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Abstract

We present new algorithms for permutation group manipulation. Our methods result in an
improvement of nearly an order of magnitude in the worst-case analysis for the fundamental
problems of finding strong generating sets and testing membership. The normal structure
of the group is brought into play even for such elementary issues. An essential element is
the recognition of large alternating composition factors of the given group and subsequent
extension of the permutation domain to display the natural action of these alternating
groups. Further new features include a novel fast handling of alternating groups and the
sifting of defining relations in order to link these, and other, analyzed factors with the rest
of the group. The analysis of the algorithm depends on the classification of finite simple
groups. In a sequel fo this paper, using an enhancement of the present method, we shall
achieve a further order of magnitude improvement.
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1. Introduction

Since the size of a permutation group G on n letters can be exponential in n, it is customary,
for computational purposes, to specify G by a small list of generators. However, the
succinctness of such a representation raises the issue of whether we can deal effectively
with the groups that we can specify. Can one, for example, find the order of G' and test
membership in G without enumerating all of its elements?

In fact, in the late sixties, C.C. Sims developed efficient algorithms for permutation
group manipulation [Si70]. These included the key notion of a strong generating set (SGS)
which is the underlying concept in essentially all polynomial-time algorithms in computa-
tional group theory. Given a chain G = Go 2 G; 2 ... 2 G = 1 of subgroups of G, a
strong generating set with respect to this chain is a set T C G such that T'N G; generates
G, for each i. Sims’s algorithm uses the point stabilizer chain, that is, G; is the pointwise
stabilizer of the first ; points of the permutation domain.

While Sims’s methods for constructing an SGS have been widely used in computational
group theory since their inception, the question of their asymptotic efficiency was not
resolved until 1980. Furst, Hopcroft, and Luks [FHL] observed that a version of Sims’s
algorithm runs in polynomial time, namely O(n® + sn?) steps, where s is the number of
generators given for G. Subsequently, Knuth [Kn] and Jerrum [Je] gave variants with
running time O(n® + sn?). All of these algorithms rest on the most elementary group
theory.

Since Knuth’s note of 1981 and Jerrum’s 1982 paper, the O(n®) bound has achieved
notoriety and is generally believed to be the best that can be obtained via Sims’s approach
alone (cf. Remark 2.13). The main result of this paper is the improvement of the worst
case bound by nearly one order of magnitude.

Theorem 1.1. Given a permutation group G by a list S of generators, |S| = s, the
following problems can be solved in O(n*log®™ n + sn?) time:
(a) Find a set of strong generators.
(b) Find the order of G.
(c) Test membership of any permutation in G. Additional tests cost only O(n?) each.
(d} Find the pointwise stabilizer of a subset of the permutation domain.

(e) Construct a generator-relation presentation (X|R) of G in which |X| =
O(nlog® n) and |R| = O(n?log®™ n).

In order to avoid long timing expressions as in Theorem 1.1 and concentrate on the
essential part of the improvements, we introduce a “soft version” of the big-O notation.
For two functions f(n),g(n), we write f(n) = 0~(g(n)) if f(n) < Cg(n)log°n (c,C are
positive constants). Thus the time bound for basic permutation group manipulation in
Theorem 1.1 is O~(n* + sn?). We do not try, at this time, to minimize the exponent of
logn. Straightforward estimates give ¢; = 7,c3 = 2, and ¢3 = 4.

The new algorithms are not merely improved versions of previous SGS constructions.
All of those predecessors construct an SGS with respect to the chain of point stabilizer
subgroups. A key departure from the traditional approach is the use of another sort of
subgroup tower, one which is not easily observable solely in terms of the action on the
original permutation domain. Its very specification subsumes knowledge of the group
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structure. We construct an SGS with respect to a subgroup chain G =Gy > G, 2 ... 2
G = 1 such that each G; is normal in G and the factor groups G;/Gis1 are either
products of isomorphic alternating groups or subgroups of products of small primitive
groups (“small” in this context means of order n°1°8 "),

Naive divide-and-conquer of the permutation domain provides some normal subgroups
of G in the kernels of induced actions on orbits or blocks of imprimitivity; the new ma-
chinery comes into play precisely when such decomposition bottoms out. The structure of
large primitive groups allows an augmentation of the domain that readmits naive decom-
position. This idea is part of the NC-procedure developed for the same problem [BLS87].
However, the sequential algorithm cannot be viewed as the sequential implementation of
the parallel one: even a knowledgeable implementation of the relevant part of parallel ideas
would require O~(n®) at best.

The timing analysis depends on the classification of finite simple groups via infor-
mation on the order of primitive permutation groups whose socle is not the product of
alternating groups. We remark, however, that there is an elementary version of the algo-
rithm breaking the O(n®) barrier. Instead of the classification, we may use Babai’s bound
[Ba] on the order of uniprimitive groups and Pyber’s recent bound [Py] on the order of
doubly transitive groups to obtain an 0~(n*®°) algorithm. In fact, the elementary algo-
rithm is simpler in the sense that we do not have to detect alternating groups in socles of
primitive groups involved in G (unless the primitive group itself is alternating or symmetric
in its natural action on blocks of imprimitivity of G). Both Babai’s and Pyber’s results
are within a logarithmic factor (in the exponent) from optimal; the loss in running time is
due to the fact that we do not have elementary estimates for the order of primitive groups
with non-alternating-type socle. We sketch the elementary version in Section 9.

We mention two further aspects which are important differences from previous meth-
ods. Exploiting the normality of subgroups in the new subgroup chain, we first obtain only
normal generators, i.e., generators whose normal closure is the given subgroup. Another
difference is the novel handling of full symmetric and alternating groups. We formulate
the latter result as a separate theorem.

Theorem 1.2. From a given list of generators of the symmetric or alternating group, one
can construct an SGS with respect to the chain of point stabilizer subgroups in O~ (n3+sn?)
time. (The term “construct” refers to the operations of taking products and powers of
permutations.) Moreover, there is a Las Vegas algorithm achieving the same goal in
O~{(n® + sn) expected running time.

A random algorithm is Las Vegas if it never returns incorrect answers. We require that
the SGS is constructed from the given generators via permutation multiplications since we
apply this result when the symmetric group is involved in a larger permutation group G
and acts on blocks of imprimitivity of G. We can guarantee that a given permutation
from the symmetric group belongs to G only if it is constructed by the aforementioned
operations.

We remark that the random subproduct method, originally developed to prove the ran-
dom part of Theorem 1.2, was substantially extended by Babai, Cooperman, Finkelstein,
Luks, Seress [BCFLS] to yield an elementary Monte Carlo algorithm for the basic tasks
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mentioned in Theorem 1.1 which runs in O(r®log*n + snlogn) time. (A Monte Carlo
algorithm may return a wrong answer with a fixed but arbitrarily small probability.)

In a sequel to this paper, we shall extend our method to achieve a further order of
magnitude improvement in the running time.

Theorem 1.3. [BLS] Given a permutation group G by a list S of generators, |S| = s, the
following problems can be solved in O~ (sn?®) time:
(a) All items listed in Theorem 1.1.

(b) Finding a composition series of G.

Let us remark that the length of the input is ©@(sn) so this is a O~ (n3) algorithm as
a function of the input length. For the more complicated task of computing a composition
series, Theorem 1.1 gives an improvement of five orders of magnitude from Luks’s original
algorithm {Lu87]. This result requires a deeper probe into the structure of primitive groups
with different types of socle, in the spirit of the O'Nan-Scott theorem [Sc], [Cam)].

Like the method of this paper, the O~(sn?) algorithm examines the primitive groups
involved in G and locates the large alternating composition factors. It differsin its handling
of the non-alternating part of G and a reduction of the number of “normal generators” for
consecutive groups in the normal series. Specifically, the arguments in Sections 6 and 7
are improved. A part of these results appeared in [BLS93].

As presented in Sections 3-8, our O~(n*) algorithm requires O~(n? 4 sn?) memory.
In Section 9 we indicate how to decrease the memory requirement to O~(n2 + sn). Also,
without loss in time efficiency, the algorithm can output Jerrum’s compressed data struc-
ture [Je86) for an SGS with respect to the point stabilizer subgroup chain; this requires
only O(n?) space and supports membership testing in O(n?) time per test.

At this point, our emphasis is on the theoretical improvement realized by our algo-
rithm. Practical computations often deal with so-called small-base groups, i.e., families
of groups satisfying log |G| < log®n for some fixed constant ¢. For small-base group in-
puts, the traditional algorithms run in O~(n?) time and our method becomes essentially
a version of the traditional approach. The attention given to the small-base case is, in
part, due to the fact that interesting permutation representations of the non-alternating
simple groups tend to have a small base. However, it is also the case that it has often
been impractical to deal with large-base groups. Thus, aspects of the new methods should
be important in practice where there is a need to deal with groups where log |G| is, say,
proportional to n and when hardware is improved to allow the usage of ©(n?) memory for
n in the tens of thousands.

Acknowledgement. We are indebted to the referees for their careful work and for sug-
gestions to improve the presentation.

2. Definitions and preliminaries

We refer to any standard text, e.g. [Ha], for basic facts about groups. For permutation
group concepts we refer to [Wi] and [Cam]. We mention two sources of information on
the classification of finite simple groups [Go), [Car}, but no knowledge of these works is
required. Cameron [Cam] gives a fine survey of all the consequences of the simple groups
classification relevant to our work.



2.1. Group theory
We write H < G if H is a subgroup of G and HaG if H is a normal subgroup of G.

Lemma 2.1. [Ha, p.96] Let H < G and assume S is a set of generators of G and R is a
complete set of right coset representatives of G mod H. Then the set

{papi* : pp1 € Ryo € S, popy! € H}
generates H.

The generators described here are called Schreier generators of H; their number is
|S]|G : H| (these are not necessarily distinct).

For Q C G, the normal closure (Q)€ of Q in G is the smallest normal subgroup of G
containing Q. More generally, for K < G, (@) is the smallest subgroup of G containing
@ and normalized by K. We say @ is a set of normal generators for H if H = (Q)°.
For 7,0 € G, 77 denotes the conjugate o~ lro. A group G # 1 is called simple if it
has no nontrivial normal subgroups. We call G semisimple if it is the direct product of
simple groups. If these simple groups are isomorphic then G is cheracteristically simple.
A composilion series of G is any series 1 = G,q---4G19Gy = G where the quotients
Gi-1/G; are simple; these quotients are the composition factors. The group G is solvable
if all composition factors of G are cyclic. We need the following well-known fact (see, e.g,.,

[Sc]).

Proposition 2.2. Let H be a subgroup of the semisimple group G = [~ T; such that
all T; are simple nonabelian and H projects onto each factor. Then H is direct product
of “diagonal” subgroups; more precisely, the T; can be arranged into blocks of isomorphic
groups so that, after a suitable renumbering of the factors,

H = Diag(T; X +-- x Tk, )} x -++ X Diag(Tk, _,+1 % + - x T, ).

In other words, having identified the groups in each block, H consists precisely of the
elements of the form

(a1yeeer0r)yeney{@ry o ap).

The socle of G is the subgroup generated by all minimal normal subgroups and is
denoted by Soc{G). The socle is semisimple.

The automorphism group of G is denoted by Aut(G). Every element ¢ € G induces an
inner automorphism z — g~ 'zg. The group of inner automorphisms, Inn(G), is normal
in Aut(G). The factor group Out(G) = Aut(G)/Inn(G) is the outer automorphism group.
One of the classification-dependent results required by our algorithm analysis is the so-
called Schreier Conjecture.

Theorem 2.3. (“Schreier Conjecture”). The outer automorphism group of a finite simple
group is solvable.



2.2. Permutation groups

The group of all permutations of an n-element set A is denoted Sym(A), or Sym(n) if the
specific set is unessential. Subgroups of Sym(n) are the permutation groups of degree n.
The even permutations of A form the alternating group Alt(A) (or Ali(n)). We refer to
Sym(A) and Alt(A) as the giants. These two families of groups require special treatment
in most algorithms (see Sections 5 and 8).

The support supp(w) of m € Sym(A) consists of those elements of A actually displaced
by =, i.e., {a € A: a" # a}. The degree of 7 is deg(w) = |supp(w)|.

We say that G acts on A if a homomorphism G — Sym(A) is given. This action
is faithful if its kernel is the identity. The orbit of a € A under G is the set of images
{a” : ¥ € G}. G is transitive on A if there is only one orbit. We say G is t-transitive if the
action of G induced on the set of ordered t-tuples of distinct elements of A is transitive
(t € n). The maximum such ¢ is the degree of transitivity of G. The degree of transitivity
of the giants is > n — 2.

Theorem 2.4. If G is 2-transitive and |G| > n?H1°8" then G is giant.

This is an immediate consequence of the classification of doubly transitive groups,
which is essentially due to Curtis, Kantor, and Seitz [CKS]. Their work is based on detailed
knowledge of the finite simple group classification. For the list of doubly transitive groups,
see, e.g., [Cam)].

Actually, we could use a weaker version of Theorem 2.4, with no loss in the asymptotic
analysis of running time. The following result has a strikingly simple, elementary proof.

Theorem 2.5. [Py] There exists an explicitly computable constant ¢ such that if G is
2-transitive and |G| > n'°€’ " then G is giant.



2.3. Orbits, orbitals, blocks, stabilizers

If G acts on A, the orbits of the induced (componentwise) G-action on A x A are called
orbitals [Si67). The stabilizer of £ € A is the subgroup G = {y € G: 2" =z}. I G
is transitive on A then there is a bijection between the orbitals of G and the orbits of
G;. For an orbital © of G and = € A, the (out)neighbors of z in the (di)graph (A4, ©)
form the orbit ©(z) = {y|(z,y) € O} of the stabilizer G.. For B C A, we use G for the
pointwise stabilizer [),cp G of B, and Gp; for the setwise stabilizer {y € G : BY = B}
of B. {BCAis stablhzed by G then we denote by G2 the restriction of G to B, so
that GB < Sym(B). Then, G(B) = GP {5} denotes the image of the action of the setwise
stabilizer of B on B.

If G is transitive on A and G; = 1 for some (any) z € A, then G is said to be regular.
If G is transitive and D C A, D is called a block (for G) if for all v € G, either DY = D
or DN D =0, and G is called primitive if no nontrivial blocks exist. (Trivial blocks have
0, 1 or |A| elements.) If D is a block then the set of images of D is called a block system
and an action of G is induced on the block system. The block system is minimal if that
action is primitive.

For Section 4, we need the following elementary results on the structure of primitive groups.
They all follow from the O’Nan-Scott theorem [Sc] (cf. [Cam], [Lu82]).

Theorem 2.6. Let G < Sym(A) be primitive. If Soc(G) is abelian then n = p? for some
prime p, A can be identified with the d-space over GF(p) and (via this Jdentxﬁcatwn)
G < AGL(d,p), the group of affine transformations of A, and Soc(G) = Z3 is the group
of translations of A.

Theorem 2.7. Let G £ Sym(A) be primitive. Then
Soc(G)=Ty x---xTq

where the T; are isomorphic simple groups. If Soc(G) is nonabelian then G contains a
normal subgroup N such that

(a) Soc(G) < N < Aut(Ty) x --- x Aut(Ty);

(b) G/N is a subgroup of Sy;

(c)n> 5% -

In the particular case that the isomorphic T; are alternating groups, we say that G is
of alternating type.

Theorem 2.8. Let G < Sym(A) be primitive. If G has more than one minimal normal
subgroup then G has precisely two minimal normal subgroups, each of order |A|.



2.4. Primitive groups of Cameron type

A remarkable class of primitive groups of alternating type is obtained as follows.

First we define a class of imprimitive groups. Let B be a set of k elements, k > 5,
and 1 < s < k/2. Let C =rB = B,U---UB, denote the disjoint union of r copies of B.
An s-transversal of C is a subset X C C such that |[ X NB;|=sfori=1,...,r. Let 4
denote the set of s-transversals and let n = |A| = (’:) ". The wreath product W(B,r) =
Sym(B)1 Sy < Sym(C) consists of all permutations of C that respect the partition {B;}.
Clearly,

Soc(W(B,r)) = Al{(B) x --- x Ali(B,).

Let now W(B,r) > G 2 Soc(W(B,r)) and assume G acts transitively on the set of blocks
{Bi}. Under these conditions, the action of G on A is primitive (and alternating type,
since Soc(G) = Soc(W(B,r))). We say that the primitive groups obtained this way are of
Cameron iype.

Theorem 2.9. [Li) If G is a primitive group of degree n and order > n®1°8"* then G is of
Cameron type.

This is the third consequence of the simple groups classification that we require.
The name “Cameron type” acknowledges the first version of Theorem 2.9 by Cameron
[Cam], who formulated the lower bound as > n¢'°8 ", without explicit determination of the
constant ¢ = 9. For large n, c approaches 1. We remark that the actual value of ¢ plays
no role in the algorithms; their analysis depends only on the existence of c.

2.5. Cameron schemes

For application in Section 4, we introduce a combinatorial structure associated with the
action of W(B,r) on A. Let A, B, C be as above. For an s-transversal X € A, let
Xi=XnNB;. For X, YeAltdi=|X;nY;|and let fy < fo <--- < f, be the sorted
sequence {d;}. We call (f1,..., f;-) the intersection patiern of X and Y. Let us partition
A x A according to intersection patterns: A x A = RgU---U Ry. We call the system
C(n,k,s,7) =(A; Ry, ..., Ry) the Cameron scheme with parameters (n,k,s,r). Thisis a
particular association scheme [Bos], {Del], [MS]; it includes the Hamming schemes (s = 1)
and the Johnson schemes (r = 1) as particular cases. The scheme can be thought of as a
coloring of the edges of the complete graph on n vertices (including self-loops); we refer to
the R; as color classes.

It is clear that each group of Cameron type acts on a Cameron scheme. In fact, the
color classes are precisely the orbitals of the action of W(B,r) on A. It may, however,
happen, that the color classes split under the action of a Cameron-type group G < W(B,r).
In a key subroutine, NATURAL_ACTION, we recover the imprimitive action of G on
C = rB using the orbital structure of the primitive G-action on A, thereby reducing the
Cameron-type groups to imprimitive groups with a block system of r < logn/log5 blocks,
with giants acting on each block.

Some elementary observations about the orbital structure will be useful in this com-

putation. Let I; be the color class corresponding to the intersection pattern (s —1,s, ..., s)
and @ to (0,0,...,0).



Lemma 2.10. Let G be a Cameron-type group acting on the points A of a Cameron
scheme C(n, k,s,r) and suppose k > 2rs?. Then

(a) T, is the second smallest orbital of G.

(b) ® is the largest orbital of G.

Proof. We note first that ¥; (0 £ 7 £ s) and @ are orbitals of G, i.e. they do not split.
For ® this follows from the fact that G > Ali(k)". For X; we need in addition that the
stabilizer of any a € A acts transitively on the set of blocks {B;}.

Proof of (a): Fix € A and consider an orbital ©. We have to prove that |Z;(z)| < |9(z)|
for any © other than ¥; and the diagonal Ty (the diagonal is the smallest orbital). Observe,
since k > 232, that (k:") > s(k — s) with strict inequality when s > 1.

Fors>i1>1,

m@l=r(, %) (577) > rste -9 = ImaGol.

Assume now that © is contained in the color class with intersection pattern (i;,72,...)
where 1; < 13 < s; let (z,y) € ©. Just counting the images of y under the stabilizer of =

in Al{(k)" we obtain
|G)(m)|2(:g)(k 8)(8)( 3)
11 S—1 12 §— 12

> sk = 8)? > rs(k — 8),
the final inequality using & > 2r.

Proof of (b): We have to prove that @ is the largest color class in the Cameron scheme.
(Note that G plays no role here.)
We use the fact that, for 1 <1 < s,

(20 <(7)

To see this, note that k£ > max{2rs®,2s + 1} implies k — 25 + 1 > rs?, s0 that

(*2°) _’ﬁk—23+i—j
k—a)_ $—7j

5—1 j=0

i-1 4
rs : 8
>H ,21‘5'21‘(,).
id g )

=0

Let now the color class © have intersection pattern (0™, ..., s™). (The exponents denote

multiplicities.) Then
o=, .~ IEN ()
= ToyT1ye00yTg i—0 §—1 1

(o N (Y men
703714038 s rr—re S




2.6. Strong generators

In our algorithms, permutation groups are input and output via sets of generators. A
standard tool for permutation group computation is a strong generating set (SGS) [Si70].
An SGS with respect to the subgroup chain G =Gy 2> Gy 2> - - 2Gn=1isaset TC G
such that T' N G; generates G; for all 7.

Let C; be a set of (right) coset representatives for G;—; mod G;, 1 = 1,2,...,m.
Then any a € G has a unique factorization a = pp, -+ p2p1 with p; € C;. An SGS T is
computationally effective if, for any o« € Gi_;, there are fast procedures for determining
the coset of G; to which a belongs and constructing a representative for this coset from T

We construct an SGS with respect to a subgroupchain G =Gy 2 G, >+ > G =1
such that each G; is normal in G and the factor groups G;_;/G; are either subgroups of
direct products of small primitive groups (“small levels”) or direct products of alternating
groups (“alternating levels”). To achieve the effectiveness mentioned above, we, in fact,
construct an SGS with respect to a refinement G = Hy > Hy 2 ++- > Hpy = 1 of the
subgroup chain G = Gy 2 G; 2 -+ 2 Gy = 1. Namely, we construct a permutation
representation for each G;—; with kernel G;. The refinement between G;_, and G; is a
pointwise stabilizer chain in this representation. The advantage of a pointwise stabilizer
chain is that it is easy to recognize the coset to which a given permutation belongs: given
o € H, its coset H,« is determined by z.

If a pointwise stabilizer chain is long, it requires too much time and storage to store
all coset representatives at each level. Hence, in alternating groups, we use the following
Jerrum style [Je86] compact SGS. Suppose that K = Ali(m), and K acts naturally on
a set B = {z,...,2m} with K; the pointwise stabilizer of {z,...,z;}. Let the set T
consist of the permutations m,m2,...,Tm—1 satisfying the following properties. For all
1<k <m-~—2, m fixes pointwise z;,...,zx—; and wp—; fixes pointwise z1,...,Tm—3.
Moreover, zi* = xx41 for k = 1,2,...,m — 2 and z,"3' = z,,. Suppose we store just
the products y; = myme---m;, for t < m — 2 and pm—y = M- Tp—3Tm—1. Then
{pilin;:i—1<j < m~—1} is a complete set of coset representatives for K; in I{;_;.
Thus, any coset representative within the chain can be obtained with one multiplication.
(We use the term multiplication for the evaluation of =!8 as well as af; clearly the
timings are the same.)

It is useful to observe that an SGS for a factor group G/N, lifted to G and appended
to an SGS for N, gives an SGS for G. With an abuse of language, we call a subset C C G
a set of strong generators of G/N if C is a lifting of such a set. Suppose a € G is factored
according to a fixed SGS of G/N, that is, & = p; - - - p2p1, where the bar signifies the image
mod N. Then v = a(p;---p1)~! € N and we call v the sifice of @ into N. The following
notion plays an important role in reducing the number of generators we use for N. If
C C G is an SGS for G/N and §* C G is a set of generators for G/N such that C C (5*)
(in G, not only in G/N) then we say that S* is compatible with C.
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2.7. Sims’s algorithm

Sims’s algorithm for constructing strong generators has been formulated for the case when
G; is the stabilizer of the first ¢ points of the permutation domain. An efficient version of
Sims’s method has been analyzed by Knuth [Kn]. In this subsection, we describe a slight
extension of the latter version.

We consider the action of G = (Q) < Sym(A) on the set C = {1,2,...,m}. Let G;
be the pointwise stabilizer of {1,2,...,1},

G=Gy2G,12---2Gp =N,

where N is the kernel of the G-action on C. Our objective is to find an SGS of G/N.

During the procedure, we maintain lists T;, ¢ = —1,0,...,m — 1 and R;, ¢ =
0,1,...,m, where R; is a not-necessarily-complete list of right coset representatives of
Gi-1 mod G;; and T; C G; such that (T3) 2 Uj>i+1 R;. Thelists T_; := @ and Ry := {1}
do not change during the procedure; all other lists may sometimes be augmented. Each
time 7T} is augmented, the group (T;)€ increases.

We employ the following SIFT routine which attempts to factor # € G (k is part
of the input) over the current partial coset lists. If it does not succeed then it inserts a
new coset representative in the appropriate R;4,, updates the T;, k + 1 <z < 3, and sets
k := j. In any case, at the conclusion of SIFT, n € NR,Rpn—y -+ - R4

procedure SIFT(x,C, k, {T;},{R:})
Initialize: o :==, j := k.
while j <m—-1and g #1 do
if o € G410 for some & € Rj4q
then set 0 :=ca ! and j:=j +1
else
begin
add ¢ to Rj4q;
addotoT,l=k+1,...,7;
k= j;
end ;
end (SIFT).

The main procedure is the following.
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procedure PERMREP(Q, C)
INPUT: (@, C) as above.
OUTPUT: {T:},{R:}.
Initialize: k := —1, T—; := @,
Ti:=0for0<i<m-1,R;:={1},for0<i<m.
while kt > —1 do

begin
while R4 x T; not exhausted do
begin
select next (p,7) in Rg41 X Tk;
SIFT(pr, G, k, {T.}, {Ri})
end ;
k=k-1
end

end (PERMREP).

Note that the intention is to put the elements of each Rr4) X T in a queue as such elements
are created (by augmentation of Ri4, and/or Tk), ensuring that each (p,7) € Rg41 X Tk
is selected exactly once in the lifetime of the procedure.

The following proposition is just a reformulation of Sims’s basic observations.

Proposition 2.11. When Procedure PERMREP(Q, C) terminates, R; is a complete set
of coset representatives for G;—; mod G; and (T})¢ = G¢ for0 <i < m.

Proof. Recall that N denotes the kernel of the G-action on C. As a result of having sifted
RT;—1, weknow R;T;_y CNRuRn—1- - R; for 0 £ < m. We have also maintained the
properties: T; C Gy UJ'Z*' 8 € (T3); and the elements of R; represent distinct cosets
mod G;.

Since @ = RoT-1 € NRpy --- Ry € N{Tp)}, G = N{T}). Suppose, for any : that G; =
N(T;), then R,‘+1T.‘ Q NRmRm...l "'R!'+1 Q N(T.‘.{.])Ri+1, whence G,’ g NR,‘+1<T,‘) g
N(T{.{.l)R§+1. It follows that Gi = N(T,) = NG;'.H Ri+l and G,‘+1 = N(T;+1). I

We use the following easy facts about PERMREP(Q, C'). We set n = |A| and assume
n > m = |C|. Therefore, the cost of each group operation is O(n). Let t =max{|G¥_, :
GY| : 1 € i € m}; note that ¢ < m. Also, log|G€| is an upper bound on the length
of subgroup chains in G¢ so there are < log |G| indices i such that G; # Git1. In
particular, the cost of each sift is O(nlog |GC}) and each T; is increased < log |G| times.
From this, we obtain the following estimates.

Theorem 2.12. (a) Let |Q| = ¢. The running time of PERMREP(Q,C) is
O(nlog |GC|(g + tlog®|G€))); in particular, if |G| < exp(log®n) = exp(0~(1)) then
the running time is O™~ (n(q + t)).

(b} At any moment during the execution of the algorithm, |Ti_,| <1+ ZT:& log |R;|- B

Remark 2.13. The O(n®) bottleneck that is inherent to all versions of Sims’s method
[Si70], [FHL], [Je86], [Kn] can be appreciated in the context of PERMREP (take C = A
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and N = 1). These methods rely on the construction of generators for the groups in
the pointwise stabilizer chain, using Schreier’s construction of subgroup generators. (In
PERMREP, Schreier generators enter in the sifting of Rg4+1T%, since the sift of pr begins
with finding p; € Ry such that prp7! € Giy1.) In general, | R4l |Tk| and the number
of groups in the chain can each be Q(n) so there may be £2(n?) elements to sift and a sift
may cost (}(n?). In fact, Knuth discusses a class of groups in which the average behavior
of such methods is ©(n®).

As in [FHL], a slight modification of PERMREP provides normal closures. The ad-
dition to the previous procedure is that we have to add conjugates of generators to the
generating set until we get a group closed for conjugation. We again consider group actions.

The situation is the following: G = (S) < Sym(A) and {Q) < Sym(A) act on C. The
output consists of sets of coset representatives {R;} and sets of generators of the stabilizer
chain over C for H := (Q)€. For sets of permutations T and S, T denotes the set of
conjugates {t? : 7 € T,o € S}.

procedure NORMCL(Q, C, S)
INPUT: (@, C, S) as above.
OUTPUT: {T:}, {R:}.
PERMREP(Q, C);
T :=0;
repeat
ki=—1,T.:= (T \T"%, T* :=Tp;
while £ > -1 do

begin
while Rj4; X T} not exhausted do
begin
select next (p,7) € Rg41 x Tk;
SIFT(pr,C, k,{T:}, {Ri});
end ;
k:=k-1
end

until T, =T
end (NORMCL).

The proof of correctness and the timing of this algorithm is similar to that of
PERMREP (with H playing the role of G in the estimates). Let t =max{|HZ, : HF| :
1<i<m)

Proposition 2.14. When Procedure NORMCL(Q,C, S) terminates, the R; form com-
plete sets of coset representatives for H, and (T;)¢ = HF. |

Theorem 2.15. Let s = |S|, ¢ = |@]. The running time of NORMCL(Q,C,5)
is O(nlog [HC|(¢ + slog|HC| + tlog? |[H®|)); in particular, if |HS| < exp(log®n) =
exp(0™~(1)) then the running time is O~ (n{q + s + 1)).
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2.8. Structure forest, structure domain

It is natural in dealing with permutation groups, whether theoretically or in computational
settings, to use the orbit structure in a problem decomposition. Further combinatorial
divide-and-conquer is available in the imprimitivity structure of transitive groups. For
computational purposes, it is convenient to provide an extension of the permutation domain
that both reflects and guides the flow of control in such procedures. Specifically, a structure
forest (SF) for a permutation group G < Sym(A) is a forest of rooted trees on which G
acts as automorphisms fixing the roots, such that: the leaves form the permutation domain
A; and, denoting by G(v) the permutation group induced on the children of node v by
G, (the stabilizer of v), each G(v) is primitive. Thus, in particular, there is exactly one
tree per orbit in A, and it is not possible to insert intermediate levels in that tree, with
nontrivial branching, and remain consistent with the G action on the tree.

To reflect the flow of control in our procedure (e.g., treating orbits sequentially) we
suppose that the trees of the SF are stacked vertically and enumerate the resulting “levels.”
Hence, the root of the first tree comprises level 0, its leaves comprise level i, where & is
the height of this tree, the root of the second tree comprises level h + 1, etc.

The divide-and-conquer offered by the S¥ alone does not suffice for our methods.
To achieve a finer decomposition, we need to delve into the primitive groups themselves,
specifically, for “large” groups, we use the forced relations between the nature of the socle
and that of the permutation domain.

The first, and principal, stage creates an eztended structure forest (ESF). For this, the
SF is augmented at nodes v where G(v) is a “large” group, i.e., of order > exp(log®n). At
such places, we are assured that G(v) is, in fact, a Cameron-type group with Soc(G(v)) =
Ali(k)". Such G(v) has a natural imprimitive representation on a set B of size kr, and we
can build a structure forest (in fact, a tree) T'(v) on B for G(v). Our algorithm constructs
the trees T(v) so that the leaves of T(v) correspond to certain subsets of the children of
G(v). In particular, we need only do the work of constructing T(v) at one node v at each
level of the SF, using the action of G to copy the trees to other nodes at the same level.
As a result, the permutation action of each element of G' naturally extends to the ESF.
We consider the trees T(v) appended to the SF to be placed entirely between levels of the
initial forest. Having so situated the T(v), we delete the edges between v and its children
in the original forest. Thus, edges, where they exist, in the ESF only traverse consecutive
levels. It is important to note, however, that G(v) acts faithfully on the leaves of T(v), so
that the subgroup of G that fixes all the leaves at this level, also fixes all the nodes at the
level of the children of v in the SF.

We now continue to use G(v) to denote the (primitive) permutation group induced by
Gy on the set of children of the node v of the ESF. (In context, it is clear which G(v) is
intended when we specify the ambient graph.) Thus, in the ESF, G(v) is either a “small”
group (of order < exp(log®n)) or a giant. Furthermore, the groups at a given level are
isomorphic, in fact, conjugate under the action of G; accordingly, we can talk about small
group levels and giant levels in the ESF.

A second refinement is used to restrict the giant levels to be alternating. Consider a
node v of the ESF where G(v) is a full symmetric group Sym(C(v)) on the children C(v)
of v. At each such node, we append a small tree consisting of the root v and two leaves,
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say vy, and vg (for “left” and “right”), which are inserted at a new level between v and
C(v). Again, we sever the links from v to C(v), but we now connect both v; and vg to
all points in C(v). We need to extend the action of G to the new intermediate level. This
may be done by fixing any orderings of the C(v), relative to which the actions of ¥ € G can
be viewed as inducing even or odd permutations; if 4 induces an “even” mapping of C(v)
to C(w) then v] = wy and v}, = wg, else v] = wg and v} = wr. We call the resulting
structure D a structure domain (SD) for G.

For a node v € D, we continue to denote the children of v, that is, the neighbors at

next level by C(v) and the action of Gy on C(v) by G(v).

We summarize some important properties of this structure. A structure domain for
G £ Sym(A) is a graph D = (V, E) such that

(i) A € V and |V| = O(n), where n = |A|.

(i1) The action of G extends to Aut(D).

(iii) The orbits of G in V, called “levels,” are ordered, Lg, Ly, ..., Ly, and
E C Uiy (Li % Lisa).

(iv) f EN(L; x Liy1) = 0, then G, < Gyr,y,-

(v) f EN(L; X Li41) # 0, then, letting G(v) denote the action of G, on the neighbors
C(v) in Ly of v € L, it follows that G(v) is either a “small” group or Alt(C(v)).

Let Go = G and, for 7 > 1, let G; be the kernel of the action of G;_; on L;. Then the
normal series

G=G2G 2-2Gn=1

is the chain forecast in the introduction and in Section 2.6. Instances of (iv) suggest that
the chain is not strictly decreasing (and one can have equality of successive groups even
when the induced bipartite graph is nontrivial) but it is convenient to allow this occasional
duplication. Note, however, that (v) implies, when G4 < Gi, that G;/Gi4; is either a
product of isomorphic alternating groups or a subgroup of the product of isomorphic small
primitive groups. The fact that, in the former case, G;_; /G; is actually isomorphic to a
product of alternating groups (not only a subgroup) follows from Proposition 2.2.
Informally, we say the SD consists of small group levels and alternating levels.
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3. Organization of the algorithm

In this section, we outline our main algorithm. Suppose that G = (S} < Sym(A) is given,
|A| = n. We construct a chain of normal subgroups G =Gy 2 Gy > ... > G;n = 1 and, for
each 1 <1 < m, a permutation representation of G;_; on a set L; such that

(i) Gi is the kernel of the action of G;-; on Lj;

(ii) Gi-1/G; is either a subgroup of a direct product of small primitive groups
(“small” in this context means of order < exp(9log® nloglogn)) or Gi—1/G; =
Alt(k)" for some k,r.

The normal subgroup G; is defined to be the pointwise stabilizer of the first i levels
in a structure domain (see Section 2.8). However, we have to construct generators for the
Gi. We do this successively for i = 0,1,...,m — 1. We construct an SGS T} for G/G; and
normel generators N; for G;, i.e., group elements whose normal closure (in G) is G;.

Suppose we have constructed T;_; and N;_,. We start to take the normal closure
of Ni—y in G until the known part of the normal closure generates G;_, /G;. We confirm
this by examining the action of Gj—; on L;. Then we obtain 7; by appending an SGS
for G;—1/G; to T;—;. For this, if Gi—, /G; corresponds to a small group level then we add
complete sets of coset representatives from the point stabilizer chain on L; to T;—; (we do
ensure that the total number of saved coset representatives in the entire subgroup chain
is only O(nlog®n)); if Gi—1/G; is the product of alternating groups then we add Jerrum
style compact SGS (cf. Section 2.6) for each of these alternating groups to T;—;. We also
obtain a presentation for G;_; /G;, which, along with presentations for earlier quotients,
facilitates a construction of normal generators N; for G;. Thus we proceed to the next
value of i.

We emphasize that generators for G; (not only normal generators) are available only
when the entire algorithm is finished.

During the algorithm, we work with various permutation representations of subgroups
of G. If a procedure performs group operations, we may either need the result in the
current representation only (local operation) or in the original representation as well (global
operation). An example of a purely local operation is the determination of whether the
stabilizer of a node v in the SF acts as a Cameron-type group on its children. To this
end, it is enough to perform group operations in G(v) and the action of G, on other nodes
of the SF is irrelevant. All operations not explicitly labelled “local” are understood to
be global. Since the sum of sizes of all the induced permutation representations remains
O(n), the cost of elementary group operations remains O{(n).

Main algorithm

INPUT: a set S of generators for G < Sym(A), |S| = s.

Step 1. Construct a structure forest and choose a representative v in each orbit of the SF.
For all such v, construct Schreier generators for G,.

Step 2. For these representatives, use NATURAL_ACTION to decide whether G(v) is a
“large group” and, if so, construct new action and corresponding structure tree T(v).
Step 3. Append a copy of T'(v) to all nodes in the orbit v¥, deleting the connections of v
to its children in the SF, thus obtaining an extended structure forest (ESF). Extend the
G-action of generators to the ESF. Inserting new levels at giant symmetric nodes, obtain
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the structure domain (SD). Henceforth, compute the effect of any global operation on the
entire SD. Compute the node stabilizers G, as in Step 1 for representatives of G-orbits of
the SD.
Step 4. For each node v representing an alternating level in the SD, construct an SGS for
G(v).
Step 5. fori:=1 tom do

construct SGS for G;_; /G;

store a compatible generating set S;_; of size O™~(|L;|) for G;-1/G;

(* cf. Section 2.6 *)
construct normal generators for G;

end (MAIN ALGORITHM).

Lemma 3.1. (2) A structure forest can be computed in Q(sn?) time.
(b) Generators of G, for representatives of the G-orbits of the SF can be constructed in
O(sn?) time.

Proof. (a) According to Atkinson [At], a structure forest can be computed as efficiently as
orbits and minimal blocks of imprimitivity, i.e. in O(sn?) time.

(b) The action of the group generators on the orbit v% of a node v in the SF naturally
defines a graph on v®. Choosing a spanning tree in this graph and computing the product
of generators along the paths from v in this tree, group elements which carry v to the other
nodes of its orbit can be computed in O(|v®|n + |vC|s) time. We obtain generators for
G, (and, at the same time, for G(v)) via Lemma 2.1; thus G, is generated by O(|vC|s)
elements and the cost of computing each is O(n). The result follows since the sum of the
|v€| over orbit representatives v is the number of nodes in the SF. |

Steps 2 and 3 will be analyzed in Section 4. We present a novel method for constructing
an 5GS for the giants in Section 5. Section 6 relates group presentations (in terms of
generators and relations) to the construction of normal generators. By the results of
Section 4, the factor groups G;—1/G; in Step 5 are either subgroups of products of “small”
groups, or products of alternating groups. We handle the first case in Section 7, utilizing
NORMCL (cf. Section 2.7). For the second case, we give an efficient implementation of
Luks’s “non-commutative linear algebra” [Lu86] in Section 8. Finally, in Section 9, we
present a version of the algorithm with decreased memory requirement and wrap up the
proof of Theorem 1.1.



4. Reducing large to giant

The purpose of this section is to classify primitive groups as “large” and “small”. Large
groups turn out to be groups of Cameron type and we construct their “natural” (often
imprimitive) action with giants acting on each block and a small group permuting the
blocks. Thereby most algorithmic problems are reduced to consideration of giants and
small groups.

Our objective is achieved by the subroutine NATURAL_ACTION. This procedure is
a slight refinement of the one under the same name in [BLS87]. The procedure involves
a global variable n, the degree of the permutation group which is the input of the full
algorithm. However, we execute group multiplications only on the set where the group
under the current investigation acts primitively (local operations, cf. Section 3).

First, we describe a simple procedure to test whether or not a permutation group is
a giant.

procedure TEST _GIANT(G)
INPUT: a 2-transitive group G = (@) < Sym(C), |C| =m.
Begin executing PERMREP(Q, C)

if |{i : |Ri| # 1}| = 2logm + log® m (* we use the notation of Section 2.7. %)

then stop PERMREP(Q, C); output “giant” and halt
else output “small group” and halt
end (TEST_GIANT).

When reading the followin pseudocode, it is useful to review the notation of Sections
2.4,2.5 and keep in mind that NATURAL_ACTION was designed to handle Cameron
type groups, when m = (f)r and the underlying set A corresponds to s-transversals in
rB for some set B of size k. In that scenario, I' and A correspond to the sets of pairs of
s-transversals with intersection pattern (s—1, s, ..., s) and (0,0, ..., 0), respectively. The pri-
mary aim of the procedure is to construct a subset of A corresponding to the s-transversals
containing a fixed point in rB. Such a set is constructed as C(z,y) below, where z,y
are s-transversals with intersection pattern (s — 1,s,...,3) and C{z,y) consists of all s-
transversals containing the unique point in = that is not covered by y. The subset C(z,y)
has kr distinct images under G, corresponding to the points of 7B. We compute this set
D of images in two phases, first constructing in D(z) only the rs images corresponding
to the points of z. This and other checks on the sizes of newly constructed objects allow
early termination in the case when G is not a large group.

procedure NATURAL_ACTION(Q)
INPUT: a primitive group G = (@} < Sym(A), where m := 4| < n.
Step 1. if m < 3log®n
then output “small group” and halt
Step 2. if G is 2-transitive
then TEST_GIANT(G); (* procedure will halt there *)
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Step 3. Compute the orbitals (G-orbits on 4 x A);
I := the second smallest orbital;
(* The smallest orbital is the diagonal. *)
A : D the largest orbital.
Fix x € A;
if |T(2)] > 2y/mlogm
then output “small group” and halt
For each w € A construct a(w) € G such that z°(") = w,
Construct Schreier generators for G;.
Fix y € ['(z). For each y' € I'(z) compute some S(y') € G such that yP) = o,
Compute the sets

B(z,y) = A(y) — A(z);

Cayy=4- |J AQ).

z€B(z,y)

Let D(z) = {C(z,y)?) : y' € T(z)}.
if |D(z)| > logm
then output “small group” and halt
Let D = J,eq D(z)*™).
if |D| > 2¢/mlogm
then output “small group” and halt
Step 4. Consider G-action on D. (* This action exists and it is transitive. * )
Select a system {E,..., E;} of minimal-size (but nonsingleton) imprimitivity blocks
(* |U; Ei = D #).
if ¢ := |E;| > 4log n and G(E;) :=the stabilizer of E restricted to E; is 2-transitive
and TEST_GIANT(G(E,)) returns message “giant”
then output (“large group, faithfully acting on D"
the G-action on D,
a structure tree for the G-action on D)
else output “small group”
halt
end (NATURAL_ACTION).

We say that G fails the large groups test if output is “small group”. Otherwise G is
said to pass the large groups test.
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4.1. Correctness of the subroutine NATURAL_ACTION

Lemma 4.1, If TEST_GIANT(G) outputs “giant” then G is a giant. If the output is
“small group” then |G| < m?+los™,

Proof. By Theorem 2.4. i
The following result justifies the term “small groups” and provides additional infor-
mation about large groups.

Theorem 4.2. (1) If NATURAL_ACTION outputs “giant” then G is a giant.

(2) If NATURAL_ACTION outputs “large group” then G acts faithfully on D and the
stabilizer of each block E; restricted to E; contains AlL(E;).

(3) f NATURAL_ACTION outputs “small group” then

|G| < exp(9log? n loglogn).

Statement (1) is obviously correct. For (2) we need a lemma.

Lemma 4.3. For p # r primes, the order of a Sylow r-subgroup of the linear group
GL(d,p) is less than p*d,

Proof. This result is implicit in [Lu82, Lemma 3.6]. i

Corollary 4.4. For q > 4dlog p, the order of Alt(q) does not divide the order of the affine
linear group AGL(d, p).

Proof. Let r = 3 if p = 2 and let r = 2 otherwise. The result follows from Lemma 4.3
(except for the two easy cases p=2,d < 3). |

Proof of Theorem 4.2, part (2). We show that the alternating groups constructed by the
procedure are in the socle of G and G has a unique minimal normal subgroup. These facts
imply that the G-action on D has a trivial kernel. We say that the group H is involved in
the group K if H = L/M for some MaI{,M < L < K. If a simple group H is involved in
K then clearly H is involved in a composition factor of K.

We may assume G is not a giant. Let K be the kernel of the G-action on D. The
stabilizer of E; restricted to Ey passed TEST_GIANT, whence it contains Ali(g), ¢ := |E;|-
As the G-action on the set of blocks is transitive, the same holds for each E;. Also, it
follows that Alt(q) is involved in G/K. '

If Soc(G) is abelian then, by Theorem 2.6, m = p? for some prime p and G <
AGL(d,p). But, dlogp =log m < log n < ¢/4 and therefore, by Corollary 4.4, the order
of Alt(q) does not divide |G|. Thus this case cannot occur. Hence Soc(G) is nonabelian
and the results stated in Theorem 2.7 apply. We use the notation of Theorem 2.7 and refer
to Na G established there.

First we show that Al{(g) is not involved in G/Soc(G). Indeed, otherwise Alt(g) must
be involved either in G/N or in N/Soc(G). The first case is impossible because G/N < 54
(Theorem 2.7(b)) and d < log m/log § < ¢/8 (Theorem 2.7(c)). In the second case,
Alt(q) is involved in N/Soc(G) < Out(T)¢, a solvable group by the Schreier Conjecture
(Theorem 2.3), again a contradiction.
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It follows now that Al(g) is involved in Soc(G) and K 2 Soc(G). Now Soc(G)
must be the unique minimal normal subgroup for otherwise, by Theorem 2.8, we have a
contradiction:

n? > m? = |Soc(G)| > |Al(q)| = ¢!/2 > 27 > n*.

It follows that K contains no minimal normal subgroup, whence K = 1. |

Proof of Theorem 4.2, part (3). Assume the order of |G| exceeds the stated bound. We
must show that at no point will “small group” be falsely announced. This would not
happen in Step 1, for m < 3log? n implies |G| < m! < (3log? n)? log?n [f G is 2-transitive
then the Step 2 call to TEST_GIANT will correctly halt with that revelation (by Theorem
2.4).
By Theorem 2.9, G is of Cameron type and A can be identified with the set of points
of a Cameron scheme C(m, k,s,r) and we may assume that rs > 1, that is, G is not a
giant. Of course, the parameters and the identification are not known a priori. We prove
that Step 3 of NATURAL_ACTION correctly recovers this structure with D corresponding
to rB, E; to B; (so ¢ = k) and the parameter k satisfies k > 4logn. (We use the letters
r, k, B;, C =rB = B; U...U B, to mean what they do in Section 2.5. We call the action
of G on C “natural”. Recall that each a € A corresponds to an s-transversal T'(a) C rB.)
We take note of some inequalities satisfied by the parameters of this C(m,k,s,r).
Since m = (¥)" > (k/s)™ > 27,
rs < logm. (4.1)

Since rs > 1, we have m > ('2‘) which implies

k < 2y/m. (4.2)

Also,
k>4logn (4.3)

otherwise, |G| < (k) r! < k57l < m¥rl < n*l98"(logn)! < exp(9log® n loglog n). Finally,
k> 2rs? (4.4)

otherwise, using (4.1), we have |G| < (K)r! < (2rs?)27* 1! < (2log? n)?!°8" n(log n)! <
exp(9log? n loglog n).

We claim now that the G-action on D is similar to the natural G-action on C. For
berB,let U(d) = {u € Alb € T(u)}. We need to show that that D = {U(b)|b € rB}. By
(4.4) and Lemma 2.10, T’ = T; and A = ®. Thus, for any y € I'(z), the set T(z) — T(y) is
a singleton {b(z,y)}. Now, a simple inspection of the Cameron scheme, using that k > 3s
(by (4.4) since rs > 1), shows that C(z,y) = U(¥(z,y)). The result follows since G acts
transitively on C.

The identification of the E; with the B; follows because the latter are the unique
minimal-size blocks in the natural action of G. Finally, (4.1), (4.2), (4.3) ensure that the
cardinality tests on that I'(z), D(z), D, E; in Steps 3 and 4 do not cause terminal output
“small group.” |
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4.2. Time complexity of the subroutine NATURAL_ACTION

Lemma 4.5. Suppose G = (@) acts on an m-set, and |Q| = q. Then TEST_.GIANT(G)
runs in O~(m? + gm) time.

Proof. We work with O™(1) coset representative sets R; each of size 2 < |R;| < m, and, by
Theorem 2.12(b), O~(1) sets of generators T; of size 0™~(1). Hence the sifting of products
of the form pr, p € R;, 7 € T;_; for some i costs O~(m?); in addition, we may have to sift
the elements of Q. |

Theorem 4.6. Suppose G = (@) acts on an m-set, and |Q| = q. Then NATU-
RAL_ACTION(Q) runs in O~(gm?) time.

Proof. Testing 2-transitivity takes O(m?q) time. Hence, by Lemma 4.5, Step 2 can be
executed in O~(m?q). Finding the orbitals requires O(m?q) steps. The (local) computation
of {a(w) : w € A} requires O~(m? + gm) time. The number of Schreier-generators is gm;
they are found in O(m?q) time. 0™~(gm?/?) steps suffice to find the §(y'). C(z,y) can be
determined in O(m?) time. We compute D(z) in O~(m?). Finally, D is also obtained in
0~(m?). Thus Step 3 requires O~(m?q) total time.

The action of any ¢ € Q on D can be found in O"‘(ms/ 2). The structure tree
is computed in 0~(mg), and, since r = O0~(1), generators for the stabilizers of orbit-
representatives on the new tree can be computed in O~(gm) time. Finally, we call
TEST_GIANT on a set of size 0~ (y/m), with 0™~ (q) generators requiring O™~ (m + q\/_)
time. Thus the time complexity of Step 4 is 0™~(mq + m3/2).

Corollary 4.7. Step 2 of the Main Procedure runs in O~ (sn?) time.

Proof. We apply NATURAL_ACTION to the action G(v) of the point stabilizer G, on the
children of v for certain nodes v of the structure forest (one node from each level of each
tree). Denoting by g, the number of (Schreier) generators for G, and by m, the number

of children of v, 37, (gvmy) = O(sn). i

4.3. Extending the structure forest

Proposition 4.8. Step 3 of the Main Procedure runs in 0~ (sn?) time.

Proof. Suppose that a node v is the representative of an orbit in the original SF, v has
m children, and NATURAL_ACTION appended a tree T(v) to v. The vertices of T'(v)
are subsets of the children of v; hence the group elements carrying v to the other nodes of
its orbit v¥, computed in Step 1, naturally define a copy of T(v) appended to the other
nodes in v%. These copies of T(v) can be obtained in O~ (m?*/?|v®|) and the action of any
o € G can be extended to the appended trees within the same time bound. Hence the
action of o on the entire ESF can be computed in O~(n®/2). The extension to the SD
is straightforward and in time O(n). Finally, as in Lemma 3.1(b), generators of G, for
representatives of G-orbits of the SD can be constructed in O(sn?) time. |
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5. Constructing strong generators for a giant

The purpose of this section is to construct a Jerrum style compact SGS for the giants.
Recall that the “giants” are the symmetric and alternating groups in their natural action.
The Jerrum style compact SGS for G = Sym(C) acting on the set C = {z1,z2,...,%m}
consists of m — 1 permutations my,72,...,7m—1 such that for all 1 < k¥ < m — 1, n; fixes
T1,..., k-1 and Tp* = Zr41. For G = Al(C), the SGS contains 7y, ma, ..., Tm—2 as above
while 7, —1 fixes T1,...,Zm—3 and -"’3“-_21 =ZTm.

We require that the strong generators are constructed from the given generators of
the giant by the following legal operations: multiplication, inversion, and taking powers of
permutations. The reason for this constraint is that the procedure is applied to the case
when G(v), the action of the stabilizer of node v on the children in the structure domain,
is an alternating group. In this case, although we know a priori that some o € G(v) acts
on the children as, e.g., a given 3-cycle, no such permutation can be guaranteed to belong
to the input group unless it has been constructed, by way of legal operations, from the
generators of G(v). In this application, all group operations are global, i.e., we perform
them on all points in the SD.

5.1. Construction of a 3-cycle

The essence of the procedure is the construction of a 3-cycle. Once a 3-cycle p is con-
structed, an SGS can be obtained easily by taking appropriate conjugates of p.

We note that a byproduct of the procedure yields a simple, elementary proof of the
old result, known to Jordan (1895) [Jo], (and vastly surpassed by Theorem 2.4) that the
only clog® n/log log n -fold transitive permutation groups are the giants [BS87]. It also
yields an exp(v/n1nn(1 + o(1))) upper bound on the diameter of any Cayley graph of the
giants [BS88].

Our goal is achieved by the procedure THREE_CYCLE. As a preprocessing phase,
we determine and store the first logn primes. (The global variable n is the degree of
the permutation group which is the input of the entire algorithm; we assume that n is
sufficiently large.) We denote the :** prime by p; and the product of the first ¢ primes by
p(i).

Also, we need the following definitions. For 7 € Sym(C), let us call a subset B of
supp(w) independent with respect to = if BN B™ = (. The commutator of m,7 € Sym(C)
is [m,7] = mra~ 7L,

The procedure THREE_CYCLE uses the subroutine ORBITALS. Given generators
for some G £ Sym(C), |C| = m, ORBITALS returns O(log m) generators for a subgroup
H < G with the same orbitals as G. In particular, if G is a giant then ORBITALS returns
O(log m) generators for a 2-transitive subgroup. The idea is the following. Suppose that
generators for some H < G are already defined but the orbital structures of the two groups
are different. We fix an ordering of the generators P = {ry,...,7¢} of G and for each H-
orbital A which is not an orbital of G, we find the last element of P which moves A. Then
we add a product of the form 7i'7;% .. 72* to the generators of H where each ¢; € {0,1}
and ¢; is chosen such that /' 752 -- 'r; ’ moves at least half of the H-orbitals A for which 7;
was the last generator moving A. This is a deterministic version of the random subproduct
method, which we describe in Section 5.4.
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procedure ORBITALS(P,C, R)
INPUT:G = (P) < Sym(C), |C|=m, P = {71,..., Tk}.
OUTPUT: Generators R for some H < G with same orbitals as G, |R| = O(log m).
Initialize: compute orbitals Oy,...,0p of G; R =1
repeat
compute orbitals {A; : i € I'} of (R)
for all A; & {04,...,0,}, compute
last(A;) == max{j : A7 # A;}
o := 1 (* start constructing new element of R *)
for j :=1to k do
if [{A; : last(Ai) = 3, A7 = A} > [{Ai: last(A;) = 7, A7 # A}
then ¢ :=o0o7;
R:=RU{¢}
until orbitals of G = orbitals of (R)
end (ORBITALS).

Steps 1-3 in the next procedure can be viewed as a preprocessing phase in which we
construct the first log? n coset representative sets in the stabilizer chain of a giant G. With
these coset representative sets in hand, it is easy matter to construct a permutation 7 € G
that has a prescribed effect on an arbitrary subset of size log? n (cf. Lemma 5.2). Such
constructed elements are useful in a computation that replaces a given element A by one
with significantly smaller support. For an appropriately designed 7, A; = [A, 7] contains
cycles of prime length for a lot of different primes. An underlying idea then is that one
of these primes does not divide most of the cycle lengths in A;. Taking an appropriate
power of A, we can kill all cycles whose length was not divisible by that prime and we get
a permutation with smaller support. Iterating the process, we obtain a 3-cycle.

procedure THREE_CYCLE(Q)
INPUT: G = (Q) acting on C = {z1,22,...,Zm}; m > 3log” n, GC is a giant.
OUTPUT: An SGS, constructed from @ (using legal operations only).
Step 1. Begin PERMREP(Q, C);
stop PERMREP(Q, C) when |{i : i > log®n, |R;| # 1}| = 2logn + log® n.
Let R be a collection of non-trivial coset representatives such that
|[RNR;| =1 for all i > log®n, |R;| # 1.
Step 2. ORBITALS(Q,C, Qo)
Step 3. for i :=1 to log®n do
Let G(i — 1) := {Qi-1 U R).
Construct coset representatives D; for G(E —1)¢ mod G(: — 1)¢,
(* G(i — 1), is the stabilizer of z; in G(i — 1)C. *)
Construct Schreier- -generators Q7 for G(i — I)C
ORBITALS(Q:,C,Q:).

Step 4. Compute f(m),g(m), where f(m) := min{r : p(r) > m*}, and g(m) := Z{gl") Di-
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Step 5. Let A be any # 1 element of G.
while deg(}) > log® n do
Choose B C supp(A),|B| = g(m) such that B is independent.
Construct 7 € G such that 7 fixes pointwise B* and
7|p consists of cycles of length py,p2,..., py(m)-
/\1 = [1\, T ]
For all i < f(m), compute m(z) := the product of all cycle lengths in A, which are
not divisible by p;. .
Choose i £ f(m) such that 2 < deg(z\'ln(')) < deg(A)/2. Let A := ,\;"(') for this i.
end
Step 6. Construct p € G such that p fixes exactly deg(A) — 1 points in supp(}).
Let ¢ = [\, p. (* o is a 3-cycle *)
Step 7. Take conjugates of o to obtain an SGS for Al{(C).
If G¢ = Sym(C) then sift an odd permutation to obtain an SGS for GC.
output the SGS for G€.
end (THREE_CYCLE).

5.2. Correctness of the subroutine THREE_CYCLE

Lemma 5.1. For each 1 <i <log?n, (Q})C\M=1r2} contains Al(C \ {21, ...,z:}).
Proof. By Theorem 2.4. |

Lemma 5.2. Given any D C C,|D| = d < log’n, and an injection f : D — C, it is
possible to construct T € G such that 7|p = f, and 7 is a 2d-long product of elements of
s " D;.
Proof. By Lemma 5.1, for all i < log?n D; = {a(i,j)|i < j < m}, where a(i,j) fixes
T1,%2,...,%i-1 and moves z; to z;. For any distinct a;,...,aq € C, let us define recur-
sively w{ai,...,aq) = pa(d,af)™!, where p = m(ay,...,a4-1). Then, for i < d we have
aT(®1%) = § Let now D = {h,. ., la}. Then 7 = w(ly,... la)w(f(l),..., f(la))7! is
|

H
appropriate.

Proposition 5.3. f(m) = O(ﬁglo:‘—m) and g(m) = O(ﬁ%).
Proof. By the Prime Number Theorem [HW]. |
Corollary 5.4. f(m) < logn and g(m) < (log® n)/3.

The following is easily verified.

Lemma 5.5. Let 7,7 € Sym(C). Assume that B is an independent set with respect to
and 7|g= is the identity. Then [r,7]|g = 77}|5. |

Lemma 5.6. Let 7 € Sym(m), k = deg(w). Suppose 7 contains cycles of each prime
length p;, i < r = f(m). Let m(i) be the product of all cycle lengths occurring in = which
are not divisible by p;. Then 2 < deg('n"“(‘)) < k/4 for somei <.

Proof. Let K = supp(w). For each z € K, let us consider the set P(z) of those primes p;
dividing the length of the m-cycle through z. Clearly, the product of these primes is < k.
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Let n(¢) denote the number of points z such that p; € P(z). Let us estimate the
weighted average W of the n(Z) with weights log p;. Recall that the sum of the weights is
Y log pi > log(m*) = 4log m, therefore

W < Z Z log pi/(4log m)

z€K p;eP(z)
<(klog k)/(4log m) < k/4.

We thus infer that n(i) < k/4 for some i < r. Clearly, 79 is not the identity and it
fixes all but n(z) points. |

Theorem 5.7. The output of THREE_.CYCLE(Q) is an SGS for G.

Proof. By Lemma 5.1, Step 3 constructs the first lcrg2 n coset-representative sets for a
giant. By Corollary 5.4, we can choose independent sets of size g(m) from permutations
of degree > log? n. By Lemma 5.2, we are able to construct the permutations 7, p required
in Step 5 and 6. By Lemma 5.5, A;|p has the same cycle structure as 7|g; moreover,
deg(A1) < deg(A) + deg(rA~17~!) = 2deg()). Hence, by Lemma 5.6, we can choose i < r
such that 2 < deg()\;"(')) < deg(A)/2. In Step 6, we compute the commutator of two
permutations whose supports intersect in exactly one point, whence the commutator is a

3-cycle. Finally, we can obtain permutations which conjugate ¢ into elements of an SGS
by Lemma 5.2. |

5.3. Time complexity of THREE_CYCLE

Lemma 5.8. ORBITALS(P,C, R) runs in O~(|P||C|?® + |P|n) time.

Proof. The orbitals of G can be computed in O(|P||C}?) time. One execution of the
repeat loop costs O~(|R}|C|?) for the computation of the orbitals of {R), plus O(|P||C|?)
for the computation of the function last(A;), plus O(|C|?) for checking the images A7,
plus O(|P|n) for group multiplications to compute 0. The key observation is that we
execute the repeat loop only O(log |C|) times since, at each execution, the new ¢ increases
at least half of the orbitals A; for which the function last(A;) is defined. Therefore, after
I executions of the repeat loop, the number of “bad” A;’s is < |C|*(3/4)". 1

Lemma 5.9. Suppose that the sum of the different positive integers b; is < m. Then

TTb: < exp(0~(v/m)).

Proof. Choose b; < by < --- such that J]b; is maximal. Then b, < 4, for otherwise
substituting & by 2 and b; — 2 the product would increase. Also, for any i, biy; — b; < 2,
otherwise the product would increase by substituting b; + 1 and 4;41 — 1 for b; and b;,.;.
Moreover, bi41 = b; + 2 for at most one i: if by, > b;+2 and b4y > b; +2 for some z < j
then by substituting b; by b; +1 and bj41 by bj41 —1 the product would increase. Thus the
b; comprise an initial segment of the natural numbers with the possible omission of 1,2,3
and one other number. If max{b;} =z, thenm > Y b; > z(z+1)-1-2-3 - (z — 1),
which implies z < 2 + v/2m. We have then [] b < z! = exp(0~(y/m)).
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Theorem 5.10. Suppose that |Q| = ¢ and (@)C is a giant. Then THREE_CYCLE(Q)
constructs an SGS for (@)€ in O~(gn + mn + m?q + m?) time.

Proof. By the Prime Number Theorem, the logn'* prime is O(lognloglogn), hence the
preprocessing phase requires 0~(1) time. By Theorem 2.12(b} and the argument already
used at the analysis of TEST_GIANT (cf. Lemma 4.5), Step 1 runs in O~(gn + mn). By
Lemma 5.8, Step 2 requires O~ (m2g+gn) time and the output @ satisfies |Qo| = O(log m).
We execute the loop of Step 3 O™~(1) times. The coset representative set D; is obtained
in O(mn). The Schreier-generators are constructed in O~(mn) time and their number is
Q%] £ m|Qi—1| = O~(m). Using Lemma 5.8 again, Q; is computed in O~(m3 + mn);
hence the total time requirement of Step 3 is O~(mn + m?). Step 4 runs in O™~(1). Since
we decrease the degree of A at least by a factor 2, the loop of Step 5 is executed O~(1)
times. By Lemma 5.2, 7, whence A;, is obtained in 0~(n). By Lemma 5.9, m(7) is a
< 0~(y/m)-digit number, thus, for all ¢ < r, m(i) can be computed in O~(m) time [SS],
and ,\;"(') can be constructed in O~ (ny/m). (For all z in the permutation domain, we have
to divide m(7) by the length of the cycle through z.) Hence Step 5 requires O~(n\/m)
time. Step 6 runs in O~(n). Finally, by Lemma 5.2, Step 7 requires O™~(mn) time. |

Corollary 5.11. Step 4 of the Main Procedure runs in O~(n® + sn?) total time.

Proof. We apply THREE_CYCLE to the action of the stabilizer of some nodes v on the
children of v in the SD. As in the proof of Corollary 4.7, denoting by g, the number of
(Schreier) generators for G, and by m, the number of children of v, ) (qym,) = O(sn).
N

5.4. Las Vegas speedup of THREE_CYCLE

In this section we present a randomized version of THREE_CYCLE with O~((g + m)n)
running time. As indicated in the proof of Theorem 5.10, calls to the subroutine OR-
BITALS were the only parts of the procedure THREE_CYCLE not executable within this
tighter time bound. ORBITALS is accelerated by using random subproducts of generators.

Deflnition 5.12. Let G = (1, 73, ..., 7%). A random subproduct of the generators 1y, ..., Tk
is an instance of the product 75!7;? - - - 7¢* where the ¢; are independent, 0-1 valued random
variables with Prob(e; = 0) = Prob(e; = 1) =1/2.

The key observation is that a random subproduct of the generators is just as likely to
increase an orbital of a subgroup H < G as the deterministically constructed element o in
ORBITALS. We make this observation more precise in the following lemma.

Lemma 5.13. Let G = (11, 72,...,7k) < Sym(m). Then the expected number of random
subproducts of the generators 7y, ..., 7« which generate a subgroup H with the same orbitals
as G is clogm.

Proof, Let H; be the subgroup generated by the first ¢ random subproducts and let
o = 7'y ---7* be the (¢ + 1)** random subproduct. Let {A; : i € I} be the or-
bitals of H; which are not orbitals in G. For an arbitrary A;, let | = last(A;) =
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max{j : A¥ # A;}. Then

Prob(AY # A;) = Prob(AR 7™ £ A))
S S Eg £ 5=
> Prob(er=1|A;' 7 =A)Prob(A;r 7T = 4A))

£ asa =1 N - £i—
+ Prob(er = 0|AT T L A)Prob(AT T £ A)
=1/2.

Hence, with probability > 1/2, ¢ enlarges each “bad” orbital of H,. A standard argument
shows that after taking ¢ random subproducts the expected number of “bad” orbitals is
< m?(3/4)". |

The speedup of THREE_CYCLE is straightforward: instead of calling OQRBITALS,
we take O(logm) random subproducts of generators. The procedure is Las Vegas since
we can check in O~(m?) time whether these random subproducts generate a 2-transitive
group.

Chronologically, the idea of random subproducts preceded the subroutine ORBITALS
(cf. [BLS88]). Random subproducts are useful far beyond the scope of this paper: for
example, in [BCFLS], augmented with other ideas, they provide a O~ (n®) elementary
Monte Carlo SGS construction.

6. Descending the structure domain: traversing levels

In the previous sections, we discussed the first four (preparatory) steps of the main al-
gorithm. We constructed an extension of the original permutation domain, called the
structure domain (SD), and an ordered partition of the SD such that the pointwise stabi-
lizer G; of the first ¢ sets is normal in G. The algorithm proceeds by constructing an SGS
for successive G; mod Gj4; and finding normal generaiors for Gy, (that is, generators
of subgroup whose normal closure in G is N.) We describe the construction of these
elements through a process of normal sifting, which relies on knowledge of presentations
for the quotients G;/Gi41. Our time bounds depend critically on the number of normal
generators obtained and, to that end, we indicate how we form concise presentations.

Recall that a presentation of a group G is a pair (X | R}, in which X is a set and
R C F(X) (F(X) denotes the free group on X) such that there is an epimorphism ¢ :
F(X) — G with kernel (’R)F(X). We shall say that the presentation is induced by ¢; in the
algorithmic application of presentations, it is typically necessary to specify ¢ along with
X and R. The elements of R are called relations.



6.1 Normal sifting

Let
G=Gy2G1>...2Gn=N (6.1)

be a chain of normal subgroups of G. Let S; C G; generate G; mod Gi41, ie. G; =
(Si)Gi+1 (1 £ m—1). We call the collection {S; : 0 £ i £ m — 1} a system of chain-
generators of the series (6.1).

Suppose that

Gi/Git1 = (Xi | Ri) (6.2)

is a presentation of G;/Giy1 induced by ¢ : X; — G;/Gi+1. We say that 5; C G;

corresponds to this presentation if the natural map G; — G;/Giy, yields a bijection $; —

#(Xi). Then, for w(X;) € Ri, substitution of S; for X; yields an element w(5;) € Giy.
Assume that the subgroup chain

G=Hy2H; >..>H/=N (6.3)

is a refinement of (6.1): G; = H;; (0 =jo < j1 < ... < jm = f). Assume further that a
set C; of right coset representatives of H;_; mod H; is given for each j, 1 < 7 < f such
that for j;i + 1 < j < jiq1, we have C; C (S;). Such a system will be called compatible
with the given system {S;} of chain-generators of (6.1). Given an element of ¢ € G, we
can sift it down along the chain {H;} to obtain a siftee, a member of N. This defines the
map sift: G — N.

Theorem 6.1. (Normal Sift Theorem) Assume a series of normal subgroups (6.1) of the
group G = (S) is given along with chain-generators {S; | 0 < ¢ < m — 1} which correspond
to presentations (6.2) of the factors. Assume a refinement (6.3) of (6.1) is given along with
coset representatives, compatible with the given chain-generators. Let () denote the set of
the following elements:

(a) S (the set of generators of G);

(b) g"'hgforge Sandhe S;, 1 <i<m-1;

(¢) wi(S;:) foralw; e R;,0<i<m—1.

Then N = (sift(Q))€.

Proof. Let H = (sift(Q))®. Set G = G/H and let ¢ : G — G be the natural homomor-
phism. Clearly, H < N, and therefore |G| > |G/N|. We have to prove that equality holds
here. For any subset U C G, we use U to denote ¢(U).
Let Hi = (Sf1Si+1)' .. 1Sm—1)' (Hﬂ‘l = 1')
1. Hy = G, because sift(S) C H by (a).
2. H;4G, because sift(S7) C H by (b).
3. |Hi/Hipa| < |G.-_/G,-+1|_, because w;(S;) € Hiy, for w; € R; by (c).
It follows that |G| = |Hp/Hi| - - |Hm-1/Hm| £ |Go/G1| ** |Gm=1/Cm| = |G/N|. B
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6.2 Presentations

The Normal Sift Theorem is applied each time our descent of the structure domain finishes
a level. There, we are dealing with quotients G;/Gi4; that act faithfully on L;y,, the
(¢ +1)** level of the SD. For our time bounds, we need to ensure that |R;| = O~(|Li+1|?).

For a full alternating group, Alt(q), there is a concise set of at most g relations [Car],
cf. [CM, p.67). We quote Carmichael’s presentation of Ali(q).

Theorem 6.2. [Car] Fix ¢ > 4. Let X = {z,y}. Let
Rear = {3772, 2%, (y2)} U {(ey " 2y*)* | 1 < k < (¢ - 3)/2}
if q is odd, and
Rear = {47742, (o) HU (= y 4oy | 1 < k < (g -2)/2)

if q is even. Then (X | Rcar) is a presentation of Ali(q).

This extends easily to a presentation of direct products of alternating groups, the
situation we uncover at alternating levels of the SD. We use a Carmichael presentation,
with a pair of generators, for each factor and enter the relations (commutators) that ensure
that the pairs of generators commute.

For the small-group levels, we recall an elementary construction of presentations.
Suppose that, for 1 < ;7 < f, C; is a complete set of right coset representatives for H;_,
mod H;, where

G=Hy2H 2 -2H;=1,

For each v € U_{:] C;, associate a symbol z and let X be the collection of these symbols.
Forany j 2 kandl1#0c€Cj,1#7€Cy,

OT =7f***Yj+17j, for unique 7, € Cp, j <p < f.

Let w,,, be the word z 7'z 'z, - - 2.,,,7., and let R be the collection of all such words.
Then (X | R) is a presentation of H.

Let H = Gi/Gi4+1 be a small-level group acting on Ly, |Lit+1]| = m. Coset repre-
sentatives in the point stabilizer chain for H are available via PERMREP (Proposition
2.11). We know, however, that H is contained in a direct product of isomorphic primitive
groups, this direct product acting as a “small” group on each of its, say r, orbits each of
size m/r. Any such orbit includes at most O~(1) points where the point stabilizer chain
for H decreases, i.e., where |C;| # 1. Furthermore |C;] < m/r, for all i. It follows that
|X| = 0~(m) and |R| = O~(m?2).
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7. Descending the structure domain: small group levels

By the results of Section 4, the group G(w), the action of the stabilizer of the node w in
the structure domain on the children of w, is either an alternating or a small group. (A
small group is of order < exp(9log? nloglogn).) Moreover, for w,w' € L; these groups
are isomorphic. We call L; a alternating level if G(w) is alternating for w € L;, and a small
group level in the other case. QOur objective in this section is to get past a small group
level L;_;. Suppose that we have constructed an SGS for G/G;_; and normal generators
Q! for G;—;. We proceed to constructing an SGS for G;_1/G; and normal generators
Q' for G;.

The routine NORMCL(Q*~!, L;, S) gives us the SGS. A presentation for G;—;/Gy
is obtained according to Section 6.2 and then normal generators for G; are constructed
according to Theorem 6.1.

Timing analysis for NORMCL. Let L;.; := {w;,ws,...,w,}, and denote by B; the
children of w;. Then L; = |J, ;<. Bj and |(Gi-y )% | = exp(O~(|Li-1])). Moreover, since

Gi_1 stabilizes L;_; pointwise, t :=max(|(G;- 1)J (Gi- 1),+1|) < |Li|/r. (Recall that

(Gi—1 )L  denotes the j** subgroup in the pointwise stabilizer chain in the group G;_, acting

on the set L;.) Therefore, by Theorem 2.15, the running time of NORMCL(Q'~!, L;, S) is
(IL:—lln(lQ"ll + 8| Li-1] + |Lil|Li-1))-

Number of normal generators obtained. There are O~(|L;|) coset representatives,
so Q'] < 1@ + O~ (s|Li| + |Li[?).

Finally we observe that the time to sift each normal generator into G; is 0~ (n|L;—1|).

Remark 7.1. If s > n then we may apply NORMCL(Q*~?, L;, §*) with §* := Uj<iz1 S,
Since S* is a set of compatible generators for G/G;-; and Q*~! contains the siftees of S

into Gi—1, (S§) = (5*,Q*"!) and (@'~ 1)(5 ) = (Q- 1) . This change improves the timing
and the bound on the number of generators s by n in both expressions.
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8. Descending the structure domain: alternating levels

Suppose that we have constructed an SGS for G/G;_; in Step 5 of the main algorithm
and L;_; is an alternating level. In this section, we describe a method to obtain an SGS
for G;-1/G; and normal generators for G;.

First, we introduce some notation. Let v be a representative node at level L;_,. Level
L; can be partitioned into L; = B;UB3U---UB,, |B;| = m > 3log” n for all j, such that for
each w € L;_; the children of w comprise one of the B; and the point stabilizer G, acts as
Ali(B;) on this B;. We may suppose that B, contains the children of v. While computing
Schreier generators for Gy, the algorithm constructed as,...,a, € G such that Bj’ = B;.
We denote by Q! the set of normal generators for G-, constructed by the algorithm
and by S the generators of G. Finally, for 7 € G;—, length(7) := |{j : 7|5, # 1}|.

If all elements of @*~! act trivially on IL; then G; = G;_; and there is nothing to
do. If there exists p € Q'~! acting non-trivially on Bj for some j' < r then, since
Gi-1 contains all conjugates of p, Gi-; acts as Alt(B;s) on Bj; moreover, conjugating by
ag, ..., We see that fol = Alt(B;) for all j < r. Hence, by Proposition 2.2, G;_; /G; is
isomorphic to Alt(m)* for some k. We give an efficient version of Luks’s “non-commutative
linear algebra” to determine which coordinates of ], Al{(B;) are linked in the diagonal
subgroups. We note that because of the transitive G-action on {By,..., B,}, the number
of Alt(B;)’s is the same in each linked collection.

8.1. The procedure GIANT_CLOSURE

In Step 4 of the main algorithm, we computed an SGS P, C G for G(v), the action of
G, on B;. However, the elements of P, are not necessarily in G;—; (that is, they do not
necessarily fix all nodes at level : — 1). Here we describe a subroutine which computes an
SGS R C Gi_, for Al{(B,) given P, and given an element of G;_, acting non-trivially on
B,.

More precisely, with additional applications in mind, we consider the following sit-
uation. The setwise stabilizer G(c} of a group G acts on a set C, |C| > 8, as Alt(C).
The input to GIANT_CLOSURE is P C G¢) such that P is an SGS in this action, and
p € G(c). The output is R, an SGS for Alt(C), such that R C {p}{*? i.e., R is generated
by conjugates of p by the elements of (P). Moreover, we require that there are 7,0 € {p)¢")
such that w(r,o) = 1 for w(z,y) € Rcar (see Theorem 6.2), and R C (7, o).

¥C=1{1,2.,m}, meventhent =(123),0 =(12)(34..m—1m) satisfy the
relations in Theorem 6.2. If m is odd then we can choose 7 =(123),0 =(34 ... m—1m).

procedure GIANT_CLOSURE(G, C,p, P,R,T,0)

INPUT:C, P, p as specified above.

OUTPUT: R, 7,0.

Step 1. Let 11 € (P) such that v,|¢ is a 3-cycle not commuting with p|c. Compute
p1 = [p,m1]. (* deg(palc) < 6 ) Take 7; € (P) such that [supp(p1|c) N supp(12]c)| = 1.
Compute p2 = [p1,72]- (* p2|c is & 3-cycle *)

Step 2. Conjugating p. with appropriate elements of (P), obtain permutations
T1, M2, Tm—2 such that m|lc = ({1 i +1i+2). (* m,72,...,"me2,72,_, is an SGS

for Ali(C) *)
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Step 3. Compute 7,0 as specified before the procedure as a product of the =;’s.
Step 4. If m is odd then compute o7. (* o7|c =(1 2... m — 1 m) *) R consists of 7 and
its conjugates by the powers of o7.

If m is even then compute or? and 70~
10~ r0|c = (23 4) *) R consists of 7, To™!
powers of o72.

end (GIANT_CLOSURE).

ro. (* o1%c = (28...m —1m) and

to, and the conjugates of o~ 170 by the

Proposition 8.1. I group operations in G require (n) time then
GIANT_CLOSURE(G,C, p, P, R, 7,0) computes an SGS for Alt{C) in O(mn).

Proof. The correctness of the procedure is obvious. Given an SGS for Alt(C), any element
of Alt(C) can be constructed from it by O(m) group multiplications. Therefore, Steps 1
and 3 require O(mn) time. By Lemma 5.2, a permutation with three prescribed positions
can be constructed in O(n) time so Step 2 also runs in O(mn). Finally, we notice that
using the result of the conjugation by the previous power of o7 (or o72), all conjugates in
Step 4 can be computed with O(m) group operations.

8.2. The procedure GIANT _LINK

We obtain an SGS for G;—;/G; by applying the procedure GIANT._LINK. We use the
notation introduced at the beginning of Section 8 for the input; the output will be an SGS
T and a set S*~? of compatible generators for Gi~1/G; and a set Q* of normal generators
for G;.

If two coordinates j,j’ < r are not linked in a diagonal action then there exists
7 € Gi-1 such that 7|p; # 1 and 7|p,, = 1. In this case, we say that = witnesses the
separation of j from j'. Note that possession of a witness to the separation of j from j'
does not imply possession of a witness to the reverse separation, even though we know
that one exists.

GIANT _LINK uses the subroutine GIANT_SEPARATE. The input is an SGS R; C
Gi—, for G?_jl > Alt(B;) and m, Ty € Gi—; such that mi|g; # 1 for I = 1,2. The output
is a single 7 € G;—; such that, for any coordinate j’, if either m or mo witnesses the
separation of j from j', then 7 also witnesses this separation.

procedure GIANT_SEPARATE(R;, 71,72, 7)
INPUT:R;, m,m as specified above.
OUTPUT: =.
if m|p;,m2|B; do not commute
then 7 := [my, 73]
else take p € (R;) such that 7T1|Bj,p_17r2p|3j do not commute
1= [m1, p map]

end (GIANT_SEPARATE).
Proposition 8.2. GIANT_SEPARATE computes the witness w in O(n) time.

Proof. The only non-trivial point is that an appropriate p € {(R;) can be constructed in
O(n) time. If m1|p; has a fixed point, say 2™ = z, then conjugate =, such that gf T =y
for some y with y™ # y. If m|p; does not have a fixed point then choose four different
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oints z,y, z,u € B; such that ™ =y and z™ = u. Conjugate 7, such that y*~ ™* = u
p .2, J g y

and 2P # z. Since we described the value of p at < 4 points, such p can be obtained
in O(n) time by Lemma 5.2. Note that m2|p, = 1 implies p 1map| B, =1 |

In the first three steps of GIANT _LINK, we compute a subgroup of G;_; which acts as
the full alternating group on each B;. In Step 4, we obtain witnesses for all pairs not linked
by this subgroup and then compute a single witness for each B;. In the loop described in
Steps 5-7, we obtain additional elements of the subgroup G;—; (until we have a collection
that fully generates Gi—;/G;). First in Step 5, until the linked collections have the same
length, we conjugate the shortest collection into all positions, necessarily breaking up some
links in the longer collections. Step 7 ensures that we have done all the link-breaking that
is implied by the subgroup at hand and, if so, that the subgroup is normalized (mod G;)
by G; failure of either test produces a new witness to separation in Step 7, and the loop is
repeated. H the tests are passed, we can specify @' (Step 8).

procedure GIANT_LINK(L;, @'}, S, P,, {a2,... ,ar}, @, §71, T)
INPUT: L; = BiU---UB,, Q1,5 P,,{as,...,a,} as specified above.
OUTPUT: @,5'1,T.
Step 1. take p € @', plB; # 1 for some j; Compute p; := ajpa]-'l.
Step 2. GIANT-CLOSURE(G, B] 1 P14 Pv, R1 1 T1,01 )
Step 3. for j:=2 tor do
compute R; := on-_lRla_,-,aj = o
Step 4. for j:=1tor do
Collect the following elements of G;_; in a set L:
the siftees of Q*~! U {ojr, 7y : 1 < j' < r} through R;
w(7;,0;) for all w(z,y) € Rear (* see Theorem 6.2 *)
foroc e ¥ do
for all coordinates j’ for which o witnesses the separation of j! from j but
this separation is not witnessed by the current pj» do
GIANT-SEPARATE(R_,! y in 3y Ty P]' ).
Step 5. while there exist j, ;' with length(p;)} # length(p;) do
take p; with minimal length
for j':;=1tor do
GIANT-SEPARA.TE(R_,' 1 Pi’y aPlaJ-pjaj—laJ-: ’ pJ:)
if the lengths of all p;, 1 < j' < r, are equal and
there exist j', 7" such that pj» witnesses a separation of j' (from some ;")
that is not witnessed by pj
then for one such pair j', ;"
GIANT_SEPARATE(R;, pjt, pju, pj ).
Step 6. for j:=1tor do
GIANT_CLOSURE(G, BJ‘, Pis Rj, Rj, Tjs UJ').

-1
J

o= 1 . e Tl .
o105, Tj := a; naj, and pj i= ) pra;.
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Step 7. for j:=1to r do
Collect the following elements of G;_; in a set X:
the siftees of Q"1 U {oj,7js : 1 < j' < r} through R;
w(rj,0;) for all w(z,y) € Rear
the siftees of {05,775 : @ € 5,1 < j' < r} through R;
forc € ¥ do
for all coordinates j' for which ¢ witnesses the separation of j' from j but
this separation is not witnessed by the current p; do
GIANT _SEPARATE(R;/, pji,0,pjt)
if any of the p; were changed in this step then goto Step 5.
Step 8. Let J C {1,2,...,r} consist of a representative j from each linked collection
of coordinates.
output §*1:={rj,0;:j € J};
output T :=J{R;:j € J};
collect in @' the following elements of @;:
the siftees of Q*~! through the SGS T
for all distinct 7,j' € J, the commutators [}, 7], [0}, 0], (75, 7], [T5, 0 5]
for all j € J, w(rj,0;) for all w(z,y) € Rear
the siftees of {a~'1ja,a™ gja: 7j,0; € §7!, & € S} through the SGS T;
output Q°.
end (GIANT_LINK).

8.3. Correctness and time requirement of GIANT_LINK

Theorem 8.3. The outputs T, S'~! of GIANT.LINK are, respectively, an SGS and a set
of compatible generators for Gi—1/G;. The collection @' is a set of normal generators for
Gi.

Proof. We first claim that after the execution of Step 4, for all 1 < j < r, p; witnesses the
separation of j form any j' that is implied by the group H = (Q** U {rj,0;: 1 < j < r}).
The claim follows from Theorem 6.1 with G := H, N := Hp, and m := 1 (because normal
generators for the kernel of the action on B; suffice to witness possible separations of any
j' from j). Thus, in particular, the distinct classes C; = {j' | pil;, #1}, 1 < j < r
partition {1,...,r}.

When we emerge from Step 5, the distinct classes among the C; are again disjoint (a
nontrivial intersection would be picked up by the last if statement, which would reduce
the length of pj for some j' in the intersection) and they now have the same size.

In Step 7, if the sifting of Q*~?, oj, 7y and the elements w(7;,0;) witness no new
separations, then we know that the p;, 1 < j < r, witness all separations implied by
elements of the group H = (@'~ U {rj,0;:1 < j <r}) (by the argument for Step 4).
Furthermore, we know that H acts on L; as a direct product of alternating groups, exactly
one alternating group in each still-linked class of coordinates. If so, the successful sifting
of the collection of ¢%, 7§} guarantees that H is invariant (mod G;) under the action of G.

The claims about T and $*~! are now clear. The fact that Q' is a set of normal
generators of G; then follows from Theorem 6.1 (with the chain of normal subgroups

G=Gy2>2G12..2Gi_1 2G;=N).
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Theorem 8.4. Let s = |S|. Then GIANT_LINK(L;, QE‘I,S, P, {az,...,0.},Q, 51, T)
runs in time O~(|Q*~!||Liln + s|Li|*n) and |Q*| < [Q*!| + O(s|Li| + |Li[?).

Proof. In Step 1, we can pick an appropriate p in O(|Q*~!|rm) and p; is computed in
O(n) time. By Proposition 8.1, Step 2 requires O(mn) time and Step 3 can be executed
in O(rmn).

In Step 4, we sift |Q*~!| + 2r elements through r SGS’s, requiring O(|Q"|rmn +
r?mn) total time; moreover, we compute O(rm) defining relations, in O(rmn) total time.
Altogether for all 1 < j < r, we place O(|@Q* ! |r + r?) elements into ; for each of these,
O(mr) time suffices to check whether it breaks some new links. The total cost of calls of
the subroutine GIANT_SEPARATE in Step 4 is at most O(r?n) since for each pair j, j', we
call GIANT SEPARATE at most once. Hence the total cost of Step 4 (using that r < n)
is 0(|Q™ |rmn + r¥mn).

We enter the while loop of Step 5 at most r times since the minimum length of p;
decreases at each call. (Within the while loop, the length of each p;» decreases at least to
the previous minimum.) Hence calls of GIANT_SEPARATE in Step 5 cost O(r%n). The
if statement can also be executed within this time bound, since all we have to check is
whether the sets C; (see the proof of Theorem 8.3) define a partition of {1,2,...,r}.

Each time Step 6 is executed, all the p; are of the same length. The length in any
round is necessarily a divisor of the length in the previous round, so Step 6 is executed
< logr times. By Proposition 8.1, one execution costs O(mrn).

Step 7 is executed always after Step 6, i.e., < logr times, and one execution is similar
to Step 4 with the additional sifting of O(sr) conjugates (by S) through the r SGS’s, for
a total timing of O(|Q"~! |rmn + sr¥mn).

Finally, Step 8 runs in O(|@*~!|mrn+r?n+ srmn). Only the term O(srmn) (instead
of O(sr*mn)) requires additional explanation: each conjugate a~'r;a, @ € S acts non-
trivially in only one of the linked collections of alternating groups so sifting costs only
O(mn). Noting that |L;| = mr, the proof is complete. |

Remark 8.5. If s > n then we may use the set $* = |J,;_; S7 instead of S as input
of GIANT._LINK, replacing the term s by n in both the running time and number of
generators created. Correctness is proved by the argument in Remark 7.1.

9. Proof of the main results

In this section, we finish the proof of Theorem 1.1 and sketch two other versions of the
algorithm: one with reduced memory requirement (and same time efficiency as the original)
and an elementary version with O~(n*®) running time.
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9.1. Proof of Theorem 1.1

The algorithm described in Sections 3-8 computed an SGS for the input group G = (S) <
Sym(n), |S] = s; we have to analyze the running time. '

By Lemma 3.1, Corollary 4.7, Proposition 4.8, and Corollary 5.11, the first 4 steps of
the main algorithm run within O~(n3+sn?). By the analysisin Section 7 and Theorem 8.4,
the number of normal generators created while processing level L;_; is O~(s|L;:| -+ | L;|?)
(in addition to the |@*~!| normal generators for G;_;). Hence |Q’| = O~(n? + sn) for all
i and, by Section 7 and Theorem 8.4, Step 5 runs in O~(n* + sn?).

If the O~(sn?) term becomes dominant, i.e., s > n then we modify the procedure
according to Remarks 7.1, 8.5 and the running time drops down to O~ (n* + sn?). Finally,
if sn? dominates n*, i.e., s > n? then we begin the algorithm by reducing the number of
generators to O(n?) in O(sn?) time. This can be achieved by sifting the elements of S into
(the originally empty) coset representative table with respect to the point stabilizer chain
of the permutation domain (cf. procedure SIFT in Section 2.7). In any case, we can achieve
the claimed O(n? log® n + sn?) running time with no logarithmic factors multiplying sn?.

We turn to the proof of claims (b)-(e) in Theorem 1.1. The order of G is easily com-
puted as the product of sizes of coset representative sets. Although the SGS constructed
by the algorithm can be used directly for membership testing by extending the action of
a candidate permutation to the SD and there is a method to compute pointwise set stabi-
lizers from it (developed for the parallel procedure in [BLS87]), it is easier to use a result
of Brown, Finkelstein, and Purdom [BFP]. They provide a O(n?®) base-change algorithm
for converting strong generating sets with respect to point stabilizer chains along differ-
ent orderings of the permutation domain. The base-change algorithm outputs the SGS in
Jerrum’s compact format.

Finally, we observe that the Normal Sift Theorem (Theorem 6.1) essentially provides
the scheme for proving (e). Note that, with the descent of the SD complete, the chain
generators generate G, so we may assume S = Ui S;. We associate a symbol z. to every
element 7 of S and let X denote the collection of these. Each coset representative p € R;
(see notation and discussion preceding the theorem) is representable as a word in S and
there is a corresponding word w{p) in X. The elements to be sifted in Theorem 6.1
(a),(b),(c) are given as words in 5, and so each T corresponds naturally to a word w'(7) in
X. Sifting 7 can be interpreted as expressing 7 canonically as a word p; --- p;. From each
such sift we derive a relation w'(7)'w(p;1)- -+ w(p;) and denote the collection of these by
R. Then (X | R) is a presentation of G.
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9.2. Reducing the memory requirement

The algorithm, as presented in Sections 3-8, requires O0~(n3 + sn?) space. Here we indicate
how to reduce the memory requirement to O~(n? + sn).

The first four steps of the main algorithm run within this tighter bound. The problem
arises because of the top-down approach in Step 5 since, eventually, we accumulate O~ (n?+
sn) normal generators. On the other hand, the SGS we build occupies only O™~ (n?) space.
The solution is to build the output SGS T simultaneously on all levels. We call T' up-to-
date on level i if (T'N G;) is a normal subgroup of G for all j > i. We work always at the
lowest level (i.e., greatest index ¢) which is not up-to-date.

We start executing Step 5 at level 0 as before. The difference is that working on level
i, whenever the algorithm produces a normal generator ¥ for G;;1 we sift ¢ immediately
into the SGS already constructed. If ¢ factors completely then it can be discarded; if it
has a non-trivial siftee on some lower level j then we suspend the execution on level i and
jump down to level j.

On small levels, we execute exactly the same steps as in the original algorithm (pos-
sibly interrupted by some computations on lower levels). On alternating levels, we may
execute GIANT_LINK O(logn) times, discovering smaller and smaller linked collections of
subgroups. There are no more than O(log n) executions since the lengths of linked collec-
tions are divisors of each other. This extra work may add a logn factor to a lower order
term in the running time.

9.3. An elementary version

Two elementary estimates on the order of primitive groups enable us to break the O(n®)
barrier by an elementary, O~ (n*?®) algorithm. One of them is Pyber’s estimate (cf. The-
orem 2.5) on the order of non-giant 2-transitive groups and the other one is due to Babai.

Theorem 9.1. [Ba] Let G < Sym(n) be primitive, G is not a giant. Then |G| <

exp(0~(v/n)).

Elementary algorithm
INPUT: a set S of generators for G < Sym(A), |S| = s.
Step 1. Construct a structure forest and choose a representative v in each orbit of the SF.
For all such v, construct Schreier generators for G,.
Step 2. For these representatives, use TEST_GIANT to decide whether G(v) is a giant.
By inserting new levels after symmetric levels, obtain the structure domain (SD). Com-
pute the node stabilizers G\, as in Step 1 for representatives of G-orbits of the SD. Let
(Loy L1y ...y Lm )} be the levels of the SD.
Step 3. For each node v representing an alternating level in the SD, construct an SGS for
G(v).
Step 4. for i :=1 tom do
if L;_; is an alternating level
then construct SGS for G;_, /G;, normal generators for G; as in Section 8
else construct SGS for G, /G;, normal generators for G; as in Section 7

end (ELEMENTARY ALGORITHM).
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We have to modify the stopping condition in TEST_GIANT and in the first step
of THREE.CYCLE to accommodate the weaker bound in Theorem 2.5. This change
adds only a logarithmic factor to a low order term in the running time. Since NAT-
URAL_ACTION is eliminated from this algorithm, correctness is elementary. However,
primitive groups on small levels may be of the size allowed in Theorem 9.1, adding a factor
v/n in the analysis of Section 7.
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