Optimizing Clause
Matching Automata in
Committed-Choice Languages

Bart Massey and Evan Tick

CIS-TR-94-20
August 1994

Abstract

We introduce a formalism for clause matching in concurrent committed-choice lan-
guages based on the construction of clause matching automata, a heuristic for the compi-
lation of clause matching, and a technique for more efficient implementation of matches.
The formalism is notable for its generality and simplicity, the heuristic for combining im-
portant advantages of several existing heuristics. These include good typical-case time
and space performance, a minimal number of suspensions, which can lead to tremendous
efficiency benefits, and incremental restart after suspensions, which eliminates repeated
tests.

This paper presented at the First International Symposium on Parallel Symbolic
Computation, Linz, Austria, September 1994.

DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE
UNIVERSITY OF QREGON

Contents

1 Introduction

2 Background

3 Related Work

4 Clause Matching Automata

5 A Heuristic For Efficient CMA Construction
6 Disjuncts of Conjuncts

7 Conclusions

References

11

12

14

1 Introduction

Efficient clause matching is necessary to achieve high performance implementations of logic
languages, including committed-choice languages (CCLs). Especially in CCLs, with ask and
tell unification (and even more so in languages with tell assignment only), most useful com-
putation is performed during the matching step. Furthermore, in CCLs and logic languages
with delayed constraints, suspensions can interact with matching, causing rework if the
implementation is not careful. Finally, suspensions are typically extremely expensive. Thus
without efficient matching, high-performance CCL implementation is impossible. In spite
of this, many CCL implementations use far from optimal clause matching. In our opinion,
reasons for this include: 1) lack of appreciation for the importance of efficient matching; 2)
difficulties in adapting pattern-matching techniques from other language families; 3) lack
of extensive study of matching algorithms, and 4) lack of clear and detailed descriptions of
efficient matching algorithms.

This paper addresses these problems in two stages. First, we provide a general for-
malism for describing clause matching algorithms based on the notion of clause matching
automate (CMAs). A CMA is a finite automaton whose states represent progress made
during matching, and whose transitions denote atomic matching tests. Second, we describe
a heuristic for the construction of high-performance CMAs satisfying two key criteria; min-
imal suspension and execution incrementality. A minimum suspension CMA will always
try all possible tests before suspending. A fully incremental CMA will never execute a test
whose outcome can be predicted. Thus CMAs with these properties would have optimum
performance in practical use.

The foundational work of Kliger and Shapiro (7, 8] on decision graphs may be directly
incorporated into our CMA formalism, as may ideas presented by Debray et al. [2] on
exploiting probabilistic information in clause matching. The work of Podelski and Van
Roy [10] on incremental clause matching, and the work on term pattern matching in non-
strict functional languages [9] is clearly relevant, although it will be more difficult for us
to incorporate. All this work is discussed in Section 3 of this paper. Although inspired by
this earlier work, we believe that our formalism and heuristic together constitute a novel
advance in clause matching for CCLs.

The paper is organized as follows. First, some background material is presented in Sec-
tion 2. Next, state-of-the-art clause matching algorithms for CCLs are outlined in Section
3. In Section 4 the concept of clause matching automata is introduced and formalized. A
heuristic to guide the construction of high-quality CCL matching automata is described in
Section 5. A further optimization, disjuncts of conjuncts, is given in Section 6. Conclusions
are summarized in Section 7.

2 Background

Committed-choice languages [13] are characterized by the need to determine at runtime
which among a choice of several clauses of a procedure should be “committed” to. In these
languages, a procedure consists of a number of clauses, each of which consists of a term head

select(nil, Result) :~ Result= nil.

select(pair(keep{ V0, V'), Rest), Result) :-
Vo>o0 |
select{ Rest, Result0),
Result : = pair(V, Result0).

select(pair(keep(V0, V'), Rest), Result) :-
Vo< |
select(Rest, Result).

Figure 1: Sample CCL Program

pattern, a (possibly empty) conjunction of boolean guard expressions, and a set of body
calls.

We now briefly describe the semantics of our CCL (see Shapiro {13] for details). Our
results are applicable to most CCLs. To simplify the exposition in this paper, we will work
in a CCL subset containing only atoms, functors, integers, and unbound variables, with a
few simple guard tests. Figure 1 shows a sample program written in this CCL, to which
we will refer throughout this paper. CCL semantics are relatively simple: when a clause
is selected for execution, its body calls are spawned for concurrent evaluation. Each call
must then match some clause of the program. The variables of CCLs have the Dynamic
Single Assignment (DSA) property [1]: they can be assigned a value only once during the
execution of a program, but not, in general, at a statically determinable program point.
In addition, variable binding also achieves synchronization: a clause match will suspend
until variables corresponding to required parts of some clause have been bound. Matching
is nondeterministic; clause matches are not considered in top-to-bottom order. Rather, as
soon as enough information is available to commit to some set of matching clauses, one
of them, chosen arbitrarily, is committed to. Thus, simple guarded-term pattern-matching
compilers, such as that of Peyton-Jones [9], are not sufficient for these languages.

Naive implementations of nondeterministic clause matching semantics use a technique
incorporated in several systems [15} such as Gregory’s SPM [4]. In this technique, the match
is performed left-to-right. However, if the match could suspend because of an unbound
DSA variable, that variable is added to a suspension sef, and matching of that clause is
abandoned. If the suspension set is nonempty and no clause can be matched, the match is
suspended in such a way that binding of any DSA variable in the suspension set will cause
the match to be completely retried. If the suspension set is empty and no clause can be
matched, the match has “failed.”?

In CCL implementations, clause matching speed is typically the limiting factor in pro-
gram execution speed, for several reasons. First, the other execution step, expanding body
calls, is typically simple and efficient. Second, the interaction between suspensioen and
matching (to avoid rework) is typically difficult to implement efficiently. Finally, although

'fn flat CCLs with eventual tell unification, match failure implies program failure. Other CCL language
variants handle failure locally, see [13, 15]. This distinction is not relevant to this paper.

much research has been done on efficient clause matching for CCLs (Section 3) most CCL
implementations still use naive matching techniques. While these naive techniques are cor-
rect and simple to implement, they can lead to serious inefficiencies in execution for three
reasons: 1) more suspensions may be performed than strictly necessary to select a clause; 2)
a suspended match will be entirely repeated on resumption, possibly performing redundant
tests, and 3) redundant tests may be performed because of the left-to-right match order.

3 Related Work

Inefficiencies in naive clause matching algorithms were recognized some time ago. Hickey
and Mudambi {5] addressed this “indexing problem” for Prolog. They introduced the con-
cept that one should first select a head argument based on some better criteria than mere
left-to-right ordering: this was called the “caring” heuristic (defined below in context of
CCLs). This influenced Kliger and Shapiro’s seminal work on decision graphs and decision
trees for clause matching in CCLs (7, 8]. More recent work on Prolog indexing, using a tech-
nique involving string-matching automata, has been reported in [11}, although this work
is not directly relevant due to the different Prolog semantics (in particular top-to-bottom
clause matching and the absence of suspensions).

In a nutshell, Kliger’s decision tree algorithm is based on the idea that each argument
test in the sequence of decisions made during clause matching can be thought of as splitting
the clauses into two groups or residuals. The first group contains clauses which are still
matching candidates if the argument has some given value from among a set of values. The
second group contains clauses which are no longer matching candidates if the argument has
any of these values. One can thus think of each decision as a node in a search tree. The
naive search tree is effectively linear, which is bad because the number of tests which must
be performed before the match is complete (a clause is committed) is equal to the height of
the tree.

Kliger’s indexing heuristic effectively encodes two basic criteria for matching order.
The first criterion is based on the idea that a clause “cares” about a head argument if
that argument is a constant in the head or is used by a guard test. The primary criterion
used to determine matching order is to match first the arguments cared about by the most
clauses. The secondary criterion is based on the idea that the code generated for the decision
trees will be smaller overall if the nodes near the root have the smallest branching factors
(because these tests will then be coded once instead of multiple times). This idea motivates
the “minimum variability” criterion: among arguments with equal caring, choose the one
whose tests have the smallest number of interesting results.

The decision tree algorithm is efficient, but it has an important drawback which Kliger
addresses: the worst-case size of the tree (and thus the size of the code generated by a
compiler for the match) is exponential in the size of the target program, and this complex-
ity unfortunately occasionally (albeit infrequently) arises in practice [6]. This led to an
ingenious modification of the technique to produce decision graphs, which sacrifice a small
amount of worst-case speed in order to achieve a major reduction in worst-case size. This
is accomplished by constructing, instead of a decision tree, a DAG of decisions such that

several tests may jump into the same code (effectively a continuation) to handle failure
cases. The worst-case size and speed of this algorithm are both polynomial in the size of
the match, although Kliger shows that the speed is comparable with that of decision trees
in practice [6)].

Kliger’s algorithms have been influential in the CCL implementation community. Ex-
amples include the decision graphs used in the Monaco [14] FGHC compiler and a variant
of decision trees developed for determinacy testing in Andorra-like language compilation
[16].

Debray et al. [2) proposed an alternate indexing heuristic, intended to allow optimal
native code generation from a decision tree. This heuristic is based on the idea that a more
realistic measure of which test should be performed first is to maximize the information-
theoretic entropy dispelled by the test, i.e., maximize the amount of information the test
gives per unit test cost. They combine this technique with an algorithm for keeping track
of the implications of each test (by constructing equivalence classes of tests) to generate de-
cision trees having near-optimum performance on certain classes of problems. For example,
lexical analyzers are prime candidates because the probability of each outcome of a test can
be estimated.

Podelski and Van Roy [10] proposed a general algorithm for incremental entailment
(and disentailment) treated as term constraint satisfaction. The incrementality addresses
the problem with the naive algorithm noted in Section 2 and shared by Kliger’s algorithms,
namely that clause matching must be completely restarted after every resumption. Podelski
and Van Roy’s algorithm achieves full incrementality, never unnecessarily repeating tests
on resumption, but at the expense of implementation difficulty. The algorithm proceeds by
attempting to find a sequence of tests which will distinguish the objects. If suspension is
necessary, a structure they call the “beast” is constructed, which maintains the information
necessary for resumption. The algorithm as given appears to not consider the case of
arithmetic inequalities. Nonetheless, this algorithm represents an important contribution
to this area, which needs to be further explored. In particular, we believe their algorithm
to be unique in correctly handling incremental, dynamic passive unification: this portion of
their algorithm should be usable in conjunction with our technique.

Peyton-Jones (9] summarizes the state-of-the-art in term pattern matching for non-
strict functional languages; the pattern matchers produced by his technique are optimal
for this sort of application. Because his work concentrates mainly on a language with
deterministic (left-to-right top-to-bottom) matching semantics, it is not directly relevant.
However, the complication of non-strict matching semantics does require dealing with many
issues analogous to those of dealing with DSA variables. The overall design of our algorithm
was strongly influenced by Peyton-Jones’ compiler. Our algorithm also seems to have
notable similarities to Al pattern-matching algorithms such as Forgy’s Rete [3] and its
successors, although we have not yet had time to explore these similarities.

4

Argument Matrix M
nil X X X X V¢9) 1)
pair/2 | keep/2 | vuayy | voa2 | van | ve | {valn =0}
pair/2 | keep/2 | voan | vaus | a2 | v | {vay <0}

Argument Index G
LM [[,1,1)(1,1,2) {(1,2) [{2) | guards |

Suspension Columns k = @

Figure 2: Example Program Initial Match State

nil X X X X /]
pair/2 | keep/2 | vaan | vaan | Yo [{2aany 20} [x [x [x] xJvm [0]
pair/2 | keep/2 | v | vaa2 | vao | {vaa <0}

{(b) Test (1) = nil
(a) Reduce (2}

Figure 3: Example Program Next States

4 Clause Matching Automata

In constructing the algorithms described in Section 3, we first define a common terminology.
An argument denotes, not just the top-level arguments of a clause, but subterms of the top-
level arguments as well. Thus, the second clause of our example program of Figure 1 has
not two arguments, but six. We will often label an argument with the sequence of indices
(or path) which leads to it, e.g., the argument V of the second clause is indicated by the
sequence (1,1,2). A cleuse match (or simply match) is the action of choosing a particular
clause for a procedure. A test is the act of examining some particular argument. The
fundamental semantic values to be tested for are: k € Z (integer constants, such as 3 and
—3), f/n € A x Z (functors of a given arity, such as p/3. Atoms are merely functors of
arity 0), and v € V (unbound variables). Repeated occurrences of a variable in a clause
head are transformed to passive unification guards during an initial “fattening” pass.

A match is compiled into a sequence of abstract instructions, e.g., those of the Monaco
system [14]. For simplicity of the exposition, we limit ourselves to strict two-argument
guards, specifically arithmetic comparisons and term equality and inequality. There is,
however, one important modification to the match instruction set necessary to achieve
incrementality in our system. A suspension reports, along with each variable on which it is
suspending, a match code address at which to resume execution if this variable is bound.
This address is effectively a continuation, which places the CMA in a correct match state
to resume, as described below.

A procedure’s clauses are rewritten into an abstract form which is amenable to further
processing. First, whenever possible, explicit term matching in the guard is incorporated
back into the head. Second, all variables of the procedure are renamed to be of the form v,

where s is the path leading to v. Our canonical form, which we will call a “match state” a,
will consist of

s A matrix M, of values to be matched, where the rows of the matrix correspond to
clauses, and the columns of the matrix to arguments. An additional column vector
contains the set of explicit guards associated with each clause.

e A row vector G, which keeps track of the argument corresponding to each column of
M. This is similar to the 9 function in Kliger [6] and Tick and Korsloot [16].

¢ A set of column index/match state pairs k,, with k, # 0 iff @ is a “successor state.”
The use of k, is explained in detail below. This corresponds to the suspension stack
in the standard schemes.

The elements of M are either a value to be matched, or a ‘x’ corresponding to an argument
not present in a clause. As an example, Figure 1, and its corresponding initial match state,
shown in Figure 2. A partial order @), is imposed on the columns of M,. This is necessary
because the subterms of a term cannot be matched before the term itself is matched. The
partial order can always be inferred from G,, and thus need not be maintained explicitly.

The key idea of the CMA is to construct a DAG of match states such that successive
states are reduced, where a state « is reduced if M, is reduced or if |k,| increases. A matrix
M, is reduced by removing a column and possibly one or more rows, in one of three ways.
First, a test may be performed on an argument column, and that column and any rows
incompatible with the test result are removed. Second, a guard test may be performed and
removed from a guard set, again removing rows incompatible with the test result. Third, a
column consisting only of variables and don't-cares x can be eliminated. To increase |k, |,
a column index is added to k. and that column is eliminated from M,.

Thus, a deterministic finite automaton is constructed whose states are match states a;
and whose out-transitions are tests of a column in the current state. As an example of this,
consider again the initial match state o of Figure 2. Figure 3 shows two possible tests to
perform first on «, and the resulting match states o/, In Figure 3b, the next state shown is
that in which the test is true (other possible results are for the test to be false, or for the
argument being tested to be unbound). Note that the tests which may be performed are
exactly those which test the topmost set of columns in the partial order Q,. Once a value
has been found in a column, that column is removed from Q4 — if the value was a functor,
this exposes the arguments of the functor for testing purposes.

As arguments become available, guard tests may be performed. When a guard test has
been performed, it is discarded from the match state: thus, eventually all guard tests will be
performed. Passive unification and disunification are typically expensive, arithmetic tests
frequent. It is thus desirable to keep track of what tests have been performed so far when
reaching a given match state, in order to avoid guard and argument tests whose outcomes
can be predicted from previous computations, as is done in Van Roy [12] and Tick and
Korsloot [16).

In a state with matrix M, containing a single row, the corresponding clause may commit.
The tests implied by the remaining columns must still be performed, but if they fail, then
the entire match should fail. The initial match state ap of a CMA is determined by the

static procedure. The set of (accepting) final match states {&;, ..., &;} will in general contain
one state for each clause. However, some clauses may not be represented, either because
they are logically unreachable (e.g., their guard tests are not satisfiable) or because they
are entirely subsumed by other clauses. In either case, it is useful for the CMA construction
algorithm to issue a warning, because this behavior is probably not what the programmer
intended. Note that there must always be at least one transition out of any match state,
although it may be a failure transition. When a matrix M, contains no more columns,
but more than one row still remains, then the result of the computation depends on k,. If
ko, = 0, then the match fails. Otherwise, the match suspends on k,.

In some cases, the CMA may attempt to test a procedure argument before it is bound.
The CMA will discover this problem as the result of a boundness test. In general, some
clauses may not require the desired argument position to be bound. Thus, the CMA can
transition to a state which tests other arguments without reducing M. When it does this,
the argument being bypassed and the match state in which this occurred are recorded in the
“successor set” kq. If, however, no further match progress can be made, then suspension
will be necessary. At this point, &k, will contain a set of variables on which to suspend, and
a match state in which matching should resume for each variable which may later be bound.
Note that it is always correct to resume a match at the initial match state. However, the
retention of later match states in ky enables incremental matching, by restarting the match
at the lowest (closest to the leaves) safe state in the CMA.

The CMA must be acyclic; otherwise it could infinite loop. The major worry about
cycles is that we might move cyclically through a series of states with identical M,. To
avoid this, it is sufficient to ensure that, when moving from « to o' with M, = My, |kl
always increases. Since |k,| is bounded by the number of arguments, this will ensure that
no cycles are formed. To move to a new match state, we select an argument to test using an
ordering heuristic, or CMA construction heuristic. Several such heuristics are discussed in
Section 5. The argument selected must also be consistent with the partial order Q. There
will in general be several transitions out of a state a: one for each of the possible values of
the argument ¢ being tested, and one corresponding to the case where the argument being
tested is unbound. This last transition o leads to a state o’ in which M|, is not reduced,
but in which

kot = ke U {{i,a)}

which reduces a by increasing |kq|. Thus, if {7, 8) € kg, this implies that argument ; was
examined in match state g and found to be unbound.

To make all of this concrete, Figure 5 shows one possible CMA construction for our
sample program. To save space, only the matrix portion M of the match states is shown,
and the ellipses in the figure indicate sequences of states and transitions not shown. In its
basic outline, this construction is produced by all three of the heuristics discussed in Section
5. The argument to the suspend() states is a list of columns of the initial matrix M,, on
which to suspend. The transitions leading from suspension to resumption are not shown
in the figure. If these transitions all lead back to the initial state of the CMA, then the
CMA as shown is a traditional restarting matcher rather than an incremental one. A partly
incremental CMA could be constructed, for example by allowing the suspend(3) to resume

7

in the state immediately above it in the diagram. The construction of partly incremental
CMAs allows a space/efficiency tradeoff, as a fully incremental CMA would need to be
somewhat larger than the one shown. From the CMA representation of a clause match, it
should be apparent how to generate the matching code for an abstract instruction set. The
states of the CMA are encoded in the labels of the matching program, and the transitions
from state to state are performed by matching instructions.

5 A Heuristic For Efficient CMA Construction

There is a large amount of freedom in the construction of correct CMAs for a given proce-
dure. Indeed naive algorithms can be implemented via CMAs. We would like to do better
than this, however, along several dimensions. In order of importance:

1. We want our CMA to perform a minimal number of suspensions during any clause
match. Because suspension significantly dominates the cost of matching, such a CMA
improves performance even for programs that suspend with moderate frequency.

2. We want an incremental CMA. As described previously, the CMA technique allows
incremental matching, and there are applications with large procedures (e.g., our
Monaco assembler has a procedure with over 100 clauses), where it is of tremendous
performance benefit.

3. We want a CMA requiring minimal time (linear tree height).

4. We want a CMA of minimal size. In particular, it would be nice if the CMA was of
polynomial size.

Achieving the first two goals with a CMA is straightforward. The final two goals, however,
are provably difficult; in fact of intractable worst-case complexity [5]. Thus, we need a
heuristic CMA construction technique which appears to approximate the third and fourth
goals well in most cases likely to be encountered in practice, and which does not violate the
first two goals.

A CMA construction heuristic we call mazmin aims to satisfy these goals. The basic
idea behind maxmin is similar to that of Kliger’s decision graph heuristics, namely, test-
ing “important” arguments first. Indeed, in many common cases the CMA produced by
adapting Kliger’s heuristics will be the same as those produced by maxmin. However, we
believe that we can improve upon Kliger’s heuristics, and thus produce reasonable code size
in almost all practical cases, using our maxmin heuristic.

The role of the heuristic in CMA construction is to choose, for each CMA match state,
what tests should be performed. These tests produce successor states, and thus control the
shape of the graph. We say a heuristic is “admissible” if it always reduces a match state,
in the sense of the previous section. Thus, the real purpose of the heuristic is to select the
order in which tests are performed. Consider the left-to-right heuristic which is certainly
admissible because it will always either reduce the current state by testing or delay by
placing a column in k,. However, there are cases in which a naive left-to-right match is far
from optimal.

§2
TT1T1 52
x| 2|2 §
x| x|3

(a) Left-To-Right

X |T|o X ||
X|=|lm || i]o
[l
T

(b) Kliger's

Figure 4: Pathological Cases for Heuristics

Consider the initial match state of Figure 4a. In this state, a left-to-right match may
discover that the first argument is bound to 1, and the second to 1, but that the third
is unbound. Upon resuming after the third argument is bound, the match may discover
that this argument is bound to the value 3. But in this case, the matches against the
first and second arguments were redundant. Worse yet, a naive left-to-right match, upon
finding no arguments bound, has to suspend on all three arguments. When it resumes to
find the first argument bound to 1 but the second and third still unbound, it will be forced
to immediately suspend again to obtain these values. All of this illustrates that an inferior
match heuristic may have both unnecessary suspensions and poor incrementality.

When adapted to CMA construction, Kliger’s heuristic (maz caring + min variability)
is an admissible heuristic, because it merely changes the order in which arguments are
considered during pattern matching. The concept behind Kliger’s heuristic is to perform
tests which are most likely to be “useful” earliest, where a test is useful if it gives good
information about clause selection whether it succeeds or fails. Unfortunately, Kliger's
heuristic is of questionable utility in some cases. Consider the partial procedure of Figure
4b. The max caring heuristic suggests that the second argument be tested first. This will
require a boundness test and a seven-way switch. Note that in the case where the second
argument is unbound, a boundness test and a two-way switch will still be required on the
first argument before suspension. If the arguments were tested in the other order, however,
the test on the first argument would eliminate three of the clauses if the first argument was
bound to a matching value (i.e., a or b), and six of the clauses if it was bound to some other
value. This problem seems to arise because the primary heuristic, max caring, sometimes
conflicts with the secondary heuristic, min variability. These conflicts arise in practice so it
is desirable to design a single heuristic which smoothly incorporates both of these ideas.

Our maxmin heuristic attempts to achieve the desired effects of Kliger’s max caring and
min variability heuristics in a single heuristic, effectively incorporating the philosophy of
Debray’s probabilistic technique. It is an open question whether our method is equivalent
to Debray’s method when no clause selection frequency information is known. The basic
idea behind our heuristic is the desire to have each test eliminate as many clauses from
consideration as possible. The difficulty is that in some clauses some argument values are
not needed, either because they correspond to variables in the clause head, or because they

n| x| x{x!x 0
plk | {7 <0} Key
- — n = nil/0
p 7 (vflv | {#>0} b = pair/2
Mo, r k = keep/2
o U=,
o v = other vars
2 x = don't care
___ u = unbound
nij X | X)] r = reduce
pllk |2 | {7 <0}
pllk |7 | {# >0}
/ v [X[x[¢
x| x 0 kfz| {7 <0}
kfz | {s >0}
o kl|z | {7 <0}
o ko | {z >0} °
l k - 1d(1,2,3)
sus ey
[[z<al R
commit(1l} — =
7| {8>0} .
e o
o
commit(2) /f (U suspend(2,3)
7 [{o>0}
bt \ u
commit(3) suspend(3)

Figure 5: Example CMA for Left-to-Right Match

10

are not part of the clause head pattern. Thus, these clauses will not be eliminated by a
match on this argument. We formalize this notion by the notion of a set of segments of a
procedure argument: a segment is the set of clauses which are still match candidates if the
argument takes on some value. This vaguely corresponds to Kliger's residuals [6]. Thus,
each segment of a procedure argument will contain all the clauses which do not care about
the argument, plus all the clauses where the argument takes on some particular value. Thus,
the segment set for the first argument of Figure 4b is

{{81,82,83,54,87},
{85, §6,68,§4,§7}}

and the segment set for the second argument is

{{81,88}, {82, 58}, {§3, 88}, {84, 88},
{85,88}, {86,58}, {§7,88}}

The maxmin heuristic is as follows: select for matching a procedure argument with the
maximum-size minimum segment. Note that in many common cases this will achieve the
effect of Kliger’s minimum-variability heuristic: An argument whose values are shared by
many clauses will have large segments, and thus be selected, since it has low variability.
On the other hand, an argument’s caring is not directly a factor in the maxmin heuristic:
the discriminatory power of an argument is more directly measured by segmentation. The
basic effect to be achieved is that of putting nodes with low branching factors near the top
of the tree, and our heuristic accomplishes this.

The maxmin heuristic is merely an ordering heuristic for clause tests, so like the other
heuristics it is admissible. We cannot provably achieve minimum suspension, but we will re-
duce the number of suspensions, since we will attempt to perform important tests first. We
achieve incrementality by restarting the CMA in the lowest safe match state using the tech-
niques previously described. Because the maxmin heuristic is essentially an improvement
of the Kliger heuristic, the time efficiency of maxmin CMAs should be acceptable.

The size of the CMA generated using our heuristic is problematic. Qur CMAs should
typically be no larger than Kliger decision trees. Further, there is reason to believe that our
heuristic will in some cases avoid the pathologically large code sizes produced by Kliger's
heuristic. We have not yet explored decision graph construction using CMAs.

6 Disjuncts of Conjuncts

As we have seen, the incrementality of our technique arises primarily from the inclusion of
a resumption continuation in the suspension instruction. This might naturally lead one to
ask whether other small modifications in the runtime support for pattern matching might
lead to more efficient matches.

One particular source of inefliciency is that, regardless of the quality of the heuristic
used, there may be cases in which CMA execution is resumed, and then suspended again.
This results from the fact that the runtime system only allows suspension on disjuncts
of arguments, i.e., matching will be resumed when any argument becomes bound. The

11

§1 §2 §3 84 §1 §3 84
* * * *

_ . x| - | * | - * [% |
i = N Y e -l * -1 -

STP St:l:lp (b) Abstract Matrices

(a) Implementation

Figure 6: Disjunct of Conjuncts

case where the match immediately suspends again on some subset of the arguments it was
suspended on previously is relatively common, and relatively expensive. What is needed
is the ability to suspend on conjuncts of arguments, resuming only when all arguments
in the conjunction are bound. Merely suspending on conjuncts is insufficient for correct
implementation: because of non-determinism, it may be impossible to tell which of several
arguments will become bound and allow a match to complete.

Thus, an improvement in functionality is to allow suspension on a disjunction of con-
juncts, i.e., suspend until one of several sets of arguments is entirely bound. This can be
implemented in a straightforward fashion using the technique illustrated in Figure 6a: rather
than being hooked directly to suspension slips, variables are hooked to a conjunct counter
which is initialized to the number of variables in its conjunct, and which itself points to the
suspension slip for a goal. When a variable is bound, its conjunct counters are decremented:
only when a conjunct counter reaches zero is its goal awakened. Note that this strategy
may convert a program which would otherwise suffer match failure into one which instead
deadlocks; this is acceptable under most CCL semantics.

Disjuncts of conjuncts of suspension sets can be generated as follows. Elements of the
initial argunment matrix are abstracted to either “+” if they are ground or guard inputs, or
“7 if they are variables or don't cares (x). One example is shown on the left in Figure 6b.
At a leaf match state, where suspension will occur, examine k,. Construct a new abstract
matrix in two steps. First, remove every column corresponding to an argument not in k.
Next, remove all empty rows. A row in the resulting abstract matrix represents a conjunct
of suspended arguments. The rows together represent a disjunct: any of them can resume
the suspended match. Returning to Figure 6b, suppose k, contains §1, §3, and §4. The
transformed matrix is shown on the right. We suspend on (§1 A §4) V (§1 A §3).

7 Conclusions
We have shown how a unified approach to committed-choice language clause matching can

be achieved with a clause matching automata (CMA) formalism. This formalism is beneficial
for several reasons. First, it is general, allowing a number of clause matching techniques to

12

be described. Second, it is easy to understand and use in code generation. Finally, and most
importantly, it allows some extensions to produce efficient clause matchers. In particular,
through a minor runtime system extension, it allows incrementality.

We have also suggested a clause matching heuristic, mazmin, which should allow good
clause-matching performance in real programs, for two reasons. First, it leads to minimal
numbers of suspensions. Second, it tests in an efficient order. This heuristic is similar to
Kliger’s heuristic for decision trees and graphs.

Finally, we have suggested an implementation technique by which the effectiveness of
incremental suspension might be enhanced. This technique allows suspension on disjuncts
of conjuncts in order to assure that a match may complete on resumption.

Future work includes implementing the scheme and measuring its utility. Formal proofs
of the correctness and complexity of the technique would be useful. In addition, further
examination of the work of Podelski and Van Roy [10] should be done in the context of
CMAs.

Acknowledgements

B. Massey was supported by a grant from the Institute of New Generation Computer
Technology (ICOT). E. Tick was supported by an NSF Presidential Young Investigator
award, with matching funds from Sequent Inc.

13

References

(1] Z. M. Ariola, B. C. Massey, M. Sami, and E. Tick. Compilation of Concurrent Declar-
ative Languages. New Generation Computing, 1995. Submitted to special issue. Also
available as University of Oregon Technical Report CIS-TR-94-05.

[2] S. K. Debray, S. Kannan, and M. Paithane. Weighted Decision Trees. In Joint Interna-
tional Conference and Symposium on Logic Programming, pages 654-668. Washington
D.C., MIT Press, November 1992,

[3] C.L. Forgy. Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern
Match Problem. Artificial Intelligence, 19:17-37, 1982.

[4] S. Gregory. Parallel Logic Programming in PARLOG: The Language and its Imple-
mentation. Addison-Wesley Ltd., Wokingham, England, 1987.

[5] T. Hickey and S. Mudambi. Global Compilation of Prolog. Journal of Logic Program-
ming, 7(3):193-230, November 1989.

[6] S. Kliger. Compiling Concurrent Logic Programming Languages. PhD thesis, The
Weizmann Institute of Science, Rehovot, October 1992.

[7] S. Kliger and E. Y. Shapiro. A Decision Tree Compilation Algorithm for FCP(),:,?).
In Internetional Conference and Symposium on Logic Programmaing, pages 1315-1336.
University of Washington, MIT Press, August 1988.

(8] S. Kliger and E. Y. Shapiro. From Decision Trees to Decision Graphs. In North Amer-
ican Conference on Logic Programming, pages 97-116. Austin, MIT Press, October
1990.

[9] S. L. Peyton-Jones. The Implementation of Functional Programming Languages. Pren-
tice Hall International Ltd., 1987. Chapters 4 and 5.

[10] A. Podelski and P. L. Van Roy. The Beauty and the Beast Algorithm: Testing En-
tailment and Disentailment Incrementally. In International Logic Programming Sym-
posium. MIT Press, November 1994. In press.

[11] R. Ramesh, I.V. Ramakrishnan, and D.S. Warren. Automata-Driven Indexing of Prolog
Clauses. Journal of Logic Programming, 1994. In press.

[12] P. L. Van Roy. Fast Logic Program Ezecution: Design and Implementation of the
Aguarius Prolog Compiler. Intellect Books, Oxford, 1993.

[13] E. Y. Shapiro. The Family of Concurrent Logic Programming Languages. ACM Com-
puling Surveys, 21(3):413-510, 1989.

[14] E. Tick. Monaco: A High-Performance Flat Concurrent Logic Programming System.
In PARLE: Conference on Parallel Architectures and Languages Europe, number 694
in Lecture Notes in Computer Science, pages 266-278. Springer Verlag, June 1993.

14

[15] E. Tick. The Deevolution of Concurrent Logic Programming Languages. Journal of
Logic Programming, 1995. In Press. (Also available as University of Oregon Technical
Report CIS-TR-94-07).

{16] E. Tick and M. Korsloot. Determinacy Testing for Nondeterminate Logic Programming
Languages. ACM Transactions on Programming Languages and Systems, 16(1):3-34,
January 1994.

