the remaining body occurrence is output mode. Here let r range over P, with
T # p and r # q. Further, let z range over T'(r), such that ver(z) and = # v and z % w and
V(z) = V(w).

(Vv : body(v) = m(p - s) = in)
A head(w) Am(g - s) = out
A body(z) = m(r - s) = out

(d) If a body occurrence is output mode, then all other body occurrences are input mode,
and the head is output mode;

body(v) Am(p- s) = out A body(w) = m(q-s)=in
body(v) Am(p-s) = out A head(w) = miq-s) = out

These are the ground rules of the analysis. Builtin procedures are handled by special
rules: in particular, the restriction that all objects denoted by a path have the same mode
does not apply to paths originating in builtin procedures (equivalently, one can affix a
unique subscript to each occurrence of a builtin, as is done in the text). Instead, special
case rules are used to indicate mode constraints for calls to these procedures. Also confusing
is that some guard and body constraints have identical names, and are distinguished only
by position. We will distinguish these using subscripts g (guard) and & (body).

22

For an occurrence of the body equality (i.e., tell unification) predicate = /2, the mode
constraint is that the modes on opposite sides are opposite:

m/{<=p/2,1>} # m[{<=/2,2>}

In dialects in which guard equality testing (i.e.,ask unification) predicates =,/2 do not
require ground arguments in order to succeed, it is still necessary that the modes on opposite
sides are equal:

mf{<=¢/2,1>} =m/{<=4/2,2>}

Most guards, such as guard arithmetic assignment, have all input arguments:
m({<:=¢4/2,1>}) = m/{<:=,/2,2>} = in

(confusingly, the LHS of the assignment is also in, since it is produced in the head of the
clause rather than its body) whereas body arithmetic assignment expects its RHS to be
input and produces an output LHS:

m({<:=p/2,1>}) = out
m/{<:=p{2,2>} = in

Our memo comprehension rules fit into this mode analysis framework in exactly the same
way as the rules for other builtin functions described above. When defining builtin functions,
it is important that these functions are useful, while still allowing mode constraints which
fit into this formal framework; otherwise, it may be impossible to mode-analyze programs
which use these builtins. The mode constraints for memo functions given in the text satisfy
this requirement. Thus, our work in providing mode rules for memo builtins is an important
but fully compatible extension of earlier work.

23

