Designing Financial Swaps
with CLP(R)

Evan Tick

CIS-TR-94-21
November 1994

Abstract

This paper describes how to design and evaluate financial swaps using CLP(R), a
constraint logic programming language over the real numbers. We give a methodology
for handling both interest rate and currency swaps. A large real-life example is given to
illustrate the techniques. The analyzer is useful to swap practitioners by allowing quicker
and more flexible experimentation over the design space than is currently possible with
spreadsheets.

DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE
UNIVERSITY OF OREGON

Contents

1

2

Introduction

Review of Swaps

2.1 Interest RateSwaps
2.2 Currency SWaps. . . . v v i it i i e e .

Review of CLP(R)

Swap Analysis in CLP(R)

4.1 SymbolicQutput

Kodak Example
Related Work
Conclusions

References

A Appendix: Source Program

.............

.............

13

18

18

19

20

“Les offaires, c'est bien simple, e'est 'argent des autres.”
Alexandre Dumas the Younger
Lo Question d’Argent, 1857

1 Introduction

Swaps are financial instruments that allow two parties to exchange interest payments in
perhaps different currencies. A swap is a powerful building block from which exchange
networks can be built, resulting in redistribution of economic surpluses and risks. Usually
an intermediary (financial institution) designs and implements the swap network, taking a
bit of the profit as payment. A key criterion for a swap network to be viable is that no
party must bear risk beyond its risk preference. For the intermediary, this usually means
no risk, i.e., all stochastic factors must “cancel out” at the intermediary (we shall see this
later).

This paper describes how to design and evaluate financial swaps using CLP(®), a con-
straint logic programming languages over the real numbers [5, 2]. Although a similar lan-
guage would do, e.g., GDCC [1], we chose CLP(R) for its robustness and availability. The
proposed method is of interest to swap practitioners by allowing quicker and more flexible
experimentation over the design space than can be accomplished with current methods,
e.g., spreadsheets. For example, exploiting the ability of constraint languages to solve lin-
ear equations for any combination of unknown variables, a swap network can be partially
constructed without binding all the input parameters. The system will then return the
relationship among the unknowns, e.g., give the relation between two interest rates or long-
term exchange rates to guarantee a profit within a certain range for a given entity. Using
such a tool encourages flexible experimentation and optimization that is not possible with
spreadsheets, where the equations can be “solved” in only a rigid fashion.

This paper is organized as follows. An overview of swaps is given in Section 2. Section
3 reviews CLP(R). Section 4 discusses how the swap analyzer is designed and implemented
in CLP(®). A large example, the Kodak swap, is explained in Section 5. Conclusions and
future work are summarized in Section 7.

2 Review of Swaps

Hull {3], Shapiro [8], and Macfarlane et al. [7] are just a few of the general expositions
about swaps. Practitioner’s jargon concerning the many varieties of swaps can be found
in Layard-Liesching [6]. The subtle assumptions involved in the zero-sum attributes of the
swaps discussed here are clarified by Turnball [9].

2.1 Interest Rate Swaps

Figure 1 illustrates the simplest interest rate swap wherein the two parties A and B have
loans of the same principle amount, P. The type of loan we consider extends over some
number of periods #; for 1 < i < n. Payments are made (according to the interest rate)
each period t; followed by a lump-sum payment of the entire principle at the last period ¢,.

11.35%

LIBOR

Figure 1: Interest Rate Swap (Building Block)

The swap consists of A making fixed interest payments of 11.35% to B in exchange for
receiving floating LIBOR! payments from B. For example, a scenario in which this makes
sense is when A has a floating-rate loan pegged to LIBOR and B has a fixed-rate loan.
We do not show these lenders in the swap network shown in Figure 1. For reasons of risk
preference, A wants a fixed rate and B wants a floating rate, and so they swap interest
payments.

A swap is effectively a simultaneous exchange of bonds. Using net present valuation,
we can compute any of these bond values:

i P
F- §1+r)t- T+

where s; is the loan interest rate for period 7 and r is a fixed market rate. Here we assume
that the bonds are risk-free and have the same principle P and length of term n. If we relax
our restriction of a fixed market rate, we get:

= P
= an_ (1+Tk) M= (T4 me)

t=1

where r; is the market rate for period k. Although the latter formula is implemented in
our swap analysis tool, for simplicity we explain swaps using the former equation. Thus for
instance we see:

B 0.1135(P) P
B = P- Z (A+r)E (14

t=1
. LIBOR(P) P
B = P-Y G+ A+

=1
TA = Bl—Bg

B = Bz—Bl

Another simplification is to remove the dependence on LIBOR; for all periods i. Hull {3]
briefty discusses how to do this. LEffectively, B, is the same for any value of n > 1. Thus

'London Interbank Offer Rate — any floating rate will do for our purposes.

11.35% 11.25%

LIBOR LIBOR

Figure 2: “Plain Vanilla” Interest Rate Swap

pick n = 1 to get the simplest relation, based only upon LIBOR;. Assuming that all parties
are risk-free banks, this can be justified by having the initial bondholder pass the bond
through to another party after one period. Thus all subsequent cash flows cancel, leaving
only the cash flows at the end of the initial period. Effectively the rate floats to ensure that
this simplification holds!

From this simple building block we can build more sophisticated networks. Figure 2
shows dual offsetting swaps through an intermediary B. Clearly A effectively transforms a
floating to a fixed loan, and C transforms a fixed to a floating loan. B cancels its risk by
passing the floating payments through from C to A. If we assume neither A nor C defaults,
then B has no risk. In addition, B takes a profit of 0.1% for its service. Valuation gives the
additional equations:

n.0.1125(P) P
S (I+7)s (147
TA = B1— B
7B B3 — B
Tc = Bs— B

By = P-

For this simple example, the profit to B can be computed more directly; however, in complex
networks, the general formula is needed. To simplify things, we may elect to assume that
the market rate is fixed over the length of the loan. In any case, it is critical for evaluating
this formula in CLP(R) that the market rate(s) be known e priori, otherwise nonlinear
equations arise.

In addition to previous bond-like loans, amortized loans, wherein the principle is incre-
mentally repaid, are easily modeled. Qur system supports a library of these various types
of loans,

2.2 Currency Swaps

Figure 3 shows a simple currency swap building block. Here parties A and B lend each
other principles in yen and dollars, respectively, of approximately the same value. They
then pay each other interest based on those principles, until the end of the loan, when the
principles are repaid. To alleviate foreign exchange risk at period t, when the principles
are repaid, a forward exchange rate, Iy may be agreed upon in the swap agreement. For

3

Bank of Japan Bank of America
11% (%)

A B
12% (Y)

Figure 3: Currency Swap (Building Block)

11% ($) 10.5% (3)

12% (Y) 11.8% (Y)

Figure 4: “Plain Deal” Interest Rate Swap

example, suppose the original principles are Pg and Py, where Ps = §g/y Py at 1o given the
spot exchange rate Sg;y. Then at ¢, parties A and B might replace principles P{ and Py
respectively, where Fg = Fg,y Py.

The previous bond valuation formulae still hold, where the dollar bond value is B; and
the yen bond value is By:

T4 = B1 - Bz = S]f/sBl — Bg
TR = Bz - B] = Ss/y.Bg — Bl

In the above we compute the current value of the swap to parties A and B in today’s yen
and dollars respectively.

From this simple building block we can build more sophisticated networks. Figure 4
shows dual offsetting swaps through an intermediary B. Valuation of the swap follows from
the previous discussion. A circus swap? is a combination of plain vanilla interest rate swap
and plain deal currency swap [3], i.e., basically the swap of Figure 4 with either currency’s
loans on a floating rate. We will see an example of this in the larger example discussed in
Section 5.

In summary, the building blocks for composing swap networks use elementary cash flow
mathematics, which facilitate their expression in CLP(®). The key underlying stochastic
variables — floating interest rates, market investment rates, and currency exchange rates
— are problematic. Although one could couple our proposed tool with a sophisticated
models for predicting these rates, the issue of prediction is orthogonal to that of building
and analyzing the swap networks themselves. Therefore we assume in this paper that these

2Picadilly or Ringling Brothers?

fla-t(Start, End, _, _, _, O) := Start >= End.
flat({ Start, End, Principle, Rate, MR, Value) :-
Start < End,
Value = Principle — Payments
loan{ End-Start, Principle, Rate/100, MR/100, Payments).

loan{ Time, In, Rate, MR, Value)} :-
Time > 0, Time <= 1,
Qut =In/ (1 + MR * Time)},
Value = Out * (1 + Rate * Time).

loan{ Time, In, Rate, MR, Value) :-
Time > 1,
Out =In/ (1 + MR),
Value = Next_Value + { Dut * Rate),
loan(Time-1, Out, Rate, MR, Next_Value).

Figure 5: Flat Payment Loan Valuation in CLP(®)

stochastic rates are given over the swap term, either as a fixed value or a vector of varying
values.

3 Review of CLP(R)

CLP(R) is constraint logic programming language over the domain of real arithmetic. Pro-
grams appear in syntax to be Prolog programs, i.e., data and control structures are the
same. The semantics of unification, however, are vastly different. We illustrate the lan-
guage with a simplified version of a loan of the type previously discussed, shown in Figure
5. This procedure computes the net present value of fixed interest loans with fixed market
rates only (see Appendix A for more general valuation procedures). Procedure £1at/6 has
the following parameters: the Start and End periods of the loan, the Principle, the fixed
loan Rate, MR (a fixed market rate), and Value (the net present value of the loan).

If the length of the loan is not positive, the loan value is zero (f1at/6 clause 1). Other-
wise, the loan value is the principle minus the payments, computed by loan/5, starting at
the next period. Procedure loan/5 computes the payment value in what can be considered
an iterative (or recursive) manner; however, the language lends itself to a more elegant
declarative semantics. In effect, loan/5 (and any procedure invocation in general) is true if
the equations it engenders are consistent over the domain of the reals. Furthermore, these
equations are not necessarily evaluated in any strict order: CLP(R) has an internal equation
solver that is transparent to the programmer.

The spawned equations form a recurrence. Each successive value is equal to the next
value plus the discounted principle multiplied by the interest rate (loan/5 clause 2). The

final value (at the final period) also includes payback of the entire principle (1oan/5 clause
1). The final period can be fractional, requiring us to scale the loan and market rates by
the remaining time.

Examples of queries to this program are instructive. The value of a three year $100 loan
at 10% assuming a 5% market rate is:

?7- fiat(1, 4, 100, 10, 5, V).

¥V = -13.6162

Alternatively we can solve for loan rate:
?- flat(1, 4, 100, R, 5, -14).

R = 10.14

However, we cannot solve for the market rate because the function is nonlinear in this
variable. More strangely, we cannot solve for the time. For example, trying to solve for the
ending period:

?- flat(1, E, 100, 10, 5, -14).

E <=2

1 <E

114 = _t13 * (0.1+E + 0.9)
100 = (0.05*E + 0.95) * _t13

#*% (Maybe) Retry?

The “maybe” caveat in the result indicates that the non-linearity could not be removed
and that the solution may be inconsistent. We can avoid CLP(R) confusion by simplifying
clause 1 of 1loan/5 as:
loan{ Time, In, Rate, MR, Value) :-
Time > 0, Time <= 1,
Value * (1 + MR * Time) = In * (1 + Rate * Time).

There is an art to making such transformations! With this change, the system automatically
solves:
?- flat(1, E, 100, 10, 5, -14).

E = 4,55

It is important to note that to solve for time, the final fractional scaling of the loan rate is
required. Without this, 1oan/5 would not be able to ground the recurrence when solving
for time (E), i.e., it loops forever. Although the analyzer we built uses loan procedures that
are more sophisticated that this, the foundation is the same. Additional complexity arises
from (optional) variable loan and market rates and amortization.

4 Swap Analysis in CLP(R)

This section describes the design construction of the swap analyzer, as a series of increas-
ingly sophisticated models. Figure 6 shows an interest rate swap and its straightforward

EA =
13.25%
AC =
11.35%
A
CA =
LIBOR
AG =
LIBOR + 0.5
G

r
I'B =
LIBOR + 0.75

CB =
11.25%

B
BC =
LIBOR

BH = 11.0%
H

neti(Info, [Pi_4A, Pi_B, Pi_C]) :-

Info =

Pi_A = CA - AC - AG + EA,
Pi_B = FB - BH - BC + CB,
Pi_C = AC + BC - CA - CB.

[AC, CA, CB, BC, AG, BH, FB, EA],

Figure 6: Plain Vanilla Interest Rate Swap in CLP(R)

|

net2([P, R_mkt, T], Info, Libor, [Pi_A, Pi_B, Pi_C]) ;-

Info = [AC, CA, CB, BC, AG, BH, FB, EA],

Pi_A = AC_CF + AG_CF - CA_CF - EA_CF,

Pi_B = BH_CF + BC_CF - FB_CF - CB_CF,

Pi_C = CA_CF + CB_CF - AC_CF - BC_CF,

loan({ P, EA, R_mkt, T, EA_CF),

loan(P, AC, R_mkt, T, AC_CF),

loan(P, CB, R_mkt, T, CB_CF),

lecan(P, BH, R_mkt, T, BE_CF),

floan(P, CA, Libor, R_mkt, T, CA_CF),

floan(P, AG, Libor, R_mkt, T, AG_CF),

floan(P, BC, Libor, R_mkt, T, BC_CF),

floan{ P, FB, Libor, R_mkt, T, FB_CF).

Figure 7: Cash-Flow Model in CLP(R) for Previous Network

translation into CLP(R) program, where the loan structures are identical except for the
rates. Essentially each node in the network corresponds to an equation balancing the in-
terest rates entering/exiting that node. This simple “rate” methodology for evaluating
the swap is possible because the loan principles and terms are identical. This model also
assumes a fixed market rate. A typical query to this program is:

?- neti1([11.35, LIBOR, 11.25, LIBOR, LIBOR+0.5, 11.0, LIBOR+0.75, 13.25], Pi).
Pi = [1.4, 1, 0.1]

When the swap calls for differing principles or terms, then individual cash flows must be
computing using the bond valuation formula. This model is considered in Figure 7, which
shows the CLP(R) implementation of a cash-flow model of the previous network. We invoke
the 1loan/5 and £loan/é procedures for a fixed principle of $100M and 5 period loan length.
The net present values are computed from the cash flows rather than the interest rates as in
Figure 6. Clearly we could give each loan independent principles and lengths if we desired.
Interestingly, we need never define Libor: it will be instantiated as necessary and shared
among the four floating loans. All unknown LIBOR terms will cancel from the solved
equations! I'or example, typical queries to the program include:

i

net2([100,10,5], [11.35, 0, 11.25, O, 0.6, 11.0, 0.75, 13.25], _, Pi).
Pi = [5.3071, 3.78079, 0.370079]

?- net2([100,10,5], [X, O, 11.25, 0, 0.5, 11.0, Y, 13.25 1, _, Pi).

Pi = [-4.19247+X + 5£3.454, 4.19247+Y + 1.04812, 4.19247+X - 47T.1653]

These solutions are in dollars and are consistent with the previous (rate model) solution in
terms of interest rates.

net3{ Info, Libor, [Pi_A, Pi_B, Pi_C])

R_mkt = 10,
Info = [(Pac, Tac, AC),

(Pca, Tca, CA),

(Pcb, Tcb, CB },

(Pbc, Tbec, BC),

(Pag, Tag, AG),

(Pbh, Tbh, BH)},

(Pfb, Tfb, FB),

(Pea, Tea, EA)

1

Pi_A = AC_CF + AG_CF - CA_CF - EA_CF,
Pi_B = BH_CF + BC_CF - FB_CF - CB_CF,
Pi_C = CA_CF + CB_CF - AC_CF - BC_CF,
loan(Pea, EA, R_mkt, Tea, EA_CF),
loan{ Pac, AC, R_mkt, Tac, AC_CF),
loan(Pcb, CB, R_mkt, Teb, CB_CF),
loan(Pbh, BH, R_mkt, Tbh, BH_CF),
floan(Pca, CA, Libor, R_mkt, Tca, CA_CF),
floan(Pag, AG, Libor, R_mkt, Tag, AG_CF),
floan(Pbc, BC, Libor, R_mkt, Tbe, BC_CF),
floan(Pfb, FB, Libor, R_mkt, Tfb, FB_CF).

Figure 8: Cash-Flow Model in CLP(R) with Extended Parameters

Figure 8 shows an extended implementation of the network with full input parameters
allowing each node to have a different principle and loan length. For example, given this
procedure, we can query:

?- net3([(90,6,11.35), (100,4,0), (100,5,311.25), (100,5,0),

(100,5,0.5), (100,5,11.0), (100,5,0.75), (100,5,13.26)],
fL1,L2,L3,L4,L5,L6,L7,L8], Pi).

Pi = [-62.09214L5 + 11.3422, 3.79079, 62.092i*LE - 5.65605]

which gives the profits when the fixed loan to A (from C) is extended to 6 periods on a
reduced principle of 90 and the floating loan to C (from A) is reduced to 4 periods. Note
that the profit to B has not changed. The change in the profits to A and C are a function
of the parameter L5 which is the last period LIBOR rate. The previous four LIBOR. rates
still cancel by the swap. As the loan lengths become more disparate, we expect to see more
LIBOR rate terms in the solutions.

This final model is similar to our prototype. Additional facilities include fixed amortized
loans, principles in alternative currencies, and forward exchanges. The market rate is im-
plemented in a manner similar to LIBOR. A fundamental difference is that in the analyzer
we built, programs such as net3 are generated automatically from net specifications with
are in turn generated from graphical input supplied by the user. Thus one crucial design

user

L X
graphics interface Motif

gnuplot

net description variable bindings

network
creation

structures cash flows

CLP(%)

.
;
¥
H
H
'
P
'
'
H

loan i
(]
[}
]
:
(]
1
H
H
H
H

o

Figure 9: Overview of Swap Analysis System

philosophy we adopted was to shelter the user from CLP(R). This impacted the flexibility
with which the system can be used, as is discussed below.

Figure 9 shows the system overview of our current prototype analyzer. The user in-
terface, written in C, accepts graphical entry of the network and translates it into a net
description accepted by the analyzer, written in CLP(R). See Appendix A for the analyzer
source listing.

The net description can have symbolic names for parameters, which if bound are re-
turned as solutions. In addition, a profit is computed and returned for each node in the
graph, which is the sum of its cash flows. Internal to the analyzer itself, the net description
is used to invoke loan library routines that define various types of payments, such as simple
or amortized. These invocations return the cash flow values needed to compute the net
present value profits.

10

The user interface is illustrated in Figure 10. The interface allows the user to graphically
specify the swap network, entering parameters for each entity (node) and loan (edge). Either
rea] values or symbolic names can be assigned to parameters. A sketch of the information is
displayed on the illustrated graph, with detailed information available by explicit querying
the interface (with a mouse). The user can also specify constraints in terms of both symbolic
input parameters as well as profits. The use of this facility is illustrated in Section 5.

The interface also translates variable bindings into graphics in the limited cases when the
binding is an equation in one or two independent variables. We generate a nonparameterized
graph description for gnuplot. This is also illustrated in Section 5.

4.1 Symbolic Output

Whenever expressing symbolic solutions in CLP($}, the issue of which symbolic variables in
the formula are dependent and which are independent looms large. Flexibility in controlling
the relative independence of variables is achieved with the dump/3 predicate [2]. dump/3
takes a list of variables as input, where the variables earlier in the list order are more inde-
pendent than later variables. dump/3 displays dependent variables in terms of independent
variables specified by this list. If we purposely remove certain independent variables from
the list, we can receive symbolic answers among the dependent variables.

Because of the great flexibility of output control, it becomes difficult for the analyzer
to make autonomous decisions concerning symbolic output construction. Sometimes a user
may wish to see a certain relationship among variables that would not abide by any default
we could provide. Therefore, in the user interface we provide the ability for the user to
specify the dump/3 control list explicitly. A default is presented:

L1, L2, ..., M1, M2, ..., U1, U2, ..., Pil1, Pi2, ...]
where L1 is the LIBOR rate in period 1, M1 is the market rate in period 1, Ul is a user-defined
variable, and Pil is the profit of node #1, etc. Any of these may be absent if inappropriate

to the problem at hand, e.g., the market rate may be a given constant. By rearranging this
list (usually by variable type), the user can produce any relationships needed. For example,

[v, U2, ..., Pi1, Pi2, ...]
would show the profits in terms of the user-defined variables and not the LIBOR rates.
Another example is:

[M, Pi1, Pi2]
might plot each of the two profits as a function of a fixed market rate, whereas

[pi1, Pi2, M]

might plot the fixed market rate as a function of the two profits. By affecting the formulae
produced by CLP(R), this control list indirectly affects graphs produced by gnuplot because
independent variables are plotted along the X and Y axis.

11

27 USSIlO] 70 Q$[10]

200 A$L10] 33 m:o: 37 US$C10)[1]
106 A$L0] /

Herryl Lynch

200 A$L101]

106 A$L0]

-

76 US$(3.675X2[1])

T &l

|
68 US$(°.2¥)E$€
48 US$(OXO[1]
130 A$L10]

Figure 10: Screen Dump of User Interface to Swap Analyzer

12

Bank Al

Bank C*

27% 384 da
37%
1064 48$ © 7.85%
Kodaks —2004 Meryll Lynch®
75% @ 7.35%
48% @ LIBOR
200A 106A 130A] 68A 48% @ LIBOR-0.4
Eurobond 3
holders? Bank B

Figure 11: Original Kodak Swap (Principles in Millions)

5 Kodak Example

The Kodak swap [8] illustrates the complexity of swaps in practice, involving two currencies,
three banks, an intermediary (Meryll Lynch), and a firm (Kodak). Without going into the
detail of the swap agreement, we illustrate the original terms of the swap in Figure 11.
Each financial entity is given its own node in the graph, labeled by a node identifier. Edges
are annotated with principle amounts (in millions). This figure does not show the implicit
five year structure of all loans, nor does it explicitly specify the periods when the currency
exchanges are made (when using our swap analyzer, such information must be entered).

The swap analyzer can solve this version of the problem, where the result is

1 = —3%9.49

T, = $26.8

Ty = =-m3—817.2
s = —%$1.09

e = $0.963

13

Bank Al

278 954 A
37%
106A 483 @ Rate2
Kodak® 2004 Meryll Lynch® Bank C*
75% @ Ratel
48% @ LIBOR
200A 106A 130A| 68A 48% @ LIBOR-0.4

Eurobond
holders? Bank B

Figure 12: Kodak Swap with Unknown Parameters: Ratel and Rate2

for U.S. dollar amounts in millions, assuming a spot exchange rate of $§1/0.75A. If we wanted
the value of m3 (or 74) in detail, we would use an output control specification with LIBOR
rates as the most independent variables, giving the following;:

w3 =

0.34L10 + 0.35L9 + 0.36L8 + 0.38L7 + 0.39L6 -+
0.40L5 + 0.42L4 + 0.43L3 + 0.45L2 4 0.46L1 — $32.9

Figure 12 shows the same network with two unknown parameters specified for fixed
rates. A typical use would be to view the profits as functions of these parameters. The
internal solution produced by the system is:

1
T2
T
s

e

-$9.49

$26.8

—m3 4+ 3.99 « Rate2 — 32.9

—(6.24 + Ratel) + 21.8

6.24 * Ratel — 3.99 x Rate2 — (.29

14

Figure 13: Displayed 3-D gnuplot of Profits 75 and =g

Any solution (left-hand side variable) that is a function of one or two independent (right-
hand side) variables is displayed to the user via gnuplot. For example, profits 75 and 7g
are shown in Figure 13. Making the plots is more difficult than it may look and further
research is needed.?

A further user facility is the incorporation of constraints in these and other (profit)
parameters. Suppose the user specifies that the profits of Meryll Lynch and Kodak are to
be equal, by entering the constraint 75 = 7. The system can then simplify the solution:

T = -—$9.49

Ty = $26.8

Ty = -—-73+3.99%Rate2 — 32.9

s = 7w = —2.0%Rate2 4 7.77
Ratel = 0.32%Rate2 4 2.25

which is displayed as in Figure 14. Note that =, is a function of 73 because both are depen-

3The actual plots are in color! The intersection of the planes is a parametric equation, and thus the planes
must all be parametric for gnuplot to display them together. This was done in Figure 13 “by hand.”™ Our
current system produces only nonparametric equations, so we cannot compute and display plane intersections
(yet). Finding 2 good vantage point and proper scaling of axes also remain unsolved problems. Currently
we rely on gnuplot defanlts,

15

pi5 = pi6

Figure 14: Displayed 2-D gnuplot of Profits 75 and ng

dent on LIBOR rates (which Meryll Lynch passes through, so 7 has no such dependency).
The relationship between Ratel and Rate2 to guarantee equal profits is shown above.
If we add the constraint 73 = 74, CLP(R) gives us the solution:

m = -—$9.49

Tz = $26.8

Ty = w3 = 2.0%Rate2— 16.4
ms = mg = —2.0xRate24 7.77

plotted in Figure 15. Note that because 73 and 74 depend on floating rates in different ways
(Bank B receives LIBOR whereas Bank C pays LIBOR), the only way to ensure that the
profits are equal is to set Rate2 as a function of LIBOR itself. The above equations disguise
this as 73 as a function of Rate2. However, if we modify the output control specification
as:

[L1, L2, L3, L4, LB, L&, L7, LB, L9, L10, Ratel, Rate2]

we get the direct relationship:

Rate2 = 0.17L10+4 0.18L94- 0.18L8 4 0.19L7 4 0.20L6 +
0.20L5 + 0.21L4 + 0.22L3 +4- 0.22L2 + 0.23L1 — $8.24

16

10 L L] L) T T L] T T T

at Sy pl5 = pi6 pid = pid

$(M}
©
T

5
Rate2

Figure 15: Displayed 2-D gnuplot of Profits 73, 74, 75 and 7g

From Tigure 15 we see that a value for Rate2 exists allowing the four profits to be equal. We
could solve for this value directly by adding the constraint 73 = 75 to the system, getting:

= —$9.49

™ = $26.8

Ty = Wy=75=7g=—534.34
Ratel = 4.20

Rate2 = 6.66

meaning that they all lose money. The subtle danger with this solution is that it implies
a constraint on LIBOR that may be unrealistic. A mechanism for testing such an over-
constrained floating rate is to set the output control specification to:

[L1, L2, L3, L4, L5, L8, L7, LB, L9, L10]
If any constraints result then the system is over constrained. An empty output indicates
a solution with no constraints and so everything is ok. A similar method can be used for

testing market rates. We do not yet automatically perform these checks within our system,
but it is relatively straightforward to do so.

17

6 Related Work

A related work in the field of financial engineering is OTAS (Options Trading Analysis Sys-
tem) designed by C. Lassez et al. [4] at IBM Yorktown Heights. This system, also based on
CLP(R), evaluates the Black-Scholes solution to the partial differential equation describing
an option’s fair price. The arithmetic involved is more computationally intensive than that
of swaps. Because the essential formula is non-linear in the volatility parameter, they use
the Steffenson iterative approximation to a linear form allowing solution for volatility.

7 Conclusions

We described a financial swap analysis tool that can accept a high-level description of a swap
network and produce functional relationships between unknown parameters, including the
net present value (NPV) profits of each entity in the system. The engine of the tool was built
in CLP(R), exploiting its ability to perform symbolic arithmetic over the reals, and the user
interface was built in C/Motif. The advantage of such a tool is the ability to quickly and
flexibly design and evaluate swaps under incomplete information. Profits and parameters
can be symbolically constrained to reduce the search space and symbolic solutions can be
graphically displayed to help users gain intuition about parametric relationships. These
attributes make the tool superior to current analysis methods, specifically trial-and-error
evaluation of alternative designs with spreadsheets.
Future work includes:

¢ gaining more experience with the user interface to determine if further flexibility is
required. Especially critical is determination of the best way to control dependent and
independent variables, graphical display of solutions, and signaling over-constraint of
floating and market rates.

¢ including a linear approximation routine for evaluating swaps in terms of unknown
fixed market rates.

e automating the comparison of swaps evaluated for different market rate structures, to
assess risk.

Acknowledgements

This research was supported by an NSF Presidential Young Investigator award, with match-
ing funds from Sequent Computer Systems Inc., and a grant from the Institute for New
Generation Computer Technology (ICOT). Raul Clouse helped build the first prototype
analyzer and David Scott built the user interface. I thank Bart Massey for many helpful
discussions. Peter Stuckey and Roland Yap patiently explained the subtleties of CLP(R)
to me.

18

References

[1] A. Aiba and T'. Hasegawa. Constraint Logic Programming System — CAL, GDCC, and
Their Constraint Solvers. In International Conference on Fifth Generation Computer
Systems, pages 113-131, Tokyo, June 1992. ICOT.

[2] N. C. Heintz, J. Jaffar, S. Michaylov, P. J. Stuckey, and R. H. C. Yap. The CLP(R)
Programmer’s Manual Version 1.2, September 1992,

[3] J. Hull. Options, Futures and Other Derivative Securities. Prentice Hall, 1989,

[4] T. Huynh and C. Lassez. An Expert Decision-Support System for Option-Based Invest-
ment Strategies. Computers Mathematical Applications, 20(9/10):1-14, 1990,

[5] J. Jaffar and J.-L. Lassez. Constraint Logic Programming. In SIGPLAN Symposium on
Principles of Programming Languages, Munich, 1987. ACM Press.

[6] R. Layard-Liesching. Swap Fever. Furomoney, pages 108-113, January 1986. Supple-
ment.

[7] J. Macfarlane, D. R. Ross, and J. Showers. The Interest Rate Swap Market: Yield
Mathematics, Terminology and Conventions. Salomon Brothers Inc., June 1985.

[8] Shapiro. Multinational Financial Management. Allyn and Bacon, 4th edition, 1992.

[9] S. M. Turnbull. Swaps: A Zero Sum Game? Financial Management, 16(1):15-21,
Spring 1987.

19

A Appendix: Source Program

/*
Program: Swap (CLP(R))
Author: E. Tick

Date: September 15 1994
Notes:
1. To query:

?- top2(+Id, +Exchanga, —Out).
+Id = identification number of swap data

+Exchange = 'no’ if no currency exchange desired (in final answers)
yes{ Exchange_List) if exchange desired (see table/1)

-Dut = solution (list of profits)
7- top1(+Id, -tut).

same as above, except used default exchange table...

*/
% mode(?,”)
topi(Id, Out) :-

table(FX),

top2({ Id, FX, Out).

% mode(?,7,”)
top2(Id, Exchange, Dut) :-
info(I4,
info(Market,
Libor,
const(Constraints),
profits(Profs),
vars{ Vars),
atoms(Atoms),
graph(Graph))),
market(Market, Mkt),

metamaker(Constraints), % spawn constraints

spawn(Graph, Libor, Mkt, Profits), % spawn loans

filter(Exchange, Profits, NewProfits), % exchange profits

profit{ NewProfits, Out0), % combine profits
profnamer(Profs, OutO), % bind profits to vars

!, unconstrain{ Libor }, % ensure that Libor unbound
dump(Vars, Atoms, Out). % dump vars

% mode(?,7,7)
% no currency exchange for profits...
filter(no, Qut, Out).

% exchange all profit currencies into U.S. $...

filter(yes(Table)}, In, Out) :-
filter1{ In, Table, Out).

20

% mode(?,?,")
filter1i(0O, _, [1).
filteri([In | Ins], Table, Out) :-
In = prof(Fodel, Node2, Value, Currency),
lockup(Table, Currency, Rate),
Out = [prof(Nodel, Node2, Value*Rate, usd) | Outs],
filter1{ Ins, Table, Outs).

% mode(?,7,”)

lookup([1, _, 1 3.
lookup([fx(Curremcy, Rate) | _], Currency, Rate) :~ !,
lookup{ [_ | Rest], Currency, Rate) :-

lookup(Rest, Currency, Rate).

% mode(?,")
revolve(In, Out) :-
revolvel(In, In, Out).

% mode(?,7?,7)

revolvel({1, _, OO0).

revolvel(I _ | Ins], In, [In | Outs J) :-
In=[Al As],
append(As, [A], NewIn),
revolvei{ Ins, NewIn, Outs).

unconstrain(Liber) :-
functer(Libor, libor, Arity),
unconstraini(Arity, Libor).

unconstraini(0, _).
unconstraini(K, Liber) :- K > @,
arg(K, Libor, X),
var{ X),

unconstraini{ K-1, Liber).

% profnamer/2 ensures that user-defined variable names
% for profits are unified with their corresponding program
% variables. This is critical for user constraints to work.

% mode(?,7)

profnamer([J, _).

profnamer([Profit | Profits J, Out) :-
profmem(Profit, Out),
profnamer(Profits, Cut).

% mode(?,7)

profmem{ _, [1) := !.

profmem(P, [P | _ 1) = 1'.

profmem(P, [_ 1 Qs 1) :-
profmem(P, Qs).

% mode(?,”)}

market(market(X), Term } :- !,
functor(Term, market, 100),
£i11(100, Term, X).

21

market(Market, Market }.

£i11(0, _, _) :- !,
fil1(K, T, E) :- K > 0,
arg(K, T, E),
£i11(K-1, T, E).

% mode(?)
metamakezr([J).
metamaker([C | Cs]) :-
call(C),
metamaker(Cs).

% mode(?,7,7,")
spawn([1, ., _, 00).
spawn([First | NewInfo], Libor, Mkt, Profit) :-
First = info{ Nodel, Node2, Type, Cur, Princ, Start, End, Rate),
node(Type, Nodel, Node2, Cur, Princ,
Start, End, Rate, Libor, Mkt, [Profl, Prof2]),
Profit = [Profl, Prof2 | NewProfit],
spawn(NewInfo, Libor, Mkt, NewProfit).

% mode(?,?,7,7,7,7,7,7,7,7,7)

node{ one, Nodel, Node2, Cur, Princ, Start, End, _, _, Mkt, Prof) :-
one{ Princ, Start, End, Mkt, Cash)},
pack{ Nodel, Node2, Cash, Cur, Prof).

node(flat, Nodel, Node2, Cur, Princ, Start, End, Rate, Libors, Mkt, Prof) :-
flat(Princ, Rate, Start, End, Libers, Mkt, Cash),
pack(Nodel, Node2, Cash, Cur, Prof).

node{ amort, Nodel, Node2, Cur, Princ, Start, End, Rate, _, Mkt, Prof)} ;-
amort{ Princ, Start, End, Rate, Mkt, Cash },
pack{ Nodel, Node2, Cash, Cur, Prof).

pack{ Nodel, Node2, Cash, Cur, [Profl, Prof2]) :-
Profl = prof(Nodei, Node2, (-Cash), Cur),
Prof2 = prof(Node2, Nodel, Cash, Cur).

% mode(?,”)
profit(In, Dut) :-
profiti(In, [1, Out).

% mode(?,7,7}

profiti([1, Out, Out).

profiti{ [Profit | Profits J, Stack, Out)} :-
prepper(Profit, Stack, NextStack),
profiti(Profits, NextStack, Out).

% mode(?,7,”)
prepper(prof(N, _, Cash, Currency), Stack, NextStack) :-
member(prof{ N, _, Currency), Stack, Ans, Rest),
(Ans = no ->
NextStack = [prof({ N, Cash, Currency) | Stack]

22

Ans = prof(A, B, Currency),

NewCash = Cash + B,

NextStack = [prof(A, NewCash, Currency) | Rest]
).

% mode(?,?,”,7)

member(prof(4,_,E), Stack, prof(i,B,C), Out) :-
Stack = [prof(4,B,C) | Back],
C=E,
Out = Back.

member{ prof(A,_,E), Stack, Rest, Out) :-
Stack = [prof(B,C,D) | Back 1],
not{ 4 =B),
Out = [prof(B,C,D) | More 1,
member(prof(A,_,E), Back, Rest, More).

menber(prof(A,_,E), Stack, Rest, Out } :
Stack = [prof(A,C,D) | Back],
not{ D = E)},
Out = [prof(A,C,D) | More 1,
member(prof(A,_,E), Back, Rest, More).

member(_, [J, no, O }.

./.== = ===

% Following library for variable market rats...
% WARNING: cannot solve for Market!

one{ Principle, Start, End, Market, Value) :-
var(Start), !,
one2(End-Start, End, Market, Principle, Value }.

one(Value, Start, End, _, Value) :-
Start >= End.

one(Principle, Start, End, Market, Value) :-
Start < End,
onel(End-Start, Start+l, Market, Principle, Value }.

% fractional market rate at ENDING period...
onel(Time, Period, Market, In, Value) :-

Time > 0, Time <= 1,

arg(Period, Market, MR),

Value = In / (1 + ((MR * Time) / 100)).

onei{ Time, Period, Market, In, Value) :-
Time > 1,
arg(Period, Market, MR),
Out =In/ (1 + (MR/ 100}),
onel(Time-1, Period+1, Market, Out, Value).

% fractional market rate at STARTING period...

one2(Time, Period, Market, In, Valne) :-
Time > 0, Time <= 1,

23

arg(Period, Market, MR),
Value = In/ (1 + ((MR * Time)} / 100)).

one2(Time, Period, Market, In, Value) ;-
Time > %,
arg(Pericd, Market, MR),
OQut =In/ (1+ (MR / 100)),
one2(Time-1, Period-1, Market, Out, Value).

%

%

% P -P*LR ~P*LR -P(1+LR)
% | [[I

% + + + +

% [[[I

% Start End
% L(1) L(2) L(3) L(4)

% MR(1) MR(2) MR(3) MR(4)

flat(Principle, Rate, Start, End, Libors, Mkt, Value) :-
var(Start), !,
Value = Principle — Payments,
flat2(End-Start, End, Principle, Rate, Libors, Mkt, Payments).

flat(_, _, Start, End, _, _, 0) :- Start >= Eund.

flat{ Principle, Rate, Start, End, Libers, Mkt, Value) :-
Start < End,
Value = Principle - Payments,
flati{ End-Start, Start+l, Principle, Rate, Libors, Mkt, Payments).

flati({ Time, Period, In, Rate, Libors, Mkt, Value) :-
Time > 0, Time <= 1,
rate(Rate, Libors, Period, LR),
arg(Period, Mkt, MR),
% approx. final market rate as full period...
Value = In # (1 + LR * Time) / (1 + MR/100).

flati1(Time, Period, In, Rate, Libors, Mkt, Valune) ;-
Time > 1,
rate(Rate, Libors, Period, LR),
arg(Period, Mkt, MR),
Out = In / (1 + MR/100),
Value = (Qut * LR) + Rest,
flat1(Time-1, Period+1, Dut, Rate, Libors, Mkt, Rest).

flat2(Time, Period, In, Rate, Libors, Mkt, Value) :-
Time > 0, Time <= 1,
rate(Rate, Libors, Period, LR),
arg(Period, Mkt, MR),
% approx. final market rate as full period...
Out = In / (1 + MR/100),
% scale final loan rate at fractional period...
Value = Out * (1 + LR * Time).

24

flat2{ Time, Period, In, Rate, Libors, Mkt, Valne) :-
Time > 1,
rate(Rate, Libors, Period, LR)},
arg(Period, Mkt, MR),
Out = In / (1 + MR/100),
Value = (OQut * 1 + LR) + Rest,
f1at3(Time-1, Period-1, Out, Rate, Libors, Mkt, Rest).

flat3(Time, Period, In, Rate, Libors, Mkt, Value) :-
Time > 0, Time <= 1,
rate{ Rate, Libors, Period, LR)},
arg(Period, Mkt, MR)},
% approx. final market rate as full period...
Out = In / (1 + MR/100),
% scale final loan rate at fractiomal period...
Value = Qut *# (LR * Time).

flat3(Time, Period, In, Rate, Libors, Mkt, Value) :-
Time > 1,
rate(Rate, Libors, Period, LR),
arg(Period, Mkt, MR),
Ont = In / (1 + MR/100),
Value = { Out * LR) + Rest,
flat3(Time-1, Period-1, Out, Rate, Libors, Mkt, Rest).

%

% Amortized loans work only for fixed rates, and must be given

% the Start and End periods. If these are unknown, then we cannot
% determine if the Payments are to be made in few or many periods
% with larger or smaller Payment.

amort(_, Start, End, _, _, 0) :- Start >= End.

amort(Principle, Start, End, fixed(Rate), Mkt, Value) :-
Start < End,
Valne = Principle - Payments,
% first compute the payment per period...
mortgage(Start+l, End, Principle, Rate, Payment),
% then compute the present value of cash flows...
amorti(Start+1l, End, Payment, Mkt, Payments).

amort1{ End, End, In, Mkt, Value) :- !,
arg(End, Mkt, MR),
Value = In / (1 + MR/100).

amorti(Period, End, In, Mkt, Value) :-
arg(Period, Mkt, MR),
Out = In / (1 + MR/100)},
Value = But + Rest,
amort1(Period+1, End, Out, Mkt, Rest).

% at the end, the balance of payments must be ZERO...
mortgage(End, End, In, Rate, Payment) :- 1,
0.0 =In * (1+ Rate/100)} - Payment.

mortgage(Start, End, In, Rate, Payment)
Out = In * (31 + Rate/100) - Payment,

mortgage(Start+1, End, Out, Rate, Payment).

4

% miscellaneous functioms...

% mode(?,7?,")
append([1, L2, L2).

append([H | T1J1, L2, [HE!L31])

append(T, L2, L3).

% mode(?,7,7,7)

rate(fixed(Fix), _, _, Fix/100).
rate(float(Fix), Libors, Period, Rate) :-
arg(Period, Libors, Float),
Rate = (Float + Fix) / 100,

% ratio of $:x where x is foreign currency...

table(yes([
fx(yen,0.01),
f£x(aud,0.75),
fx(fr, 0.30),
fx(mrk,0.50)
1)),

info(1, info(
market(3.5 },

libor(L1, L2, L3, L4, L5, L6, L7, L8, L9, Li0),

const{ [Pi3 = Pi2]),
profits([prof(1, Pii,
prof(2, Pi2,
prof(3, Pi3,
prof(4, Pi4,
prof(5, Pib,
prof(6, Pis,
])l

usd),
usd),
nad),
nad),
nad),
usd)

vars([Ratel, Rate2, Pil, Pi2,
atoms([ratel, rate2, pil, pi2,

graph([
info(6, 4, flat, usd,
infe(3, 6, flat, usd,
info(4, 8, flat, usd,
info(8, 5, flat, usd,
info(1, 6, one, usd,
info{ 6, 1, one, aud,
info{ 1, 6, one, and,
info(6, 1, one, usd,
info(6, 3, one, aud,
info(3, 6, one, aud,
info(2, 5, one, aud,
info(5, 2, one, aund,
info(5, 6, one, and,
info(6, 5, one, and,

)).

43,
48,
as,
75,
27,
38,
70,
37,
68,

130,

106,

200,

106,

200,

ODO0ODOO0OO0OO0OO00O0OCOCOO0O

. e w W e wm W W W W W W ow oW

Pi3, Pi4, Pib, Pis]
pi3, pi4, pibk, pi6]

10,
10,
10,
10,
0,
o,
10,
10,
0,
10,
o,
10,
0,
10,

26

float(0.0)
float(-0.2)),
fixed{Rate2)),
fixed(Ratel)),

I
(RN N N e W

w W o om o w o w o w e e 0w

L

),
),

