Super Monaco: Its Portable and
Efficient Parallel Runtime System

J. S. Larson, B. C. Massey, and E. Tick
University of Oregon

CIS-TR~95-03
February 1995

Abstract

“Super Monaco” is the successor to Monaco, a shared-memory multiprocessor implementa-
tion of a flat concurrent logic programming language. While the system retains, by-and-large,
the older Monaco compiler and intermediate abstract machine, the intermediate code trans-
lator and the runtime system have been completely replaced, incorporating a number of new
features intended to improve robustness, flexibility, maintainability, and performance. The
compiler, written in (L1, takes high-level programs and produces intermediate code for Lhe
Monaco abstract machine. An “assembler-assembler” converis a hast machine description into
a KL1 program which translates Monaco intermediate code into target assembly code. There
are currently two intermediate code translators: one for SGI MIPS-based hosts, and another for
Sequent Symmetry 80386-based multiprocessors. The runtime system, written in C, improves
upon its predecessor with better memory utilization and garbage collection, and includes new
features such as an efficient termination scheme and a novel variable binding and hooking mech-
anism. The result of this organization is a portable system which is robust, extensible, and has
petformance competitive with C-based systems.” This paper describes the design choices made
in building the system and the interfaces between the components.

This report is an extended version of a paper submitted to EURO-PAR’95, Stockholm,
August 1995,

DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE
UNIVERSITY OF OREGON

Contents

1

2

Introduction

The Monaco Compiler

The Monaco Assembler-Assembler
Monaco Intermediate Code

The Runtime Data Layout

The Runtime System

6.1 Portability & fA5E ST S0 FRESNleR dRESstaERern DE
6.2 Scheduling and Calling Interface,
6.3 Termination iE RGN I sl iacc iRl SRS Eo

6.4 Hooking and Suspension e e e
6.5 Memory Management e e e e e e e
6.6 Unification e e e e e e e e e e e e e e

Performance Evaluation
Related Work
Conclusions

References

16

16

17

1 Introduction

“Dans ce meilleur des mondes possibles...tout est ay mieux.”
Voltaire
Candide (1759)

Monaco is a high-performance parallel implementation of a subset of the KL1, a concurrent
logic programming language [16], for shared-memory multiprocessors. “Super Monaco” is a second-
generation implementation of this system, consisting of an evolved intermediate instruction set, a
new assembler-generator, and 2 new runtime system. It incorporates the lessons learned in the first
design [19}, improves upon its predecessor with better memory utilization (via a 2-bit tag scheme
and the use of 32-bit words, as discussed in Section 5) and garbage collection, and includes a number
of new features: 1) Termination detection through conservative goal counting. 2) A new mechanism
for hooking suspended goals to variables. 3) A specialized language for implementing intermediate
code translators. 4) A clean and efficient calling interface between the runtime system and compiled
code.

We have found that our changes to Monaco have increased the robustness, portability, and
maintainability of the system, while increasing the performance. The system now has less than
1,000 lines of machine-dependent code, completely encapsulated behind generic interfaces. The
new assembler-assembler makes native code generation simple and declarative, while supporting the
use of standard debugging and profiling tools. A conservative goal-counting algorithm implements
distributed termination detection. The intermediate code is evolving toward a more abstract machine
model, and thus toward more complex instructions. A new data layout makes for more compact use
of tmemory, in conjunction with a novel hooking scheme, which maintaing references to suspended
goals with a hash table indexed by variable address.

This paper discusses the design choices made in this second-generation system, its implemen-
tation and performance. Section 2 reviews the Monaco compiler. Section 3 introduces the new
assembler-assembler. Section 4 discusses our intermediate code. Section 5 defines the new layout
used for our data structures. Section 6 introduces the new runtime system and suspension mecha-
nism. Section 7 gives performance numbers and an evaluation of the new design. Section 8 discusses
related work in the literature. Section 9 draws some conclusions.

2 The Monaco Compiler

The Monaco compiler translates programs written in a subset of KL1 [11] to Monaco intermediate
code. The compiler has been continually upgraded from its first release {20]. The most significant
additions, with respect to performance, have been type inferencing and improved code generation
of control flow. The compiler consists of about 2500 lines of “front-end” KL1 code which translates
source programs to an intermediate form with explicit decision graphs [12], and about 4500 lines
of “back-end” KL1 code which compiles this intermediate form. The process by which a Monaco
source language program is compiled is described in Figure 1. A machine description written in a
special language is translated into a template based translator. The KKL1-subset source program is
compiled to our intermediate form, which is then translated into native assembly code.

Front-end compilation proceeds in three passes. The first pass converts the program into a call
graph and performs abstract interpretation over a simple type domain to infer if head variables are
guaranteed to be bound to certain types upon procedure invocation. The second pass translates
the type-annotated source program into a “fiattened” form, in which all head structures have been
replaced by guard tests, and all variables have been consistently renamed between the clauses of
each procedure. The clause heads of the flattened program are then processed to create decision
graphs for each procedure, with a variant of Kliger’s decision graph algorithm [12].

prog.kli symmetTy.monaa

I f prog.s
go(N,Y) =- initvar r_dest
N>0 - mavl 1r.dest], Yoecx movl $2, %eax
[- movl $REFTAG, [-REFT] movl %eax, Yebx
=[N]|L1], mkconst k_nil, r_dest call allocwords
gol(N.Z), - movl SLISTTAG, {r.dest} movl %eax, %ecx
N _ort $BOXTAG, %ebx
! |
Monaco Compiler Monaco :—I—'-—
Assembler- Assembler | Native
JJ | Assembler/
prog.mons i Loader
. 1
mkconst{no,r(3)), 'ilf
assign(r(2),r(3)), Monaco -
Rigcsec — | Assembler | Runtime ! Executable
by EARE=
libsm.a Prog

Figure 1: Overview of the Super Monaco System

The back-end first generates code by traversing the intermediate form in a standard fashion,
consuming an arbitrary number of pseudo-registers. Type information is used to avoid type checking
whenever possible. The code is then passed through an optimizer which builds basic blocks, and
performs memory allocation coalescence, constant subexpression elimination, register allocation, and
spilling. The next pass shortens jump chains, removes statically decidable branches, removes dead
basic blocks, and collapses register move chains in tail-recursive blocks. The basic blocks are then
flattened into a linear structure, and a peephole optimizer traverses the resuiting code cleaning up
some remaining common code-generation inefficiencies.

The number of registers consumed in the target program is limited by a compiler parameter
(so that the registers in the intermediate language can be mapped onto general-purpose machine
registers of the native-code target) but is otherwise machine-independent. This scheme leads to
good portability, while also allowing some experimentation, such as artificially restricting register
usage on an architecture to measure performance impacts, or implementing “extra registers” on an
architecture using memory locations.

The intermediate code design was originally targeted toward MIPS-based microprocessors, and
some vestiges of this decision remain in the compiler. For example, the assumption of a reasonably
large number of general-purpose registers (if fewer than about 16 registers are available, code qual-
ity degrades substantially) requires the Sequent Symmetry implementation, with only six general-
purpose registers available, to implement all of its registers as an array in memory. The original
Monaco assumption that condition-codes are not available as the result of arithmetic and logical
computations, led to implementation inefficiency on non-MIPS architectures, because explicit logical
temporaries were generated and tested, consuming both extra registers and extra instructions. This
has been fixed by redesigning branch instructions. Overall, the quality of the generated code is high
(see Figure 3), lending credence to the runtime system efficiency gains described in later sections.

2

car r_list r_dest

= movl {r_list}, Yeax

- movl [-LISTTAG) (%eax), ¥eax
- movl Yeax, {r_dest}

incr r_src r_dest

- movl {r_src}, %eax

= addl $[1<<INTSHIFT], %eax

- movl feax, {r_dest} car r.list r_dest

sref r_struct n_off r_dest = 1w {r_dest}, +(-LISTTA®){{r_list})

- movl {r_struct}, Yeax tner r_sre¢ r_dest

- movl [4*{n_off}-BOXTAG] (%eax), %eax - addi {r_dest}, {r_src}, +(1<<IKTSHIFT)

- movl %eax, {r_dest} sref r_struct n_off r_dast

ssize r_struct r_dest = 1lv {r_dast}, +(4e{n_off}-\

- movl {r_struct}, %eax BOXTAG) ({r_struct)})

- movl [-BOXTAG] (%eax), Yeax ssize r_struct r_dest

- shrl $[16-INTSHIFT], %eax = ly {r_dest}, +(-BOKTAG){{r_struct})

- subl $[2<<INTSHIFT], %eax - srl {r_dest}, +(16-IBTSHIFT)

= movl %eax, {r_dest} - sub {r_dest}, {r_dest}, +(2<<IBTSHIFT)
(a) Symmetry (i386) Templates (b) MIPS Templates

Figure 2: Code Templates for monaa

3 The Monaco Assembler-Assembler

The translator from Monaco intermediate code to target assembly language is called mona, the
“Monaco assembler.” A machine description language, known as monaa (“Monaco assembler-as-
sembler”) was designed. A monaa machine description is automatically translated into KL1 code
to produce a mona translator for a particular target architecture. The monaa translator consists of
about four hundred lines of awk code, together with a small Bourne shell driver and some m4 macro
definitions.

The overall structure of the monaa language is that of a simple template expander — no native-
code peepholing or other optimizations are currently done, although it is possible that this will change
in the future (see Au-Yeung [2] for a formal language description). For each mona instruction, one or
more non-ovetlapping parameterized templates are given, together with machine code produced in
response to the match. Type information is attached to both the formal and actual parameters to
guide matching and expansion. In addition to instruction templates, the monaa description provides
information about register names and calling conventions, as well as some standard templates for
procedure prologues and epilogues, debugging information, and the like. The generated native
assembly code [ollows the C calling conventions for linking with the runtime system, and aliows for
profiling and symbolic debugging of Monaco assembly code with standard UNIX tools. The monaa
description for the Sequent Symmetry is about 700 lines of menaa code, expanding to about 1300
lines of KL1. The machine-independent KL1 code for mona comprises about 3400 lines, including
symbol-table management and basic housekeeping functionality.

Some of the monaa templates used for current targets are given in Figure 2. Note that the
templates in (a) describing the 1386 implementation of the Monaco instructions are somewhat larger
than those describing the MIPS implementation in (b). This is due in small degree to the two-
address nature of 1386 instructions (as opposed to MIPS three-address instructions), but largely to
the fact that the 1386 Monaco registers are actually implemented using memory locations. The small
number of general-purpose registers available on the 1386 forced this implementation; unfortunately,
the Monaco registers thus must be copied to and from real registers in each instruction.

The use of monaa has proved to have several advantages: 1) The specialized machine description
language is reasonably easy for non-KL1-literate programmers to use and understand. The bulk of

deref(r(0),r(3)) label(13}

br{isntlist,r(3),13) br(isntnil,r(3),18)
alloc{4,r(7)) unify(c(2),r(1))
initvarref (r(7),1,r(4)) proceed
car(r(3),r(6)) label(18)
initlistref(x(?,2,r(6),xr(4),r(5)) br{isbound,r(3),19)
assign{r(2),r(5)) push(r{0))
cdr(r(3),r(0)) label(19)
mova{r{4),r(2)) suspend(append/3)
executs{append/3)

Figure 3: Monaco Intermediate Code for append/3

term
/\
variable value
/\
unbound bound constant aggregate
instantiated int immediate list struct goal
ground atom nil

Figure 4: Monaco Object Taxonomy

the MIPS machine description was written and debugged in about a week, by an undergraduate
with no KL1 experience [2]; the entire MIPS port occupied three people for about a month. 2) The
reliance on standard UNIX utilities such as awk, the Bourne shell, sed, and m4 simplifies maintenance
of the monaa translator itself. 3) The isolation of machine dependencies facilitates future ports to
new architectures. 4) The production of KL1 code makes bootstrap and integrated versions of the
assembler straightforward. 5) The ease of modifications to the template has sped up the design and
testing cycle dramatically.

4 Monaco Intermediate Code

The Monaco instruction set presents an abstract machine which is at an intermediate level
between the semantics of a concurrent logic program and the semantics of native machine code.
The abstract machine consists of a number of independent processes which execute a sequence of
procedures and update a shared memory area. Each process has a set of abstract general-purpose
registers which are used as operands for Monaco instructions and for passing procedure arguments.
Control flow within a procedure is sequential with conditional branching to code labels. Figure 3
shows the Monaco code produced by the compiler for append/3.

The shared memory area is divided into cells, each of which can contain a Monaco data object,
also called a term. Terms are either variables or wvalues. Values are either simple constants or
aggregales of terms. The allowed constants are integers, atoms, or the empty list nil. The aggregate
values are lists or structs, which are vectors of terms. A ground value is either a constant or
an aggregate made up of ground values, that is, an entire structure which contains no variables.

Variables may be bound to terms. A variable which is bound to a ground value is a grounded
variable, and grounded variables are themselves ground values. A variable which is bound to a non-
variable term is called an instaniialed variable. If a variable has been bound to another variable,
then the instantiation of either variable will cause the instantiation of the other variable to the same
value. A taxonomy illustrating these distinctions is given in Figure 4.

There are two unification operations. Passive unification verifies the equality of ground values
(in contrast to systems such as JAM Parlog [4], which also verify the equality of terms in which
uninstantiated variables are bound together). An attempt to passively unify a term containing
uninstantiated variables will result in suspension of the process until those variables become instan-
tiated. Active unification, on the other hand, will bind variables to other variables or to values
in order to ensure equality of terms. As is customary in logic programming implementations, no
“occurs check” is performed during unification for efficiency reasons. Variables are bound through
assignment operations or active unification.

The Monaco instruction set consists of about sixty operations, and is summarized in Tables 1 and
2. The operations are broadly categorized as: 1) Data constructors for each data type (constant,
list, struct, goal record, variable). 2) Data manipulators for accessing the fields of aggregates.
3) Arithmetic operations. 4) Predicates for testing the types of most objects and for arithmetic
comparisons. Predicates store the truth value of their result in a register. 5) Conditional branches
based on the contents of a register. 6) Interfaces to runtime system operations for assignment,
unification, suspension, and scheduling. 7) Instructions for manipulating the suspension stack. The
instructions take constants or registers as their arguments and return their results in registers.
There is no explicit access to the shared memory except through operations which access the fields
of aggregates.

Each data constructor has a variant which serves to batch up allocation requests into a large
block, and then initialize smaller sections of the block. Batching up the frequent allocation requests
increased performance on standard benchmarks, as discussed below in Section 7. In addition, ag-
gregates which are fully ground at compile time are statically allocated in the text segment of the
assembled code. This decreases execution and compilation times.

The instruction set is modeled afler a reduced instruction set (RISC) architecture, on the theory
that such small instructions may be easily and efficiently translated to native RISC instructions with
a simple assembler. This is the case for the MIPS port, where many Monaco instructions translate
to single MIPS instructions, as shown in Figure 2. However, the Monaco instruction set has been
evolving toward more complex instructions, as frequent idioms are identified and coalesced. There
are several reasons for this trend: 1) Intermediate instructions at too low a level viclate abstraction
barriers between the intermediate code and the machine-level data layout and runtime system data
structures. 2) As the amount of work per instruction gets larger, more machine-specific optimizations
can be made in the monaa code templates. 3) There is no reason to equalize the amount of work
done per instruction or to standardize instruction formats, as there is with RISC architectures. 4) If
the native target is not a good match for the Monaco instruction set, a simple template-expanding
assembler will produce much better native code for a more complex instruction than for a sequence of
simple instructions. (This is in contrast to systems such as [9], a sophisticated multi-level translation
scheme which produces good code by intelligent generation of very simple intermediate instructions.)

5 The Runtime Data Layout

The previous memory layout [19] had three tag bits on each word, and words were laid out on
eight-byte boundaries in memory. This prodigious use of memory was not merely a concession to
the three tag bits; the unification scheme required each object to be lockable. As a consequence of
this requirement, some of the “extra” 32 bits of each word were used as a lock. While this led to a

Data Constructors

alloc(n, Rg)

initgoalraf(Ry, Offset, Size, Proe, Ry)
initlistref(fy, Offset, Ry, Ra1, Ry}
initstructref(Ry, Offsel, Size, Ry)

allocate space on the heap
initialize a goal record
initialize a list

initialize o vector

initvarref(Ry, Ofsct, Ry)
mkconst({const), Ry)
mkgoal(Size, Proc, Ry)
mklist(R,, R, Ry}
mkstruct(Size, Ry)
mkptr(fg, Label)

initialize a variable

creale a constant

create a goal record

create a list

create a struct

create a pointer to ground data

mkunbound{ R 4) create a variable
Ground Data Constructors
const({const}) write a constant
datalabel(n}) ground table label
1listptr(Label) write a list pointer
structptr(Label) { write a struct pointer
vectorhdr{Ariiy) | write a struct header
Data Manipulators

car{R,, Ry) get head of list
cdr(R., Ry) get tail of list
decr(R,, Rq4) compute R, — 1
incr(R,, Ra} compute R, + 1
move({R,, Ry) register-to-register copy
sref{H,,n, Ry} | get struct element
sset(R,,n, Ry} | set struct element
ssiza({R,, Rg) _get struct size

Predicates

aq(R,1, A2, Ra)
isbound{R,, Ry)
isempty{Ry)
isimm(f,, Ry)
isatom(R,, Ry)
isint(R,, Rq)
islist(R,, Ry)
isnil(R,, Rqe)
isstruct(R,, Ry)
isunbound{R,, Ry)
neq{R,1, R4, Ra)
ieq(R,1, Ra2, Ra)
inaq(R,1, B2, Ra)
ilt(Rs), Ry2, Ra)
i']"(}2ll v Rl?v Rd)
151: (Rllv Rz, Rd)
iBB(Rah R,3, Rd)

equal?

instantiated varjable?
suspension stack empty?
immediate? (atom or nil)
atom?

integer?

list? (not nil)

nil?

struct?

uninstantiated variable?
not equal?

integer equal?

integer not equal?
integer less than?
integer less or equal?
integer greater than?
integer greater or equal?

Table 1: Monaco Instruction Set

Arithmetic and Bit Operations
iadd(R,1, Rs2, Rg) | integer add
isub(R,1, Ra2, Rg) | integer subtract
imul(R,1, Ry2, Ry) | integer multiply
idiv(R,, Ay2,Ry) | integer divide
imod(R,1, R,2, R4) | integer maodulus
iand(R,), R,2, Rg) | bitwise and
ior(R,;, Ry7, Ra) bitwise or
ixor{R,1, Rs2, R4) | bitwise exclusive-or

inag{R,, Rq) integer negation
inot{R,, R4) bitwise complement
Control

br(a,Label) branch always
br(n,Rs,Label) branch on negative
br(p,Rs, Label) branch on pasitive
br(z,fR,,Label) branch on zero
br{nz,R,,Label) branch on not zero
br(ieq(Conast),R,,Label) | branch on greater, igt, etc.
br{eq,R,1,R,2,Label) branch on equal, igt, etc.
label(n) code label }

Unification and Process Management
assign{H,1, Rz} bind a variable
punity(R,, R,2, R4) | passive unification
unify(flay, Hez) active unification
enqueue(R,) enqueue a goal
exacute(Proc/n) procedure call
proc(Proc/Arity) marks the beginning of a procedure
procead() terminate current thread
push(R,) add to suspension stack
suspand(Proc/n) suspend a procedure

Table 2: Monaco Instruction Set (cont.)

fine granularity for locking, it doubled the system’s memory consumption.

All objects are now represented as 32-bit words of memory aligned on four-byte address bound-
aries. This alignment restriction allows the low-order two bits of pointers to be used as tag bits,
without loss of pointer range. The four tagged types are immedietes, lisl pointers, bor pointers,
and reference pointers. Immediates are further subdivided into infegers, atoms, and box headers.
Integers have the distinction of being tagged with zero bits, allowing some optimizations to be made
in arithmetic code generation. On most architectures, the pointer types suffer no inefliciencies from
tagging, since negative offset addressing may be used to cancel the added tag.

List pointers point to the first of two consecutive words in memory, the head and the tail of the
list, respectively. The nal list is represented as a list-tagged nul! pointer. Box pointers point to an
array of n consecutive words in memory, the first of which is a box header word which encodes the
size of the box and the type of its contents. Boxes are used to implement structs, goal records, and
strings, as well as some objects specific to the runtime system such as suspension slips. Figures 5
and 6 illustrate the layout of some typical objects.

There is only one mutable object type — the unbound variable, represented as a null pointer with
a reference pointer tag. When a variable is bound, its value is changed to the binding value. When

list

a atom

nil list

Q

Figure 5: Representation of the List [1,a]

v box 4 |struct
f [|atom
1 int

X ref (< ref

Figure 6: Representation of the Structure £(1,X)

a variable is bound to another variable, one becomes a reference pointer to the other. Successive
bindings of variables create trees of reference pointers which terminate in a root, which is either
an unbound variable or some non-variable term. The special Monaco instruction deref must thus
be applied to all input arguments of a procedure before they are examined. This operation chases
down a chain of references to its root, and returns the root value or a reference to the unbound root
variable. Thus, a conservative estimate of whether the variable is bound can be made quickly. In
practice, this is only a performance issue, not a correctness issue — the process may try to suspend
on a recently instantiated variable, in which case the runtime system will detect its instantiation
and resume execution of the process.

In the previous implementation of Monaco, one of the tag types was a hook pointer, which was
semantically equivalent to an unbound variable, but pointed to the set of goal records suspended on
that variable. All of the code which dealt with unbound variables also had to test for hook pointers
and handle them separately. However, profiling revealed that suspension is a relatively rare event
— most variables are never hooked. Therefore the new data layout keeps the association between
unbound variables and suspended goal records “off-line,” as described in Section 6.4. This new
organization seems promising (see Section 6.4); contention for buckets is indeed rare, and we were
able to simplify some critical code sections in unification.

6 The Runtime System

The runtime system is responsible for memory management, scheduling, unification, and the multi-
processor synchronization involved in assignment and suspension. It consists of about 2000 lines of
machine-independent C code, and about 300 lines of machine-dependent C for a particular platform.
it has been ported to the Sequent Symmetry and MIPS-based SGI machines.

6.1 Portability

The old Monaco used libraries provided by the host operating system [13] to implement parallel
lightweight threads and memory management. We chose to use a more operating system independent
model. We create many UNIX processes executing in parallel and communicating through machine-
specific synchronization instructions in shared memory, using the fork and mmap system calls.

The machine-independent portion of the runtime system requires a small set of synchronization
primitives from its machine-dependent part. These are: 1) An atomic exchange operation, 2) Atomic
increment and decrement, 3) Simple spin locks, 4) Barrier synchronization. These may be operations
provided by the architecture, or they may be synthesized from more primitive mechanisms. For the
Symmetry port, atomic increment, decrement, and exchange are provided by the instruction set,
while locks and barriers are synthesized using the atomic exchange mechanism. The only assumption
made in the machine-independent code about the shared memory consistency model is that writes
are globally reliable.

The result is a framework that is highly portable, since it does not rely on any particular UNIX
implementation’s libraries for thread and memory management. The UNIX kernel does the schedul-
ing of the processes on the available processors. Unfortunately, this lead to some drawbacks. UNIX
tools designed to interact with implementation-dependent facilities are unavailable. The shared
memory must be managed explicitly, since we are not provided with a shared-memory equivalent of
malloc(). Consequently every runtime system data structure which must be visible to all worker
processes must have global scope in the C module system, hindering code modularity. Lastly, the
UNIX kernel is not informed of our synchronization operations and may decide to, for instance,
preempt a process which is holding a spin lock in order to schedule a process which is waiting for
that lock [1]. However, our performance does not currently seem to be impacted by this sort of
contention.

The runtime system’s interface with the compiled code is small and regular. Implicitly, both
components understand the data layout specified in Section 5. The compiled code can only allocate
and initialize values; it cannot mutate any values. Thus, all assignment and unification is done
in the runtime system. However, there is a runtime data structure which is visible and mutable
by both components. This per-worker structure consists of a goal record pointer, used to pass
goal records during startup and suspension, a suspension stack, and the limits of a local heap of
memory for allocation. This shared structure allows various operations, such as memory allocation
and suspension stack management, to be implemented in the compiled code rather than through a
function call to the runtime system,

6.2 Scheduling and Calling Interface

The Monaco abstract machine produces many thousands of processes during a typical computation,
requiring a level of fine-grained process management inappropriate for implementation via UNIX
kernel processes. So, like most concurrent language implementations, we treat UNIX processes
{worker processes) as a set of virtual CPUs, on which we schedule Monaco processes in the runtime
system.

An invocation of a Monaco process is represented as a goal record, recording simply a procedure
name and arguments. A ready set of goal records is maintained by the runtime system. Each worker
process starts in a central work loop inside the runtime system. This loop executes until some
global termination flag is set, or until there is no more work to do. The worker takes a goal record
out of the ready set, loads its arguments into registers, and calls its entry point. The worker then
executes a compiled procedure, including sequences of tail calls, until the compiled code terminates,
suspends, or [ails. These three operations are implemented by a return to the control work loop
in the runtime system with a status code as the return value. In addition, the intermediate code

: Compiled Monaco Code: . C Runtime System

; 1. Dispatch
Procedure = — Worker Loop

2. Tail Call 5. Return

suspend
e | i 3. Passive Unify ' | Unification
rocedure [;
, 4. Return Code
suspend

Figure 7: Sample Control Flow in the Monaco System

instructions for enqueueing, assignment, and unification are implemented as procedure calls from
the compiled code into the runtime system. Such calls return back to the compiled code when done,
possibly with a status code as a return value. Control flow during a typical execution is illustrated
in Figure 7. The runtime system invokes a Monaco procedure via a goal record (1), which tail-calls
another procedure (2). This procedure attempts a passive unification via a call into the runtime
system (3), which returns a constant suspend as an indication that the caller should suspend (4).
The caller then suspends by returning the constant suspend to the runtime system (5).

The high contention experienced when the ready set is implemented as a shared, locked global
object leads to the necessity of some form of distributed ready set implementation. In our scheme,
each worker has a fixed-size local ready stack, corresponding to an efficient depth-first search of an
execution subtree [15). If the local stack overflows, local work is moved to a global ready stack. If
workers are idle while local work is available, a goal is given to each idle worker, and the remaining
local work is moved to the global ready stack. This policy is designed to work well both during
normal execution, when many goals are available, and during the initial and final execution phases,
when there is little work to do.

6.3 Termination

Execution of a Monaco program begins when goal records for the calls in the query are inserted into
the ready set, and ends when there are no more runnable goals. At this point the computation has
either terminated successfully, failed, or deadlocked -~ the difference can be easily determined in a
post-mortem phase which looks for a global failure flag and suspended goals. A serious difficulty for
a parallel implementation is efficiently deciding when termination should occur.

Many approaches to termination detection are susceptible to race conditions. The previous
implementation maintained a monitor process which examined a status word maintained by each
worker process, terminating the computation when it recognized that each work had maintained an
idle state for some time. A locking scheme was used to avoid races by synchronizing the workers with
the monitor, which hurt worker efficiency. Most importantly, the monitor process itself consumed a
great deal of CPU time without performing much useful work.

10

* hook table
address hasl
variable _ nil |list |5
ref —1 5
| list |]
nil |list [&)
nil list hook list

| hook! variable

ref | ook

C—..._ box | hook " box
0 hook C - .
2 |sslip |suspension slip
G

L box | suspension slip C box

3 oal
3 goal| goal record 8 - goal record
int g nt
mn
g _‘_-_----- ref
L ref
{a) Old Monaco (b) Super Monaco

Figure 8: Monaco Hook Structures

In Super Monaco, we have adopted a different and (to the best of our knowledge) novel approach.
We maintain a count of all outstanding goals — those either in the ready set or currently being
executed by workers. Termination occurs when this count goes to zero. The count increases when
work is placed in the ready set, and decreases when a goal suspends, terminates, or fails. The
count is not changed by the removal of a goal from the ready set, since the goal makes a transition
from the ready state to the executing state. There is a temporary overestimate of the number of
goals outstanding during the transition interval between the time the goal suspends, terminates, or
fails, and the time the count is decremented. However, this will not cause premature termination,
since the overestimate means that the counter must indicate a nonzero number of outstanding goals.
Because the count is not incremented until after a parent has decided to spawn a child goal, there
is also a temporary underestimation of the goal count during this interval. As long as the count
is incremented before the parent exits, this will not cause premature termination either: Since the
parent has not yet exited, the count must be nonzero until after the underestimation is corrected.
Thus, since mis-estimates of the number of outstanding goals are temporary and will not cause
premature termination, our termination technique is both efficient and safe. On the Symmetry, we
implemented this goal counting scheme with atomic increment and decrement instructions.

6.4 Hooking and Suspension

In order to awaken suspended processes when a variable becomes instantiated, there must be

11

some association between them. As noted in Section 5, old Monaco represented this association
explicitly — some unbound variables were represented as pointers to sets of hooks. Figures 8a
tllustrates the old representation.

However, for our benchmark set, the vast majority of variables were never hooked. For a variety
of reasons, the most important being the fact that we wanted to adopt two bit tag values to represent
five types (immediates, lists, box pointers, variable pointers, and reference pointers), we chose to
represent variables using a single word. Super Monaco continues to use suspension slips to implement
suspension and resumption, as in systems such as JAM Parlog [4] and PDSS [11], except that the
association between variables and hooks is reversed. Each hook contains a pointer to the variable it
is suspended upon. Hooks are grouped into sets according to a hashing function based upon variable
addresses. A global hook table contains a lock for each such set.

Since any operation on an uninstantiated variable necessarily involves the manipulation of the
hook table, the locks on the buckets of the hook table may serve as the only synchronization points
for assignment and unification. This gives a lower space overhead for the representation of variables
on the heap. There will be some hash-related contention for locks which would not occur in a one-
lock-per-variable scheme, but since we are dealing with shared-memory machines with a moderate
number of processors, the rate of such hash collisions can be made arbitrarily low by increasing the
size of the hook table.

To instantiate a variable, its bucket is locked, the unbound cell is bound to its new value,
all corresponding hooks are removed from the bucket, and the lock is unlocked. All hooks are then
examined. To bind a variable to another variable, both buckets are locked (a canonical order is chosen
to prevent deadlock) and the set of hooks of on the second variable are extracted and mutated into
hooks on the first variable. These hooks are then placed in the first variable’s bucket, and the second
variable is mutated into a reference to the first. The result is that future dereferencing operations
will return a reference to the new root, or its value when instantiated. Figure 8b illustrates the new
representation.

To evaluate the performance of our hooking scheme, we replaced it with a more traditional
technique. In the latter approach, a list of suspension slips for goals suspended on an unbound
variable is maintained in the cell following the variable on the heap. When the variable is bound,
the binding process picks up the list directly: the garbage collector will eventually reclaim the
extra cell. The traditional implementation requires a locking scheme for variables. We adopt the
convention that a locked variable is represented by a reference to itself, i.e., to the location of the
locked variable. This representation has an interesting advantage: readers of the variable will spin
dereferencing its location until the lock is released, and thus do not have to be modified to be aware
of variable locking. The actual lock operation is conveniently implemented with atomic exchange on
architectures which have this capability.

Table 3 shows the performance comparison (see Section 7 for benchmark descriptions). In
general, there is insignificant performance difference between the two representations (the poor
performance of wave needs further investigation). In general, most of the differences are due to
the longer typical-case path length of the table-based scheme (20 instructions versus 15), which in
turn is an unavoidable consequence of the scheme’s more complex nature. Although the two-cell
representation is slightly faster, future runtime system optimizations may reverse this advantage.

6.5 Memory Management

Memory is allocated in a two-tiered manner. First, there is a global allocator which allocates blocks
of memory from the shared heap. Access to the global allocator is sequentialized by a global lock.
Second, each worker uses the global allocator to acquire a large chunk of memory for its private use.
All memory allocation operations attempt to use this private heap, falling back on the global allocator
when the private heap is exhausted. When the global heap is exhausted, execution suspends while

12

benchmark | two-cell | hash table | slowdown
hanoi(14) 2.3 24 4%
nrev(1000) 11.9 13.1 10%
pascal(200) 4.1 4.2 2%
primes(5000) 9.3 9.8 5%
queen(10) 28.3 30.5 %
cube(6) 38.0 38.9 2%
semigroup 140.7 147.8 5%
waltz 26.6 27.0 2%
wave(8,8) 7.4 9.2 24%

Table 3: Hocking Scheme Performance Impacts (Seconds, Symmetry)

a single worker performs a stop-and-copy garbage collection of the entire heap. Garbage collection
overheads are acceptably low now, but a parallel garbage collector will be implemented in the near
future.

The heap holds not only objects created by the compiled code, but also dynamically created
runtime system structures. Strings, which are allocated by the parser, are stored as special boxes.
Suspension hooks and suspension slips are stored in list cells and small boxes respectively. Sets
of objects are either represented as statically-limited tables (such as suspension stacks) or as lists
(such as hook lists). All sets were first implemented as lists on the heap, avoiding static limits
on set sizes, and also speeding development time through reuse of general-purpose code. However,
using statically-allocated resources not only reduces memory-acllocation overhead, but also reduces
contention by shortening critical sections. If no reasonable limit to set size is known at compile time,
such as for the set of ready goals, a hybrid scheme is used where dynamically allocated storage is
used to handle the overflow of statically-allocated tables.

6.6 Unification

In early benchmarking, we found that the high frequency of active unification made it a performance
bottleneck. We have largely solved this problem through the implementation of “fast paths” through
the active unification process. The approach is based on the Monaco compiler'’s identification of
certain active unifications as assignments whose left-hand side is likely (but not certain) to be a
reference directly to an unbound, unhooked variable, and whose right-hand side is likely to to be a
bound value. Assignments comprise the bulk of active unification performed during execution,

The main optimization of assignments is to arrange for inline assembly code to test that the
conditions for the assignment are met, and if so, perform the assignment inline. If the assignment
is too complex to perform inline, it is passed to a specialized procedure which attempts to optimize
some additional common cases. Thus the general active unifier is infrequently executed.

Table 4 shows the performance of the inlined and non-inlined versions (for the two-cell scheme).
Differences are substantial in several benchmarks, and in no case do the extra tests degrade perfor-
mance. For example, nrev(1000) performs about 500,000 assignments (and 1000 general unifications).
Of the assignments, all but 12 are handled inline, resulting in 34% overall performance improvement.

13

benchmark | inlined | non-inlined | slowdown
hanoi(14) 2.3 2.5 9% |
nrev(1000) 11.9 16.0 34%
pascal(200) 4.1 4.7 14%
primes(5000) 9.3 11.3 21%
queen(10) 28.3 29.1 3%
cube(0) 38.0 38.0 0%
life(20) 20.5 20.9 2%
semigroup 140.7 142.8 1%
waltz 26.6 27.0 2%
wave(8,8) 7.4 7.7 4%

Table 4: Inlining Performance Impacts (Seconds, Symmetry)

Super

benchmark | KLIC | Monaco | SM:KLIC | Monaco | Monaco:SM
hanoi(14) 0.6 2.3 3.83 4.4 1.91
nrev(1000) 5.9 11.9 2.02 19.2 1.61
pascai(200) 1.7 4.1 2.41 9.0 2.19
primes(5000) 4.4 9.3 2.11 12.8 1.37
queen(10) 10.4 28.3 2.72 43.4 1.53
cube(6) 15.5 38.0 2.45

life(20) 29.6 20.5 0.69

semigroup B5.9 140.7 1.64

waltz 18.8 26.6 1.41

wave(8,8) 11.6 7.4 0.64

Table 5: Comparison of Uniprocessor Performance (Seconds, Symmetry)

7 Performance Evaluation

Super Monaco was evaluated on two sets of benchmarks executed on a Sequent Symmetry $81
with 16MHz Intel 80386 microprocessors. The first set, consisting of small, standard programs,
is used for comparisons with other systems: KLIC {3] and Monaco. The second set, containing
larger programs, is used for runtime system analysis. cube finds sclutions to a combinatorial puzzle
problem; life, written by A. Goto, plays the game of life; semigroup computes a Brandt semigroup
(18]; waltz implements Waltz’s line-drawing constraint satisfaction algorithm {18), and wave, written
by 1. Foster, computes an iterative sum around a multidimensional torus.

Table 5 compares Super Monaco, (original) Monaco (20], and KLIC (uniprocessor version) per-
formance. All times are the best of several runs, using the sum of user- and system-level CPU times.
In all cases, Super Monaco improves on the performance of the previous system, despite the fact
that it is more robust. Tick and Banerjee [20] compared the old Monaco’s performance to that of
comparable systems available at the time, such as Strand [5], JAM [4], and Panda [15]. Monaco was
found to outperform these systems in a uniprocessor configuration by factors ranging from 1.6 to 4.0,
and to maintain such ratios for moderate numbers (1-16) of processors. The new implementation of
Monaco maintains this competitive performance. The uniprocessor performance relative to KLIC is

14

Processors
benchmark 1 2 4 8 12 16
hanoi{14) 23/1.0| 1.2/1.9| 0.6/3.8] 03/7.7| 0.2/11.5| 0.2/11.5
nrev(1000) 11.9/1.0 | 7.0/1.7| 4.0/3.0; 24/5.0| 1.8/6.6 1.5/ 7.9
pascal(200) 41/1.0 | 2.2/1.9| 1.2/34| 06/6.8| 0.5/8.2| 0.4/10.2
primes{5000) 9.3/1.0| 5.2/1.8| 2.9/3.2| 1L7/55| 1.3/7.2 1.1/ 85
queen{10) 28.3/1.0 | 14.5/2.0 | 7.4/38 | 3.7/7.6 | 25/11.3 | 1.9/14.9
cube(6) 38.0/1.0 | 19.3/2.0 | 9.8/3.9 | 5.0/7.6 | 3.4/11.2] 2.5/15.2
life(20) 20.5/1.0 | 11.3/1.8 | 6.1/3.4| 3.3/6.2} 25/821 2.3/8.9
semigroup 140.7/1.0 | 71.2/2.0 | 38.2/3.7 | 20.1/7.0 | 15.9/ 8.8 | 13.6/10.3
waltz 26.6/1.0 | 13.9/1.9 | 7.1/3.7| 3.7/7.2} 27/99] 2.2/121
wave(8,8) 74/1.0 | 4.2/1.8| 24/31| 1.3/5.7] 09/82] 0.9/8.2

Table 6: Multiprocessor Performance (Seconds/Speedup, Symmetry)

Processors

1 2 4 8 12 16
Unification 306 29.2 | 277 266 | 24.4 | 21.0
Scheduling 16.9 | 17.0 | 16.9 | 16.6 | 176 | 16.8
Suspension 48] 51| 50| 53| 41| 3.6
Runtime Alloc. 1| 56| 63| 6.1 57| 4.7
Idling 02| 16 34| 43| 60| 9.8
Contention 00] 00] 01| 10| 321 7.8
Compiled Code | 41.2 | 40.2 | 39.56 | 39.1 | 37.9 { 35.5
Compiled Alloe. | 13| 1.3 1.1 | 1.1 | 1.1]| 0.9

Table 7: Execution Time Breakdown (by Percentage)

respectable for all benchmarks, and especially good for the larger, more realistic benchmarks, where
the geometric mean slowdown is only 20%.

Table 6 gives the multiprocessor execution times of Super Monaco. Times are for the longest
running processor from the beginning of the computation until termination. The geometric mean
speedups of the small benchmarks on 16 processors are 10.3, 10.7, and 11.1 for Super Monaco, old
Monaco, and JAM Parlog. However, the geometric mean execution times on 16 processors are 0.76,
1.2, and 3.0 seconds, respectively.

The mona assembler facilitates profiling our compiled code with standard UNIX tools. We an-
alyzed the performance of compiled code and the runtime system using the UNIX prof facilities.
Table 7 gives the breakdown of the execution time for differing numbers of processors, as an arith-
metic mean percentage over the larger benchmarks. The top portion of the table is runtime system
overheads. The bottom portion is compiled thread execution. Runtime Alloc. and Compiled Alloc.
are memory allocation overheads (not including GC). System scalability to larger numbers of pro-
cessors is limited by the increasing overhead of scheduling operations and the overhead of shared
lock contention. We believe that almost all lock collisions are due to scheduling operations. The
system is not yet balanced, with compiled code running below 40% of total execution time; however,
these statistics are influenced a great deal by the benchmark suite.

15

8 Related Work

Among the first abstract machine designs for committed-choice languages were an implementation
of Flat Concurrent Prolog [16] by Houri [10, 17], the Sequential Parlog machine by Gregory et al.
[6, 7}, and the KL1 machine by Kimura [11] at ICOT. A good summary of work on Parlog appears
in Gregory’s book [6]. The JAM Parlog system [4] is a commonly-used Parlog implementation which
compiles Parlog into code for an abstract machine interpreter. The implementation of JAM Parlog
features many innovations which are still in current use by both our system and others, including tail
call optimization and goal queues. In spite of a layer of emulation, JAM Parlog is reasonably efficient.
An outgrowth of work on Flat Parlog implementation, the Strand Abstract Machine [5] was originally
designed for distributed execution environments, but also achieved good performance on shared-
memory parallel machines. More recent work includes the ICOT KLIC system [3], which translates
KL1 code into portable C code, achieving excellent performance. Uniprocessor and distributed-
memory versions [14] have been released. The jc Janus system is a similar uniprocessor-based,
high-performance implementation [8]. See Chikayama [3] for an in-depth performance comparison
among KLIC, jc, Aquarius Prolog, and SICStus Prolog.

9 Conclusions

Super Monaco has obsoleted its predecessor in robustness, capability, and execution performance,
on the shared-memory hosts we are targeting. The novel contribution of this paper is the de-
velopment of a real-parallel concurrent logic programming language implementation that achieves
speeds competitive with the fastest known uniprocessor implementations, while retaining speedups
comparable to the best shared-memory implementations. Other contributions include an efficient
termination detection algorithm, a new hocking scheme, an assembler-assembler framework that
facilitates portability, and support for native profiling, debugging, and linking. Future work in-
cludes exploring optimizations, such as lazy resumption and uses of mode analysis, to further reduce
overheads.

Acknowledgements

J. Larson was supported by a grant from the Institute of New Generation Computer Technology
(ICOT). B. Massey was supported by a University of Oregon Graduate Fellowship. E. Tick was
supported by an NST Presidential Young Investigator award, with matching funds from Sequent
Computer Systems Inc. We thank C. Au-Yeung and N. Badovinac for their help with this research.

16

References

[1] T. E. Anderson, B. N. Bershad, E. D. Lazowska, and H. M. Levy. Scheduler Activations:
Effective Kernel Support for the User-Level Management of Parallelism. ACM Transactions on
Computer Systems, 10(1):63-79, 1992.

[2] C. Au-Yeung. A RISC Backend for the 2"¢ Generation Shared-Memory Multiprocessor Monaco
System. Bachelor's thesis, University of Oregon, December 1994.

[3] T. Chikayama, T. Fujise, and D. Sekita. A Portable and Efficient Implementation of KL1. In
Iniernational Symposium on Programming Language Implementalion and Logic Programming,
pages 25-39, Madrid, September 1994. Springer-Verlag.

[4] 1. A. Crammond. The Abstract Machine and Implementation of Parallel Parlog. New Genera-
tzon Compuling, 10(4):385-422, August 1992,

[5] 1. Foster and S. Taylor. Strand: A Practical Parallel Programming Language. In North Amer-
tean Conference on Logic Programming, pages 497-512. Cleveland, MIT Press, QOctober 1989.

[6] S. Gregory. Parallel Logic Programming in PARLOG: The Language and ils Implementation.
Addison-Wesley Ltd., Wokingham, England, 1987.

[7] S. Gregory, L. Foster, A. Burt, and G. Ringwood. An Abstract Machine for the Implementation
of Parlog on Uniprocessors. New Generation Computing, 6:389-420, 1989,

[8] D. Gudeman, K. De Bosschere, and S. K. Debray. jc: An Efficient and Portable Sequential
Implementation of Janus. In Joint Internationel Conference and Symposium on Logic Program-
nmung, pages 399-413. Washington D.C., MIT Press, November 1992.

[9] R. C. Haygood. Native Code Compilation in SICStus Prolog. In International Conference on
Logic Programming, pages 190-204, Genoa, June 1994, MIT Press.

[10] A. Houri and E. Y. Shapiro. A Sequential Abstract Machine for Flat Concurrent Prolog. In
E. Y. Shapiro, editor, Concurrent Prolog: Collecied Papers, volume 2, pages 513-574. MIT
Press, Cambridge MA, 1987.

[11] Y. Kimura and T. Chikayama. An Abstract KL1 Machine and its Instruction Set. In Inter-
national Symposium on Logic Programmang, pages 468-477. San Francisco, IEEE Computer
Society Press, August 1987.

[12] S. Kliger and E. Y. Shapiro. From Decision Trees to Decision Graphs. In North American
Conference on Logic Programmang, pages 97-116. Austin, MIT Press, October 1990.

{13} A. Osterhaug, editor. Guide lo Parallel Programming on Sequent Computer Systems. Prentice
Hall, Englewood Cliffs, NJ, 2nd edition, 1989.

[14] K. Rokusawa, A. Nakase, and T. Chikayama. Distributed Memory Implementation of KLIC. In
T. Chikayama and E. Tick, editors, Proceedings of the [COT/NSF Workshop on Parallel Logic

Programming and ils Programming Environments, Eugene, March 1994. University of Oregon
Technical Report CIS-TR-94-04.

[15] M. Sato and A. Goto. Evaluation of the KL1 Parallel System on a Shared Memory Multiproces-
sor. In IFIP Working Conference on Parallel Processing, pages 305-318. Pisa, North Holland,
May 1988.

{16) E. Y. Shapiro. The Family of Concurrent Logic Programming Languages. ACM Computing
Surveys, 21(3):413-510, 1989.

[17} W. Silverman, M. Hirsch, A. Houri, and E. Y. Shapiro. The Logix System User Manual, Version
1.21. In E. Y. Shapiro, editor, Concurrent Prolog: Collected Papers, volume 2, pages 46-77.
MIT Press, Cambridge MA, 1987.

(18) E. Tick. Parallel Logic Programming. MIT Press, Cambridge MA., 1991.

{19] E. Tick. Monaco: A High-Performance Flat Concurrent Logic Programming System. In PARLE:
Conference on Parellel Architectures and Languages Europe, number 694 in Lecture Notes in
Computer Science, pages 266-278. Springer Verlag, June 1993.

{20] E. Tick and C. Banerjee. Performance Evaluation of Monaco Compiler and Runtime Kernel. In
International Conference on Logic Programming, pages 757-773. Budapest, MIT Press, June
1993.

18

