Evaluating Bayes Nets with
Concurrent Process Networks

Evan Tick

Dept. of Computer Science, University of Oregon

Bruce D’Ambrosio
Dept. of Computer Science, Oregon State University

CIS-TR-94-15b
September 1994

Abstract

Bayes networks are directed acyclic graphs where nodes represent events and edges represent
probablistic dependencies among events. Associated with each node are conditional probabilities
of the associated event triggering if its ancestor nodes trigger. The total probability mass of
a leaf node triggering can be computed from simple probability theory, albeit the number of
minterms in the formula is exponential in the number of ancestor nodes of that leaf. It is a
well-known result that for a large class of networks, a number of minterms only linear in the
number of ancestor nodes coniributes about 67% of the total probability mass. The problem
of Bayes net search is to generate only these high-mass minterms. We introduce a concurrent
algorithm for attempting this, based on converting the net into a concurrent process network.
Each parent node sends messages containing partial minterms to child nodes. The novel idea
is Lo prioritize these messages to give higher weight to partial terms that are likely candidates
for inclusion in the final high-mass minterms. We have implemented this algorithm in KL1 and
discuss its attributes.

This is an extended version of a paper published in the International Parallel Processing
Symposium, Santa Barbara, April 1995.
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“As for a future life, every man must judge for himself between conflicting vague probabilities.”
Charles Darwin
From Life and Letters of Charles Darwin, 1887

1 Introduction

Bayes networks are directed acyclic graphs where nodes represent events and edges represent prob-
ablistic dependencies among events [9]. Associated with each node are conditional probabilities
of this event triggering given ancestor nodes trigger.! The total chance of a leaf node triggering
can be computed from simple probability theory, albeit the number of minterms in the formula is
exponential in the number of ancestor nodes.

To illustrate, Figure 1 shows a simple four-node Bayes net. Node A is the only root, and node
D is the sole leaf in this diagram. The diagram states that the probability distribution for node D
is conditional on both nodes B and ', and that each of these nodes in turn is conditional on node
A. Significantly, the diagram encodes the statement that the distribution for node D is independent
of the value taken by A once we know the values of both B and C. This can be formulated as:

P(D)= S P(D|BC)P(B| A)P(C|A)P(A)
ABC

This formulation can be expanded by expliciting enumerating the truth values of the events
represented by nodes {A, B, C, D}. The expanded form is:

P(d) = P(d|bc)P(c|a)P(b]|a)P(a) + P(d | be)P(c | a)P(b | a)P(a) +
P(d | b&)P(E| a)P(b | a)P(a) + P(d | be)P(¢ | a) P(b | &) P(a) +
P(d | b2)P(g| a)P(b| &) P(&) + P(d | be)P(E | a)P(b | @) P(a) +
P(d | be)P(c | a)P(b | a)P(a) + P(d | be)P(c | a)P(k | a)P(a)

There are 2% = 8 minterms in this equation, i.e., il is exponential in the three ancestors of the exit
port. There is an analogous equation for P(d) with eight minterms.

It is a known result [1] that for a large class of biased Bayes nets [4], 67% of total probability
mass of a given node can be computed with a number of minterms linear in the number of its
ancestor nodes. Thus for the previous example, if the conditional probabilities showed the proper
bias, we know that only three minterms are needed to compute within 67% of the exact answer.

The problem is how to find these magic minterms without computing all! There have been
sequential algorithms proposed for doing this [1, 10], but to date no concurrent algorithms. The
hypothesized advantage of a concurrent algorithm is to exploit multiprocessor parallelism to gain
performance. The danger of a concurrent algorithm that exploits speculative parallelism is that a
large number of minterms is generated in any case. Thus we risk increasing complexity to gain
parallel execution.

This paper proposes a new concurrent algorithm to solve this problem. The basis of the algo-
rithm is to generate partial minterms, such as P(b | a)P(a) above, prioritized by their own values.
Generation proceeds in parallel within a process network constructed directly from the Bayes net.
The result is fast computation of heavier terms and delayed computation of lighter terms. The algo-
rithm is dynamically self-balancing, i.e., as partial minterms are combined, their priorities change,
affecting how they are scheduled within the remainder of the net.

The paper is organized as follows. Section 2 reviews the literature concerning sequential algo-
rithms for this problem. Section 3 describes the proposed concurrent algorithm and gives an example

¥To simplify the presentation we consider only two-valued nodes and single-exit port nets, in this paper.



Figure 1: Simple Bayes Network with Four Nodes: Downwards Flow

to illustrate its execution. Section 4 describes an implementation in the concurrent logic program-
ming language KL1. The performance of the algorithm is discussed in Section 5. Conclusions and
future work are summarized in Section 6.

2 Literature Review

We have sketched a process which is essentially heuristic search for the set of bindings across a
set of variables that maximizes the probabilily across those variables. D’Ambrosio [1] has described
a sequential top-down search procedure for the same task, which provides further efficiency by
marginalizing over variables not needed downstream. No attempt has been made to date, however,
at developing a parallel version of this algorithm. In another context, deKleer has referred to this as
the “Most Likely Composite Hypothesis” problem [3], and describes a sequential search algorithm
with termination criteria. The internal dependency tracking mechanisms we have sketched are
similar to those in an ATMS[2]. Henrion has described a search-based algorithm for diagnosis in
very large knowledge bases [5]. His algorithm considers partial minterms as representatives of the set
of possible extensions of those terms, and derives bounds on remaining mass. Pearl has discussed the
problem of “Distributed Revision of Composite Beliefs” (8], a procedure for identifying the largest
minterm. His method, however, does not readily extend to finding additional terms. Finally, Poole
has sketched methods for probabilistically guided search [10], and shown how use of the ATMS notion
of a conflict set can improve the efficiency of search for low prior probability terms in the presence of
unlikely evidence. Srinivas [12] treats a dual problem, that of obtaining the posterior probabilities of
assumptions in an ATMS. From another perspective, Horvitz ef al. have been developing bounded
conditioning as an approach to any time probabilistic inference [0].

3 Concurrent Algorithm

Figure 2 illustrates a more complex example that helps motivate the concurrent algorithm. The
probability mass at the exit port G is:

P(G)= Z P(G| DEF)P(F | BCYP(E | BC)P(D | A)P(C | A)P(B | A)P(A)
AB..F

Unlike the previous example, this net has reconverging edges, e.g., at nodes E, F and G. This
creates a problem in formulating a concurrent algorithm because we must be careful to join together
partial minterms that have the same {ruth value asstignment.

Initially, we convert the Bayes net into a process network, 1.e., a set of “object-oriented” proce-
dures that actively send and receive messages on their edges. Edges are unidirectional corresponding
to message streams. For example, nodes B and E communicate over a dedicated stream. This stream
is merged at E with a stream originating from node C.
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Figure 2: Bayes Neltwork with Seven Nodes: Downwards Flow

Conceptually a node contains the following static information: the set of probabilities conditional
on its parent nodes. For example, node E contains P(E | ABC) for all truth assignments of variables
{A, B,C, E}, i.e., 16 values. We formalize this as follows.

Definition: A partial irulh assignment is a subset of all variables in the net, each with
an indicated polarity (true or false). For example, a partial truth assignment for the net
in Figure 2 is {a,b,¢,8, f, 7} (]

Definition: A keyis a pair of bit vectors (B?*, B"*9). B’ = 1 indicates that variable i
is true (positive polarity). By = 1 indicates that variable i is false (negative polarity).
B; = 0 does not indicate anything about the truth assignment for variable i. For example,
the key (1110000,0000111) corresponds to the truth assignment {a, b, ¢, g, f, 7}. 0

Definition: The function conv takes a set of truth assignments and returns a key. The
function conv=! takes a key and returns a set of truth assignments. o

Definition:  The function cond(Tyode, Tanc), where Tyoq4. is a truth assignment for
a node and T,nc is a partial truth assignment of the ancestors of that node, returns
P(Tnode ITtmc)- B

The information in cond may be stored within each node, or combined in a global table. In
our implementation, we distribute the information among the nodes. Note that there is no dynamic
state required in a node. However, one might consider the maiching queue associated with each
node as holding the dynamic state of that node. We define the matching queue in Section 4.1.

3.1 Message Definition

A node sends and receives messages consisting of a tuple < Prob, Key, Priorily >. These are defined
as follows:



o Prob is a probability between zero and one. Messages sent to a selected child® of a parent node
are assigned Prob based on probabilities from a set of incoming messages. Messages sent to all
other children are assigned Prob = 1. This effectively creates a spanning tree, as is discussed
in Section 3.4.

e [eyis a partial truth assignment key as previously defined. The keys are used to match incom-
ing messages in the matching quene. When the keys of an incoming message and previously
enqueued message match, the two messages are combined. Two keys (P;, N1) and (Ps, Na)
match iff P, A Na = N1 A P, =0, i.e., the keys are consistent.

e Priority is a set of partial minterms whose product, suitably scaled, is a value in the priority
system of the underlying implementation. For example, in the I{L1 system (PDSS) we use in
our implementation [7], absolute priorities ranging from 0 to 4095 are acceptable. We save the
components of the priority rather than the priority value itself, in order to compose priorities.
This is discussed later in this section.

Upon receipt of a set of messages (with matching keys) from the matching queues, a node N
compresses the set into two output messages, corresponding to both polarities of N. Consider an
incoming message set from k parents:

{< Prob;, Key;, Priority; > |1<i<k}

Consider one of the output messages (say for negative polarity of N): < Prob’, Key', Prior— ity' >,
computed as follows:

o Key' is computed from the incoming keys and the appropriate assignment of N, e.g.,

k k
Key = (V P.-,VN,-)
i=1 i=1

Key' = conv(conv™}(Key)U{N})

* Prob’ is the product of the incoming probabilities and the local conditional probability corre-
sponding to the truth assignment (determined from the incoming keys}):

Q cond({N}, conv(Key))

k
Prob = QHProb,-
i=1

Again, Prob’ is sent only to one of the children and all others are given Prob’ = 1.

e Priority’ is computed from the set of matching incoming message priorities, The union of the
incoming priority sets is computed and the product of these elements and the local conditional
probability corresponding to the truth assignment is taken:

E
Priority’ = Q] |J Priority,
i=1
When sending a message, each child receives a copy with the same priority. This allows
us to separate dynamically load-balancing from correct computation of probability masses.
The reason we need to keep a priority set rather than a priority vaelue is to prevent “double
counting.”

2Thus we can compute the total mass at the exit node only. To collect mass at another node, we would need to
prune the network to make it the exit, reachable from all other nodes.



3.2 Example of Message Combination

To illustrate message receipt, consider node F' in the previous example. Suppose the messages it
receives from parent node B are:

< P(b| a),(1100000,0000000), { P(a), P(b | a)} >
< P(b | a),(1000000,0100000), { P(a), P(b | a)} >
< P(b| a), (0100000, 1000000}, { P(a), P(b | &)} >
< P(b | @), (0000000, 1100000), { P(@), P(} | &)} >

The keys have all possible assignments for A and B only. Consider messages from node C that are
similar:

P(c| a),(1010000,0000000), { P(a), P(c | a)} >
P(¢| a), (1000000,0010000), { P(a), P(Z | a)} >
P(c| @), (0010000, 1000000), { P(a), P(c | a)} >

< P(c | @), (0000000, 1010000), { P(a), P(c|a)} >

Let’s observe how two of these messages are combined, from B and C respectively:

< P(b | a), (1100000, 0000000), { P(a), P(b | &)} >
< P(c| e), (1010000, 0000000), { P(a), P(c| a)} >

The keys match and the messages are combined, producing two new messages emanating from node
F:

< P(f | abe)P(c | a)P(b | a), (1110010, 0000000), { P{a), P(b| a), P(c| a), P(f | abc)} >
< P(f | abe)P(c | a) P(b | a), (1110000, 0000010), { P(a), P(b ] a), P(c| a), P(f | abe)} >

A subtle point is that the message probability is not necessarily equal to the product of terms in its
priority set. In this example, the difference is P(a) which is a value incorporated in the probability
of the right child of node A, not here.

Consider attempting to combine the following two messages from nodes B and C respectively:

< P(b| &), (0100000, 1000000}, {P(&), P(b | a)} >
< P(c} a), (1010000, 0000000), { P(a), P(c | a)} >

They should not be combined because each assumes a truth assignment with opposite polarity for
A. The keys do not match (Pg A Np # 0), so combination is avoided.



3.3 Message Spawning and Priorities

The algorithm reduces the computation needed to produce a final probability mass estimate if
messages are delivered in a schedule related to their priorities. In languages such as KL1, procedure
invocations can be assigned priorities for scheduling. Although these priorities are not guaranteed,
in a multiprocessor implementation scheduling does follow priorities as best it can [13]. A key design
issue is how to convert a message priorily into a process priority.

One method for doing this conversion is to spawn a send procedure for any message to be sent
by a node. It is this send procedure iiself that is given the priority value for the message, i.e., the
product of the terms in the priority set. The send procedure copies the message to issue down
the streams to individual child processes. It ensures that one and only one child gets the actual
probability value and all others get a value of one. The scheduler sorts send goals by their priorities,
effectively suspending low mass messages. Thus speculative parallelism is throttled in proportion to
the progress of the computation.

In the steady state we expect a large number of send goals waiting for their prioritized turn
to be executed. It won’t matter where in the network these messages correspond — resulting in a
balanced execution wherever it is most profitable. This can be subverted if later nodes (closer to the
exit port) turn out to have such low conditional probabilities that previously assumed high-priority
computations turn out to unnecessary. This is the prevalent danger in any such distributed spec-
ulation scheme. It is unprofitable to derive analytic complexity measures for such nondeterminate
algorithms: we show empirical performance measurements of its performance in Section 4.

Mapping the partial probabilities onto priorities is more of an art than a science, We chose to
use a logarithmic mapping:

Priority = 4095 — min(4095, S - logyo( Prob))

where 4095 is the highest priority, S is a suitable scale factor, and 0 < Preb < 1. For example, il we
wish to break the priority range into five logarithmic decades, we choose § = —4096/5. A problem
arises when attempting to choose S to be effective when collecting low mass, such as 0.7, as well
as high mass, such as 0.98. Furthermore, within a given search, the optimal S changes as the mass
collects. Developing a more sophisticated, dynamic mapping function is a topic of future research.

3.4 Correctness

In this section we sketch a correctness proof of the algorithm. For this purpose we can safely
ignore the priorities and their affect on scheduling because this is orthogonal to computation of the
probability mass. The full evaluation of a Bayes net of n variables consists of computing the sum of
2" minterms, each containing n partial minterms (conditional probabilities). To prove correctness,
one must prove that every truth assignment is covered and that within a given minterm, each partial
minterm appears once and only once.

Consider our technique of sending a message from a parent node to its children. One selected
child is sent the “real” probability mass and the others are sent a mass of one. The effect of receiving
a message with mass one is as if the receiving node is a root of the graph (again, ignoring priorities).
Thus the scheme effectively removes all edges but one between any parent and its children. It is not
difficult to see that the resulting graph is a spanning tree of the original graph, i.e., there is only one
path from any node to the exit node. Thus a spanning tree is guaranteed to have minterms wherein
each conditional probability appears once and only once,

To see that every truth assignment is considered, recall that we send twe messages from a node
N, corresponding to the conditional probability of N given its parent’s truth assignment, for both
polarities of N. Thus by induction on the nodes in the spanning tree, we can prove that every
possible truth assignment is represented in the totality of messages received at the exit port.



4 Implementation

This section describes the key parts of the implementation: how the matching queue is designed, how
messages are copied, how termination works, how priorities are implemented, and how the process
network is specified.

4.1 Matching Queue

The matching queue is a set of queues that accept input messages arriving from the parents of a

given node, and combine messages that have consistent keys. It is required that one message from

each parent be combined before the combination can be processed and propagated in the network.

What makes the matching queue difficuit to design is the capability of quickly matching messages.
In our prototype there were two competing designs for the matching queue:

e Copying Method: streams from all parents of a given node are merged into a single stream.
Messages from that stream traverse the queue, checking if they match any entry already
enqueued. If so, they are combined. If no match is found, a new entry is created. This
scheme implies that every message must be assigned a unique truth assignment from among the
common ancestors of the child node. Thus messages need to be reproduced, at the parent, with
alternative keys covering the truth assignment space. Although this method is conceptually
simple, copying can be exponential in the number of ancestors. In practice, such behavior was
observed and so it was abandoned for performance reasons.

o Active Queue: Instead of merging all input streams to a given node, each stream leads to its
own queue at the child node. A queue manager is responsible for routing messages through one
queue after the other, combining messages once per queue. The final output stream from this
chain of queues holds fully combined messages ready for processing and propagation to other
parts of the network. The key insight here is that no copying is necessary. In practice this
proved to have satisfactory performance and to be quite elegant to implement in a concurrent
language.

We now give an expanded description of the active queue, which we adopted for our prototype.
Suppose there are k parents of a given node and thus k — 1 queues. The parent with the greatest
number of ancestors is called the lead parent or leader. Matching entails combining k¥ messages: one
from the lead parent, and k& — 1 from each of the queunes. Matching does not mean ezact matching
(as in the Copying Method above), since keys in messages other than the lead queue are incomplete.
Nonconflicting key matches are sufficient.

At a given node, the k — 1 queues are linked and called followers because they “follow” the
leader. A message that arrives from the leader and is subsequently combined is called a packei. A
packet is passed from one follower to the next, combining it with some message from each follower.
Combining entails key matching, followed by adding information to the packet; however, the follower
message is never removed. Thus followers fill up and their memory is not reclaimed. If the packet
successfully passes through all followers, it is finally processed by the node itself.

If the packet does not match any message in a follower this indicates that a needed follower
message has not yet arrived. It cannot be the case that all the follower’s messages have arrived but
none match. This suggests building aciive follower queues similar to the pipeline of prime filters in
the Sieve of Erastothenes (e.g., [14]). When a message arrives at a follower from its parent, it is
transformed into a new filter process and added to the end of the follower’s pipeline.

If a packet fails to match any filter element in a follower, it will naturally suspend at the end
of the follower’s pipeline! A new message sent from this follower’s parent will be transformed into

=]



spawn( _, [J, 50, 51 ) :- S1 = 50.

spawn( Step, [ F | Fs 1, S0, 82 ) :-
follower( Stop, F, S0, 51 ),
spawn( Stop, Fs, S1, §2 ).

follower( _, [], Pin, Pout ) :- Pout = Pin.
follower({ Stop, [ M | Ma ], Pin, Pout ) :-
M = packet( Key, [ Item ] ) |
filter( Stop, Pin, Key, Item, S_fail, S_match ),
follower( Stop, Ms, S_fail, Out ),
merge{ { S_match, Out }, Pout ).

filter( _, [0, -, ., S_fail, S_match )} :-
S_fail = [1, S_match = [J.
filter( Stop, [ P | Ps ], Key, Item, S_fail, S_match ) :-
P = packet( Key0, Ms )},
check_keys( Key0, Key, Status ),
subfilter( Stop, Status, P, Ps, Key, Item, S_fail, S_match ),

subfilter{ stop, _, _, _y -, _, S_fail, S_match ) :-
§_fail = [0, S_match = [J.

alternatively.

subfilter( Stop, no, P, Pa, Key, Item, 5_fail, S_match } :-
S_fail = [P | Rest ],
filter( Stop, Ps, Key, Item, Rest, S_match ).

subfilter( Stop, yes, _, Ps, Key, Item, S5_fail, S_match ) :-
combine( P, Key, Item, NewP ),
S_match = [ NewP | Rest ],
S_fail = [ P | Rest0 ],
filter( Stop, Ps, Key, Item, Rest0, Rest ).

Figure 3: Active Queue in KL1 (Simplified for llustration)

a new filter process. This will cause resumption of the attempt to match the packet. Eventually
either the match will succeed or the program will terminate.

The beauty of this scheme is that packets that are incompletely matched suspend at the pre-
cise spot where they need more information. Furthermore, such suspended packet will not delay
subsequent packets that can match.

A sketch of the active queue code, written in KLI, is shown in Figure 3. For a review of
concurrent logic languages, including KL1, see for instance [11, 14]. Procedure spawn creates a
group of follower processes that send packets through a chained stream (variables S0, S1, $2). Each
follower is issued an input stream F where it receives messages from its parent. All procedures share
a common first argument: the global termination signal (see Section 4.2).

Process follower(Stop, My, Pin, Pou} has an input stream M, of arriving messages from a non-
lead parent. Input siream Py, has packets arriving from previous followers in the chain (or from the
leader to the first follower). Py is an output stream of packets to the next follower in the chain
(or from the last follower to the receiving node). For each arriving message, follower spawns a filter
process that will filter packets going through the chain.

Procedure filter checks if the packet’s key matches the filter’s key and acts on the status of this
check. If match fails then the original packet sent to the next filter (clause 2 of subfilter). This
recursive call will suspend if there is no corresponding filter spawned yet: the filter will be spawned
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Figure 4: Hlustration of Active Queue

because all packets must either match eventually or be discarded during termination. If the match
succeeds then we combine the filter’s message with the packet and send the combined packet to
the next follower (clause 3 subfilter). Critically, we also send the original packet to the next filter
within the current follower to ensure that all possible keys are matched. This “cascading” technique
produces an exponential number of combinations if needed.

An example of an active queue process network is illustrated in Figure 4. An initial packet
stream from the lead parent enters a chain of three filters comprising the first follower. These filters
contain messages M1, M2, and M3. The outputs of these filters are merged into a stream feeding
the second follower. Builtin mergers are denoted by “0". The second follower is composed of two
filters holding M4 and M5. Note that the follower process corresponding to each follower is actually
suspended, waiting for more messages to arrive so that it can extend its filter chain. Any incomplete
packets that require such a message will suspend on a call to the follower process. Thus incomplete
packets are tucked out of the way of subsequent packets that can be completed. Furthermore,
incomplete packets are automatically resumed once new filtering information is received at the
required follower. Note the dangling stream pointers to the last builtin merger of each follower: this
is perfectly acceptable and will not prevent messages from five joint streams from proceeding.

The matching queue processes are given the same system priority as the node processes (see
Section 4.3). However, among the node and queue processes that might be available for scheduling
at any time, ideally we want those processes corresponding to the ezit node to have highest priority.
This will facilitate eager termination, as is discussed in the next section. For other details of the
queue construction, see the Appendix for the actual source code.

4.2 Termination

The exit node of the network plays a special role for termination. Messages combined at the exit
queue have their probability masses accumulated. When the accumulated value reaches a certain



net( N, In, Out ) :- true |
get_state( [ StateA, StateB, StateC, StateD,
StateE, StateF, StateG ] ),
node( "A", In, [ AB, AC, AD ], Stated ),
node( "B", AB, [ BE, BF ], StateB ),

node{ "C", AC, [ CE, CF 1, StateC ),
node( "D", AD, [ DG ], StateD },
node( "E", E, [EG 1], StateE )},
node( "F", F, [FG 1, Statef },
node{ "G", G, [ Out ], StateG ),
nymerge( [ BE, CE ], E ),

mymerge( [ CF, BF ], F ),

mymerge( [ EG, FG, DG 1, G ).

Figure 5: Simplified KL1 Representation of Bayes Net

threshold, a global termination signal will be set. Each process in the network kills itself when
this signal is set. It is critical to performance that the global signal be applied to all frequently
executed process goals, particularly send goals and matching queue goals. Without such termination,
unnecessary messages will continue to be generated, and previously enqueued messages will continue
to be processed, significantly increasing the time to termination.

Refering back to Figure 3, we can see how termination is performed once the signal is set. The
first clause of subfilter is devoted to early termination. If the global signal is bound to the atom stop,
subfilter terminates itself after closing its output streams. Even if the subfilter task was originally
suspended, it will be resumed and then terminated. The KL1 control construct alternatively
guarantees that the first clause is attempted first during every invocation (without such a guarantee,
the first clause might never be tried at all). It is possible to add early termination clauses to filier
and follower; however, since these procedure invoke subfilter, not much would be gained.

Note that termination by the technique of “short circuiting” messages (e.g., [14]) is not needed
because the termination condition is determined at a central location.

4.3 Prototype

The proposed algorithm was implemented in KL1, a concurrent logic programming language, and
executed on the PDSS pseudo-parallel runtime system [7]. The KL1 program consists of 785 source
lines of code (including comments), not including the data description of the network. A simplified
form of a net (from Figure 2) as it is eventually represented in KLI is shown in Figure 5. The
procedure net/3 returns a net list ¥ consisting of nodes, and both an entry and exit stream. Nodes
are terms of the form node( Id, In, Outs, State ), where Idis an unique identifier for the node;
In is a single input stream (tributary streams are merged through a matching queue); Outs is a list
of output streams, and State contains other static information, e.g., conditional probability table,
number of copies information, etc. State is not shown: it is kept in tabular form in procedure
get_state/1. Notice how the streams are wired with the custom mymerge/2 predicate, which takes
a list of input streams and creates a matching queue leading into a single output stream.

The program listing is given in Appendix A. The most interesting part is the definition of
send/3 for dispatching the messages. A node process invokes send/3 as follows:

send( Outs, Copies, Stuff )@priority(s,Rate)

where Duts is a list of output streams to child nodes, Copies is a list of set of keys, each set
corresponding to the copies required for each child, and Stuff holds the information comprising a
message to be sent. Critical is Rate which is the KL1 priority value computed from the priority set

10



P(a)=10.1 Pla)=0.9 P(f |bc)=0.9 P(flbe)=0.1
P(bla)=09 [ P(E[a)=01 P(f|be)=01 | P(f|b2) =09
Pblay=01 | P(b|a)=0.9 P(flbc)=0.2 | P(f|bc)=08
Plc[a)=0.1 | P(|a)=0.9 P(f|be) =03 | P(flbe)=0.7
Ple|lad)=02 | P(¢|a)=10.8 P(gldef)y=0.9} P(g|def)=0.1
P(d|a)=09 [ P(d|a)=0.1 P(g|def) =08 | P(g|def)=0.2
P(d|a)=01 | P(d]a)=0.9 P(g|def)=0.1| P(§|def) =0.9
Ple|bc)=0.9 | P(e[bc)=0.1 P(g|def) =02 | P(7|def) = 0.8
P(e|b2) = 0.1 | P(g|b2) = 0.9 P(g|def) =0.7 | P(5|def)=0.3
Ple|bc)=0.2 | P(é|bc)=0.8 P(g|def) =03 | P(7|def) = 0.7
P(e | be) =0.3 | P(e| b8) = 0.7 P(g |def) =08 | P(7|def) = 0.2
P(g|déf) =08 | P(§|def)=0.2

Table 1: Cenditional Probabilities for 7-Node Net

in the algorithm (see procedure eval/2). The notation above indicates that send/3 is assigned an
absolute priority of Rate, which ranges from 0 to 4095 (see procedure lookup/2). Within send/3,
recursive calls and calls to a stub procedure send_copies, are assigned self-relative priorities of zero,
e.g.,

send_copies( C, real, S, Stuff )@priority($,0).

This means that they inherit the priority of their parent invocation.

5 Performance Evaluation

To introduce the evaluation methodology, consider the net shown in Figure 2 with the probabilities
given in Table 1. The performance of this net is labeled “example 1” in Table 2. Computing
P(g) + P(7), 0.7 mass is collected at node G in the first 12 complete minterms, generating a total
of 50 partial minterms. Considering that to compute the full 1.0 mass, there are 27 = 128 minterms
exiting node G and 186 partial minterms generated in the net, the algorithm appears to be polynomial
if not linear.

The other benchmarks in Table 2 have similar attributes. The table lists the benchmarks and
their search performance for different captured masses. Each time (in msec) is the lowest observed
execution time. This time includes both building and searching the net. The empty table entries
indicate that the program exceeded its memory limitation and therefore did not terminate.

The execution complexity is highly variant on the net topology and its conditional probabilities.
Thus it is difficult to discern a clear pattern among these henchmarks. However, it is clear that to
collect 70% mass, the complexity is not growing exponentially with net size. The number of messages
sent is a more fair indicator of complexity than time because the latier includes the complexity effects
of accessing several data structures.

Additional experimentation was performed concerning setting a threshold to reduce message
traffic. If a the mass of a partial minterm is less than the threshold, its message is discarded. This
reduces network traffic that does not add to the solution. As the threshold is increased, the traffic
decreases, until so0 many messages are discarded that the desired total mass cannot be collected at
the exit node. This is illustrated for net 5 in Figure 6. The program was measured for PDSS on a
Spare-10. Notice the time reduction for greater thresholds, especially for large masses.

The current prototype breaks down for large nets when collecting high mass because of the
nature of the data structures used. For example, the priority sets are implemented as lists, for which
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430000
200000
100006

mass captured
example | nodes || 70% | 80% [ 90% | 95% | 98%
minterms required
1 7 12 16 24 37 49
2 16 3 4 4 4 10
3 16 15 21 28 31 51
4 19 5 9 29 51 126
5 24 12 26 82
messages sent
1 7 50 54 70 85 99
2 16 45 46 46 46 68
3 16 67 76 86 91 160
4 19 51 83 166 219 393
5 24 116 235 343
msec
1 7 340 [ 370 540 [ 640 740
2 16 350 350 340 350 1,860
3 16 510 570 630 670 | 10,520
4 19 1,000 | 2,910 | 17,100 | 54,180 | 151,210
5 24 4,960 | 48,510 | 339,670

Table 2: Performance of Benchmark Nets (Sun Sparestation-1)

log(threshold) -3

Figure 6: Threshold vs. Mass vs. Time (Example 5)
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we need to perform set union frequently. The logarithm function for the priority mapping is done by
a simplified table lookup because floating point operations are too expensive in PDSS (each operator
spawns a process). All the nets use lists to implement the conditional probability tables. Only the
24-node net exploited vectors instead of lists for only two (the largest) of the 24 tables. QOverall we
believe the current prototype can be significantly sped up. Theoretically, the algorithm can even
be implemented in an imperative, explicitly parallel language. However, the advantages of using a
concurrent logic language are that implicit dataflow synchronization of active process networks and
prioritized task scheduling are “free” to the programmer.

6 Conclusions

A concurrent algorithm was introduced to evaluate a Bayes network. The key contribution is to
convert the network into a concurrent process network and send partial minterms as messages. These
messages are prioritized as a function of the mass they represent. To solve the potential problem
of “double counting” partial minterms, the message priorities and masses are decoupled in a novel
fashion. Furthermore an interesting “active queue” was developed to allow efficient combining of
prioritized messages.

A sketch of a correctness proof for the algorithm was given, as well as a real implementation in
KL1. The KL1 implementation, running under PDSS, a sequential emulator on a Sun Sparcstation,
demonstrated the ability of the algorithm to achieve what appears to be polynomial reduction in
work.

Future work entails porting the KL1 program to a multiprocessor, e.g., PIM [13], to measure
speedup. This will require simulating global priorities within the PIM systems, which support only
local priority queues. We plan to examine how to extend the algorithm to include marginalizing
over variables [1]. Furthermore, experimentation is needed to determine how to assign priorities
optimally, specifically with a “sliding scale.”
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A Source Listing of Bayes Net Evaluator

[»
Program: Bayes Net Evaluator: main algorithm
Author: E. Tick

Date: June 7 1994

Hotas:

1. Query is:

?- go( +NetHo, +Mass, +Debug, —Out ).

whare:

HetHo = integer identifier of Bayes net to search.

Mass = total amount of mass to collect.

Debug = "yas(N)" to trace massages received at exit node
where B is the bit length of the keys displayed,
or "no" if no tracing desired.

Qut = output will be instantiated to stop(X} wheara
X is the number of terms combined to reach Mass.

Examples:

7-go( 1, 0.7, yes(4), X ).
7= go( 6, 0.8, no, X ).

s/
:= module bayas.
:= public go/4.

% mode(?,?,7,7)
go( Id, Term, Debug, Stop ) := true |
In=[ packet( ( 0, 0), [ 1.0-[11) 1, % initial packet...
data:nat{ Id, Net, In, Out, OutKey, Stop ),
spawn{ Het, OutKey, Stop ),
filter{ Out, 0.0, 0, DutKey, Term, Dabug, Stop )@priority(+ 4095),

% mode(7,7,7,7,7,7,7)
filter( Out, Acc, Count, Key, Term, Dabug, Stop ) :-
Dut = [ packet{ Key0, [ Prob-—_ ] ) | S8 ] |
test_kays{ Xey0, Key, Status },
process( Status, Key, Prob, Acc, Count, Debug,
Key0, HewAcc, HeuCount )@priority(s,4095),
filtarl( Ss, HewAcc, NewCount, Key, Term, Debug, Stop )epriority{s,640956).

% mode(?,7,7,7,7,7,7)
filter1( _, Acc, Count, _, Term, _, Stop ) :-
Acc $> Temm |
Stop = stop( Count ).
othervisa.
filterl( Ss, Acc, Count, Key, Tarm, Dabug, Stop } :=- true |
filter( Ss, Acc, Count, Key, Term, Debug, Stop )@priority(s,4095).

% for cowputing mass of both polaritias at exit node, i.a., OFE!
test_keys( _, Key, Status } :- true | Status = Key.

% mode(?,7,7,7,7,7,7,7,7)
process( Koy, Key, Prob, Acc, Count, Debug, Key0, HewAcc, HeuwCount } :-
true |
HewAcc $:= Prob + Acc,
HewCount := Count + 1,
anx:debug( Debug, Count, Prob, HewAcc, Key0 ).

otherwise.
process{ _, _, ., Acc, Count, _, _, HewAcc, HewCount ) :- true |
HawAcec = Acc,

BawCount = Count.

% moda(?.,7.,7)
spawn{ [1, _, _ } :- true | true .
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spagn( [ | ¥s 1, OutKey, Stop ) :=
H = node( Id, In, Outs, Table, _ ),
OutXey =\= Id |
noda{ Stop, Id, In, Outs, Tabla ),
spawn( s, OutKey, Stop ).

% give the exit node HIGHEST PRIDRITY for quick termination?
spawn{ [ B | Bs ], Id, Stop ) :-
# = node( Id, In, Quts, Table, _ ) |
node{ Stop, Id, In, Outs, Table )@priority(e,4095),
spawn( Hs, Id, Stop ).

% node{ Stop, Id, In, Duts, Table ):

% Stop = global termination signal

* Id = node identifier

% In = an input stream

% Duts = list of output streams

% Table = list of conditional probabilities

% mode(7,7,7,7,7)

% if global signal sat, kill yoursalf...

node( stop(_), _, -, Duts, _ ) :- true |
closa{ Outs }@priority(s,4095}.

alternatively.

% otherwise, read in next message on input stream...
node( Stop, Id, [ M | Ms ]}, Outs, Table ) :-
M = packet( Key, Pairs } |
combineO{ Stop, Key, Pairs, Table, Id, Quts, HewDuts ),
node{ Stop, Id, Ms, NewOuts, Table ).

% mode(?,7,7,7,7,7,"
combine0( stop(_), _, ., _, -, Duts, HewOuts } :- true |
HewDuts = Outs.

alternativaly.

combine0( Stop, Key, Massaga_Sat, Table, Id, Duts, HewOuts ) :~ true |
aux:nev_keys( Key, Id, Keyl, Key2 ),
split( Outs, Outsl, Outs2, NewDuts ),
combinel( Stop, Table, Keyl, Message_Set, Id, Outsi ),
combinel( Stop, Table, Key2, Message_Set, Id, Outs2 }.

% mode(?,7,7,7,7,7)
combinel{ stop{.), ., -, -, -, Outs ) :- true |
close{ Outs )epriority(»,4095).

alternatively.

combinel( Stop, Table, Key, Message_Set, Id, Outs ) :- true |
aux:table_lookup({ Table, Key, CondProb },
combine2{ Stop, Message_Set, CondProb, CProb, Id, BewPriority ),
aux:eval{ HewPriority, Rate ),
send{ Stop, Duts, CProb, Key, NewPriority )Opriority(s, Rate).

% mode(?,7,7,7,7,7)

combina2{ Stop, Messaga_Ssat, CondProb, CProb, Id, HewPriority ) :- true |
Priority = [ CondProb-Id ], % initial priority set...
combine3( Stop, Massaga_Set, 1.0, Prob, Prierity, HawPriority ),
CProb $:= Proab * CondProb.

combina3( _, [], Prob0, Probl, Prierity0, Priorityl } :- true |
Probl = Prob0,
Priorityl = Priority0.

combine3( Stop, Message_Set, Prob0, Prob3d, Priority0, Priority3d )} :-

Message_Set = [ Probl-Priorityl | Ms ] |
Prob2 $:= ProbO * Probi,
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aux:union( Priorityl, Priority0, Priority2 ),
combina3( Stop, M=, Prob2, Prob3, Priority2, Priority3 ).

A

% moda(?,7,7,7,7

send( stop(_), 8, _, _, _ } :~ true |
close( 5 )@priority(=,4095).

alternatively.

send{ Stop, 5, CProb, Key, Priority ) :- true |
Last = [ packet( Key, [ CProb-Priority ] ) 1,
Rest = [ packet( Key, [ 1.0-Priority] } 1,
fast_send( Stop, §, Rest, Last )¢priority(3,0).

% moda(?7,7,7,7)

fast_send( stop{_), 5, _, _ ) :- true |
close{ S )Opriority(»,4095).

alternatively,

fast_send( _, [ 5], ., L) :=true | § = L.

fast_send( Stop, (S [ Ss ), M, L) :-8s \=[] I
s=N,
fast_send( Stop, Ss, M, L )@priority($,0).

%

% split/3 expands a list of output streams from a parent to
% a child into three lists of output streams:

% 1. goes back to original neode

% 2. for injection of positive polarity massages to child
A 3. for injection of negative polarity massagas to child
%

% mode(?,”,~,”)
aplit{ [], Outsi, Outs?, Outs3 ) :- trus |
Dutst = [1, Outs2 = [], Outs3 = [].
split{ [ S | Ss ], Outsl, Quts2, Outs3 ) :~ trua |
Outst LAl As 1],
Outs2 = [B | Bs ],
Duts3=[C | Cs 1,
merge( { A, B, C}, 8,
split( $s, As, Bs, Cs ).

% moda(?)
close( [] ) :- true | true.
close( £ 8] Ss]1) := true |
5=[]'
close( Ss )@priority(=,4095).
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/*

Program: Bayes Het Evaluator: active queua
Author: E. Tick

Date: June 7 1994

Hotes:

A packet is of the form:

packet{ Kay, Messages )

whare Key (P,N) whora P and ¥ are bit vectors representing
thae truth assignment associated with this packet.

KMessages = list of Prob-Priority pairs

:= module quaue.
;= public mymarga/3.

% moda(?,7,”)

% first packet is laad pareant streanm...

mymerge( Stop, [ S-_ | S5 ], Dut )} :- true |
spaun_followers( Stop, Ss, 5, Dut )@priority($,0),

% modea(?,7,7,7)

spawn_followers{ _, [], SO, S1 ) :- true |
51 = S50.

spawn_follovwers( Stop, [ F-K | Fs ], 50, 52 ) :~ trua |
follower{ Stop, F, S0, S1, X )Qpriority($,0),
spawn_followers{ Stop, Fs, S1, 52 )epriority($,0).

% follower{ Stop, Min, Pin, Pout, K ) has an input stream
% Min of arriving messages from a non-lead parent, Pin is
% an input stream of packets from the pravious

% follower in the chain, and Pout is the output stream

% of packets to the next follower in the chain.

% Stop and X are used for quick termination...

¥ for each arriving message, spawn a filter/4 process
% that will filter packets going through the chain...
% mode(?,7,7,°)
follower( stop{.}, ., ., Pout, _ ) :- true |

Pout = [J.

alternatively.

% if follower stream ends, throw away partial
% minterm list --- they are no longer naeded...

follower( _, _, ., Pout, 0 ) :- true |
aux:kaboom{[’follower termination...’]),
Pout = [].

follower( Stop, [ M | Ms ], Pin, Pout, K} :- K> 0,
M = packet( Key, [ Item ] ) |
Kl :=K -1,
filtaer( Stop, Pin, Key, Item, S_fail, S_match )@prierity($,0),
follower( Stop, Ms, S_fail, Out, Ki )@priority($,0),
merge( { S_match, Out }, Pout ).

% mode(?7,7,7,7,”,7)
filter{ stop(_), ., -, -, S_fail, S_match ) := true |
S_fail = [], S_match = [].

alternatively.

filter{ _, [, -, -, S_fail, S_match ) :- true |
S_fail = [1, S_match = [].

filter{ Stop, { P | Ps ], Key, Item, S_fail, S_match ) :-
P = packet( Key0, Hs ),
Key0 = (P0,HO),
Key = {P1,H1)} |
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and{ PO, N1, A ),
and( Pt, §O, B ),
key_check( A, B, PO, HO, P1, N1, Item, Ms, Status ),
subfilter( Stop, Status, P, Ps,
Key, Item, S_fail, S_match )@priority($,0).

% mode(?,7,7,7,7,7,","

% terminate the queus...

subfiltaer( stop{_), ., o, =y =+ -, S.fail, S.match } := true |
S_fail = [J, S_match = [].

alternatively.

% if no match then send original packat to next filter...

% this call will suspend if there is no corresponding

% filter spawned yet: eventually the filter will be spawned

4 because all packets must match eventually.

subfilter{ Stop, no, P, Ps, Key, Item, 5_fail, S_match ) :- trua |
S_fail = [ P | Rest ],
filter( Stop, Ps, Key, Item, Rest, S.match )@priority($,0).

% if match then send combined packet to next followar...
subfilter( Stop, MewP, P, Ps, Key, Item, S_fail, S_match ) :-
HewP \= no |
S_match = [ HewP | Restl ],
S_fail= [ P | Rest0 ], % also continue down this filter...
filter( Stop, Ps, Key, Item, Rest0, Resti )@priority($,0).

% moda{?,7,7,7,7,7,7,7,"

% if keys match, status is new packet...

key_check{ 0, O, PO, HO, P1, H1, M, Ms, S ) :- true |
or{ PO, P1, P2 ),
or{ §O, W1, H2 ),
S = packet( ( P2, §2 ), [ M | Hs ] ).

otherwise.
% if kays don’t match, status is ’'no’..

key_check{ _, _, -, =) =5 =+ =» =» 3 ) := true |
5 = no.
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/*

Program: Bayes Fet Evaluator: auxillary routines
Author: E. Tick

Date: June 7 19854

Hotes:

i~ module aux.
i= public new_keys/4, make_keys/3, union/3, table_lookup/3.
:— publiec eval/2, kaboom/1, dabug/5, id/f2.

% moda(?7,7,-,7)
naw_keys( ( P, § }, Id, Kayl, Key2 ) :- true |
or( P, Id, P1 },
or( H, Id, H1 ),
Keyi = ( P1, § ),
Keyz = ( P, §1 ).

% mode(?,7,")

maka_keys{ (P, H), (Pt, H1), Key ) :- trus |
or( P, P1, P2 ),
or( H, W1, H2 ),
Key = ( P2, B2 ).

% Take the union of tha priority sets: this routine assumes
% the invariant that a priority set is aluways sorted from
% least-identifier to greatest-identifier. Always compara
% ddentifiars, not probability values!

i moda(?,7,)
union{ In, [J, Out )} :- true |
Out = In.

union( [], Set, Out ) :- true |
Out = Set.

union( [ P | P8 ], Set, Out ) :-
Sets [ Q[ Qgs],
P=_-K, Q=_-K|
Out = [ Q | Outs ],
union{ Ps, Qs, Outs ).

union{ In, [ Q | Q= 1, Dut ) :-
In=({P}| _1,
pP= -X, Q0= _-L,E>L|
Out = [ § | Quts ],
union{ In, Qs, Outs ).

union( [ P | Ps ], Set, Out ) :-
Set= [ Q1 _1],
P= _«K,Q=_-L, K<L
Out = [P | Quts ],
enion{ Ps, Set, Outs ).

%

% moda(7,?,")
table_lookup{ [ T | Ts ], Key, Prob ) :~
T = prob( Key2, Value ),
Key = ( P1, F1 ),
Eey2 = ( P2, B2 ) |
and( P1, P2, P3 ),
and( §1, 82, §3 ),
tabla_lookupi{ P3, B3, P2, E2, Key, Ts, Prob, Value ).

table_lookup( Table, Key, Prob ) :-
Table = large( ¥, Mask, BitMasks ),
Mask = ( Pm, HEm ),
Key = ( Pk, Bk )} |
and{ Pm, Pk, P },
and( Hm, Nk, ®H ),
munga{ BitMasks, P, ¥, O, Index ),

20
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got_element( V, Index, Prob ).

% mode(?,7,7,7,")

munge( [1, ., ., Acc, Index ) :
Index := Acc >> 1.,

munge( [ M | Ms ], P, N, Acc, Index )
and{ P, M, Bit_P )},
and( H, M, RPit_H ),
update( Bit_P, Bit_N, Acc, Acc_new ),
munge{ Ms, P, H, Acc_new, Index ).

% thesa clauses are critical to get indax right!!!
% mode(?,?,7,")

update( 0, X,
update( X, 0,
update( 0, O,

% mode(?,?
table_loockupl( P3, N3, P2, N2, _, ., Prob, Value )
P3 =:= P2, H3 =:= )2 |
Prob = Value.

otherwise.

table_lookupi( _, ., -, -, Key, Ts, Prob, _ )
table_lookup( Ts, Xey, Prob ).

% moda(?,7,%)

get_elemant( V, Index, Prob ) :
vector_element({ V, Indax, 01d } |
Prob = 01d.

%

- X
= X

:= true |

:= (Acc + 1) << 1,
>0 | Hew := Acc << 1.
:- true | Hew := Acc.

1= true |

% aval/2 converts a list of priority minterms into an
% integer priority value suitable for PDSS/KL1 system.
%

% moda(7,”)
eval{ Priority_Set, Rata )
eval( Priority_Sat, 1.0, Rate ).

% mode(?,7,”)
aval( [], Partial, Rate ) :- true |
lookup( Partial, Rate )},

/e

floating_point_log( Partial, TO ),

:= true |

floating_point_multiply( TO, -800.0, T1 ),

floating_point_to_integer( T1, T2 ),
min( 4090, T2, T3 ),
Rata := 4095 - T3.

o/

eval( [ P-_ | Ps ], In, Rate ) :
Partial $:= P = In,

eval{ Ps, Partial, Rate ).

% moda(?,")

lookup{ X, P ) :- 0. $< X | P = 4000.
lookup( X, P ) :- O. $< X, X $=< 0.1 | P = 3600.
lookup( X, P ) :- O. $< X, X $=< 0.05 | P = 3200.
lookup( X, P ) :~ 0O, $< X, X $=< 0.01 | P = 2800.
lookup{ X, P ) := O. $< X, X $=< 0,008 | P = 2400.
lookup( X, P ) :- 0. $< X, X $=< 0.001 | P = 2000.
lookup{ X, P ) :- O. $< X, X =< 0.0025 | P = 1600,
lookup( X, P ) := O. $< X, X $=< 0.0006 | P = 1200,
lookup{ X, P ) :- 0. $< X, X $=< 0.0001 | P = 800,

lookup( X, P ) : $< X, X $=< 0.00006 | P = 400.

lookup( X, P ) : $< X, X $=< 0.00001 | P = 200.

lookup( X, P ) : X §=< 0.000001]| P = 10,

%

21



% mode(7,™)

id{( 1, X ) := true | X = 22"00000000000000000000000000000001" .
id( 2, X ) :- true | X = 2#"00000000000000000000000000000010" .
id( 3, X ) :- true | X = 2%"00000000000000000000000000000100% ,
id( 4, X ) := true | X = 28"00000000000000000000000000001000" .
id( 5, X ) := true | X = 2#"00000000000000000000060000010000" .
id( 6, X ) :- true | X = 28"00000000000000000000000000100000" .
id( 7, X ) :- true | X = 2#"00000000000000000000000001000000" .
id( 8, X ) :- true | X = 2#"00000000000000000000000010000000" ,
id( 9, X ) := true | X = 2#"00000000000000000000000100000000" .
1d(10, X ) :~ true | X = 2#"00000000000000000000001000000000" .
id(11, X ) :- true | X = 2#"00000000000000000000010000000000" .
id(12, X ) :- true | X = 2#"00000000000000000000100000000000" .
id(13, X ) :- true | X = 2#"00000000000000000001000000000000" .
id(14, X ) :- true | X = 2#"00000000000000000010000000000000" .
id(15, X ) :~= true | X = 28#"00000000000000000100000000000000" .
id(16, X )} :- true | X = 2#"00000000000000001000000000000000" .
1d(17, X ) := true | X = 28"00000000000000010000000000000000" ,
id(18, X } :- true | X = 28"00000000000000100000000000000000" ,
id(19, X ) :- true | X = 2#"00000000000001000000000000000000" .
id(20, X ) :- true | X = 2%$"00000000000010000000000000000000" .
id¢21, X ) :- true | X = 2#"00000000000100000000000000000000" .
id¢22, X ) :- true | X = 2#"00000000001000000000000000000000" .
id(23, X ) :- true | X = 22"00000000010000000000000000000000% ,
id{24, X ) :- true | X = 28$"00000000100030000000000000000000"
id{(25, X ) :- true | X = 2#"00000001000000000000000000000000" ,
id{(26, X ) :- true | X = 2#"00000010000000000000000000000000",
id{27, X ) :- true | X = 2%"00000100000000000000000000000000"
id{(28, X ) :- true | X = 2%"00001000000000000000000000000000"
id(29, X ) :- true | X = 2#"00010000000000000000000000000000" .
id(30, X ) :- true | X = 2%"00100000000000000000000000000000" .
1d(31, X ) :~ true | X = 28°01000000000000000000000000000000" .
%
% FOR DEBUGGING...
% moda(?)
kaboom{ L } :- true |

window:creata( [ show | X J, “foo* ),

kaboom( L, X ).
% moda(?,”)
kaboom( X, ¥ ) :=- integer(X)

Y = [ putt(X,1000,1000}, nl ].

kaboom( [1, Y

Y=[nl1].
kaboom( [ L | Ls ], Y )

) - true |

:= true |

Y= [ putt(L,1000,1000) | Y8 ],
kaboom( Ls, Ys ).

% mode(?7,?,7,7,7)

debugf no, _, _, -, - )

:= true | trua.

debug( yes, Count, Prob, HewAcc, Key ) :- true |
convert_key{ Key, 31, List ),
kaboom( [ exit( List, Count, Prob, BewAcc ) ] ).

debug{ yes(N), Count, Prob, HewhAcc, Key )} :- true |
convert_key( Key, N, List },
kaboom{ [ exit{ List, Count, Prob, HewAcc )} ] }.

% mode(7,7)

convert_key{ ( Pos, _ )}, B, List ) :- true |
convert_key{ B, Pos, List ).

% mode(7,7,”}

convert_key( 0, _, List )} :- true |

List = [].

convert_key( §, Key, List } :- true
il =% -1,
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id( ¥, Mask ),
and{ Key, Mask, T ),

convert_mask( T, H1, List, Key ).

% mode(?,7,7,7)

convart_mask{ 0, H, List, Key )}
List = [ ¢ | Rest ],
convert_kay({ N, Key, Rest ).

convert_mask( T, B, List, Key )
List = [t | Rest ],
convart_key( B, Key, Rest ).

1= true |

=T >0 |
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/*
Program: Bayes Het Evaluator: Build a Hetwork from Data
Author: E. Tick

Data: June 7 1994

Hotes:

*/
:= module net.
1~ public make_net/5.

% mode(?,7,7,7,7)

maks_not( Stop, Info, Start, End, Out ) :- true |
transform{ Info, NewInfo ),
netlist( Stop, HewInfo, Start, End, Out ).

% mode{(?,")

transform( [], Out ) :- true | Out = [J.

transform( [ I | Is ], Out ) :-
I = info( Id, Children, H, Ancestors, Probs ) |
BHew = info{ Id, Children, N, Prob_Table, Ne_of_ancestors ),
ODut = [ Hew | Duts ],
calc_ancestors( Ancestors, No_of_ancestors ),
gen_prob{ [ Id ] Ancestors ], Probs, Prob_Table ),
transform{ Is, Outs ).

% mode{?,"}

calc_ancestors( [J, A ) :- true | A = 1.

calc_ancestors( L, A )} :- true |
length{ L, A ).

% creates a process network list from a list of adges...
% moda(?,7,7,7,7)
netlist( Stop, Info, Start, End, List ) :- true |
maxnode{ Info, Siza ),
Sizel := Size + 1,
naw_vector{ V0, Sizel )},
£il1l_in( Size, VO, V1 ),
£ill_start{ Start, V1, ¥2 ),
fill_out{ Info, V2, V3 ),
fill_end( End, V3, V4 ),
fill_info{ Stop, Info, V4, List ).

% mode(?,7,7)
fill_start( Start, V, NewV ) :-
Start = start( Start_Hode, Start_Stream )} |
sat_vector_element( ¥, Start_Kode, O01d, Hew, HawV ),
01d = node( kd, In, [1, [J },
% stream to entry node is arbitrarily a followsr with 1 message red...
Hew = node({ Id, In, [ £f{ Start_Stream )-1 1, [J ).

% mode{(7,7,7)

fill_end( End, V, HewV ) :-
End = and{ End_Node, End_Stream } |
sat_vector_element( V, End_Hode, 0ld, Hew, NewV ),
01ld = node{ Id, In, Ins, [0 },
New = node{ Id, In, Ins, [ End_Stream] ).

% instantiate each node to a unique unbound input stream...
% mode(?,7,”}
£i11_in{ ¢, V, FinalV ) :- true |

Final¥ = V.
£ill_in( X, ¥, Final¥ ) :- true |
set_vector_element{ V, X, _, Hew, HewV ),

aux:id{ X, Id ),

Hew = node( 14, _, [, 0,
Kl :» K -1,

£111l_in{ K1, HewV, FinalV ).

% moda(?,7,7,7,7)

f£ill_infe( _, [], ., List } :- true |
List = [].
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£ill_info{ Stop, [ Info | Is ], VO, List ) :-
Info = info{ K, _, ., Tables, Ho_of_Parents ) |
vector_element{ V0, K, 01d, V1 },
Dld = node{ Id, In, Ins, Outs ),
merge_ins( Stop, Ins, In ),
Newt = node{ Id, In, Outs, Tables, Ho_of_Parents },
List = [ Hew | Rest ],
£ill_info{ Stop, Is, V1, Rest ).

% mode(?,7,7)
merge. ins( _, [ 1(In)-_1], Out } :- true | Out = In.
merge_ins( _, [ £(In)-_], Out ) :- true | Qut = In.

otherwise.

merge_ins( Stop, Ins, Out ) :- true |
find_lead( Ins, Lead, Sorted ),
queua:mymerge{ Stop, [ Lead | Sorted ], Qut )@priority(s,4095).

% mode(7?,7,”)
find_lead( [J, _, Sorted ) :- true |
Sortaed = [].

find_lead( [ 1{ S )-X | Ss ], Lead, Sorted ) :- true |
Lead = 5-X,
find_lead( Ss, _, Sorted ).

find_lead( [ £( S )-X ] Ss ], Lead, Sorted ) :- true |
Sorted = { S-X | Rest ],
find_lead( Ss, Lead, Rast ).

% moda(?,7,)

£ill_out( [], VO, V1 ) := true |
¥i = V0.

£ill_out{ [ I | 18 ], VO, V3 ) :-
I=info( Id, Cs, B, _, =) |
gen_outs( Ca, Dutsl, Duts2 ),
add_ins{ Cs, N, Dutsi, VO, V1),
add_outs( Id, Outs2, V1, V2 ),
£ill_out( Is, V2, ¥3 ).

% moda(7,?7,7,7,%)
add_ins( [J, -, [J, vO, V1 ) :- true |
Vi = Vo,

% C is the child node number and R is the total number
% of messages that child C will ever racaive...
add_ins( [C | Cs ], H, [ S| 8], VO, V2 ) := true |

abs{ C, K ),

set_vactor_element{ VO, K, 01d, New, V1 ),

01d = noda{ Id, In, Ins, Outs )},

WewIns = [ S=N | Ins ],

Hew = node( Id, In, Hewlns, Outs ),

add_ins{ Cs, H, S8, V1, V2 ).

% mode{?7,7,7,7)

add_outs( P, Outs, VO, ¥1 ) :- true |
set_vector_element( VO, P, 0ld, New, V1 ),
0ld = node({ Id, In, Ins, [] ),
Hew = noda({ Id, In, Ins, Outs ).

% mode(?,”,”)
gen_outs( [1, L, § ) :- true |
L=10[1, 5=10.

% negative identifiers are leaders...
gen_outs( [C | Cs ], L, 5):~C<o|
L=C1(X) I Ls 1],
S=[x|55],
gen_outs{ Cs, Ls, Ss ).
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% positive identifiers are followers...
gen_outs( [C [ Cs ], L, S5 ) :=C>0 |
L=[fX) I Ls],
sSs=[X]5s],
gen_outs( Cs, Ls, Ss ).

% mode(?,7)
maxnode( ¥, Size ) :- true |
maxnode( ¥, 0, Size ).

% mode(?,7,7)
maxnode{ {], Max, Size ) :- true |
8ize = Max.
maxnode( [ I | Hs ]}, Max, Size ) :-
I =info(H, ., _, -, . ),
Max >= § |
maxnode{ Es, Nax, Size ).
maxnode{ [ I | Bs 1, Max, Size ) :~-
I =info( W, _, _, -, -},
Max < H |
maxnode{ Bs, B, Size ).

%

% mode(?,7,7)

gen_prob( _, Probs, Out ) :-
Probs = large(_,_,.) |
bDut = Probs.

othervisa.

gen_prob( Ids, Probs, Out } :- true |
length( Probs, ¥ ),
conv{ Ids, Bits ),
iter{ 0, H, Bits, Kays )},
combine( Keys, Probs, Out ).

% mode(?7,7,7)

combine( [J, [J, Out ) :- true | Out = [],

combine( [ Key | Keys ], [ Prob | Probs ], Out ) :- true |
Out = [ prob{ Kay, Prob } | Outs ],
combine( Keys, Probs, Outs ).

% mode(?,7,7,”)

iter{ B, W, _, Out ) :- true |
pat = [J.

iter( X, ¥, Bits, Out ) :~ K < 0 |
KL (=K + 1,

Dut = { ( Pos, Heg ) | Outs 1,

J := K mod 2,

select{ Bits, J, K, O, Pos, 0, Heg ),
iter{ Kt, N, Bits, Outs ).

% mode(?,7,7,7,°,7,7)
selact( [1, _, _, PO,P1, HO,H1 ) :- true |
PL := PO, Hi := HO,

selact( [ Bit | Bits 1, 0o, K, PO,P2, BO,HL ) :- true |
KL :=K/ 2,
J := K1 mod 2,
or( PO, Bit, P1 ),
salect( Bits, J, Ki, P1,P2, §O,N1 ).

gelect( [ Bit | Bits ], 1, K, PO,P1, NO,H2 ) :- true |
KL :=X/ 2,
J := K1l mod 2,
or( HO, Bit, H1 ),
select( Bits, J, Ki, PO,P1, N1,H2 ).

% mode(?,”)
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conv( [], Bits ) :- true | Bits = [].

conv( [ Id | Ids ], Bits ) :- trua |
aux:id( Id, Bit },
Bits = [ Bit | Rest 1,
conv{ Ids, Rast }.

% moda(?,”)
exp2{ M, § ) :- true |
exp2( M, 1, F ).

% moda(?,7,”)
exp2( 0, P, H )} :- true | § = P.
exp2( M, P, 3 ) :-H >0

Pl 1= P2,

KL := M-1,

axp2( M1, P1, ¥ ).

% mode(?,~)
length( L, S ) := true |
length( L, 0, § ).

% mode(?7,7,
length( ],
length( [ _ 1 Ls ], K, § ) :- true
K1 := K 1,
length( Ls, K1, S ).

=)
K, S ) :-trua | § =K.
|
+
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i
Program: Bayes Het Evaluator: Hetwork Data Sets
Author: E. Tick

Date: June 7 1994

Hotes:

1. Each node with multiple parents muat have one “lead” parent (marked
with a "#" in illustrations)}. The laad parent must make copies to
satisfy the copying rule, and must ba the FIRST stream among the faaders
to the mymerge/2 procedure. IF THIS IS HOT DBEYED, THE NET WILL LIKELY
SUSPEND WITH MAEY SENT MESSAGES HANGING FROM THE ACTIVE QUEUES, UHABLE
TO COMPLETELY MATCH.

2. Te specify conditional probabilities, Hode 1 with Ancestors {2,3]
gonerates the following order:

pr( 1] 2, B
pr(-1] 2, 3)
pr( 1]-2, 3)
pri-1]-2, 3}
pr( 1] 2,-3)
pri{-1] 2,-3)
pr{ £|-2,-3)
pri-1]-2,-3})

It W Mg wnnm.

COO0O00O0OO0Q
W=D~

3. In Copy list, negative identifiers are LEADERS and positive identifiers
are FOLLOWERS,

»/
:= module data.
:= public net/6.

f»

*/

net{ 1, List, In, Out, OutKey, Stop ) :- true |
net:maka_net{ Stop, Info, start{ 4, In }, end( 1, Out ), List ),
aux:id{ 1, OQutKey ),

Info = [
Id Child Rev Ances Cond Prob.
info( 1, [1, o, (2,31, [0.9,0.1,0.1,0.9,
0.2,0.8,0.7,0.3] ),
info( 2, [~-1], 4, (41, ¢[0.1,0.9,0.2,0.8]),
infol 3, [1], 4, 41, [0.9,0.1,0.1,0.9]),
2, 0. [0.1,0.91 )

info( 4, [2,3],
1.
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net( 2, List, In, Out, OutEey, Stop ) :- trua |
net:make_net{ Stop, Info, start( 7, In ), end( 1, Out }, List

aux:id( 1, OutKey ),

Info = [

% Id Child Red Ancest .,
info( 7, [4.5,6], 2| []l
illfo( 6, [_3|2]s 8, [7]|
info( 5, [-2,3], 8, 7],
info( 4, [1], 4, (71,
info( 3, [-11, 16, [s,6],
info{ 2, [11, 16, [s,6],
info( 1, 01, 0, [2,3,41, [
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*/

nat{ 3, List, In, Out, OutKey, Stop ) :- true |
A = {0.997,0.003,0.597,0.003],
B = [0.987,0.003,0.003,0.997],
aux:id( 16, OutKey ),
net:make_net( Stop, Info, start{ 15, In ), end( 16, Dut ), List ),
Info = [
% Id Children Red Ancest.

=%
o
"

I3

Co ob.
info( 1, [31, az, (9,4,13), [0.0,1.0,0.0,1.0,
0.0,1.0,1.0,0.0,
0.5,0.5,0.5,0.5,
0.5,0.5,0.5,0.51 ),
info( 2, [6,141, 4, [1s1, A),
info{ 3, [-16]1, 2048, [6,1,11}, [0.0,1.0,0.0,1.0,
0.0,1.0,1.0,0.0,
0.5,0.6,0.5,0.5,
0.6,0.5,0.5,0.5] ),
info( 4, [-12,1], 4, (151, [0.5,0.6,0.5,0.5) ),
info( 5, [161, 8, [73, B,
info( 6, [-3], 128, f12,21, [0.0,1.0,1.0,0.0,
0.5,0.5,0.5,0.5] ),
info( 7, [5,12], 4, [1s], A,
info( 8, [16], 8, {111, B),
infe( ®, [1,12], 4, [ts], [0.5,0.5,0.5,0.5] },
info(10, [16], 8, [13], B ),
info(11, [3,8], 4, [15], A),
info(12, [-6], a2, [9,4,7], [0.0,1.0,1.0,0.0,
1.0,0.0,1.0,0.0,
0.5,0.5,0.5,0.5,
0.5,0.5,0.56,0.5] ),
info(13, [-1,10], 4, [15]1, A),
info(14, [16], 8, [21, B),
info{15, [2,4,7,9,11,13}, 2, [1, [1.0,0.0] ),
info(16, [1, o, [3,5,8,10,14], (1.0,0.0,0.0,1.0,
1.0,0.0,0.0,1.0,
1.0,0.0,0.0,1.0,
1.0,0.0,0.0,1.0,
1.0,0.0,0.0,1.0,
1.0,0.0,0.0,1.0
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