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“Somewhere there are people who understand [technology] and run it, but those are technologists, and they
speak an inhuman language when describing what they do. It's all parts and relationships of unheard-of
things that never make any sense no matter how often you hear about them."

— Robert Pirsig, Zen and the Art of Motorcycle Maintenance

1.0 Introduction

From the Renaissance to the Industrial Revolution to modern times, the rate at which
scientific knowledge is added to the collective human store has increased exponentially.
The knowledge and principles at the cutting edge of scientific inquiry in Newton’s day are
now the bread and butter of an average seventh grade curriculum. At the same time,
mandatory education has led to an overburdening of the educational establishment; the
student-teacher ratio has steadily deteriorated. It has gotten to the point where relatively
few teachers are expected to teach increasing numbers of students more and more
information in a limited time period.

Since the earliest days of computing, there have been those who have dreamed of
addressing this dilemma by capitalizing on the speed and flawless memory of computers to
create devices to store, organize and communicate human knowledge, augmenting or even
replacing human-human instruction. Unfortunately, two decades of research in the area of
Intelligent Tutoring Systems (ITS} has yielded mixed results at best. While tutoring
systems — if they have been tested in the real world at all — have had some success in
very simple procedural domains (Burton & Brown, 1979; Burton, 1982; Brown and
VanLehn, 1980; Sleeman, 1982; Sleeman, 1984), generating convincing results in more
demanding areas like basic physics (Hollans, Hutchins & Weitzman, 1984; Brown, Burton
& DeKleer, 1982; Borning, 1981; Douglas & Lui , 1989), higher mathematics (Anderson
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et al., 1985; Kimball, 1982; O’Shea, 1982) and abstract reasoning (Stevens, Collins &
Goldin, 1982; Goldstein, 1982; Johnson & Soloway, 1985) has proven an elusive goal.

Instead of providing a review of existing tutoring systems and techniques in ITS!, the goal
of this paper is to approach the area from a broader analytical perspective in hope of gaining
new insights and to suggest promising directions for future research. The overall focus of
this paper is the nature, representation and development of students’ domain knowledge,
both in tutoring systems and in human problem solving. After surveying approaches to
student modeling in existing tutoring systems, I explore the conceptions held by naive
human problem solvers, and finally examine the philosophical foundations of both areas.
Integrating observations from these three perspectives highlights directions for new
research. In particular, I suggest that future work in ITS may achieve better results by:

1) shifting the traditional perspective to redefine the role of knowledge modeling in

tutoring systems.

2) basing the design of the ITS, in particular the curricular component, on a deeper
understanding of students’ initial conceptions of a domain.

Section two begins with a brief review of grounding assumptions and the overall structure
of tutoring systems before going on to survey approaches to representation of student
knowledge in ITS. Section three steps back to review problem selving in humans,
suggesting ways in which tutoring systems should be modified to better support the
development of students’ expertise. Section four reviews the philosophical assumptions
inherent in tutoring systems and presents a plausible alternative foundation in order to
promote a more open-minded and cautious approach to knowledge modeling in tutoring
systems. The remaining sections close the paper, drawing conclusions and pointing out
research challenges and limitations.

2.0 Intelligent Tutoring Systems

‘The line where rote number crunching ends and Artificial Intelligence begins has always
been difficult to define. The subarea of intelligent tutoring systems is no exception; a
distinction between mechanical computer aided instruction (CAI) and intelligent tutoring
systems (ITS) is difficult to define succinctly. For the purposes of this paper, an intelligent
tutoring system has the following characteristics:

I See Wenger (1987) for just such a comprehensive review. See also the collection of seminal papers
editted by Sleeman and Brown (1982).




1) An explicit model of the domain or skills being taught, thereby allowing the system to
define the notion of performance “expertise”.

2) Dynamic diagnostic capabilities which allow the system to continually assess the state
of the student’s knowledge.

3) A notion of pedagogic expertise which ties the other elements together by allowing the
system to dynamically modify the curriculum in response to student behavior. This
reactive flexibility is the central defining feature of intelligent tutoring.

There are several foundational assumptions on which the entire tutoring systems enterprise
in based. First, the system must have access to various types of knowledge about the
domain, didactic methods, diagnostic techniques and so on. Thus, there is the assumption
that this knowledge can be codified and represented in the machine. This leads to an even
more drastic two-part assumption: Since the goal of tutoring is knowledge communication
and since the system only “knows” what is symbolically represented in its memories, there
is the assumption that a) the transference of the system’s “expert” domain model is the goal
of the tutoring process and b) that human problem solving (and learning) can be and is, in
fact, based on such symbolic models. This assumption is clearly an instantiation of the
Physical Symbol Systems Hypothesis (Newell, 1980} that is the foundation for most work
in artificial intelligence. The following figure presents this hypothesis graphically.
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Figure 2.1: The Physical Symbol System Hypothesis

The essence of the Physical Symbol System (PSS) hypothesis is that all of human
reasoning and behavior is based on an internal symbolic representation(s) of the world, a
model, which is manipulated in various ways to arrive at conclusions and produce plans.

p-3



In this view, actions are a result of plan implementation. While the PSS hypothesis is
widely accepted in the computer science community, there are skeptics elsewhere
(Suchman, 1987; Winograd and Flores, 1986). In section 4, I present one such alternative
view and consider its implications for ITS. For now, we will tacitly accept PSS in order to
carry on with the discussion.

The foundation above serves as the basis for defining important terms used throughout this
paper:
* A model, as applied to a tutoring system, is a symbolic representation of the world.
Aspects of the world that will be modeled include domain knowledge, the student, and
teaching strategies.

* A mental model refers to a human’s internal representation of the world required by the
PSS hypothesis. Again, it is this symbolic representation that is the basis of all
reasoning and action.

With this terminology in hand, we can define the goal of an intelligent tutoring system more
succinctly:

The goal of an intelligent tutoring system is to accurately capture the mental

model used by domain experts (in the system’s “expert model”) and to

transfer that symbolic model to the student, thereby transforming her (by

definition) into an expert as well.

Finally, I reserve the term cognition to refer to “the mental process that results in human
behavior”. In particular, I wish to disassociate the term with the model-based reasoning
process dictated by the PSS hypothesis, using it, instead, as a neutral term.

2.1 Overview of Tutoring Systems

In the world of tutoring systems, there is no such thing as a “standard” approach — an
incredible variety of perspectives, approaches and domains have been explored. However,
most systems can be described in terms of an abstract framework proposed by Wenger
(1987) and shown in Figure 2.2.
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Figure 2.2: An analytic framework for tutoring systems (adapted from Wenger).

According to this framework?, a tutoring system can be viewed as a collection of separate
components, organized around some model of communicable knowledge, each of which
performs one of the fundamental tasks in knowledge communication. Each of the
components is briefly described below:

* The purpose of the student model is to represent the knowledge state of the student.
Clearly, this component is central to the theme of this paper, since it is, in effect, a
representation of the student’s mental model of the domain. This component is the main
focus of this paper and is discussed in detail later,

* The instructional model and didactic component together can be viewed as the
explanatory engine for the ITS. That is, when the pedagogical model indicates that
explanatory intervention is necessary, it calls on this component.

» The pedagogical component is concerned with higher level tutoring issues like when to
intervene and decisions regarding the curriculum,

* The expert/task component is responsible for recording the context (e.g. what other
problems have been attempted, environmental parameters, etc.) and acting as the
system's problem-solving engine.

» The discourse model represents the interaction model on which the system’s user
interface is based.

2 Young (1983) gives a similar framework in a paper oriented more towards vser-interfaces. While this
paper focuses primarily on the user’s perspective, Young works to provide a broader view, covering user,
system analyst and system designer. The similarity between models implies that we can generalize over the
two areas, ITS and User Interfaces, to see both as instances of knowledge communication systems, which
covers all systemns aimed specifically at the transfer (versus the generation or manipulation) of information.
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The model of communicable knowledge is the cornerstone of the entire framework,
capturing the systems representation of domain knowledge. Whether represented as a
semantic network, a set of low-level heuristics, or a set of more abstract issues, it is this
knowledge that will be considered the distillation of “expertise” in the domain and the goal
of the tutoring system to communicate to the student.

2.2 Student Modeling

If the central purpose of a tutoring system is to transfer some representation of expert
domain knowledge to the student, then a primary subgoal must be to determine to what
extent this transfer has occurred. The way in which most tutoring systems accomplish this
is by differential modeling, by continuously comparing a model of the student’s
knowledge, as deduced from the student’s problem-solving performance, with the
system’s representation of domain expertise. Thus, the primary purpose of the model of
student knowledge in most systems is to serve as a resource for this comparative diagnostic
process. In some systems, the student model is used for pedagogical and didactic purposes
as well. For example, in both WUSOR-II and WUSOR-III (Goldstein, 1982), the system
uses the student model to guide the selection of problems presented to the student. In
WEST (Burton and Brown, 1979), the student model helps to drive didactic decisions like
when and how often to intervene with hints and critique.

Though the basis of the diagnostic process, differential modeling, applies to most tutoring
systems, there are a number of ways in which this approach can be implemented, each of
which embodies a particular set of assumptions about domain knowledge, how the
student’s knowledge is modeled, and the nature of the learning process. In the next
sections, I identify several distinct categories and discuss each briefly.

2.2.1 Nominal Modeling

Systems that adopt a nominal approach to modeling record only the success or failure of
individual problem solving efforts. In other words, the comparison (differential modeling)
between the system and student goes no further than performance; a correct answer
indicates that the student has acquired expertise. For example, WHY (Stevens, Collins,
Goldin, 1982) is a Socratic tutor in which the domain knowledge is represented by a set of
hierarchically organized scripts. However, WHY?3 maintains no global student model over

3 In all fairness, the focus in the WHY tutor is not on diagnosis and student modeling, but on investigating
the pedagogic utility of the Socratic method.
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the course of a dialog, and so its diagnostic ability is limited to evaluating individual
responses.

The Integration Tutor (Kimball, 1982) implements a complex and intricate statistical
bookkeeping scheme to model student knowledge in the domain of symbolic integration.
Integration problems are solved by transforming them step-by-step from some initial state
into the final solution state using a pre-defined set of integration techniques as
transformation operators. There are several interesting features in this domain. First, there
may be multiple “correct” solutions to a given problem, since there may be more than one
sequence of operators? leading to a correct solution. Second, the criteria for choosing an
appropriate integration technique at any point in the problem solution are not well-defined
— in some cases, the only way to know a technique is inappropriate is to try it and fail.
However, it is clear that human domain experts are generally able to efficiently discover an
optimal solution (i.e. a shortest successful sequence of operators). This leads us to the
defining feature of systems based on nominal modelling. Instead of attempting to articulate
this problem solving expertise further by modelling actual problem solving reasoning, the
Integration Tutor uses a complicated statistical scheme to track the probability that the
student will use each integration technique (known as approach probabilities) when
presented with an instance of any given class of symbolic expression. The system expert’s
own approach probabilities are based on human expert’s solutions to all of the problems
known to the system. Remediation and dynamic curriculum adjustment is then based on
the comparison of approach probabilities between expert and student.

A similar approach to diagnosis is taken by ACE (Sleeman and Hendley, 1982), a system
whose primary focus is the analysis of student’s natural language articulation of the
reasoning process they used in interpreting nuclear magnetic resonance (NMR) spectra.
The student’s analysis is compared to a hard-wired expert’s analysis of the given NMR
spectrum and appropriate comments are returned from some pre-defined set. The student
modelling in this system is functionally identical to the WHY tutor in that no global student
model or history of performance is maintained over the course of a session.

There are both advantages and disadvantages for the nominal approach. One advantage
(compared to other approaches described below) is that the system makes no assumptions

4 The similarity of this problem structure to a classic heuristic search is obvious and interesting. However,
in the Integration Tutor, search is not warranted since the set of problems to be worked is fixed and pre-
defined.




about the “correct” mental model the student is to adopt — anything that produces the same
behavior as the expert is acceptable. For example, in Integration Tutor (Kimball, 1982),
there is no single correct way to solve an integration problem; any one of several
approaches may lead to the solution. This characteristic is not so much a planned feature of
these systems, as an inherent consequence of the fact that the models used to embody
expertise in these systems are not useful to human problem solvers. A prime example of
such a “black box™” expert is SOPHIE-I (Brown, Burton and Bell, 1975; Brown, Burton
and DeKleer, 1982), a system for tutoring in the domain of basic electronics. SOPHIE-I is
based on numerical models of the circuits presented to the student which, while very
efficient for simulation, are clearly not a basis for human analysis. This leads us directly to
the disadvantages of the nominal approach, centered about the system’s inability to
communicate about its problem-solving behavior or, more importantly, to have any insight
into the student’s low-level problem solving behavior. For instance, in the Integration
Tutor, the system solves the problem with a set of hard-wired heuristics which are
essentially useless as a way of explaining the reasoning process which leads to a choice of
integration approaches. Clancey (1983) relates similar observations in his experiences with
GUIDON, a tutor based on the MYCIN (Buchanan and Shortliffe, 1983) medical
diagnostic system.

In sum, nominal approaches to student modeling are useful in that they do not make any
assumptions about problem-solving specifics— the actual reasoning performed during
problem solving. This is especially useful for domains in which there is more than one
correct solution. However, the failure to model problem solving at a deeper level precludes
diagnosing and addressing problems in the student’s internal reasoning process. That is,

we must represent the student’s mental model of the domain if we hope to repair it.

2.2,2 Overlay Models

Whereas nominal models function by simply keeping track of problem-solving success,
overlay models attempt to model the student’s low-level problem-solving process in order
to provide more in-depth diagnostic and explanatory capability. To do this, the overlay
approach requires that system expertise be broken into discrete chunks. Individual chunks
are marked as “learned” based on inferences drawn from the student’s observable problem-
solving behavior. In this way, the student’s knowledge is viewed as a subset of the
expert’s knowledge. The specifics of the knowledge representation vary from system to
system. For instance, DEBUGGY (Burton, 1982), WUSOR-II (Goldstein, 1982),
PROUST (Johnson and Soloway, 1985), and SOPHIE-III (Brown, Burton and DeKleer,

_—_—_
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1982) capture domain knowledge as a set of heuristics® while other systems like
SCHOLAR (Carbonell, 1970) use a semantic network representation. The nature and level
of detail of problem solving knowledge varies as well. DEBUGGYs heuristics for place-
value arithmetic are at a very low level, addressing primitive actions such as subtracting
digits and borrowing during subtraction. In WEST (Burton and Brown, 1979) the
heuristics, called issues, are at the more abstract level of mathematical operator combination
and gaming strategy.

Overlay modeling operates as follows: a problem is presented, the system uses its “expert”
representation to solve the problem, resulting in some sort of “problem-solving trace”
detailing the expert’s reasoning behavior. This trace serves as the main resource for both
diagnosis and explanation. The system compares observable student behavior to the trace
in order to determine missing or defective areas; remediation is aimed at modifying student
behavior to match expert behavior.

While the overlay approach does allow the system to model and remediate low-level
problem-solving behavior, it implicitly demands several underlying assumptions. Since
student knowledge is viewed as a subset of the system’s expert knowledge, there is the
assumption that the student initially possesses an initial problem-solving perspective
identical to the system’s. For example, the central relationship to be communicated in
CARDIOLAB (Douglas and Liu, 1989) was “pressure difference, modulated by resistance,
causes flow”. However, any discussion at this level necessarily assumes that students
already have a robust conception of pressure, flow and resistance. In particular, the
assumption is that entities like pressure and resistance even exist in the student’s current
model of the domain. If they do not, then clearly any explanation relying on these terms
will be ineffective. A second difficulty arises if the domain allows multiple problem-
solving paradigms and the student uses one that is different from the system’s. The system
will find fault with the student’s solution simply because it is based on an alternative (but
equally valid) model. For instance, the definition of the “‘best” move in the WEST game
depends heavily on the game-playing strategy being used. WEST provides a unique
solution to this dilemma by allowing the system to dynamically select one of several
possible expert models representing various pre-defined strategies, to match observed
student strategy. The notion of dynamically adjusting the system’s perspective to match the
student’s is an important theme in this paper — it amounts to recognizing that the true mark

3 It is worth pointing out once again that, as detailed earlier, the implicit claim here is that experts actuaily
use these heuristics as a mental model and, indeed, that these heuristics define expertise.




of a gifted tutor is to be able to go beyond recognizing how a student is wrong to see how
the student is “right”, by discovering and shifting the problem solving perspective to the
student’s model of the domain. Finally, overlay modeling assumes that observed errors are
strictly content related. However, procedural errors may be caused by distortions of
correct knowledge instead of gaps in factual knowledge. The DEBUGGY system explores
this limitation by augmenting expert knowledge with a set of pre-defined “buggy”
heuristics which are distortions of correct heuristics, which the system can insert to
hypothesize distortions in existing problem solving knowledge.

In sum, overlay modeling is based on representing the student’s knowledge as some subset
of the expert’s knowledge. While this appears to work reasonably well in simple, factual
or procedural domains, it is constrained by its rigid reliance on the expert model as the
definition of expertise. Systems like WEST and DEBUGGY explore slight modifications
to this paradigm,; the next section presents a more radical modification.

2.2.3 Evolutionary models

Strictly speaking, evolutionary models are a special case of the overlay paradigm described
above; expert knowledge is characterized as some set of facts or problem solving heuristics
and student knowledge is modeled as a subset of that expert knowledge. However,
evolutionary models deserve special emphasis because they extend the overlay paradigm in
an effort to overcome its most serious shortcoming: the inflexibility associated with
defining a single “version” of expertise, embodied in the system’s expert model. As noted
above, the various strategic perspectives available to the system in WEST are an effort to
ameliorate rigidity in a context where there are multiple equally “correct” solutions. The
evolutionary paradigm makes an even stronger statement by acknowledging that even in
domains with a single “correct” model of expertise, that model is reached by evolution
through a number of simpler models. That is, expertise develops over time, and may
involve changes to the structure as well as the content of knowledge.

In WUSOR-III (Goldstein, 1982), for example, the system guides the learner through the
specialization and refinement of problem-solving heuristics. The domain for this system is
analytical reasoning, embodied in a game known as “Hunt the Wumpus”, which takes
place in a warren of interconnected caves. In the game, the student is given certain clues as
to the position of the beast and various obstacles and must plot a course based on analysis
of these clues. Domain knowledge in this system is based on a set of condition-action rules
which are used to interpret the clues. For instance, upon moving into a cave, the student
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might be told “You hear a squeak”. An appropriate rule to apply in this situation might be
“If squeak, then add all neighbors of this cave to the set that potentially contain dangerous
bats”. What makes WUSOR-III interesting is that it represents not only this rule, but both
simpler and more elaborate versions of the rule as well. The domain model in this system
is a connected graph with condition-action rules at the nodes, and arcs that indicate how
these rules relate to eachother. Possible relations cover not only evolution of individual
rules (i.e. refinement, specialization, and generalization), but also may indicate analogical
relationships between rules and the dependence of certain rules on each other and on pieces
of basic game knowledge. For instance, the rules above assume that the student
remembers that squeaks indicate that bats are in a neighboring cave. In this way, the
domain model represents a continuum of knowledge, organized from very coarse to highly
refined, instead of representing only the most refined expert knowledge. Consequently,
though student modelling proceeds just as in a typical overlay model, by marking nodes as
“learned”, the overall state of student knowledge is characterized as a frontier that falls
somewhere along the continuum from simplistic to expert knowledge. The advantage of
this more elaborate representation is obvious: remediation can be in terms of the student’s
under-developed model instead of the expert’s. More importantly, the focus of remediation
is now less on the presentation of the expert’s knowledge and more on promoting the
elaboration of the student’s model to the next stage of complexity.

The QUEST (White and Frederiksen, 1986) project provides a more in-depth exploration
into the evolution of domain knowledge in the context of electronic troubleshooting. White
and Frederiksen based their system on a detailed analysis of the domain in which they
characterize the dimensions along which domain models may differ. For instance, the
order of the model reflects the order of the derivatives used in describing changes to model
parameters. That is, a zero-order model deals only with binary conditions (e.g. the
presence or absence of voltage), a first-order model addresses linear change, and second-
order model handles rates of change. Other dimensions include type , which deals with
scales of measurement (i.e. qualitative, proportional, and quantitative) and degree , which
is concerned with the granularity® of the model. As in WUSOR-III, the domain expertise
in QUEST is embodied in condition-action rules. However, instead of being connected in
a single huge graph, as in WUSOR-III, the rules are organized along the dimensions

6 This representation of model granularity can be viewed as a characterization of the basic problem solving

perspective — the entities that exist in the model. This is extremely important. As we shall see in the next
section, naive human conceptions may not explicate certain entities (e.g. friction) that exist in the expert’s

model.




defined above. Still, the overall effect is similar: leaming is viewed as an evolving
progression of mental models, moving from simplest to most complex.

A clear implication of evolutionary student modeling is that the evolution is aimed towards
some final state, a single expert’s model that represents the pinnacle of problem-solving
expertise. This is obviously a carry-over from the work in overlay modeling described
earlier in which there was a single “correct” model of system expertise to which student
performance was compared. However, White and Frederiksen (1986) conclude their work
on QUEST with the observation that true expertise lies not in a single model, but in the
coexistence of several complementary models which fall along the above dimensions. In
the next section, we will find ample evidence for this claim in that human experts (at least in
the domain of motion physics) appear to use several different mental models.

In sum, the evolutionary approach to modeling student progress, though still technically an
overlay model, represents a fundamentally different perspective on student modeling and,
in fact, on tutoring in general. While the simple overlay paradigm defines a single model of
expertise and works to transfer this model to the student, the evolutionary paradigm
acknowledges and attempts to model the evolution of mental models and the dependence of
new knowledge on old, by defining a succession of domain models and describing how
they are inter-related. In this way, evolutionary models like WUSOR-III's genetic graph
embody not just a theory of expertise, but also a theory of curriculum, which details how
that expertise develops. This expanded view of modeling will play an important role later
in this paper.

A special class of tutoring systems that should be mentioned are systems that have no
student model or, for that matter, no active tutorial component at all. STEAMER (Hollans,
Hutchins and Weitzman, 1984), a simulation of a steam propulsion plant, and THINGLAB
(Borning, 1981), a simulation of basic motion physics are excellent examples of such
passive simulation environments. According to our strict definition earlier, these systems
are not Intelligent Tutoring Systems at all, since they have no active pedagogical
component. Wenger (1987) has labeled such systems as knowledge presentation systems,
distinguishing them from full-fledged tutoring systems which he calls knowledge
communication systems. The underlying premise in these systems is that realistic
experience with a domain, via a simulation, is just as valuable, if not more so, than overt
tutoring. In actuality, most passive simulation environments are used within some




curricular context (e.g. with a lab book) in order to organize and guide student exploration
of the simulation.

2.3 Discussion

Figure 2.3 summarizes the discussion in this section.

Student Model Expert Model

Figure 2.3b: Overlay modeling characterizes expertise as

a collection of discrete skills or heuristics. Diagnosis determines which subskills students possess.

Figure 2.3c: Evolutionary modeling uses a succession of models.

Nominal models are the simplest sort, recording only the success or failure of problem-
solving efforts and are typically used when the system’s expertise is based on a model that
is not psychologically plausible. It is hard to even consider these as student models, since
they do not attempt to represent the student’s problem-solving knowledge or process in any
way. In overlay models, domain expertise is divided up into discrete units or heuristics,
and the student’s knowledge is modeled by assuming the student has acquired some subset
of these heuristics. Problems arise in this paradigm due to the assumption that the student
already shares the expert’s background and perspective of the domain but has certain
factual shortcomings. The evolutionary paradigm extends the overlay notion to
accommodate evelving mental models of the domain.

Based on the analysis presented above, I emphasize the following observations.
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* Current tutoring systems make a fabula rasa assumption. All of the student models
discussed above start out “blank”, with no representation of what the student may
already know before tutoring begins. Taken literally, this amounts to saying that the
student initially has no conceptions about the domain at all. Clearly this is not the case.

» Communication is based on the expert model. In systems that have explanatory
capabilities, explanation assumes that students have already adopted the skeletal
framework of the expert’s model and need only to have the system elaborate on this
framework. This is the foundational assumption of the overlay paradigm.

* Multiple views of expertise are useful. This is obviously true in domains like integral
calculus or the WEST game, where there may be a number of valid approaches. Even in
domains like electronics (White and Frederiksen, 1986) and abstract deductions
(Goldstein, 1982), having a strong definition of expertise, it is useful to represent
multiple evolving models of expertise.

While systems based on evolutionary modeling overcome some of the rigidity associated
with the overlay paradigm, they may still fail to make the connection between the system’s
representation of expertise and the student’s current model. That is, the hierarchical
succession of models in such systems are based on the expert’s view of the domain —
there is no guarantee that the “first” model in the succession is anything like the student’s
initial model. Thus, we are left with several open questions:

1) Do students have naive mental models of the domain that can be formaily described,
diagnosed interactively, and used, say, as the foundation of evolutionary modeling?

2) Is the number of such conceptions across all students small enough to be tractable.

3) What is the nature of the process by which mental models evolve in humans?
The next section turns to an examination of work exploring mental models of basic physics
held by novice problem-solvers in hopes of answering these questions.

3.0 Mental models in reasoning about physical systems

Mental models have proven to be useful tools for rationalizing human reasoning behavior in
a large number of domains from open-sea navigation (Hutchins, 1983) to the
thermodynamics (Williams, Hollan, and Stevens, 1983; Wiser and Carey, 1983) to motion
physics (Clement, 1983; McCloskey, 1983; Larkin, 1983; Forbus, 1983; DiSessa, 1983).
They have also helped to explain how people use analogy (Gentner and Gentner, 1983;
Young, 1983; Greeno, 1983), an important conceptual “glue” between domains. To
narrow the analytical focus, the discussion in this section is constrained to exploring the




nature and development of human intuition in the domain of primitive motion physics.
This domain is a particularly fruitful domain for several reasons:

* Humans have an intuitive grasp of the domain. They are able to make accurate
predictions about the behavior of many everyday scenarios.

* It has been observed (DiSessa, 1983; McCloskey, 1983; Larkin, 1983) that people do
very poorly in formal classroom physics. Also, tutoring systems in this domain have
had very limited success.

* The domain knowledge, embodied in standard Newtonian principles, is well-defined and
tractable,

From the standpoint of tutoring systems, the nature of the naive conceptions held by
humans is the central issue of interest in this discussion. As pointed out in Section two,
current systems take a tabula rasa approach to student modeling: they begin with no
information about the student and try to build a student model based on the inferences
drawn from the student’s problem-solving performance. Most importantly, the student
model is constructed from the expert’s perspective, that is, by comparison to the expert’s
model. Clearly, a better approach would be to shift the modeling enterprise towards the
student’s perspective — which implies that the student’s perspective must first be
characterized. Another important goal of this section is to gain insight into the development
of human mental models from naive beginnings to more advanced conceptions.

3.1 Naive Mental Models

As a classic example of naive misconception in motion physics, consider the following
example (from Clement (1983)):

A rocket is moving along sideways in deep space, with its engine off, from point A to
point B. Its engine is fired at point B and left on for several seconds while the rocket
travels to some point C. At point C, the engine is switched off. Draw the shape of the
rocket’s path, labeling points B and C,

The expert physicist’s answer and the prevalent incorrect answer are shown in Fig 3.1.

A B A B

]

Figure 3.1a: The Expert’s solution Figure 3.1b: A common Misconceived Solution




Clement uses this and other examples to argue that people have a “Motion implies a Force”
preconception, which dictates that all motion implies a force that is causing that motion. To
clarify how this assumption results in the incorrect answer shown Figure 3.1 above,
consider Figure 3.2, which details the forces on the rocket at various points, according to
the “motion implies force” misconception.

Figure 3.2: Forces on the rocket according to the “Force implies motion” conception.

At point A, there is assumed to be some force on the rocket, causing it to move through
space from left to right; between point B and C, the forces of the engine and the sideways
motive force combine, clearly dictating a linear diagonal path for the rocket; finally, at point
C, the only force on the rocket is once again the sideways motive force, and so the path
must necessarily go from left to right again. Specifically, the characteristics of this
preconception are as follows:

1. Continuing motion, even at constant velocity, implies the existence of a force in the
direction of motion.

2. The invented forces are especially common when motion occurs despite some obvious
opposing force. For instance, in the case of an object traveling upward after being
thrown into the air, Clement found that subjects often assumed some upward force on
the object, which was being opposed by gravity.

3. The imagined forces may be gradually “overcome” or may “build up” to account for the
object’s change in velocity. Again, a good example in the object thrown into the air: as
the imagined upward force is “dies out”, the object slows and returns to earth.

McCloskey (1983) describes a number of studies very similar to those performed by
Clement. McCloskey’s aim is to learn more about the models that people develop through
experience with moving objects. Thus, unlike the outer space example above, all of his
experiments refer to mundane scenarios: thrown objects, pendulums, objects dropping
from a height and so on. To explain the outcome of his experiments, McCloskey suggests
that the students’ mental model reflects a naive “Impetus theory” very similar to that
espoused by early (6th century) philosophers, which essentially states that impelling a body
in some direction fills or “charges” it with some a certain unseen quantity, known as
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impetus, which the object then uses to propel itself in the direction of the initial motion after
the motivating force is gone. For instance, in throwing a ball, the thrower hand would
“fill” the ball with impetus, which the ball would then draw on to continue its motion after
leaving the hand.

The similarity of this work to that of Clement is obvious. Both researchers are clearly
describing the same cognitive behavior, though they each posit slightly different mental
models to rationalize it. Impetus theory creates an invisible quantity, impetus, as the source
of the motive force implied by Clement’s “Motion implies Force” model, instead of simply
assuming the force exists.

A striking feature of McCloskey’s experiments is that he insists on instructing his subjects
to “ignore friction and air resistance” in their considerations. He then goes on to
hypothesize his Impetus Theory based on the erroneous predictions that students come up
with. However, he fails to note that the Impetus model observed in his subjects is not
“incorrect” at all, if we assume that friction and air resistance are not ignored. In other
words, I suggest that his subjects found it impossible to ignore friction and air resistance as
instructed, because these abstract entities are not defined in their primitive mental models
and thus have no meaning. That is, naive mental models are not sufficiently articulated to
distinguish friction as a separate force. Given that people’s naive mental models are
derived through experience with a world in which friction is always a factor, Impetus
Theory is both sensible and correct (for earth-bound scenarios).

The notion that naive theories of motion correspond directly to real world experience is
nicely elaborated in DiSessa’s (1983) work, in which he defines a small set of
“phenomenological primitives” (P-prims), small scale mental models which explain his
subjects’ reasoning about a variety of domains. DiSessa’s P-prims are, in fact, more
general than Clement’s and McCloskey’s results in that they cover a wide variety of
phenomena, including and extending beyond projectile motion. This is illustrated by the
following experiment (from DiSessa, 1983):

Think of vacuum cleaner, whose intake nozzle you hold in your hand. If you put your
hand over the nozzle, will the pitch of the sound you hear from the motor go up or down?

Some subjects stated that the pitch would go up, since the added resistance would cause the
motor to “work harder”., Others felt the pitch would go down, because the interference
(resistance) of the hand would slow the motor. In either case, DiSessa points out that
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subjects’ reasoning can be explained using the same mental model, which he calls “Ohm’s
P-prim”. Figure 3.3 illustrates the nature of this primitive.

Resistance

Force —/VVW\/\—D Result

Figure 3.3 (adapted from DiSessa): The Ohm’s P-prim

Ohm’s P-prim assumes some force acting through a resistance to effect a result. The
relation to Ohm’s Law?7 is obvious and all of the familiar implications hold (qualitatively):
increasing the force increases the result, increasing the resistance decreases the result and
so on. Note that Ohm’s P-prim subsumes both Clement’s “Motion implies a force” model
and McCloskey’s Impetus Theory.

3.2 The Development of Mental Models

DiSessa goes on to hypothesize how P-prims are developed into a fully articulated and
robust mental model of the domain. In this way, he goes beyond the issue of initial
representation to address the more challenging question of how mental models are refined
over time.
Essentially, the initial p-prims are modified in four ways during the development process:
1) Elimination. Certain p-prims may turn out to be incorrect, or more likely, be subsumed
by other generalized p-prims.
2) Abstraction. P-prims that apply to very specific situations can be abstracted and
generalized to apply to a broader range of scenarios.
3) Integration. This is basically another form of abstraction. Several p-prims covering
specific situations can be integrated into a single more abstract p-prim.

4) Refinement. Based on new insight, a p-prim may be further articulated. A perfect
example of this is the case of McCloskey’s Impetus Theory. Recall that the theory was
correct, but did not recognize resistance as a distinct separable entity. A refinement
would separate friction from the general environment.

As a resource for these changes, we also may assume a pool of “textbook knowledge”,
which could be in the form of lectures, reading, or laboratory experience.

TItis important to note the causality implied in the P-prim however. Whereas Ohm’s law is a bi-
directional and causally neutral relationship, the force in Ohm’s P-prim is clearly causing the result.




Larkin (1983) also focuses most of her work on the development of mental models from
naive to expert. She begins by characterizing both kinds of knowledge. Novices have a
simple model of the domain, which Larkin calls a “naive” representation, which represents
only physical objects and immediately apparent influences. This meshes very nicely with
the work on naive models described above. On the other hand, experts have what Larkin
terms a “physical” representation, which captures the abstract features of a given problem,
perhaps even failing to represent certain irrelevant physical details.

Finally, the issues raised by DiSessa and Larkin with respect to development of mental
models lead to a broader perspective of curricular design. I suggest that two overall
approaches can be identified, as summarized in the table below.

Learning by Example (Bottom-up) Laying Down the Law (Top-down)
Theme: Generalize by exploration and from Theme: Give the framework of abstract domain
presented examples laws and try to piece them together and flesh
them out.
Instances: ThingLab, CVCK, Steamer, Instances: Traditional physics and engineering
traditional language instruction. curricula.
Pros: Strong foundation in everyday experience. Pros: Highly directed and efficient. Fast and
Closely connected to students’ naive models. abstract.
Examples are concrete — “relevant and
memorable”.

Cons: Burden of generalization and learning is on | Cons: Not connected to naive model and concrete
the student. Potential lack of guidance can lead experience; leads to lack of believability.
to mis-generalization.

Table 3.1: Endpoints on the spectrum of pedagogical philosophy.

Metaphorically speaking, the bottom-up approach is like letting people observe a kitten at
play and asking them to induce its internal structure while the top-down approach amounts
to giving students a pile of bones muscle diagrams and asking them to deduce how this
implies the living behavior of a playful kitten.

3.3 Summary

The common theme running through the work discussed above is that humans develop
strong, consistent conceptions of reality as a result of perceiving and experiencing the
world. These mental models directly correspond to subject’s perception of real world
behavior. Conclusions drawn from our discussion are as follows:

» The set of mental models describing all subjects appears to be quite small. That is, there
is not a tremendous variation in the primitive models of motion physics. This is
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reasonable since we all experience roughly the same reality. However, while this
observation is promising with respect to modeling student behavior in ITS, it must be
accepted cautiously, since DiSessa’s work focuses on a narrow domain and certainly
does not account for cross-cultural variations in models.

» Initial models that appear to be “wrong” are not necessarily so. They are just overly
general in that they do not explicitly represent abstract entities like friction and inertia,
assuming, instead, that they are always present in the problem environment. For
example, the Impetus theory held by McCloskey’s subjects is essentially correct for a
world in which friction is always present.

Considering this section in broader terms, some more general observations can be
extracted as well:

* There is no such thing as a truly “correct” model. A model, by definition, is simply a
framework for understanding and can never be a complete definition of the domain.
Even in a “well-understood” domain like physics, there are phenomena outside of our
current understanding (model). Thus, the definition of a “correct” model is simply “the
one that currently rationalizes the most phenomena”. In this way, what is considered the
“correct” model can change over time, as evidenced by the evolving models of planetary
motion, physics, and the atom. In some cases, like economics, what is the “correct”
model is a matter of faith.

» Pedagogically speaking, incorrect models can be just as useful as correct ones. There are
two ways in which this can occur. First, there may be limited scenarios in which a more
tractable simplified model will do as well as the more complicated “correct” model. For
example, Newtonian physics is perfectly adequate under the assumption that we are
solving non-relativistic problems. Similarly, the Impetus model is “correct” for
scenarios that include friction. A second use for incorrect models is as a didactic tool, to
act as a counterpoint in presenting the correct model. Galileo (1967) provides a brilliant
example of this technique in his discussion of planetary physics, using the Aristotelian
(earth-centered) model as a pedagogical contrast in his argument for a Copernican (sun-
centered) view of the cosmos.

Finally, it is worth summarizing this section specifically with respect to the tutorial
enterprise. People develop an understanding of the physical world through direct
experience and perception of it. This point is re-enforced again and again in the mental
models literature: DiSessa’'s P-prims, McCloskey's “Impetus” theory, and Clement’s




observations. In all cases, the models posited to explain student behavior contain precisely
those influences which are directly perceivable and no more. The elaborate abstractions
developed in formal physics — friction coefficients, momentum, inertia and so on — are
not present in these models. It is clear, then, that the traditional instructional approach to
physics, as embodied in the “law-based™ pedagogical strategy defined above, demands an
enormous leap of faith for the beginning student8. Indeed, it implies a denial of the
students direct perceptions and experiences in order to replace them with equations and
abstract quantities. Only in a handful of cases are students able to understand how these
abstractions relate to their everyday experience. In most cases, as indicated in the work
cited above, students that have been through formal instruction attempt to incorporate the
new terminology and concepts into their existing model. The result is what I call the
Frankenstein syndrome: the combination of incongruous elements leading to total
confusion.

However, the bottom-up “learning by example” approach is not without its pitfalls either.
If students are simply given further instances of the world to observe, there is no guarantee
they will refine their mental models at all.

The solution is to support a directed progression, beginning specifically with the students’
initial mental model and aimed towards a fully robust “expert’s” model. This approach has
been partially explored in systems like WUSOR-III (Goldstein, 1982) and QUEST (White
and Frederiksen, 1986). However, these systems focus primarily on correct “expert’s”
representations of the domain. In particular, there is no explicit focus on eliciting initial
student models of the domain and structuring the development around these models. An
excellent illustration of the utility of such a focus can be seen in our work with the
Cardiovascular Construction Kit, a tutoring system based on CardioLab (Douglas and Liu,
1989). In this system, students may construct various simple cardiovascular systems by
piecing together various pre-defined components, running the simulator and observing
system performance. While students may explore freely at any time, a lab book
(embodying, essentially, a curriculum) was developed to guide exploration during initial
sessions. Qur intuition was to structure the curriculum starting with the simplest possible
system, a simple loop, and then move on to more complicated systems involving valves
and directed blood flow. The two systems are shown in figure 3.4.

8 White and Frederiksen (1986) make a similar argument, criticizing traditional physics curricula for their
lack of connection to students’ “existing intuitions” about the physical world, as well as the emphasis on
quantitative versus qualitative reasoning,
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Figure 3.4a: Simplest construction; bi-directional Figure 3.4b: Inserting valves to give uni-
blood flow. directional blood flow.

The result was mass confusion. Despite clear evidence to the contrary (e.g. the flow
arrows shown in the figure), student’s insisted that blood flow in the valveless system
would be uni-directional and clockwise. After extensive protocol experiments, we
discovered that students had an initial mental model that did not articulate valves or their
function, and in which blood flow was inherently clockwise. Adjusting the curriculum to
match these naive expectations, by presenting the valved construction first, then changing it
to remove the valves later, dramatically reduced the earlier confusion. This is clear
evidence that working to elicit and incorporate student’s initial naive conceptions of a
domain into the curriculum and student modeling components is important in ITS design.

4.0 The Epistemological Status of Mental Models

The work in both mental models and tutoring systems reviewed in the previous sections is
implicitly based on the Physical Symbol System hypothesis: that humans have an internal
representation (model) of the world and that intelligent behavior arises from inspecting,
planning over, and manipulating that model. In this respect, the claim made by the ITS
enterprise is especially strong since it defines expertise to be the possession of a symbolic
model, in particular, the one posited as the “expert” model for the tutoring system. This
view of knowledge and reasoning seems very natural to anyone (in a Western culture
certainly) who has ever practiced introspection. A tradition of communicating, both
internally (introspectively) and with others, about action in the real world makes it seem
trivially natural to describe our reasoning behavior as a sequence of actions performed on
our internal conception of the world.

4.1 The Descriptive View of Mental Models

There has been considerable criticism of the Symbol System hypothesis in recent years by
those (Suchman, 1987; Winograd and Flores, 1986) who hold a radically different view of
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cognition. Though it is far beyond the scope of this paper to provide an in-depth analysis
of this subject, it seems very appropriate, especially in light of the lukewarm success of
tutoring systems to date, to briefly present this alternative perspective and to consider its
impact on the design of tutoring systems.

Perhaps the best way to introduce this alternative perspective is by contrasting it with the
Symbol Systems view. The following figure illustrates the difference graphically:

Hodels
ond
Plans

Q
Situsted
O oclion O
o

Figure 4.1: Plans and Models as a way for communicating about action.

The essence of the Physical Symbol Systems approach, which I shall call the generative
view of mental models, is (refer back to figure 2.1) that cognition is based on the
manipulation of some internal model of the world. The alternative we now consider, which
I will call the descriptive view of mental models is, as the above figure indicates, radically
different. Under this view, mental models are linguistic abstractions that arise from our
particular world view, a view in which communicating about, predicting the behavior of
and rationalizing our actions in the real world plays a central role. In other words, mental
models do not exist as symbolic mental constructs which act as the generative basis for
cognition. Instead, they come into being as a result of our need to rationalize and
communicate about our actions and the behavior of the world. Our actions themselves
occur in the embedded situated flow of everyday activity — they are not based on
planning? and manipulation of a symbolic mental model. To see this more clearly, consider
figure 4.2 below.

9 We are concerned here with action at a very low level, where it actually occurs. Clearly, “planning” of
some sort does play a part in our everyday lives, but at a relatively high level (e.g. “‘go to the store™), that
could never serve as the basis for action.
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Figure 4.2: The Descriptive view of Plans and Mental Models.

As indicated in Figure 4.2, our everyday actions unfold as a direct means of dealing with
contingencies as we encounter them. Only when we transport ourselves to a more abstract
perspective in which we can consider and communicate about our action, do plans, goals,
and mental models arise as linguistic tools for objectifying and rationalizing action.

There are several clear implications of the descriptive perspective:
1) If mental models and plans are not the generative basis for action, then it is clearly
possible to act intelligently without any notion of mental model.
2) However, since mental models (and plans) are a linguistic tools for communicating
about action, cultures that do not support those tools will find difficulty communicating
about action with those that do.

In fact, precisely such evidence exists. Gladwin (1970), an anthropologist, reports the
striking difference between the European and Trukese approach to open-sea navigation.
The European navigator begins with a goal and a plan, in the form of charts, courses, and
careful scientific readings. Any unexpected contingencies require careful recalculation to
“repair” a plan that has gone astray. In contrast, the Trukese navigator was reported to start
only with a goal and to adjust to changing conditions in an ad hoc fashion. In particular,
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there is no concept of a “course” or a “plan” for adhering to it. Hutchins (1983) elaborates
on Gladwin’s observations with an in-depth attempt to discover!? the mental models used
by Micronesian navigators. He is hampered throughout his work by the apparent inability
of his subjects to describe their mental processing and conceptualization of the navigation
task. In the end, Hutchins relies primarily on his observation and rationalization of the
navigator’s reasoning behavior, to hypothesize a world view and (partial) model for how
open-sea navigation is accomplished in Micronesia. Though Hutchins, in his analysis,
implicitly supports the view that his subjects do base their reasoning and subsequent
actions on some (radically different) internal representation of the world, I believe his work
represents some of the strongest possible support for Suchman’s (1987) ideas (i.e. the
descriptive model of cognition). In particular, it seems clear to me that Hutchins’ subject
have no notion of mental models and therefore lack the linguistic mechanisms for
communicating about their actions as rationalized by a mental model. Even Hutchins

almost admits it:
“The tool box of the Western navigator contains scales and compass roses on charts,
dividers, sextants and chronometers. These are all A/D and D/A converters. In our
tradition, the operations of observation, computation, and interpretation are each a
different sort of activity and and are accomplished serially [with respect to some maodel].
The Micronesian navigator’s tool box is in his mind. There are no A/D or D/A
converters because all of the computations are analogue. The interpretation of the result
{(bearing of the reference island, for example) is embedded in the computation
{construction of the horizon image) which is itself embedded in the observation (time of
day).”

The following points summarize our observations:

* The Trukese navigators were unable to communicate their approach to navigation and,
indeed, were reportedly confused by the very notion of doing so. This supports the
claim that models and plans about the world are linguistic abstractions, associated with
our particular world view, in which every object, place, action, or even mental entity is
conceptualized as a mental artifact with certain operations that we can perform on it with
a predetermined outcome. The Trukese world view, in contrast, centers on the
perspective of being “immersed” in a world which more or less “happens” to them.
There is little notion of planning and prediction. As a result, they have not developed
linguistic abstractions (i.e. plans, mental models) for discussing such things and,
indeed, can not even conceive of them.

10 This notion of “discovery” emphasizes that an important underlying assumption to all work in mental
models is one of rationality. That is, that seemingly random behavior is, in fact, not random at all and
would make perfect sense if only we could discover an appropriate mental model.
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* Despite the apparent lack of mental models, Micronesian navigation is successful. This
reenforces the position that mental models are useful for communicating to others our
rationale for action in the world, but not crucial to cognition.

4.2 Discussion

The purpose of this section is not to argue for a particular philosophical foundation for
cognition, Clearly, determining the true epistemological status of the mental model —
whether the Physical Symbol System Hypothesis is true or not — and its relationship to
human knowledge is a complex philosophical question that may (and perhaps can) never be
resolved. Certainly it is beyond my meager intellectual means. Instead, my goal in this
section has been to present a reasonable alternative in an effort to shake the complacent
view of symbolic models as not only tools for describing cognition, but as the very
embodiment of knowledge in humans and the basis for all intelligent action. In particular,
reconsidering PSS as the founding assumption for tutoring systems leads to several
extremely stimulating questions with respect to Intelligent Tutoring Systems:

If Physical Symbol Systems are not the embodiment of knowledge and the basis for human
reasoning and understanding, then what is? 1 suggest that this point is entirely academic.

In fact, since PSS is the only way, to date, of conceiving of and communicating about
knowledge and cognition, we have no other way of describing it. More strongly, the
whole point of the descriptive theory of cognition is that any model we come up with for
cognition will be just that — a model, a linguistic abstraction useful for communicating
about cognition, but never its generative basis.

If we don’t have a PSS as the embodiment of knowledge in a tutoring system, then just
what is it we’re trying to transfer to the student?
This is clearly a problematic issue for tutoring systems. Indeed, I think Suchman would
argue that this issue is fatal for ITS. However, as an optimistic young researcher, I believe
a solution lies in the literature cited earlier with respect to the development of naive
conceptions of reality. In particular, I focus on several observations to be drawn earlier in
the paper from the work by DiSessa, McCloskey, Clements and others:
1) Humans have robust, consistent intuitions about the behavior the physical world and
the artifacts in it.
2) These conceptions, though perhaps “wrong” with respect to scientific models of
behavior, accurately reflect the students’ experiences in the world. For example, both
the Impetus model observed by McCLoskey and the “Motion implies Force” conception
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discussed by Clement are “correct” if we consider that they are based on experience with
a world in which friction can never be ignored.
The implication is that (regardless of what knowledge is) students acquire correct
conceptions of reality through direct experience. The purpose, then, of ITS must be to
present such formative experiences. Obviously, this is a clear mandate for systems based
on graphical simulation and may help to explain the fundamental attraction of this approach
observed in the real world.

Are symbolic models useless then? Absolutely not. The computer, as a physical symbol
system, must base its “reasoning” on such models. 1suggest that, instead of serving as the
embodiment of knowledge and the substance that we seek to transfer to the student,
symbolic models be used as mechanisms for rationalizing and describing human behavior.
In other words, I propose a shift of perspective, in which symbolic models are moved from
their central role as the “complete” characterization of expertise and the basis for all
explanation, to a pedagogic role in which they are used as a way of communicating and
rationalizing student behavior. The computational implications of this approach are further
explored in section 6.

5.0 Summary

The last point in the previous section provides the final foundational brick in my effort to
modify our model of tutoring systems and the role of symbolic representations of student
knowledge in them. Before going on I summarize the following points, taken from
throughout this work:

» Current approaches to student modeling tend to be either weak (superficial) approaches,
or center on characterizing the difference between the student’s knowledge and the
system’s “expert” knowledge. This differential modeling approach is problematic
several ways. First, it assumes that the student’s model is some subset of the expert’s.
While this allows for differences in content, it will fail if the student’s model is entirely
different in structure. Second, it relies on the Physical Symbol System Hypothesis in
the strongest way, assuming the expert’s symbolic model to be the knowledge to be

communicated to the student.

» Current approaches take a tabula rasa view of student’s initial knowledge. That is, the
student model is initiatly “blank™ and does not acknowledge students’ naive
preconceptions about the domain. This leads to a lack of connection to students’ real
world experience and, consequently, a disjoint learning experience in which students are
force-fed the expert’s model.
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* Research on humans indicates that (a) they do have robust intuitions about the real
world, (b) these intuitions are firmly grounded in real experience and (c) can be
extremely persistent. This is, to me, strong evidence that they should not be ignored in
ITS design.

* People’s conceptions of reality can evolve over time, becoming more complex and
elaborated as experiences accrue. Thus, tutoring systems should focus on promoting the
evolution of knowledge from its current state to some final goal state instead of simply
presenting the goal state. Clearly, this involves determining the initial state as well as
describing the evolutionary process.

» That the PSS Hypothesis is not necessarily true and that a more neutral approach is to

rely on symbolic models for communication about cognition, not as its generative basis.
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Figure 5.1: A modified framework for ITS design.

Based on these observations, I suggest modifying the abstract framework for ITS design
proposed in Wenger as indicated in figure 5.1.

The following aspects of the figure should be highlighted:

* The student model, not the expert model, now plays the central role in the tutoring
system. Diagnosis is now a matter of deciding which model in the system's curriculum
best describes current student behavior. This is somewhat similar to BUGGY (Burton,
1982) in which the system attempts to rationalize student behavior by exploring
deviations in expert behavior.

*» Symbolic models are used to describe a curriculum, beginning with known student
conceptions of the domain, and focusing on the development of those conceptions to




include abstractions and techniques found in experts. At the very least, this implies
performing studies like those described in section 3 to characterize students’ naive
conceptions.

Since the curriculum is based on student’s naive conceptions, the incompleteness
and erroneous aspects of those conceptions will be reflected in some of the models in the
pedagogical module. This can be viewed as a combination of the evolutionary modeling
techniques seen in QUEST (White and Frederiksen, 1986) and WUSOR-III (Goldstein,
1982) and the explicit modeling of erroneous procedures seen in BUGGY (Burton,
1982).

= Symbolic models are used for the system’s internal reasoning and descriptive purposes
only. In particular, explanation must be reconsidered. In current systems, any
explanation is necessarily based on the system’s “expert” model, with the underlying
assumption that the goal is to transfer this particular symbolic model to the student. In
backing away from this approach, which very strongly relies on the Physical Symbol
Systems Hypothesis, I suggest a more passive mode of “explanation” centered on
presenting the student with new problems that highlight inconsistencies rather than
attempting to explicate them directly. In other words, the model proposed above implies
a pedagogical approach constructed around guided discovery rather than more direct
mixed-initiative tutoring.

6.0 Discussion of Future Work

Since this paper is an analytic survey and not a presentation of new research, I've
purposefully avoided detailed conjectures about what a “better” ITS would look like.
However, after critiquing the landmark classics in ITS history and suggesting
shortcomings in their design, it seems appropriate to put it all together by sketching out an
ITS that embodies the ideas brought forth in this paper. The following paragraphs briefly
elaborate on each component depicted in Figure 5.1, discussing its features and pointing to
challenges that will need to be addressed. We begin with a brief overview of system
operation to set the stage for the discussion.

Early on, we established that the distinguishing characteristic of Intelligent Tutoring (versus
Computer Aided Instruction) is the ability to dynamically assess the student’s knowledge
state and to adjust the curriculum to address any detected deficiencies or misconceptions.
Though the approach taken is slightly shifted, the system I am proposing falls well within
this definition. Briefly, the operation of the system, annotated with the components (refer
to figure 5.1) involved, is as follows:




1) Present a problem (Interface module, Expert module). While the system does
represent a pre-defined catalogue of common student (mis)conceptions (Pedagogical
module), it must elicit input in order to decide which conception best describes the
student’s current knowledge state. The first such problem-solving task might be pre-
defined; subsequent ones are determined as described below.

2) Analyze problem-solving behavior. Based on input recorded during the
problem-solving process, the system must decide (Diagnostic module, Expert module)
which of several symbolic characterizations (Pedagogical module) of commonly-held
conceptions best describes student behavior.

3) Present an appropriate new problem. Based on its assessment of the student’s
current knowledge state, the system must choose (Didactic module) another problem
which a} is designed to highlight inconsistencies in that model and cause the student to
adopt a more advanced conception and b) is designed to provide the system with further
diagnostic information.

With this basic operational outline of our tutoring system in mind, we turn to a more
detailed discussion of the various components.

6.1 The Pedagogical Module.

This module is the central component of the ITS. All of the other components rely on and
are designed around!! this component. The pedagogical module actually serves two
purposes: since we use it to characterize the student’s current knowledge state, it is the
student model; since the evolving sequence of models represent a theory of curriculum, it
acts as a pedagogical model. The pivotal feature of this module is that it is designed from
the learner’s perspective, not the expert’s. For instance, all models in the curriculum,
especially at the naive end of the spectrum, are based on conceptions discovered (as
described in section 3) in human learners including under-elaborated and “incorrect”
models. The overall goal here is to shift from trying to characterize student performance in
terms of its deviations from “expert” performance to representing some set of known
student conceptions as a basis for rationalizing problem-solving behavior.

There are a number of challenging issues to be addressed in designing this module:

Representation. As always, the issue of how te symbolically represent reality is of
central importance. Since this paper deals with the high level design of tutoring

1y emphasize again that the conceptual structure proposed here may not even exist in implementation.
That is, Pedagogical, Diagnostic and Didactic components may be intertwined so that aspects of all three
exist in a single data structure, rule, or procedure.




systems, none of the well-known problems in knowledge representation (c.f. Brachman
and Levesque, 1985) are addressed. However, several comments are appropriate. Qur
goal is to represent student’s conceptions of motion physics. Unlike systems like WHY
(Stevens, Collins and Goldin, 1982) and SCHOLAR (Carbonell, 1970), which focus on
factual knowledge, representing such conceptions implies capturing procedural as well
as factual knowledge. Thus, it seems obvious that some combination of semantic net-
like formalisms, which are well-suited for representing inter-related facts, and condition-
action rules, which capture dynamic procedural knowledge, is required. Finally, our
modified approach to tutoring systems does yield one promising implication. As
discussed earlier, it is no longer our purpose to transfer the system’s symbolic model to
the student — such models are used for the system’s internal reasoning processes only.
Thus, representational details may no longer be quite so crucial. In other words,
whatever works for the system is acceptable. Consider, for instance, Clancey’s
experience with the MYCIN, NEOMYCIN and GUIDON projects (Clancey, 1983).

The knowledge representation used in MYCIN was found to be quite adequate for
solving problems in its domain. Only when Clancey attempts to use this representation
as the basis for explicitly communicating that knowledge to medical students does it fail.
Since our system will emphasize accurate graphical simulation (something not applicable
in MYCIN’s domain) over direct explanation, there is reason to hope that
representational details will not be as crucial.

Completeness. Even if we can identify the conceptions held by students and formulate
an adequate symbolic representation for them, how can we ever be sure that we’ve
captured all possible conceptions that students may have? That is, can we guarantee that
our set of models is complete? It seems clear that the answer in no. Despite work by
DiSessa and others discussed in section 3, which indicates that the set of naive
conceptions is quite small (at least within a specific cultural group), there is no reason to
believe that there will not be exceptions. We elaborate on the implications of this
observation in our discussion of the diagnostic module below.

Evolutionary relationships. Figure 5.1 implies that the various conceptions are
somehow linked, evolving from naive to fully elaborated. But how does one decide
how various models are related. Developing such a detailed curricular model represents
a major challenge.



6.2 The Diagnostic Module.

The goal of the diagnostic module is to determine the current knowledge state of the
learner. In general, this is an extremely difficult task. Unlike a human tutor, who may
resort to natural language interaction to gain further information, the only input typically
available to the computer-based diagnostic process is the student’s observable behavior.
From this behavior, which is the end result of the student’s internal reasoning, the
diagnostic module must posit a hypothetical knowledge state (i.e. a mental model) for the
student, which accounts for the observed behavior. To begin to understand the
computational implications of this task, consider that it is essentially a machine learning
problem. If we view the set of possible mental models as a state space (albeit a very large
one), then diagnosis can be recast as an incremental classification problem (Quinlan, 1986).
In fact, if we consider the tutorial process outlined at the start of this section as a sort of
“dialogue”, in which each exchange (i.e. new problem posed) nets the system further
information, then the relationship of the diagnostic module to incremental learning systems
such as those described by Sammut (1985) and Winston (1975) is obvious,

To give a detailed analysis of the complexity of hypothesis formation in tutoring systems is
beyond the scope of this paper. Suffice it to say that, even in the presence of strong
simplifying assumptions regarding the nature of the concepts!2 to be learned, the
classification problem is computationally intense. In his experiments with the DEBUGGY
system (Burton, 1982), which attempts to deduce simple procedural models to rationalize
student problem solving behavior for subtraction problems, Burton notes that, even in this
simple domain, the computational complexity is so great as to hamper the implementation
of DEBUGGY as an on-line interactive system. In addition, this work highlights the
information-poor nature of the diagnostic task — there are often multiple hypotheses that
explain the observed behavior.

In sum, diagnosis presents a deep and profoundly difficult challenge. However, there is
some hope that the approach I’ ve outlined may help reduce the complexity somewhat. I see
three ways in which this might happen:

1) State space reduction. By working to identify models that characterize student’s
naive and evolving conceptions (in the form of the curricular theory), the search space is

12 with respect to tutoring systems, the “concepts” to be learned are mental models. Almost certainly,
mental models can be presumed to be more complex than the simple concepts that are the focus of most
work in machine learning. Consequently, the complexity of the task can be expected to be orders of
magnitude higher.




much reduced. As described in section 3, the set of naive mental models that cover
novice problem-solving behavior appear to be quite small. Essentially, the existence of
some pre-defined set of “common” naive models changes diagnosis from a hypothesis
formation to a model recognition problem.

2) Best-first search. There will almost certainly be cases where the pre-defined set of
models fails to rationalize student behavior. At this point, we are faced an open-ended
search. However, I suggest that exploring the search space “close to” the pre-defined
models will prove to be a powerful search heuristic. In other words, the pre-determined
conceptions can act as a starting point in the search for a viable model during diagnosis.

3) Close is good enough. Since we do not propose to rely on direct remediation, we
will never need to use the model as the basis for an explanation to the student. The
primary use of the student model is now to serve as a resource for the didactic module,
enabling it to choose the next problem to present.

The last point highlights a pivotal issue: how accurate do we expect diagnosis to be?
Obviously, this question is intimately related to the question of how detailed our
representation of mental medels must be. Is it enough to simply represent models as a set
of beliefs about motion physics, or is a full runnable model required? The answer to these
questions hinges on the informational requirements of the didactic module.

6.3 The Didactic Module.

Given that we have some assessment of the student’s knowledge state and a curricular
theory, the job of the didactic model is to choose a new problem or scenario to present to
the student designed to “move” the student from the current model to the next, more
elaborate model in the curriculum. There are several assumptions underlying the success of
this module. First, there is an assumption that it is possible to define some “theory of
instruction” which, given the student’s current model, can generate new problems that
highlight inconsistencies in the student’s current model, and encourage evolution of that
model. The second assumption is more pedagogical in nature. By avoiding direct
explanations and, instead, responding to inconsistencies by presenting a new problem, we
are taking what amounts to a Socratic approach. That is, we guide the interaction allowing
students to (hopefully) discover their own errors. Anyone that has ever read Plato will
understand the potential for frustration in this approach. It is my hope that other aspects of
the system will provide the motivation to overcome this difficulty. For instance, casting the
tutorial in a gaming context might prove beneficial.




6.4 The Expert Module.

Though we have removed the system’s representation of expertise from its central role in
the ITS, it still plays an important role. Clearly, the system must still be able to generate
correct behavior in the form of an accurate simulation. However, since the emphasis in our
system is on passive tutoring by demonstration (i.e. Guided Discovery), there will never be
a need for the system to explain its reasoning process. Thus, the system may employ a
“black box” expert for maximal efficiency.

6.5 The Interface Module.

A major theme of this paper has been that humans form strong persisient conceptions of
motion physics based on direct experience with the physical world. Thus, a central feature
of our approach includes a shift of emphasis from direct explanation to realistic experience,
from mixed initiative tutoring to guided discovery. Clearly, this shift moves the interface
module into a position of crucial importance. In other words, if we intend to directly
explain less, we must show more. In their work with STEAMER, Hollan et al. (1984)
advance the notion of conceptual fidelity, arguing that a simulation should be designed to
reflect the abstractions used by expert reasoners, and not physical reality. However, as
pointed out earlier, the assumption underlying this sort of claim is that the learner already
shares the same conceptual framework as an expert. Thus, a simulation that directly
represents abstractions like pressure, implicitly assumes that pressure is something the
student understands. While this is perhaps a reasonable assumption for Hollan et al., I feel
it is a dangerous one to make for naive subjects. Our work with the CVCK (Douglas and
Liu, 1989) emphasizes the pitfalls of conceptual fidelity:

* Subjects were generally not able reason successfully based on given values for pressure,
flow, and resistance. We conclude that it is not reasonable to take these abstractions as
tutorial primitives.

* Qur success improved significantly after we provided visual cues, in the form of small
arrows indicating flow direction, in addition to the measured flow values. Subjects
often tried to perform all reasoning based only the flow arrows.

* Physical Fidelity (i.e. realism) is important. There are two issues here. First, naive
learners lack the ability to distinguish between important and non-important features of
the simulation. For instance, some subjects became distressed when components did
not (visually) connect perfectly, thinking it would cause a “leak” in the system. That is,
they interpreted the simulation literally instead of seeing it as an abstraction. More
subtly, realism is also important to establish faith that the simulation is, in fact, accurate
and believable. Students expect to see the ventricle pulse, valves opening and closing,




and blood flowing. Note that it is not important (nor tractable) to be absolutely realistic,
only that student’s expectations are satisfied.
These observations highlight the importance of creating a realistic learning environment. In
my view, both physical and conceptuat fidelity must be supported — students must be
presented with a realistic simulation, but also be encouraged to think abstractly.

7.0 Conclusion

Intelligent Tutoring Systems represent one of the most challenging incarnations of Artificial
Intelligence. The goal of such systems is not only to perform complex reasoning tasks, but
to transfer their problem-solving expertise to humans. Due to profound differences in the
reasoning process, I believe it is this crucial communication component which is simply not
being achieved in current systems, especially those with real-world (as opposed to abstract)
domains. In this paper, I have identified two ways in which communication may be
impeded.

First, successful communication requires that communicating parties share a similar
context, a common background that serves as a foundational resource in communication. It
is this background that serves as the interpretive perspective for the interaction. Clearly, a
computer can never capture what it is to be human, but perhaps we can work to discover
and represent a focused slice of problem-solving context — what the student’s domain
conceptions are upon entering the tutoring session and how they evolve, Thus, a central
theme of this paper has been to suggest a shift from an expert-oriented to a learner-oriented
perspective in order to establish a shared communicative context.

The second theme of this paper is somewhat more philosophical in nature, touching on the
nature of knowledge and the consequent implications for tutoring systems. Since they are
symbolic devices, anything a computer “knows” must be represented as a symbolic
structure; “‘cognition” in a computer amounts to symbol manipulation. Consequently, if the
machine works to explain its cognitive processes, its symbolic manipulations to a human,
and the expects the human to gain a similar expertise from this, then a monumental
underlying assumption is that expertise, including human expertise, can, in fact, be reduced
to symbolic processing. This is the claim made by the Physical Symbol System
Hypothesis. I feel there is sufficient evidence to cast a shadow of doubt on this
hypothesis, as outlined in Section 4 of this paper. Therefore, I suggest that a more
cautious approach is to go back to the basics: realistic experience. Focusing on realistic




presentation of experience through simulation avoids the entire issue of interpretive
frameworks and the nature of cognition.

In sum, the purpose of this area paper is not to indict the philosophical foundations of Al,
or even to suggest that previous efforts in ITS have been misguided. Instead, my goal has
been to step back from the focus on the systems and methods of ITS and consider the
overall notion of knowledge communication in the hope that this broader perspective will
provide some insight towards overcoming the ineffectiveness of tutoring systems in all but
the simplest domains.

Whether or not my analysis is accurate and will prove useful in designing “new and
improved” tutoring systems remains to be seen. Accordingly, I close the paper by
summarizing some of the issues and assumptions raised by my research agenda:

* Characterizing naive conceptions. Given that we can (following DiSessa, Larkin,
etc.) rationalize subject’s problem solving behavior using some set of mental models and
use them in a tutoring system, will this approach improve tutoring effectiveness? How
stable are these naive models across cultures?

* Representation of conceptions. How can we represent student’s naive
conceptions symbolically? What sort of representation will be “adequate” for the
system’s internal didactic reasoning? Do we need the representation to be runnable
models?

* Development of models. Can we define a theory of curriculum, a partially ordered
succession of models, from simplest to fully elaborated in the domain of motion
physics? What about other domain?

* Didactics. Will the Socratic-style “Guided Discovery” approach prove effective? Will
it be too free-form and frustrating for potentially unmotivated novices? Is it absolutely
necessary to provide some explicit explanation? Is it possible, given some
characterization of the student’s current model, to choose a new problem scenario which
will cause the student to elaborate that model successfully?

* Diagnosis. Can the shift from a hypothesis formation to a model recognition process
reduce the combinatorial complexity of this task. Will it ever be fast enough to be
interactive?

Clearly, there is ample room for further research in the directions I have pointed out. Any
one of the above issues will almost certainly provide the grist for one or more dissertations.
I look forward to contributing to this research effort,




Bibliography?

ANDERSON, J. R., CONRAD, F. G. & CORBETT, A. T. (1989). Skill Acquisition and the LISP Tutor.
Cognitive Science, Vol. 13, No. 4, 467-507.

ANDERSON, I. R., BOYLE, C. F. & YOST, G. (1985). The Geometry Tutor. Proceedings of the
International Joint Conference on Artificial Intelligence, Los Angeles, Ca.

BOBROW, D. G. (. (1984). Qualitive Reasoning about Physical Systems. Cambridge, Mass.: MIT Press.

BONAR, J. G. (1985). Preprogramming: a major source of misconceptions in novice programmers.
Human-Computer Interaction, 1, (2): 133-161.

BORNING, A. H. (1979). ThingLab -- A Constraint-Oriented Simulation Laboratory. Stanford University,
Palo Alto, CA.

BORNING, A. H. (1981). The Programming Language Aspects of ThingLab, A Constraint-Oriented
Simulation Laboratory. ACM Transactions en Programming Languages and Systems, 3, (4): 353-387.

BRACHMAN, R. I. & LEVESQUE, H. J. (1985). Readings in Knowledge Representation. San Mateo,
Ca.: Morgan Kaufman Publishers, Inc.

BROWN J. 5. & BURTON, R. R. (1978). Diagnostic models for procedural bugs in basic mathematical
skills. Cognitive Science, 2, 155-191.

BROWN, J. S. & DEKLEER, J. (1983). Assumptions and Ambiguities in Mechanistic Mental Models. In
GENTNER, D. & STEVENS, A. L., Eds, Mental Models. Hillsdale, NJ: Lawrence Erlbaum
Associates.

BROWN, J. 5. & VAN LEHN, K. (1980). Repair Theory: a generative theory of bugs in procedural skills.
Cognitive Science, 4, 379-426.

BROWN, I. §., BURTON, R. R. & BELL, A. G. (1975). SOPHIE: a step towards a reactive learning
environment. fnt. Jrol Man-Machine Studies, 7, 675-696.

BROWN, J. 5,.BURTON, R. R. & DE KLEER, J. (1982). Pedagogical, natural language and knowledge
engineering techniques in SOPHIE I, I1, and III. In SLEEMAN, D. H. & BROWN, J. S., Eds,
Intelligent Tutoring Systems. London: Academic Press.

BUCHANAN, B. G. & SHORTLIFFE, E. H. (1983). Rule-Based Expert Systems: The MYCIN
Experiment. Reading, Mass.: Addison-Wesley.

BURTON, R. R. & BROWN, J. §. (1979). An investigation of computer coaching for informal learning
activities. Int Jrnl of Man-Machine Studies, 11, 5-24.

BURTON, R. R. (1982). Diagnosing bugs in a simple procedural skill. In SLEEMAN, D. H. & BROWN,
1. 8., Eds, Inteiligent Tutoring Systems. London: Academic Press.

CARBONELL, J. R. (1970). Ai in CAI: an artificial intelligence approach to computer assisted instruction.
IEEE Transactions on Man-Machine Systems, 11, (4):190-202,

CHI, M. T., BASSOK, M., LEWIS, M. W, REIMAN, P. & GLASER, R. (1989). Self-Explanations:
How Students Study and Use Examples in Learning to Solve Problems. Cognitive Science, Vol. 13,
No. 2, 145-183.

CLANCEY, W. I. (1983). The epistemology of a rule-based expert system. In BUCHANAN, B. G. &
SHORTLIFFE, E. H., Eds, Rule-based Expert System: The MYCIN Experiment. Reading, Mass.:
Addison-Wesley.

CLEMENT, I. (1983). A Conceptual Model Discussed by Galileo and Used Intuitively by Physics
Students. In GENTNER, D. & STEVENS, A. L., Eds, Mental Models. Hillsdale, NI: Lawrence
Erlbaum Associates.

T Bibliographic Note: A number of the papers listed here appear in compiled collections of papers.
Whenever possible, the location of the originally published work is cited here.

p.37



DISESSA, A. A. (1983). Phenomenology and Evolution of Intuition. In GENTNER, D. & STEVENS, A.
L., Eds, Mental Models. Hillsdale, NI: Lawrence Erlbaum Associates,

DOUGLAS, S. & Liu, Z. Y. (1989). Generating Causal Explanation from a Cardio-Vascular Simulation.
Proceedings of the 11th International Joint Canference on Artificial Intelligence, Detroit, MI.

FARRELL, R. G., ANDERSON, J. R. & REISER, B. J. (1984). Interactive student modeling in a
computer-based LISP tutor. Proceedings of the Sixth Cognitive Science Society Conference., Boulder,
Colorado.

FORBUS, K. D. (1983). Qualitative Reasoning about Space and Motion. In GENTNER, D. & STEVENS,
A. L., Eds, Mental Models. Hillsdale, NI: Lawrence Erlbaumn Associates.

GALILEL G. (1967). Dialogue Concerning Two Chief World Systems - Ptolemaic and Copernican.
Berkeley: University of California Press.

GENESERETH, M. R. (1982). The role of plans in intelligent treaching systems. In SLEEMAN, D. &
BROWN, I. S, Eds, Intelligent Tutoring Systems. London: Academic Press.

GENTNER, D. & GENTNER, D. R. (1983). Flowing waters and teeming crowds: mental models of
electricity. In GENTNER, D. & STEVENS, A. L., Eds, Mentals Models. Hillsdale, New Jersey:
Lawrence Erlbaum Assoc.

GENTNER, D. R. (1979). Toward an intelligent computer tutor. In O'NEIL, H. E., Eds, Procedures for
instructional systems development. New York: Academic Press.

GLADWIN, T. (1970). East is a big bird. Cambridge: Harvard University Press.
GOETHE, J. W. V. (1840). Theory of Colours. Cambridge, Mass.: The M.L.T. Press.

GOLDSTEIN, L P. (1982). The genetic graph: a representation for the evolution of procedural knowledge.
In SLEEMAN, D. H. & BROWN, 1. S8., Eds, Intelligent Tutoring Systems. London: Academic Press.

GREENQO, J. G. (1983). Conceptual Entities. In GENTNER, D. & STEVENS, A. L., Eds, Mental
Models. Hillsdale, NJ; Lawrence Erlbaum Associates.

HOLLAN, I. D. & HUTCHINS, E. L. (1984). Reservations about qualitative models. Praceedings of the
Sixth Cognitive Science Society Conference, Boulder, Colerado,

HOLLAN, J. D., HUTCHINS, E. L. & WEITZMAN, L. (1984). STEAMER: an interactive inspectable
simulation-based training system. Al Magazine, 5, (2): 15-27.

HUTCHINS, E. (1983). Understanding Micronesian Navigation. In GENTNER, D. & STEVENS, A. L.,
Eds, Mentals Models. Hillsdale, NJ: Lawrence Erlbaum Associates.

JOHNSON, W. L. & SOLOWAY, E. M. (1985). PROUST: an automatic debugger for Pascal programs.
Byte, 10, (4): 179-190.

KIMBALL, R. (1982). A self-improving tutor for symbolic integration. In SLEEMAN, D, & BROWN, J.
S.. Eds, Intelligent Tutoring Systems. London: Academic Press.

LARKIN, J. H. (1983). The role of problem representation in physics. In GENTNER, D. & STEVENS,
A. L., Eds, Menial Models. Hillsdale, New Jersey: Lawrence Erlbaum Assoc.

MATZ, M. (1982). Towards a process model for high school algebra. In SLEEMAN, D. H, & BROWN, J.
S., Eds, Intelligent Tutoring Systems. London: Academic Press.

MCCLOSKEY, M. (1983). Naive Theories of Motion. In GENTNER, D. & STEVENS, A. L., Eds,
Mental Models. Hillsdale, NJ: Lawrence Erlbaum Associates.

MILLER, M. L. (1979). A structured planning and debugging environment for elementary programming.
Int Jranl of Man-Machine Studies, 1, 79-95.

NEWELL, A. (1980). Physical Symbol Systems. Cognitive Science, 4, 135-183.

NWANA, H. 8. (1990). Intelligent Tutoring Systems: an overview. Artificial Intelligence Review, Vol. 4,
No. 4, 251-259,

O'SHEA, T. (1982). A self-improving quadratic tutor. In SLEEMAN, D, H. & BROWN, 1. §., Eds,
Intelligent Tutoring Systems. London: Academic Press.

QUINLAN, I. R. (1986). Induction of Decision Trees. Machine Learning, 1, 81-106.




REISER, B. J., ANDERSON, J. R. & FARRELL, R. G. (1985). Dynamic student modelling in an
intelligent tutor for LISP programming. Proceedings of the Ninth International Joint Conference on
Artificial Intelligence, Los Angeles.

SLEEMAN, D. H. & HENDLEY, R. J. (1982). ACE: a system which analyses complex explanations. In
SLEEMAN, D. H. & BROWN, 1. 8., Eds, Intelligent Tutoring Systems. London: Academic Press,

SLEEMAN, D. H. & SMITH, M. J. (1981). Modelling students’ problem solving. Artificial Intelligence,
16, 171-187.

SLEEMAN, D. H. (1982). Assessing aspects of competence in basic algebra. In SLEEMAN, D. H. &
BROWN, I. 8., Eds, Intelligent Tutoring Systems. London: Academic Press.

SLEEMAN, D. H. (1984). An attempt to understand students' understanding of basic algebra. Cognitive
Science, 8, (4): 387-412.

SLEEMAN, D. H. (1984). Misgeneralization: an explanation of observed mal-rules. Proceedings of the
Sixth Cognitive Science Society Conference, Boulder, Colorado.

SOLOWAY, E. M. & JOHNSON, W. L. (1984). Remembrance of blunders past: a retrospective on the
development of PROUST. Proceedings of the Sixth Cognitive Science Society Conference, Boulder,
Colorado.

STEVENS, A. L.,COLLINS, A. & GOLDIN, S. (1982). Misconceptions in students' understanding. In
SLEEMAN, D. H. & BROWN, 1. 8., Eds, Intelligent Tutoring Systems. London: Academic Press.

SUCHMAN, L. (1987). Plans and Situvated Actions: The Problem of Human-Machine Communication.
Cambridge, England: Cambridge University Press.

VAN LEHN, K., BALL, W. & KOWALSKI, B. (1989). Non-LIFO Execution of Cognitive Procedures.
Cognitive Science, Vol, 13, No, 3, 415-467,

WENGER, E. (1987). Antificial Intelligence and Tutoring Systems. Los Altos, CA: Morgan Kaufmann
Publishers.

WHITE, B. Y. & FREDERIKSEN, I. R. (1986). Intelligent Tutoring Systems based upon qualitative
model evolution. Proceedings of the National Conference on Artificial Intelligence, Philadelphia.

WILLIAMS, M. D.,HOLLAN, J. D. & STEVENS, A. L. (1983). Human reasoning about a simple
physical system. In GENTNER, D. & STEVENS, A. L., Eds, Mental Models. Hillsdale, New Jersey:
Lawrence Erlbaum Associates

WINOGRAD, T. & FLORES, F. (1986). Understanding Computers and Cognition. Norwood, NI: Ablex
Corporation.

WISER, M. & CAREY, 5. (1983). When Heat and Temperature were One. In GENTNER, D. &
STEVENS, A. L., Eds, Mental Models. Hillsdale, NJ: Lawrence Erlbaum Associates.

YOUNG, R. M. (1983). Surrogates and Mappings: Two Kinds of Conceptual Models for Interactive
Devices. In GENTNER, D. & STEVENS, A. L., Eds, Mental Models. Hillsdale, NJ: Lawrence
Erlbaum Associates.

P39



