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Abstract

Mode analysis of logic programs is the derivation of the input/output relations of
logic variables and their embedded terms. Mode information is critical in enabling many
types of compiler optimizations, for example thread partitioning. It is therefore useful to
derive modes automatically at compile time, without assistance from the programmer.
In this thesis, an automatic mode analyzer is described, based upon a static-graph
reduction technique. This extends the seminal work of Ueda and Morita by presenting
an implementation algorithm and its empirical performance for a benchmark suite. It
is shown that the first mode analyzer prototype produces correct results in reasonable
time.
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1 Introduction

In recent years, efficient compilation of concurrent and parallel logic programming languages
has been a popular research area in the logic programming community. Mode information
is useful because it leads to many optimization techniques. We are interested in a family of
concurrent logic programming languages which contains Flat Guard Horn Clauses (FGHC)
(12], Strand [2}, and similar languages [7]. Mode information can be used in optimization
techniques, specifically in code generation for this family of languages, such as:

¢ Logical variables are overloaded to control synchronization in the execution of these
programs. Mode information can help to generate code so that the number of sus-
pensions is reduced {13]. Thus the execution times of the programs are reduced.

¢ Mode information enables pure demand-driven execution [5], which is quite a useful
optimization technique. With pure demand-driven execution, program execution will
consume less memory and less processor resources.

o Static partitioning of a concurrent logic program uses mode information to find sets of
execution threads that give higher granularity, reduce inter-process communication,
and thereby achieve more efficient multiprocessor usage [1].

Moreover, mode information can also be used to detect some bugs in the source program
at compilation. These bugs are usually caused by unconventional usage of variable bindings
in a program.

Mode information is useful and enables many types of compiler optimizations. It is
important to automatically derive mode information during program compilation. OQur
purpose is to implement an automatic mode analyzer that can be a part of the front-end of
an optimizing compiler. In the next section, we briefly introduce the semantics of FGHC
languages.

1.1 Execution Model of FGHC

A Flat Guard Horn Clause (FGHC) program is a committed-choice logic program. An
FGHC program consists of a collection of clauses. Each clause is in the form: “H :- A4, ..., An
: T1y+eey Tn { B1y+ery Bp.” where m,n,p > 0. H is the clause head; 4 is an ask guard goal; T
is a tell guard goal; and B is a body goal. The operator :’ separates two kinds of guards,
and the operator ’ | ’, which is called the commit operator, separates guards from the body
of the clause. A procedure is defined by a set of clauses which have the same functor and
arity for H. Of course, all the guards must be “flat.” That means that a guard can only be
a system-defined built-in function. The ask guards perform passive unification, f.e., input
matching. The tell guards perform active unification, i.e., output binding. A clause that
has no body (p = 0) is called a unit clause.

During procedure invocation, a goal (query) commits to a clause of the procedure by
matching to the head arguments, using passive unification and satisfying the guard goals.
If the goal can commit to more than one clause of the procedure, the goal commits to one



of them nondeterministically. The other candidate clauses are discarded. If the goal fails
to match the head or satisfy the guards of any of the clauses, the goal fails. If a particular
argument (or variable) of the goal is determined to be insufficiently instantiated during
the commit process (i.e., goal-head matching and guard satisfaction), the execution of the
the goal is suspended. The suspension may be resumed later when the variable associated
with the suspended invocation of the goal becomes sufficiently instantiated. Notice that
the variables which are already sufficiently instantiated will never lose their values since
variables are single assignment.

After the goal commits to a clause, a process is created for each of its body goals.
All of these new processes are put in the process pool, except the first body goal process
which is executed immediately. The processes in the process pool will be picked to be
executed concurrently by the scheduler. Again, the synchronization of program execution
is controlled by means of overloading logical variables. The situation where the process
pool is empty and at least one process is suspended is called deadlock. If the process pool
is empty and no suspended process exists, the execution succeeds (returns true), and the
program successfully terminates.

1.2 Thesis Overview

For this thesis, I have implemented the first mode analyzer using a static-graph reduction
technique [11] following the abstract mode analysis method defined by Ueda and Marita
{14]. T have shown that it is possible to implement a mode analyzer that has a reasonable
analysis time. Also, I have conducted a performance evaluation of the mode analyzer and
another mode analyzer which uses an active-graph reduction technique [10]. The results
show that the analysis time is within a factor of four compared to the compilation time
for the benchmarks analyzed. Memory consumption is more problematic; however I believe
that improvements to the first prototype system will alleviate such inefficiencies.

1.3 Thesis Outline

Chapter 1 presents the purpose of the thesis with a brief explanation of the execution model
of an FGHC program. Chapter 2 describes static-graph reduction mode analysis. Chapter
3 briefly demonstates the correctness of the analyzer by showing that the analyzer finds
both correct and complete mode paths of moded programs, in addition to detecting mode
conflicts in non-moded programs. In Chapter 4, Performance evaluation of the analyzer is
compared to another mode analyzer that uses the active-graph reduction technique. We
close the thesis with conclusions and suggestions for future work in Chapter 5.



2 Mode Analyzer Algorithm

In recent years, numerous mode analyzers have been implemented. Each of these mode
analyzers uses a different approach in finding the mode path of a program. Examples of
mode analysis techniques are:

¢ static-graph reduction mode analysis [11]

¢ active-graph process network reduction mode analysis [10]
e finite-domain mode analysis [4]

¢ model generation theorem prover mode analysis [10]

In this chapter, we introduce necessary definitions used in the thesis, and we introduce
a mode-analysis algorithm using the static-graph reduction technique. First, we describe
the algorithm step-by-step with small example codes. Then, we show how the algorithm
works with the Quicksort benchmark program.

2.1 Definitions

Ueda and Morita’s notion of “path” [14] is adopted as follows: a path p “derives” a subterm
s within a term ¢ (written p(t) F 8) iff for some predicate f and some functors a,b,... the
subterm denoted by descending into ¢ along the sequence {(f,?},{a,7), (b, k),...} (where
(f,i) is the i** argument of the functor f) is s. A path thus corresponds to a descent
through the structure of some object being passed as an argument to a function call. f
is referred to as the “principal functor” of p. A program is “moded” if the modes of all
possible paths in the program are consistent, where each path may have one of two modes:
in or out.

The following definitions are from Ueda and Morita [13]. We use the Quicksort program
as the example program in describing the definitions. The program is shown in Figure 1.

Definition [14):  Patom is a set of paths which begin with predicate symbols.
Preqm is a set of paths which begin with function symbols. O

Ezample: Considering the Quicksort example, (g/3,1){./2,2){./2,1) € Pajom
('/2,2)('/251) € Prerm. (]

Definition [14]: We define the set of modes M = Ppiom — {in,out}. This
means that a mode assigns either in or out to every possible path of every
possible instance of every possible goal. ]

Ezample: Considering the Quicksort example, the cadr of the first argument of
procedure ¢/3 has an input mode specified as: m({{¢/3,1}, {./2,2),(./2,1}}) =
in. m|



q(T0,Y0,20) :- TO =
YO = 20 |
true.

q(T1,Y1,21) :- T1 =
Ul = [X11vsi] |
s(Xs1,X1,L1,G1),
q(l1,Y1,U1),
q(G1,Vs1,21).

'
O

(1)

[X1]Xs1] : (2)

s(T2,_,L2,G2) :- T2 = [J : (3)
L2=10[],¢62=0 |
true.

8(T3,Y3,L3,G3) :- T3
G3 = [X3|Ws3] |
s(¥s3,Y3,L3,Ws3).

8(T4,Y4,0L4,G4) :- T4
L4 = [Xa|ws4] |
s(Xs4,Y4,Ws4,G4).

n

[X3|Xs3], X3 < Y3 : (4)

[X4|Xs4], X4 >= Y4 : (5)

Figure 1: Quicksort Program

Definition [14): For a mode m € M and a path p € Piwom, & submode
of m, denoted m/p, is a function from Pr.m to {in,out}, such that Vq €

Prerm, ((m/p)(g) = m(pq)). =

Ezample: Considering the Quicksort example, when p = (¢/3,1){./2,2), m/p
represents a function from a set of the paths from the cdr of the first argument
of procedure g/3 to {in,out}. 0

Definition [14]: A program is “moded” if the modes of all possible paths in the
program are consistent, where each path may have one of two modes. 0O

Definition: A program is “non-moded” if the program is not a moded program.
a

Definition: A mode vector matrix is a one-column matrix. Each element of the
matrix is a possible mode vector. m}

Frample: Considering the first clause of the Quicksort example, there are two
occurrences of the variable Z0 and the variable can be only input or output at
these two positions. Thus, the mode vector matrix is {(in,in), (out,out)}. 0O

All analyses presented in this paper exploit the rules outlined by Ueda and Morita.
Their axioms are restated in Figure 2 [9)].



§1. For some path p in a clause, m(p) = n, if either

1. p leads to a non-variable in the head or body, or
2. p leads to a variable which occurs more than once in the head, or

3. p leads to a variable which also occurs in the guard at path p, and m(p,) = in

§2. Two arguments of a tell unification have opposite modes, for all possible p, or more
formally: m/(=/2,1) # m/{=/2,2},ie.,¥p m{({{=/2,1)}-p) #
m({(=/2,2)}-p)

§3. If there are exactly two “occurrences,” we have two possibilities:

1. If both occurrences are in the body, the modes of their paths are inverted.

2. If there is one (or more) occurrence in the head and one in the body, the modes
of their paths are the same.

§4. If there are more than two “occurrences” of a shared variable (i.e., at least two occur-
rences in the body), the situation is even more complex:

1. If the body contains more than two occurrences of the shared variable and the
head has no occurrences, then one of the modes is ouf, and the others are in.
This means that one of the occurrences is designated as the producer of this
variable.

2. If the head contains one (or more) occurrences of the shared variable (so the
body has two or more occurrences), then the modes are as follows:

(a) If the mode of the head occurrence is in, the modes of all body occurrences
are in as well.

(b) If the mode of the head occurrence is out, then one of the body occurrences
is oui, and the other body occurrences are in.

Figure 2: Ueda and Morita’s Mode Derivation Axioms (for Moded FGHC)




FGHC source program
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Figure 3: Structured Dataflow Graph Representation of the Sample Program

2.2 Static Graph Reduction Mode Analysis

The basic idea of static-graph reduction mode analysis is to use program graph reduction to
propagate and to preserve the consistency of the mode information of the program. Mode
analysis consists of three operational phases: program static graph building, system-defined
functor (including unification) reducing (reducing graph part I), and user-defined functors
reducing (reducing graph part II). The system dataflow is shown in Figure 3.

2.3 Static Graph Building

We introduce a static graph to represent a concurrent logic program. Each clause of a
program is represented by a subgraph. The graph is a directed graph and consists of two
types of nodes: variable nodes and structure (functor) nodes. A variable node is represented
by a circle node, and a structure node is represented by a square node. Each child of
a variable node represents a possible value binding of the variable it represents. Each
child of a functor node represents an argument of the functor it represents. If a functor
argument is a term (i.e., not a variable), we introduce a dummy variable to substitute
for that position and introduce a unification body goal to unify the argument term with
the dummy variable. Notice that the program graph is a layered graph. That is, no
two circle nodes nor two square nodes can be consecutive. From now on, we will use the
term “variable node” and “circle node” irterchangeably. For a program, we can create
a collection of subgraphs, each representing a program clause. Each node of a graph is
assigned a unique identification number, a node name (variable name or functor name),
parent nodes’ identification numbers, and child nodes’ identification numbers. If the node



is a circle node, we introduce a mode vector matriz corresponding to the node. Each mode
vector matrix consists of a number of mode vectors. Each mode vector consists of mode
elements, corresponding to each parent of the node. That is, the length of the mode vector
is equal to the number of parents of the associated circle node. Each mode vector represents
a possible mode of the variable at each corresponding position in the source program. The
possible values of a mode element are “in” and “out” (i.e., input and output). Initially
this mode information can be partially derived from the source program with Ueda and
Morita’s mode derivation axioms (Figure 2). After we create a graph and assign all the
node information as described above, we create a partition set associated with the graph.
Initially, each node of a graph has its own partition. That is, initially a graph with n nodes
will have n partitions. Examples of program graphs are shown in Figure 4.

From the simple clause in Figure 4a, we create two square nodes, one for functor p/2
and the other for functor =/2. Also, we number these two nodes with unique identifiers. The
functor p/2 has an arity 2. That is, its square node has two children, one for each argument.
Notice that each argument of p/2 is a variable, so we introduce a circle node for each of
them. We do the same thing for the functor =/2. Moreover, each node contains information
about its parent nodes (entry ports) and its child nodes. For example, the variable node
which has the identifier 3 represents variable A. The variable appears in the first argument
position of the functor p/2, which has identifier 1, and also appears in the first argument
position (left-hand side) of the functor =/2 which has identifier 2. Thus, the variable node
has two parents and we keep the parents information in the form of id/indez where id is
parent identifier and indez is the argument number of the parent. The parent information of
variable node 3 is (1/1,2/1). As mentioned, each variable node has a mode vector matrix
associated with it. For variable A, there are two occurrences of the variable A in the clause.
Using Ueda and Morita’s rule §3.2, the initial mode vector matrix corresponding to the
variable node is {(in,in), (out,out)}. For variable B, we assign its initial mode vector
matrix by the same method.

In Figure 4b, we create a program graph with the same method that we just employed.
The only difference is that we introduce dummy variable nodes D1 and D2 for each ground
term (a and b), and insert dummies between the functor nodes and the ground term nodes.
We can see that, as mentioned before, the program graph is a layered graph. The last step
in building a program graph is to create the partition set. Each initial partition set of the
graphs is shown in Figure 4.

2.4 Unification and System-Defined Function Reducing (Graph Reducing
Phase I)

The input of this step is an initial graph which is built in the previous step. In this step, we
will consider only unification (=/2) functor nodes and system-defined functor nodes (i.e.,
arithmetic operators and built-in functions). We can divide these functor nodes into three
categories:

o System-defined functions. Since the mode of each argument of system-defined func-
tions is fixed, we can use this information as a constraint to reduce the size of the




15/1,6/1)

partition = (12|3]4}

1
P2
(3,4}
{1/1,2/1}
{iin.in),
{out, cut) )

p{A,B} := tr

ue

(a)

2
=/2
{3,4)
{1/2,2/2)
{({in,in),
{out, out) }

: A =B | true,

partition = {5[6]7]8(9]10)11]12]|13)

pf2

{{in,in)}

{{in}}

7

=/2

(tin,inm),
{out,out])}

(5/2,7/2)

(10.11})

(7/2)

fiin}}

Figure 4: Examples of Program Graphs



mode vector matrices corresponding to their argument nodes. However, our mode an-
alyzer can handle only mathematic and comparison functors. We are not accounting
for all system-defined functions. A proper way to handle all system-defined functors
can be found in Massey [6].

Passive unify (i.e., a unification functor that appears in an ask guard). Each passive
unification node is a root node and has two variable child nodes. These two child nodes
can be merged (reduced) together. According to Ueda and Morita’s mode rules, the
modes of both arguments of a passive unify must be in. In order to reduce these two
child nodes, a cross-product of their mode vector matrices is performed, and we keep
only mode vectors that contain in mode elements at both entry-ports position from
the passive unification root node. We discard the other mode vectors,

The result of passive unify merging is a graph in which the two child nodes of the
unification functor are reduced into one variable node. In our implementation, we
discard the passive unification root node after the reduction and we also reduce the
mode vector matrix by discarding the mode element in each vector corresponding to
the unification functor parent node.

An example of this reduction is shown in Figure 5. We reduce the A node with the
B node since these two nodes are the children of a passive unification operator (root
node). The cross-product of the mode vector matrices is performed. The mode vector
matrices are {(in,in), (out,out)} and {(in,in), (out,out)}. The cross-product
is:

( in, in, in, in)
{ in, in) y (in, in) | _J ( in, im, out, out)
(out, out) (out, out) [ = ] (out, out, in, in)
(out, out, out, out)

We discard the second through the fourth mode vectors of the cross-product matrix
since these three vectors contain mode elements that do not obey the mode rules. That
is, the two arguments of the passive unification functors (2™ and 4** vector elements)
must have mode in. Thus, the final result of the cross-product is {(in, in, in,
in)}. Since we merge two variable nodes A and B together, each mode vector of
the resulting matrix is reduced by removing mode elements which correspond to the
unification node entry-port, and the final result mode is {(in, in)} as shown on the
right side of Figure 5.

Active unify (i.e., a unification functor that appears in a tell guard). In this case, we
perform almost the same action as in the case of passive unify. The only difference
is the final result from the cross-product. According to the mode rules, the mode of
the left-hand-side variable and the mode of the right-hand-side variable of the active
unification operator must be opposites. An example is shown in Figure 6.

The outputs from this phase are program graphs which have no unification nor system-

defined functor root nodes.



partition = (1]|2]3]4) partition = (1]3,4}

(3.4} 1 : {2,4) o
=4 = P
——

{1/1,2/1) (1/1,2/2) ||
3 4 3
A B A,

{{in, out), {({in, in), {{in, in),}

{out, in}) {out, out)}
p{A, B) :- A =B | true.

Figure 5: Passive Unify Merging

2.5 User-defined functors reducing (Graph Reducing Phase II)

In this phase, we take the graph produced by the previous phase and do more reductions
until we get the minimal graph. The minimal graph is the program graph that has been
reduced until all the root nodes are unique. That is, no two root nodes have the same
functor name and arity. Assuming that the program is a moded program, intuitively, two
functors that have the same name and arity must have the same data-flow. That is, the
corresponding argument positions must have the same mode. For instance, consider the
following program:

member(A, [B1}Bs] ,Result) :- A = Bl : Result = yes | true.
member (A, [B1!Bs] ,Result) :- A \= Bl : true | member(4,Bs,Result).
member{_, [],Result) :- true : Result = no | true.

For each occurrence of member/3, the first argument and its subterm must have the
same mode (in), the second argument and its subterm must have the same mode (in), and
the third argument and its subterm must have the same mode (out). This is the main
concept behind a program graph reduction in this phase. We use an abstract unification
algorithm to unify two functor root nodes which have the same name and arity. Figure 7 is
the pseudo-code for this unification algorithm {11]. We denote a variable node (circle node)
with v which has fields:

e v.in: The entry-port vector (identifying all parents. Each element of the vector has

the form id/indez where id is a parent identification number and indez is the indez!®
argument of the parent.

10



partition = {1]2]|3]|4) parcition = (1]3,4}

1 2 1

<] = =

ot {(2,4)
——
(171.2/1) (1/1.,2/2)

3 4 3

A B A,
{{in, out), {{in, in},. {{in, cut),
{out, inj} {out, out}} fout, in}]}
pP{A, B) :- true | A = B

Figure 6: Active Unify Merging

e v.out: The exit-port vector (identifying all children), each element of the vector is the
identification number of a child node.

s v.modes: The mode vector matrix.

We denote a functor node (a square node) with s which has the fields:

o s.out: The vector of child nodes (exit-ports). Each element of the vector is the iden-
tification number of a child node.

o s.fun: The form name/arity.

From Figure 7, unification is invoked as unify(a,b) where @ and b are functor root
nodes. The output of unify(a,b) is either failure or success with a new graph generated.
The main idea of the algorithm is to traverse through the program graphs and find the
mode information (mode vector matrix) of each pair of nodes which are supposed to have
the same mode constraint. Then, we find a new mode vector matrix by multiplying these
two mode vector matrices and filtering out the mode vectors that contrast with the mode
constraint between the two nodes, and put the mode vector matrix in one of the two nodes.
This action is called reduction. In our implementation, we will consider only the node that
has the new mode constraint added for future reduction. Also notice that, in practice, the
program graphs shrink after the unify process.

By keeping in track of the node that has a new mode constraint added (a new mode
vector matrix) after a reduction, each graph has a disjoint node partition set associated
with it. When two nodes are reduced, the node partition set is changed according to the

11



unify(a, b) {
Va,b clear mark({a,b}) (1)
sunify(a, b)

sunify&a, b) {
if a.fun % b.fun

return(failure)

if mark({a,b}) clear then {
set mark({a,b}) (2)
Yk € [1,arity(a)]
if vunify(a/k, a.out[k], b/k, b.out[k]) failure then
return(failure)

}

return{success)

vunify(i, ay, 7, by) {

a = find_set(a,)

b = findset(b,)

if mark({a,b}) clear then {
set mark({a,b})
¢ = union(a,b (3)
— compute the compatible mode set
define u s.t. a.infu] =1

vat binlv|=j

p =a.modes x b.modes

P={(st)ep | slul =[]} (4)
if (p’ empty) then
return(failure)

c.modes={ 5 || (my, ma, ..., my_1, Myy1, ..., mk} I
(,) P, t=(my,mo,...,my, ...my;
— compute the entry-port identifiers
IEt_' (plrp2_r v10y Puy ooy PE) = buin
c.in=a.im || (p1, P2y ey Py, Pusl, ooy TE) (6)
— compute the exit-ports identifiers
u=a.oui U b.out
Jfo={s.fun | s € a.out}
fo ={s.fun | s € b.out}
i={s | fun€ foa N fi, s.fun € u}
coul =a.out U i (M
— unify children with the same functor/arity
V(z,y) | = €a.out,y € b.out {
f x.fun = y.fun
if sunify(z, y) failure then (8)
return(failure)

(5)

}

return(success)

Figure 7: One-Pass Rational-Tree Unification Algorithm

12



reduction. The two disjoint partitions that contain these two nodes are glued together.
In our implementation, the new mode vector matrix is always put in the node that has
lower identifier of the two reduced nodes. Thus, in a node partition set, the node which
has the lowest identifier will be the node that represents the whole node partition set when
we reduce any node in the partition set with other nodes. Two important operations for
the reduction are union(r,y), and find_set(z,y). The union(z,y) function unites two disjoint
sets, where z belongs to the first disjoint set and y belong to the second disjoint set. The
procedure union returns the least identifier of nodes of the united partitions. The function
find_set(z) returns the least identifier of the disjoint set containing z. Notice that the unify
function reduces the number of partition sets and increases the size of each set.

As mentioned earlier, a program graph might be cyclic. If we unify two cyclic graphs in
a naive way, we might enter an infinite loop by unifying two nodes which we already unified.
This action is clearly shown in Figure 8. Supposed we reduce node 1 with node 2, we unify
node 1 with node 2, node 3 with node 4, node 5 with node 6, node 7 with node 8, node 1
with node 2, and so on. We can see that the unify procedure will continue forever and it will
not give any better mode information because we are unifying the nodes which are already
unified. We protect the analyzer from infinite unification by introducing a mark table. The
mark table is simple a two-dimensional array of size n X n where n is the highest identifier
in the graph. Initially, the mark table is clear. The mark table will be marked at (4, j) and
(7,7) when we unify node i with node j. Notice that node unification is associative. We
check the mark table every time before reducing two nodes. If the mark table has already
been marked at the associated locations, unification succeeds immediately.

Now we consider how the unify function works. In Figure 7(1), we initially clear the
mark table and we call sunify for unifying two root functor nodes. The function sunify
checks whether the two functor nodes have the same name and arity. At (2), we begin the
unification by marking the mark table at the position of the two unified nodes and start
unifying their corresponding child nodes. Notice that all child nodes must be variable nodes.

We call vunify to unify each pair of child nodes. In the vunify function, before we unify
two variable nodes, we call the find_set function in order to find the nodes that represent the
partition sets that these two nodes are in. At (3), we mark the mark table to indicate that
the two nodes have already been unified and we call union to combine the two partition sets
together. Then, we multiply the mode vector matrices of the two nodes and filter out the
mode vectors that have conflicting modes at the two parent entry-ports. In (4), the variable
p' contains this mode vector matrix. Since the parents of the two unified nodes are reduced
together, one entry-port from the parent that has the higher identifier can be ignored. We
filter out the corresponding column from both the mode vector matrix and the entry-port
vector in (5) and (6). Now we have reduced the two child variable nodes. Notice that these
two child nodes could also have their own child nodes. We continue the process by unifying
their child nodes together in (7) and do the recursive unification on their children in (8).

An example of vunify execution is shown in Figure 9. In Figure 9a, we unify node A
with B. The arrows indicate the entry-ports to be merged. The portion of the algorithm
that performs this merging is vunify. First, we find the two nodes that contain the most
information about the partitions (this is the least identifier in the partition). The identifier
can be found by find_set(A) and find_set(B). Thus, we pick these two nodes for unification.
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Figure 8: Unification of Cyclic Graphs

We compute the cross-product of the mode vector matrices as follows:

( in, out, in, out)
( in, out) « ( in, out) { _J ( in, out, out, in)
(out, in) (out, in) { 7 | (out, im, in, out)
(out, in, out, in)

We take the product of the matrices and filter out the first and the third rows since the
modes at the second and the fourth column cause a conflict. Also, we filter out the fourth
column because we are reducing the graph and that entry-port has already been combined
with the second entry-port. The final product is shown in Figure 9b.

In our mode analyzer implementation, there are two steps in unifying root nodes of
a graph: local and global unification. In local unification, for each program clause, we
call the unify function on matching functor root nodes in the clause. After we finish local
unification, each procedure graph consists of unique functor root nodes (minimal) . In global
unification, we take the output from local unification and follow the same procedure as in
local unification, but this time we match functor root nodes across procedure subgraphs.
Finally, at the end of global unification, we will get the minimal program graph with unique
functor root nodes.

In general, the local and global unification described above have the same function-
ality. Furthermore, they actually are the same abstract unification procedure previously
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{{in, out), .
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{{in, out, out)
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Figure 9: Demonstration of vunify Procedure
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state of A | state of B | unify(A,B) | comment
normal normal normal standard unily
normal multiway multiway standard unify
multiway normal multiway standard unify
multiway multiway shared standard unify
shared any state shared standard unify +

mode consistency check
any state shared shared standard unify +

mode consistency check

Table 1: Unification Variable Node with Status

memtioned. We will discuss about the complexity of the unification algorithm in Chapter
4.

2.6 Mode Consistency Check

The program graph generated by the mode analyzer is the minimal program graph and
contains the final mode information. However, there are degenerate programs that give
incorrect modes under this algorithm (Figure 7) because they lose the constraint of rule §4
in Figure 2. These programs will be examined closely in the next chapter. For now, we will
describe a way to fix this problem.

To ensure that constraint §4 is enforced for a graph reduction, we divide variable nodes
into three states: normal, multiway, and shared [10]. When we create a program graph, we
initiate a variable node to be multiway if the node is moded by the rule §4; otherwise, we
initiate the node to be normal. If during graph reduction a multiway node is unified with
a multiway node, its status changes to shared. Unification of normal and multiway variable
nodes proceed as previously described. However, unification of a shared variable node with
another variable node (of any type) is treated specially. The summary of node state changes
is shown in Table 1.

With the mode consistency check [9], the unification of the variable nodes themselves is
performed normally. However, the recursive descent is modified. If all mode vectors within
the merged variable are in on the unification path, then this particular variable occurrence
is a consumer in all possible scenarios. In fact, all variables within terms bound to that
variable must be consumers also to avoid contradictions.

During the unification’s descent from the merged node, recursive unifications of child
pairs proceed normally. However, singleton children, for which unification does not take
place, are no longer inherited. These children are not safe: they may erroneously be pro-
ducers. Thus we descend to each such child, removing all mode vectors with out along the
path. This removes all contradictory scenarios, potentially resulting in an empty mode for
some nodes.

With mode consistency checking, the final graph is the minimal program graph and
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contains correct mode information for all program paths. Examples of mode analysis with
this mode consistency check are shown in Chapter 3.

2.7 Interpretation of the Final Graph

Ueda and Morita’s polarity rule [14] suggests a way to interpret the final graph properly. If
the path from a root passes through an odd number of out mode nodes, the final mode of the
path must be interpreted oppositely from the final mode of the path in the graph; otherwise,
the final mode path is interpreted normally. We illustrate the situation by showing a small
program, its final graph, and its interpretation. The small example and its initial graph
are shown in Figure 10. We follow the processes previously described. First, we do the
unification with respect to the passive unification root node, and the graph is reduced to
the one in Figure 11a. Then we do the unification with respect to the active unification
root node, and the graph is further reduced to the one in Figure 11b. We can see that
the graph is already in the minimal state since the graph contains only unique functor root
nodes. We can interpret all the paths of the graph as in Figure 12. Notice that the paths
from =/2 functor root nodes are not shown in the mode paths

Considering all mode paths in Figure 12, the polarity rule is used when we want to
find the mode of the path {(p/2,2){(./2,1)} and the path {{p/2,2){./2,2)}. The paths are
reported to be out, whereas the graph shows both mode paths to be in, because both paths
passing through one (odd number) out moce which is the path (p/2,2).

2.8 Replaying the Whole Process

We replay the whole process of mode analysis by illustrating the analysis of the quicksort
program. The quicksort program is shown in Figure 13. The graph of clause (1) in Figure
13 after the ask unification root reduction is shown in Figure 14. Then we do tell unification
reduction, and the resulting graph is shown in Figure 15. We cannot do any more reductions
from Figure 15 because it is already the minimal graph.

Consider the second clause of the program. The graph of the clause after all unification
functors are reduced is shown in Figure 16. The next phase reduces user-defined functors.
We show the graph after the first user-defined functor reduction (root nodes number 1 and
3) in Figure 17. Then we show the minimal graph of the second clause in Figure 18 (after
one more reduction step of nodes number 1 and 4).

We now have two minimal graphs for the first and second clauses of the program. We
now do the global reduction of these two graphs and get the graph shown in Figure 19.
Next, we consider the third clause of the program. The graph after reducing all unification
functors is shown in Figure 20. Moreover, the graph is a minimal graph. Consider the
fourth clause of the program. The initial graph is shown in Figure 21. The graph after all
unification functors are reduced is shown in Figure 22. The minimal graph of the clause is
shown in Figure 23. Consider the fifth clause of the program: the initial graph is shown in
Figure 24. The graph after all unification functors are reduced, is shown in Figure 25. The
minimal graph of the clause is shown in Figure 26.

Now, we consider reduction between clauses (4) and (5). The reduced graph is shown
in Figure 27. The reduction among clauses (3), (4), and (5) is shown in Figure 28. Finally,
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partition = {1|2]3{4|5[6]7|8|9|10]11}

P {4,5) = (4,6} = (5,4}

b
Z
3/1)

{tin,in), {{in)}
{our,out} }

(L/1,2/1,
3/2)

{{in,in,in)}

=
(.
{e.9)
(7/1) (7/2)
({in}} {{in})
10 11
1 2

P(A,B) :-A=[11] 2] : B=Aa | true.

Figure 10: Graph Interpretation Example (Step 1)
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partition = (1]3]4,6{5|7|8[9{10|11} partitien = (1|4,6|5,7|8]9]|10]|11)

{4)

(4,5} (4,5}

(1/1,3/2)) 111/2,3/1)
a
(1/1,1/2)
{{in,in), &2
ey (out, out) } ({in.oue))
9 7
(8.9)
I _|_]
{7/1) (772} Sz m
({in)} S0 (s (e
10 11 10 H
1 2 : 2
(a) {b}

Figure 11: Graph Interpretation Example (Step 2)

m({{p/2,1){./2,)}} = in
m({{p/2,1{./2,2)}) = in
m({(p/2,1}}) = in
m({(p/2,2)(./2,1)}) = out
m({(p/2,2)(./2,2)}) = out
m({(p/2,2}}) = out

Figure 12: Path Modes of Example Program
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q(T0,Y0,20) :- TO
YO = Z0 |
true.

q(T1,Y1,Z1) :- T1 =
Ul = [X1|Vs1] |
s(Xs1,Xt,L1,G1),
q(L1,Y1,U1),
q(G1,Vs1,Z1).

"
O

(1)

[(X11%Xs1] : (2)

s(T2,.,12,G2) :- T2 =[] : (3)
Lz=[00,62=0 |
true.

s(T3,Y3,L3,G3) :- T3
G3 = [X3|Ws3] |
s(Xs3,Y3,L3,Ws3).

s(T4,Y4,014,G4) :- T4
L4 = [X4|ws4] |
s{Xs4,Y4,Wsd,G4) .

n

[X3|Xs3], X3 < Y3 : (4

[X41Xs4], X4 >= Y4 : (5

Figure 13: Quicksort Program

the reduction of the whole program (reduction of the graph in Figure 19 and the graph in
Figure 28) is shown in Figure 29.

From the minimal final graph (Figure 29), we can see that the graph has no unification
functors (=/2) or any system-defined functors because we reduced these functors in phase
1. Actually, our implementation doesn’t throw away this information. All the root functor
nodes are still floating in the graph but the links to their children might not be correct
compared to the minimal graph. We can add a module to our implementation that will fix
all the links by making use of the disjoint partition set and the find_set(z,y) function. Then
we can see the final graph which contains all unification functor root nodes and system-
defined functor root nodes. In this thesis, we will consider only the final graph without this
special module.

Considering the minimal final graph (Figure 29) again, we can see that the number of
paths is infinite since we have two cycles in the graph. Notice that the cycle appears only
at the list functor (node 7 and node 8). In order to display the mode paths of the graph,
we break the cycles and display the mode down to only the level of the car and cdr because
the mode of the car of a list is the same as the mode of the cadr, caddr, etc. By breaking
the path, we can display a finite number of mode paths. The broken mode paths of the
graph are shown in Figure 30.
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partition = {16|17|18|19|20]|21}

16 17
q/3 =/2
(18,20,21) (20,21)
16/2,17/1)
16/1
ELoEy {16/3,17/2)
{{in}} ((in,in}, {tin,in},
(out,out)} {out,out) )
19

Figure 14: Quicksort Program Clause 1 Graph (Ask Unification Reduced)
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partition = (16|17]18]19|20,21)

16
q/3
{18,20,20}
{16/1)
18 (16/2,16/3)
0
{{in)} {{in,out},
{out,in)}
19

Figure 15: Quicksort Program Clause 1 Graph (Minimal)
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partition = [1(2|3]|4}5(6]|7(8]|9)10]11[12]13|24]15)

a/3 -
{5,11,12) @ao,9, L 1 (13,11,
13,14) &)

{1/1) (3/3)
({in)) ((in))
7 B8

- L
{9,10) ‘ ‘ (9.15)\
(3/1,2/2,8/1) / 22,2/1) N fiarz, 32y N33 CLi1/3,243) fr2/4,447 (8/2,4/2)

14
Gl

q/3 q/3

{14,15,12)

—

{{in,in,in}, {{in, in} {{in,in) {{in, in) { {(in, out}
i U d g ] g g g ' {(in,out), {{in,out),
L, E, + i N
thn.gg.o;Ll; ] {out,out)} {out,out)) {out,out)} (out,in})} {oat, in)} {out, in)}

Figure 16: Quicksort Program Clause 2 Graph (Unifications Reduced)

3 Non-moded Programs

In the previous chapter, we demonstrated how to derive modes with our algorithm. For
fully-moded programs, our mode analyzer will derive the correct mode paths of the program.
This chapter is devoted to non-moded programs., We will argue that if a program is non-
moded, our system will detect at least one mode path that has a mode conflict. First, we
show the mechanism through which mode consistency checking detects the mode conilict
in the program. Then, we show a simple non-moded program in which our analyzer detects
the mode conflict without mode consistency checking (mentioned in the previous chapter).
Finally, we show another non-moded program for which our mode analyzer detects the
mode conflict with mode consistency checking.



partition = ([1,3|2]4|5,13)6,12|7|8|9]10|11|14]|15]

/3 s/4 /3
(s,11,6) | (10,9,5,14) 3 | (14.15,6)

{1/1,2/3)
{1/3,473)
5
T1,LL
{(in,out}} {{in,in))
7

(-]}

{2.10} (9.15)\
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Figure 17: Quicksort Program Clause 2 Graph (After Reducing Nodes 1 and 3)
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partition = {1,3,4,16|2,24,27,38,48,51|5,10,13,14,18,30,31,37,
43,44,55,56,61(6,11,12,15,20,21|7|8|9}19)

2
q/3

8/4
{5,6,6)

(5.9,5,5)
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{in,in,out,out,in}}
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(9.5}

{7/1,2/2,8/1)

X1, 4,Y4

{{in,in,in)}

Figure 18: Quicksort Program Clause 2 Graph (Minimal)



parcition = {1,3,4,16|2|5,13,14,18|6,11,12,15,20,21{7|8|9|10|19)

1 2

q/3 s/4

(S.6.6) (10,9.5,5)

{1/2,1/2,8/2)

(9,10}

{{in,in,in},
{out,out, in), {out, out}}
{out,in,out)}

{{in,in),

Figure 19: Quicksort Global Unification of Clause 1 & 2 Graph

3.1 Mode Consistency Checking in General

As mentioned in Chapter 2, the mode analyzer generates the complete and correct mode
paths of a moded program. However, there are degenerate programs that give incorrect
modes under the algorithm. These programs are a small subset of all non-moded programs.
The problem occurs in programs that contain shared variables, according to mode rule §4
(refer to Figure 2). The algorithm might lose the constraint of the rule in some unification
scenarios. To ensure that mode rule §4 is still enforced for the process of graph reduction,
we introduce a mechanism that checks for the consistency of the rule.

Mode rule §4 is applied to shared variables. The problem occurs especiaily in a recursive
program that has a shared variable as an argument in both the head and body. The purpose
of the mode consistency check mechanism is to check that if the shared variable has in
mode in all possible scenarios, then all the paths from the variable must have in mode also;
otherwise a mode conflict occurs. That is, if the shared variable is constrained to be a
consumer in all possible scenarios, all variables within the term bound to the variable must
also be consumers. Examples in the following sections will help clarify this explanation.
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partition = {41]42]|43]44)

38
(41,42,43,44}) 5
(38/1) (38/2) (38/3) (38/4)
41 44
D O © G
{{in}) {tin)} {{out)) {(out))

45

Figure 20: Quicksort Program Clause 3 Graph (Minimal)

3.2 Simple Non-moded Program

Consider a non-moded program,

p(A,B) :- A
p(A,B) :- B

5§ : B
5 : B

A | true.
A | true.

We can see that the program is non-moded since the path m({{p/1,1)}) from the first
clause has mode in, whereas the same path from the second clause has mode out. Moreover,
the path m({(p/1,2)}) from the first clause has mode out, whereas the same path from the
second clause has mode in.

Using our mode analyzer, Figures 31(a) and 31(b) show the initial program graphs
for the first and the second clauses of the program, respectively. After we do unification
reduction, the graphs are shown in Figure 32. Notice that the graphs are in minimal form.
We now do global reduction of these two graphs, and the final graph is shown in Figure
33. In unifying the root functor p/2 of the first and the second clauses, we can see that
the result of multiplying the mode vector matrices of variable node 4 and variable node
11 is empty. This means that a mode conflict appears in the graph. Intuitively, the mode
conflict happens because the first argument of functor p/2 in the first clause must be input
but it is output in the second clause. A mode conflict also happens for the same reason for
the second argument of p/2. From the final graph, we can indicate that the mode conflict
happened at the paths m({{(p/1,1)}) and m({{p/1,2})}). Thus, mode analysis without mode
consistency checking can detect a mode conflict for this non-moded program. This is not
always possible, however, as illustrated in the next section.
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partition = {28]29]30]31]32(35]36(37)

24 25 26 27
{31,32) 136,29,30,37)
{28,29,30,31) 8 (36,29} < = s
{24/4
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25/2, 2 [24/3, 11
28 27/2) ? 30 27/3) 32
T ¥3 L3 G3 D
{{in})) {{in,in, iin} {iin, in}, {{out,out}} ({in}}
{out,out}]}
33 34
[-]-] (.|
(35,36) (35,37
(3371,25/1, {33/2,27/1)
34/1) 15 16
(34/2,27/74)
X3 Xa3
{(in,out),
{{in,in,in}} {(in,in}} fout. in) }

Figure 21: Quicksort Program Clause 4 (Initial Graph)



partition = (28]29|30(31|35|36|37)

24 27

-1 8
(28,29,30,31) {36,29,30,37)

kit (24/2,27/2) {2474
29 30 31
(24/3,27/3)
¥3 L3 G3
{(in}} {{in,in)} {{in,in), {{out}}
{out,out})
33 34

-} =)

\(35'36, /5,37,
{(33/1,34/1) //////”-—
(33/2,27/1) (34/2,27/4)

{{in.in)} {{in,in)} {{in,out},
{out,in)}

Figure 22: Quicksort Program Clause 4 Graph (All Unification Functors Reduced)
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partition = (28,36(29]30)31,37|35}

24
(28,29,30,31)
1
(24/4,34/2)
(24/1,33/2)
(24/2) (24/3)
28 31
3, %8 3. Ws
{{in,in}) {(in}] {{in}, {out}) {{out,in)}
33 34
—|-1 (-]
{35,28)
(35,31)
(33/1,34/1)
{{in.in))

Figure 23: Quicksort Program Clause 4 Graph (Minimal)
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Figure 24: Quicksort Program Clause 5 Initial Graph
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partition = {53|54)55|56|59)60]61)
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Figure 25: Quicksort Program Clause 5 Graph (All Unification Functors Reduced)
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Figure 26: Quicksort Program Clause 5 Graph (Minimal)



partition = {28,36,53,60]29,54]30.55,6231,37,56|35,59)
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Figure 27: Quicksort Program Global Unification of Clauses 4 & 5
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partition = {28,36,41,53,60]2%,54,42(|30,43,55,61(31,37,44,56]35,45,59}
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Figure 28: Quicksort Program Global Unification of Clauses 3, 4, and 5



partition = {5,13,14,18|6,12,11,15,20,21{9]10)

(5,6,6) (5,9,5,5})

(1/241/3,8/2)
{(out}in,out))

(1/1,2/3,2/4,2/1,7/2) e
{{in,out,out,in, in}} .

(9.5}

[ DY {] [
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Figure 29: Quicksort Program Final Graph

m({{gsort/3,1}{(./2,1)}) =in | m({{split/4,1){./2,1}})=in
m({{gsort/3,1}{./2,2)}}=in | m({{split/4,1){./2,2}})=in
m({{gsort/3,1)}) = in m({(split/4,1)}) = in
m({(gsort/3,2)(./2,1)}) = out | m({(split/4,2)}) = in
m({{gsort/3,2){./2,2)}) = out | m({(split/4,3)(./2,1)}) = out
m({{gsort/3,2)}) = out m({(split/4,3)(./2,2)}) = out
m({{gsort/3,3)(/2, 1)}y = in | m({{split/4,3)}) = out
m({{gsort/3,3)( /2,2)})= in | m({(split/4,4){./2,1)}) = out
m({{gsort/3,3)}) = in m({(split/4,4)( /2,2)}) = out
m({{split/4,4)}) = out

Figure 30: Quicksort Program Broken Path Modes
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partitien = (1|2|3[4]5]|6|7}
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p{(A,B} :-A =5 : B =3 | true.

(a)
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14
5
p(A,B) :-B=5: B =2 | true.
(b)

Figure 31: Initial Graphs of Simple Non-moded Program
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partition = {1(4,5,6|7} partition = (8]11,12,13]14)
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7 14
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Figure 32: Graphs of Simple Non-moded Program (Unification Reduced)
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partition = {1]4,5,6,11,12,13|7,14)

{4.4)

(1/1,1/2)
4

A,B

(} ==—— empty mode vector matrix

Figure 33: Graph of Simple Non-moded Program (Final)
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3.3 Non-moded Program without Mode Consistency Checking

Consider the non-moded program [9]:

f(_,2) :- true : trus | h{(Z). (a)
£F(X,Y) :- ¥ = b(X) : true | £(X,.). (b)
h(b(s(W))) :- true : W= a | true. (e)

The program is non-moded, since if the program were moded, variable X within the b(X)
term in the ask guard of procedure £/2 could not produce output for the program. If that
variable occurrence did produce output, it would be sent out through the head occurrence
and into the self-recursive call occurrence: a contradiction.

Now, we consider the program graphs without the mode consistency checking feature
added. The initial graphs are shown in Figure 34 and 35. After we finish local reduction,
the graphs are changed as shown in Figure 36 and 37. Finally, we do global reduction and
the final graph is shown in Figure 38. From the final graph, we can see that no mode
confiict has been detected, since there is no variable node in the graph having an empty
mode vector matrix, and we can derive a mode for each mode path of the program.

3.4 Non-moded Program with Mode Consistency Checking

We now add the feature of mode consistency checking. The initial graphs of the program
are changed from the previous section since we divide variable nodes into three categories:
normal, shared, and multiway. The initial graphs are shown in Figure 39 and Figure 40.
We follow the unification rules given in the previous chapter (Table 1) for doing local
reduction. The first and the third clauses are reduced normally since there is no shared
or multiway variable node in the graphs. However, the second clause reduction needs the
mode consistency check because we have one multiway variable node. Although we need
mode consistency checking for the second clause reduction, no new actions occur. This is
because the multiway variable node has no child. Notice that when reducing the second
clause graph, the multiway node must be changed to a shared node after reducing the node
with itself. The minimal graphs for each clause of the program are shown in Figure 41 and
Figure 42,

Finally, we follow the same reduction rules for doing global reduction. In reducing the
first and the second clauses {(graph (a) and (b)), standard reduction is performed (shown in
Figure 43), because the shared node has no child. However, when we reduce the minimal
graph of the third clause (graph (c)), we have to account for the mode consistency check.
This is because the node 8 has in mode in all scenarios, and all its offspring must have the in
mode. Thus, with the mode consistency check, the variable node 19 (W) has an empty mode
vector matrix, and a mode conflict is detected. The final minimal graph of the program is
shown in Figure 44.

Let’s consider the simple non-moded program that we introduced at the beginning of
this chapter. We see that none of the variable nodes in the initial graphs has type shared or
multiway. Thus, mode consistency checking will never be used in analyzing the program.
Therefore, the mode paths derived from the program will not change, and the mode conflict
is still detected.
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partition = (1]2(3|4)

1 2
13,4) (4
£ h
1) (1/2,2/1)
{tin), {iin,in},
{out)} {out,out)}

£(_,2) :- true : true | h(Z),

{a)

partition = (5[6|7[8[9[10[11]12)

15/1,12/1,7/1) 17723
in},
{tin. in.in)) {tin, in)} Uinl) e

(8)

E(X,Y) :=- ¥ = b(X} : true | £(X,_).

(b}

Figure 34: Non-moded Program Initial Graphs Part I
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partition = (13|14}15|16]17|18]|19|20(|21}

13 14
(15) (1%,20)
h =
{23/1) (14/2)
15 20
D2 D4
{lin}} {iin}}
16 21
kb
{17}
(16/1)
17
jox]
{1in)}
1B
B
(19}
(18/1,14/1)

{tin,in},
{out, out})

h{b{s{W))) :- true : W = a | true,

(c}

Figure 35: Non-moded Program Initial Graphs Part II
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(1/1) (1/2,2/1} {5/1,12/1) {572}
{{in}, {{in,in), {(in,in,in}) ((in})
fout}) {out, out}}
12
£{_.,Z) :- true : true | h{Z).
b
{a} (8}
(b)

Figure 36: Minimal Non-moded Program Graphs Part I (Flawed Analysis)



partition = (13]|14]|15]16]17{18|19,20]21}

13

{15)

{13/1}
15
D2
{tin)}

17)

{16/1)
17
b3

{{in)}

18

(13}

[18/1})

9,

{{out}]

21

(c)

Figure 37: Minimal Non-moded Prcgram Graphs Part II (Flawed Analysis)

44



partition = {1,5,7(2,13(3,8,17|12}18]19,20|21}

1 2
3,4
£ h
{4)
(3/3.,12/1) {1/2,2/1)
{{in,in}} {{in,in)}

12
b
3
{19} 3
18/1)
19
L
[lout)}
21

Figure 38: Final Non-moded Program Graph (Flawed Analysis)
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partition = {1[2]3]4})

1 2
(3,4) 1)
£ b
11/1) {1/2.2/1)
{{in), {{in, tn).
{out) ) fout, out})
£{_,Z) :- true : true | h(Z).

(a)

partition = {5|6]7]|8]9]10]11]12])

g,

(5/1,12/1,7/1})

&/

{{in,in,in)}

X,y

19,10)

) = ¥

15.'2.6/1!

{{in,in}*

O Normal Node
O Multiway Node

O Shared Noda

{6/2}

{{in}}

(B}

= b(X) :

(b)

18,11)

17/2)

{{in},
{out)}

true | £(X,_).

Figure 39: Non-moded Program Initial Graphs (Nodes marked) Part I
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partition = [13]14[15|16]17|18]15|20|21}

13 14
{15} 119,20}
h a
15 20
D2 bd
({in}} {tin)}
17} O Normal Node
16 21
b a O Hultiway Node
(::) Shared Node
{1671}
17
D3
({in}}

18

118/1,14/1)

{{in,in),
{ouk,out) }

hi{b{s(W))) :- true : W = a | true,

(c)

Figure 40: Non-moded Program Initial Graphs (Nodes marked) Part II
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partition = {5,7|8]9,10,11]|22}
partition = {1]|2]|3}4)

1 2 5
£ h £
{3,4) (4} (8,9}
{1/1) (1/2,2/1) 5/1,12/1) (572}
{tin}, {{in, in}, {{in}}
fout’) {out , out?) {{in,in,in}}

£{_,2) :- true : true | h{(2).

{a) (b)

O Shared Node

Figure 41: Minimal Non-moded Program Graphs (Nodes marked) Part I
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partition = {13|14]|15]16|17|18[19,20|21)

13
h

(15)

{13/1)

{{in})
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{{in}) O Hormal Node
O Multiway Node
18
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(D
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Figure 42: Minimal Non-moded Program Graphs (Nodes marked) Part II
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partition = {1,5,7]|2]2,8|4,%,10,11]12}

1 2
£ h
(.4 4)
{171} (172.2/1)
{{in},
{out)}
12
b

O Normal Node
O Multiway Node

O Shared Node

Figure 43: Global Unification of Non-moded Program Clause 1 & 2 (Nodes marked)
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partitien = {1,5,7]2,13|3,8,17{12|18]19,20|21}

{3.4) (4)

(1/3.12/1) (1/2,2/1)

{{in, in)} {{in,in)}

12
(19}

18
{18/1)
W

i} O Normal Node

21

(3}

Figure 44: Final Non-moded Program Graph (Nodes marked)
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Figure 45 shows some sample programs for which the mode analyzer detects mode
conflicts. We believe the analyzer with mode consistency checking is correct, i.e., it will
always find a conflict if one exists and will never find one if none exist.

Non-meded Program I

-
)

s(X,Y) :-
s(X,Y) :-

=c | t(X), s(X,Y).
=b | u(X).

-
|

t(X) :=X=h{A) | A = c.
u{X) :- X = h(e) | true.

Non-moded Program II

s(X,Y) :-
s(X,Y) :-

-
I

=c | t{X), s(X,Y).
b | u(X).

~d
1]

t{X) :- X =h{A) | A = c.
u{X) :- true | X = h(c).

Non-moded Program III

8(X) :- true | u(X), s(X).
u(X) :- true | v(X), u(X).
v(X) :-X=a(Y) | Y = a.

Figure 45: Sample of Non-moded Programs

4 Analysis Cost and Performance Evaluation

In this chapter, we discuss the complexity of the analyzer by comparing our program graph
representation and reduction method with the one used in Ueda’s abstract mode system
[14]. We also examine the characteristics of two mode-analysis algorithms (static-graph and
active-graph reduction) by evaluating the timing of a benchmark suite on the implementa-
tion of each algorithm. An extended version of the performance evaluation (including other
mode analyzers) can be found in Tick [9].



4.1 Cost of Analysis

In this section, we show the mapping between our program graph representation and the
program graph used in Ueda’s abstract mode analysis [14). We use a producer-consumer
stack program [14] as the example program in this section. The Stack program is shown in
Figure 46.

drive(M,S) :-
s=01
true.
drive(M,S) :- M =\=0 :
S = [push(M),pop(N)S1] |
subtract(N,1,N1),
drive(N1,581).

M=:=0:

stack(s,D) :- s = :
true |
terminate(D).
stack(S,D) :- S = [push(X)|S1] :
true |
stack(S1,p(X,D)).
stack(S,D) :- S = [pop(X)ISi]l, D = p(Y,D1) :
true |
I=Y,
stack(5,D1).

terminate(D) :- true :
true |
true.

Figure 46: A Producer and Consumer Stack Program (From Ueda)

Ueda’s mode analysis produces a minimal graph for the drive procedure as in Figure
47. The minimal graph of the procedure produced by our analyzer is shown in Figure 48.
These two graphs represent the same minimal graph. The differences between these two
graphs are syntactical. We can define a one-to-one mapping between each notation used in
these two graphs. A structure node in our graph is denoted by a branch in Ueda’s graph.
That is, our node 1 is denoted by a branch at the top of Ueda’s graph. Qur variable node
is denoted by a circle node in Ueda’s grapt. Ueda has a notion of input ground term. We
explicitly represent the term by a subgraph where in each node of the subgraph has in
mode. The list construction structure node ([_1.]) is represented by “-” in Ueda’s graph.
Notice that Ueda’s has no explicit notion of a mode vector matrix. He uses a circle node
with a plus sign inside to represent input for all entry-ports and uses an inversion node
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d : drive

o : pop

u : push

1 list constructor
1 mode inversion

@ :+ dinput
G]:_qround level

Figure 47: Ueda’s Final Graph of drive Procedure (From Ueda)

to cast an output mode. In our final graph, we represent the same path modes but they
are presented in the form of a mode vector matrix that has one vector in the matrix. The
mode inversion is denoted implicitly in our graph. Effectively, mode inversion is done when
we derive all modes of the paths using the mode polarity rule when we output the modes
(explained in Chapter 2.) Actually these two graphs are isomorphic. Moreover, the modes
of paths derived from these two graphs are identical, as shown in Figure 49.

The time complexity derived by Ueda for his algorithm is O(!- a(l)) ,where [ is the size
of the graphs to be unified, and « is the inverse of the Ackermann function [14, 3]. Since
our program graph is isomorphic to Ueda’s program graph, and we both use an abstract
unification algorithm to unify (reduce) subgraphs, we claim that our mode analyzer has
the same time complexity as Ueda’s algorithm. However as mentioned earlier Ueda has no
explicit notion of mode vector matrix. We use these mode vector matrices, however, as the
key in finding modes of paths, and the cross-product operation of mode vector matrices is
the major complexity of our algorithm, which is O(n®). This fact might destroy our claim
about the time complexity above. However, the result of our experiment shows that in
unifying graphs, the mode vector matrix usually contains only one or two mode vectors.
Thus, the cross-product of two mode vector matrices has constant time complexity, and our
claim still holds. However, for some particular programs and order of subgraph unification,
the mode vector matrix size might get larger during the subgraphs unification process, and
our claim will not be true. A solution to this problem is the mechanism of local and global
unification that we introduced in chapter 2. The mechanism guarantees that after local
unification, the mode vector matrix will be small in terms of the number of vectors in the
matirx. Also, when we do global unification, the size of the mode vector matrix will never
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Figure 48: Final Graph of drive Procedure
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m({{drivef2,1)})=in
m({{drive/2,2){./2,1}{push/1,1)}) = out
m({{drive/2,2){./2,1)}) = out
m({(drive/2,2){./21){pop/1, 1)}) = in
m({{drive/2,2){(./2,1)}) = out
m({{drive/2,2){./2,2)}) = out
m({{drive/2,2) = out

Figure 49: Path Modes of the Stack Program

get larger in term of the vector in the matrix. Thus, our claim still holds and our mode
analyzer has the same time complexity as Ueda’s algorithm.

4.2 Performance Evaluation

In this section, we examine the performance characteristics of two mode analyzers, imple-
menting the same mode analysis algorithm. The static mode analyzer uses a static data
structure for graph representation, and the reductions are done explicitly by manipulating
the data structure. The active mode analyzer uses a process network to represent the graph.
Each node is represented by a concurrent process. The edges are represented by streams
upon which messages pass between processes. We will discuss the differences between these
two implementation techniques in terms of execution time and memory usage. The bench-
mark suite is a collection of KL1 programs. KL1 [15] is a language in the FGHC family.
The programs vary from simple, common programs to complex programs. A description of
the benchmark suite is shown in Table 2. The benchmark suite characteristics are shown
in Table 3.

The complexity of the algorithms is proportional to the number of symbols and variable
instances in the source program, as shown in Table 3. In calculating the number of paths,
and since paths can be cyclic, we break the cycle (as described in chapter II), e.g., the car
and cdr will be counted, but not the cadr and cddr. The number of paths and average path
length generated by the two analyzers are the same, since their output is identical. All the
programs in the suite are fully moded except for waves which has a mode conflict. Both
mode analyzers detect this conflict.

4.3 Execution Measurements

Both mode analyzers were implemented in the KL1 language. The systems run on the PDSS
(V2.52.19) compiler-based system. PDSS is a nonoptimizing compiler-based emulator for
KL1. The machine that we used for timing the execution is a Sun Sparcstation 10/30. The
size of both mode analyzers is shown in Table 4.

Table 5 shows the breakdown, by phase, of the execution times (msec) using the bench-
mark programs for the static-graph and active-graph reduction mode analyzers. For the
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Benchmark

Description

stack

a producer-consumer stack program [14].

gsort an implementation of the Quicksort algorithm.
primes a prime number finding program [8].
msort a merge sorting program.
queens the implementation of N-Queens problem [8].
cubes Instant Insanity (candidates/noncandidates) program (8].
pascal the Pascal’s triangle program [8].
mandel a program that computes the Mandelbrot function.
Originally, the program was written in Strand, [2]
and it was translated into KL1 by E. Tick.
rucs a rule check system. It was written in KL1 by R. Ezaki
from the original Prolog by Y. Koseko.
bestpath the implementation of Dijkstra’s single-source
best-path algorithm with a heap data structure [8].
waltz Waltz’s constraint satisfaction algorithm [8].
waves builds a multidimensional torus, using an interactive
technique [8) (originally, written in Strand by I. Foster).
triangle peg board game [8].
Table 2: The Benchmark Suite Description
symbols broken paths
program | proc | clause | const | vars | total | totals | avg lengthi
stack 4 7 31 35 66 214 1.8
gsort 2 b 31 40 71 19 1.6
primes 6 12 49 63| 112 33 1.5
msort 4 1 54 75| 129 36 1.7
queens 6 14 771 119 196 71 1.8
cubes 9 16 93| 159 252 224 2.7
pascal 11| 22 143 | 200( 343 338 2.0
mandel 18 26 170 334 504| 408 24
rucs 16 66 218 | 390!( 608 79 1.6
bestpath 20 44 279 492 TN 507 2.5
waltz 20 B4 333| 630 963| 329 2.2
waves 20| 45 352 | 690| 1042 | 623 3.0
triangle 42| 80 315] 1226 | 1541 | 1155 2.0

{ average path length for graph analyzers.

Table 3: Benchmark Suite Characteristics
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static|active
graph|graph
parser 787 484
reducer| 1,558 752
misc. 442 207
total 2,787 1,533

Table 4: KL1 Source Lines of Each Analyzer

static-graph reduction mode analyzer, each phase corresponds to the phases defined in ear-
lier chapters. For the active-graph reduction mode analyzer, the first phase is used to parse
the source program, and the whole process of graph reduction is done in the second phase.
Notice that the two analyzers have the same number of calls to the unify function, as shown
in the “unify” column. That is the analyzers implement essentially the same algorithm.
The differences in data structure representation and programming style make the number
of reductions differ between the two analyzers. We can see that the number of reductions
of the static-graph reduction mode analyzer is about one to four times greater than the
number of reductions of the active-graph reduction mode analyzer.

Table 6 shows a comparison of both mode analyzers’ execution times. The garbage
collection time is included in the execution time of both mode analyzers. From Table 6, we
can see that the static-graph analyzer has greater analyzing time and memory consumption
than the active-graph analyzer. One of the reasons is the difference in data structures used.
Consider for some large benchmarks such as rucs, bestpath, waltz, waves, and triangle, the
static-graph analyzer has an execution time of one to four times higher than both PDSS and
the active-graph analyzer. We believe that the static-graph analyzer, which was our first
prototype, has a memory leak problem. The memory leak problem causes the execution of
the analyzer to slow down dramatically because of frequent garbage collection.

5 Conclusions and Future Work

Mode information is useful information which can lead to a number of optimization tech-
niques in the compilation of concurrent logic programs. In this thesis, we implemented a
static mode analyzer which can be a part of the front-end of an optimizing compiler. The
implementation can derive correct and complete mode information from source programs.
However, the use of the analyzer for analyzing large programs is still impractical. There
are a number of ways that we can make changes in order to improve the performance of the
analyzer, such as:

¢ Redesigning the data structures used. The data structures used in the analyzer are an
important factor that dominates the performance of the analyzer. If we redesign the
data structures in such a way that we can keep the graph in compact memory and can
access information in the graph quickly and require less copying, the memory usage
and the garbage collection required will be reduced. This will dramatically improve
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Static Graph

execution time {msec) red red/
benchmark phase I| phase II phase ITI| total|x1000 |unify |unify
stack 150 (51.7%)| 10 ( 3.4%)| 130 (44.8%)| 290 13 24| 541
gsort 200 (52.6%){ 30 ( 7.9%)| 150 (39.5%)| 380| 18] 28| 615
primes 250 (41.0%)| 50 ( 8.2%)| 310 (50.8%)| 610| 28] 43| 651
msort 300 (39.5%)| 50 ( 6.6%)| 410(53.9%)| 760 33| 60| 550
queens 550 (45.6%)( 10 ( 0.8%)| 650 (53.7%)| 1,210 54 75 720
cubes 620 (35.8%)| 30 ( 1.7%)| 1,080 (62.4%)| 1,730| 82| 138| 504
pascal 890 (36.9%) (210 ( 8.7%)| 1,310 (54.4%)| 2,410 110 124| 887
mandel 1,480 (39.8%)(240 ( 6.5%)| 2,000 (53.8%)| 3,270 171 222 770
rucs 1,290 (20.3%) 270 ( 4.2%)| 4,810 (75.5%)| 6,370] 302| 319] o946
bestpath 2,080 (18.5%)|180 ( 1.6%)| 8,960 (79.9%)(11,220] 526 431| 1220
waltz 2,290 (19.5%) 180 ( 1.6%)| 9,260 (78.9%)|11,730| 573| 404| 1418
waves 3,540 (21.7%) |510 ( 3.1%) 12,270 (75.2%) |16,320 699| 559| 1250
triangle 6,190 (12.0%)| 60 ( 0.1%)|45,190 (87.8%) [51,440| 1488| 1163 1279
arith mean (28.9%) { 3.5%) (67.5%) B84
Active Graph

execution time (msec) red red/

benchmark phase I phase II | total | x1000 | unify |unify

stack 180 (78.3%) 50 (21.7%) | 230 7 24| 292

gsort 180 (78.3%)| 50 (21.7%)| 230 8 26| 308

primes 270 (73.0%)| 100 (27.0%)| 370 12 431 279

msort 320 (65.3%)| 170 (34.7%)| 490 19 60| 317

queens 430 (69.4%)| 190 (30.6%)| 620 21 75| 280

cubes 760 (69.4%)| 330 (30.6%)|1,080 407 138 289

pascal 740 (68.5%)| 340 (31.5%)|1,080 36) 124 290

mandel 1,240 (70.9%)| 510 (29.1%)|1,750 62} 222| 279

rucs 1,670 (71.1%)| 680 (28.9%)| 2,350 T74) 319 232

bestpath 2,070 (57.0%) (1,560 (43.0%) | 3,630 142f 431 329

waltz 2,830 (49.6%) | 2,870 (50.4%) [ 5,700 241y 404 597

waves 2,910 (62.0%) | 1,780 (38.0%)|4,690] 182] 559| 326

triangle 4,900 (50.7%) | 4,760 (49.3%)(9,660] 370] 1163| 318

arith mean (63.4%) (36.6%) 326

Table 5: Performance of Static and Active Graph Reduction Mode Analyzers (KL1 on Sun

Sparcstation 10/30)

59



PDSS static active static active
benchmark | compile graph graph graph graph
exection time {msec) normalized by PDSS
stack 470 290 230 0.62 0.49
gsort 410 380 230 0.93 0.56
primes 780 610 370 0.78 0.47
msort 760 760 490 1.00 0.64
queens 1,140 1,210 620 1.06 0.54
cubes 1,570 1,730 1,080 1.10 0.69
pascal 1,660 2,410 1,080 1.45 0.65
mandel 3,340 3,720 1,750 1.11 0.52
rucs 3,010 6,370 2,350 2.12 0.78
bestpath 6,160 11,220 3,630 1.82 0.59
waltz 4,510 11,730 5,700 2.60 1.26
waves 7,960 16,320 4,690 2.05 0.61
triangle 11,720 51,440 9,660 4.39 0.82
static active static active
PDSS graph graph graph graph

memory consumption (kbytes) | normalized by PDSS |
stack 108 264 132 2.44 1.22
gsort 111 373 138 3.36 1.24
primes 164 616 204 3.76 1.24
msort 158 795 281 5.03 0.35
queens 244 1,444 340 5.92 0.24
cubes 320 2,070 571 6.47 0.28
pascal 343 3,272 574 9.54 1.67
mandel 616 6,561 880 10.65 1.43
rucs 699 8,224 1,343 11.77 1.92
bestpath 922 17,298 1,779 18.76 1.93
waltz 803 17,696 2,278 22.04 2.84
waves 1,204 28,371 2,318 23.56 1.93
triangle 1,865 51,656 4,437 27.70 2.38
analyzers 273 65 50 0.24 0.18

Table 6: Performance of Mode Analyzers (KL1 on Sun Sparcstation 10/30)
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the execution time of the analyzer.

Adding incremental mode analyzing. Currently the analyzer requires a large memory
space to analyze a large program. This is a major cause of the long execution times
of the analyzer. One way we can solve this is to divide the source program into
a number of smaller programs and analyze each piece separately. Eventually, we
add all the information that we get from analyzing each piece and get the complete
information of the whole program.

Adding heuristics in graph reduction. As we described in the Chapter 2, the mode
analyzer will terminate whenever the graph is reduced into its minimal graph. Reduc-
ing the graph is done locally in program clause subgraphs, and then globally across
program clause subgraphs. Actually, in analyzing a program, we might get all the
mode information that we need (that is, every mode vector matrix now contains only
one element, i.e., one vector) before the graphs are reduced into the mininal graph.
Furthermore, the order of reduction is a factor that may cause this situation to hap-
pen earlier. One idea is to investigate and to invent a heuristic that we can use to
schedule the order of reduction in aralyzing a program. Also, we can implement a
mechanism that we can use to stop the reduction as soon as we have the information
we need in the graph. However, this approach might not be safe because we might
stop reducing program graphs before a mode conflict can be detected.

Reusing of complex ground term subgraphs. As mentioned in Chapter 4, the large
amount of memory used is one of the reasons why the static-graph analyzer has
greater execution time than the active-graph analyzer. We can reduce the amount of
memory used by the static-graph analyzer by reusing (sharing) subgraphs. A graph
of the input ground term can shared because the mode of the term is fixed and will
never be changed.

61



References

[1] Z. M. Ariola, B. C. Massey, M. Sami, and E. Tick. Compilation of Concurrent Declar-
ative Languages. Technical Report CIS-TR-94-05, Dept. of Computer Science, Univer-
sity of Oregon, Eugene, OR 97403, March 1994.

[2] L Foster and S. Taylor. Strand: New Concepts in Parcllel Programming. Prentice Hall,
Englewood Cliffs, NJ, 1989.

[3] J. Jaffar. Efficient Unification Over Infinite Terms. New Generation Computing,
2(3):207-219, 1984.

[4] B. C. Massey. Sequentialization of Parallel Logic Programs with Mode Analysis. Mas-

ter’s thesis, University of Oregon, September 1992. Also available as Technical report
CIS-TR-92-18.

{5] B. C. Massey and E. Tick. Demand-Driven Execution of Concurrent Logic Programs.
In International Conference on Parallel Architectures and Compilation Techniques,
Montreal, August 1994. North-Holland.

[6] B. C. Massey and E. Tick. Modes of Comprehension: Mode Analysis of Arrays and
Array Comprehensions. In International Logic Programming Symposium. Cornell Uni-
versity, MIT Press, November 1994. Submitted.

[7] E. Y. Shapiro. The Family of Concurrent Logic Programming Languages. ACM Com-
puting Surveys, 21(3):413-510, 1989.

[8] E. Tick. Parallel Logic Programming. MIT Press, Cambridge MA., 1991.

[9] E. Tick. Practical Static Mode Analyses of Concurrent Logic Languages. In Inter-

national Conference on Parallel Architectures and Compilation Techniques, Montreal,
August 1994. North-Holland.

(10] E. Tick and M. Koshimura. Static Mode Analyses of Concurrent Logic Languages.
Journal of Programming Language Design and Implementation, March 1994. Submit-
ted. Also available as University of Oregon Technical Report CIS-TR-94-06.

[11] E. Tick, B. C. Massey, F. Rakoczi, and P. Tulayathun. Concurrent Logic Programs
a la Mode. In E. Tick and G. Succi, editors, Implementations of Logic Programming
Systems. Kluwer Academic Publishers, 1994.

[12] K. Ueda. Guarded Horn Clauses. In E. Y. Shapiro, editor, Concurrent Prolog: Collected
Papers, volume 1, pages 140-156. MIT Press, Cambridge MA., 1987.

[13]) K. Ueda and M. Morita. Message-Oriented Parallel Implementation of Moded Flat
GHC. In International Conference on Fifth Generation Computer Systems, pages 799—
808, Tokyo, June 1992. ICOT.

62



[14] K. Ueda and M. Morita. Moded Flat GHC and Its Message-Oriented Implementation
Technique. New Generation Computing, May 1994.

[15] K. Wade, M. Kohata, and D. Dure. PDSS Manual (Version 2.5%). 1COT, 1-4-28
Mita, Minato-ku Tokyo 108, Japan, December 1989.

63



