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Abstract

The single-assignment property of concurrent logic programming languages results
in a large memory bandwidth requirement and low spatial locality in heap-based imple-
mentations. As large amounts of garbage are generated, it becomes necessary to salvage
used memory frequently and efliciently, with a garbage collector. Another approach is
to detect when a data structure becomes garbage and reuse it. In concurrent languages
it is particularly difficult to determine when a data structure is garbage and suitable for
destructive update. Dynamic schemes, such as reference counting, incur space and time
overheads that can be unacceptable. In contrast, static-analysis techniques can be used
to identify data objects whose storage may be reused. Information from static analysis
can be used by the compiler in generating appropriate instructions for reuse, incurring
little or no runtime overhead. In this paper we present a new method of reuse detec-
tion based on abstract interpretation. We present empirical performance measurements
comparing the new scheme against binary reference counting (MRB). It is shown that
our proposed stalic analysis can achieve most of the benefits of MRB and improve the
execution time.

This report is an extended and corrected version of a paper appearing in the Jont
Inlernational Conference and Symposium on Logic Programming, Washington D.C.,
November 1992.
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1 Introduction

Logic and functional programming languages are examples of languages utilizing the single-
assignment property of variables, i.e., a variable can be bound to a value, at most once.
In logic programming languages, a logical variable starts its life as an undefined cell and
may later hold a constant, a pointer to a structure, or a pointer to another variable. These
programming languages do not allow in-place update of data structures. Abstractly, the
effect of an update can be achieved by creating a new copy of the structure, with some new
portion inserted into the copy.

The single-assignment property is elegant because it is possible to use the availability of
data as a means of process synchronization, similar to data flow computation. However, this
property has the undesirable effect of resulting in large memory turnover, due to excessive
copying. Copying is wasteful in terms of both execution time and storage requirement. The
lack of economy in memory usage results in prodigious memory requirements by programs
that update aggregate data structures. Garbage collection needs to be invoked frequently
as the heap space is limited. Large memory bandwidth requirements and poor cache uti-
lization hinder construction of scalable and high-performance architectures for parallel logic
languages.

Research in the area of runtime garbage collection in functional languages may be car-
ried over to concurrent logic languages. Cohen [11] surveys a range of traditional garbage
collection techniques, classified as mark and sweep algorithms. Reference counting [26],
efficient garbage collection algorithms such as Baker’s algorithm [2, 21], and incremental
garbage collection schemes [13], may alleviate the problem to some extent by making the
garbage collection operation cheaper to perform, but do not reduce the memory require-
ments. Other approaches, such as maintaining multi-version structures [14] have also been
proposed to avoid excessive copying.

If it is known that there are no references to a data object (other than the process
inspecting the object!), then the structure can be reclaimed and used in building other
structures if necessary. The detection and reuse of such data objects can be done either
at compile-time through static analysis, known as compile-time garbage collection, or at
runtime with additional data structures and instructions or by a combination of both.

Runtime techniques include general reference counting and approximations to general
reference counting, known as binary reference counting. The MRB [7] scheme is an example
of binary reference counting. Much work has been done in compile-time detection and
reuse of structures in functional programs [19]. However, these results do nat carry over to
logic programming because of the complexity of unification and the presence of the logical
variable. Analysis techniques for sequential Prolog (e.g., Mulkers [30] and Bruynooghe [5])
do not extend easily to concurrent logic languages, where no assumptions can be made on
the order of execution of the goals or about the interleaving of their execution. On the one
hand, our approach is simpler than that for Prolog because committed-choice programs do
not backtrack and therefore do not require trailing. However, the analysis is more complex
because we cannot reason about when some goal will start or finish executing, and the
related problem of concurrent interleaving.

In this paper, we present a new analysis technique based on abstract interpretation for



compile-time garbage collection and compare it to other proposals, We restrict ourselves
to committed-choice logic programming languages [36]. The purpose of this paper is not to
provide a general framework for abstract interpretation of concurrent logic languages but
rather derive a simple scheme for identifying instances of local reuse. The key contributions
of this research are 1) a formal specification of a depth-one abstract domain for threadedness
information,! and 2) empirical measurements showing the utility of this domain. This
paper will benefit compiler writers and runtime system implementors by providing a clear,
easy-to-understand specification of the abstract interpretation analysis and its expected
performance.

The paper is organized as follows. In Section 2, we review the alternative reuse analysis
proposals. In Section 3 we describe our scheme to identify structures that may potentially be
reused with very little runtime overhead. Specifically, we identify some structures occurring
as input arguments as potential candidates for reuse while constructing new structures in the
clause. The runtime test for ensuring that these structures may actually be reused is simple.
Section 5 reviews alternative instruction sets devised for exploiting reuse information. We
present experimental results showing that our method reduces memory usage, and improves
execution speed when compared to the MRB method. The conclusions of this study and a
summary of future work are given in Section 6.

2 Motivation and Literature Review

We start with a brief introduction to committed-choice logic programs before discussing
garbage collection methods. A committed-choice logic program is a set of guarded Horn
clauses of the form: “H - G4,...,Gm | B1y...,B,” where m > O and n > 0. H is
the clause head, G; is a guard goal, and B; is a body goal. The commit operator ‘|’
divides the clause into a passive part (the guard) and active part (the body). When the
guard is empty, the commit operator is omitted. “Flat” committed-choice languages have
a further restriction that guard goals are simple builtin functions, such as =,<,>,#. In
committed-choice languages such as FCP(:) {36, 42], a guarded Horn clause has the form
“H = Asky,...,Asky : Telly,...,Tell, | By,...,B,." The guards are divided into two
parts Ask and Tell, separated by a colon. The Ask part may contain any builtin predicates
and the Tell part may contain only unification equations,

We say that a goal a commits to a clause ¢, if @ successfully maiches with the head of
clause ¢ (i.e., without causing any bindings to the variables of the goal) and the guards of
clause ¢ (the ask goals) succeed without binding any goal variable and the tell goals also
succeed. When a goal can commit to more than one clause in a procedure, it commits to
one of them non-deterministically (the others candidates are thrown away). Structures ap-
pearing in the head and guard of a clause cause suspension of execution if the corresponding
argument of the goal is not sufficiently instantiated. For example, in order for a goal foo(X)
to commit to the clause “foo(X)} :- X = [A | B] : true | bar(A,B),” the argument X of the
goal must already be bound to a list structure, whose head (car) and tail (cdr) may be any
term, even unbound variables. The Tell part of the guard is empty in this case. In the rest

1This article corrects and extends an earlier paper [39] which introduced the theory.



append(X, In, Dut) :- X = [J :0ut = In | true.
append(X, In, Out} :- X = [HIT] : Out = [H1Z] | append(T,In,Z}.
try_me_else bot ; set up continuation
wait_list R1i ; [EIT]
read_car_variable R1i,R4 ; R4 = H
read_cdr_variable R1,Rb ; R6 =T
put_list Ri i Ri=1[
write_car_value R1i,R4 H H
write_cdr_variable R1,R2 : 1Z]
get_list R3,R1 ; Out = Ri
put_value Ri,RE ; append(T,
H In,
put_value R3,R2 : Z)
proceed
bot: suspend
Figure 1: List Concatenation Source and Compiled Programs

of the paper, structures appearing in the head or in the ask part of the guard are referred
to as incoming structures.

A suspended invocation may be resumed later when the variable associated with the
suspended invocation becomes sufficiently instantiated. A program successfully terminates
when, starting from an initial user query (a conjunct of atoms), after some number of
reduction steps, no goals remain to be executed, nor are suspended.

To motivate the analysis proposed in this article, we present an instance of local reuse,
at the machine level. Consider an FCP(:) program that concatenates two lists, shown
in Figure 1. The abstract machine code generated for the second clause of append/3 in
also listed in the figure.? The precise semantics of this code is unimportant. Critically,
instruction put_list allocates a new list cell on the heap for every call to append. The
first argument of the second clause is a list structure that can be inferred (by the semantics
of committed-choice logic programming languages) to be occurring as an input argument.
This clause also constructs a list structure in its tell part. If there is no other reference to
the input list cell, and the components of the list cell are non-variables, then the cell can
be reused while constructing the list Dut. If local reuse were exploited by the put_list
instruction, no memory would be wastefully allocated by the procedure.

Concurrent logic programs utilize single producer/single consumer communication quite
extensively. The communication, in its simplest form, is performed with a shared variable.
One process writes to the variable, and the other process reads the value. Since there is
only one reader, the reader, after reading the value, may reuse the memory cells used for

2The instruction set is for the FGHC abstract machine developed by Kimura and Chikayama [23], similar
in some respects Lo Warren’s Abstract Machine (WAM) for Prolog [1].



storing the value of the variable. Reuse of data structures can have considerable impact
because memory cells are allocated less frequently and the garbage collector is invoked less
often. Furthermore, memory reuse improves spatial locality of memory references, thereby
improving cache performance. Techniques to implement reuse, relevant to logic programs,
are discussed below.

2.1 Functional Language Research

One of the major implementation issues in functional languages is the efficient implementa-
tion of the update operator on array data structures. The straightforward implementation
would take linear time in the size of the array, as opposed to constant time update in imper-
ative languages. Through static analysis of liveness of the aggregates, the update operations
can be optimized. The related research done in this area are detecting single-threadedness
of the store argument of the standard semantics of imperative languages [35], Hudak’s work
on abstraction of reference count for a call-by-value language with a fixed order of evalua-
tion (18}, and update analysis for a first-order lazy functional language with flat aggregates
using a non-standard semantics called path semantics {3]. All the above analyses are for
sequential implementations.

Another important implementation area is shape analysis, the static derivation of data
structure composition. Recent work by Chase et al. {6] describes a more accurate and
efficient analysis technique than previous methods. They also describe how this storage
shape graph (SSG) method can be followed by reference-count analysis [18]. Recently there
has also been work on reordering the expressions in a strict functional language with the
objective of making most of the updates destructive [33).

The analysis of single-threadedness or storage reusability in logic programming lan-
guages is significantly different from that of functional languages because of the power of
unification and logical variables available in the former. We do not address the issue of
shape analysis in this paper, only reference counting. One important use of our analysis is
the reuse of “local” structures that do not require shape analysis to uncover.

2.2 General Reference Counting

One approach is to associate with each variable, a count of the number of references to
that variable. The count is updated whenever new references to a variable are created or
old ones discarded. If a reader process detects, upon reading, that the count is one (i.e.,
that there are no references to the variable other than its own), then the variable can be
updated in place, or the variable’s space can be reused. This method is known as general
reference counting. The main disadvantages of this scheme are twofold. Firstly, memory
requirements are doubled for each variable, due to the count field. Secondly, managing the
count field to keep track of references may cause considerable runtime overhead. A garbage
collector based on general reference counting is described in [13]. This scheme removes the
need to store the reference count alongside the variable, by using tables to store addresses
of variables and the number of references to each variable, The tables are stored in memory
and need to be updated in the usual fashion. The tables reduce memory requirements, but
still constitute a bottleneck in achieving a high-performance implementation.
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foo( X ) :—X=[A ] B] : true | bar( 4, B ).

foo: try_me_else bot ; set up continuation
wait_list R1i : LAl B]
read_car_variable R1,R2 ; R2 = A
read_cdr_variable R1,R3 : R3 =B
collect_list R1 ; collect 1list cell
put_value R1,R2 ; set up call to bar( A, B )
put_value R2,R3
exacute R2,bar

Figure 2: List-Cell Reuse: Source and Compiled Programs

2.3 Binary Reference Counting

A binary reference count is a one bit tag associated with a data object that indicates if
there are one or more references to that object. The method is an approximation of general
reference counting in the sense that the condition when a multiply referenced data structure
becomes singly referenced, cannot be detected. A prime example of this approach is the
Multiple Reference Bit (MRB) garbage collection scheme [7]. One bit in each pointer,
referred to as the MRB, is set if the referenced object has multiple references active, or
reset if there is only one active reference. Advantages of the MRB are ease of hardware
implementation and reasonable execution speed [22]. Several MRB-based optimizations are
described by Inamura et al. [22]. In this scheme, memory is incrementally reclaimed with
special collect instructions that are generated for each incoming structure. We illustrate
this technique with a sample clause and its abstract machine code, shown in Figure 2.
Instruction collect_list attempts to reclaim the list cell. The attempt succeeds if the
MRB is off, in which case the cell is added to a free list. Separate free lists are maintained
for structures of varying sizes. When a structure is created, instead of freshly allocating it
from the heap, it is allocated from a free list. If the free lists are used in a LIFO (last in,
first out) manner, it is likely that the reclaimed cell is still in the cache.

As mentioned above, collect instructions are generated for each clause-head structure.
The MRB method per se does not involve compile-time determination of when collect
instructions are needed, and when they are not. The collect instructions will succeed in
reclamation if the structure is singly referenced, and fail to reclaim otherwise. All structures,
regardless of their potential for reuse, will incur the overhead of collect instructions.

2.4 Compile-Time Analysis

The application of static program analysis to infer properties of programs, and the use of
this information to generate specialized and efficient code, have proved to be quite success-
ful in logic languages. Several static analyses of logic programs to infer groundness, and



sharing information, structure sharing and liveness (among others) have been proposed for
sequential Prolog (e.g., [5, 12, 29, 30, 31, 38]). The main differences between analysis of
concurrent logic languages and pure logic programs are due to (i) synchronization entailed
by goal-head matching and Ask unifications and (ii) interleaved execution of body goals.

In our proposed analysis, we consider synchronization to some extent. Since ask unifica-
tions cannot not bind goal variables, they are approximated differently than tell unifications
which may bind goal variables. On the other hand, the synchronization implied by ask uni-
fications may preclude some execution orderings of body goals. We assume that body goals
may be executed in any order and hence our analysis is conservative.

The second difference is due to the interleaved execution of body goals in a concurrent
logic program. Our analysis safely approximates all possible interleavings of body goals
by a local computation which propagates the effect of reducing a body goal to all other
body goals until a fixed-point is reached. This local fixed-point computation is an extra
step in the analysis of concurrent logic programs as compared to parallel or sequential logic
programs.

The only other work in applying static analysis techniques to detect possibility of reuse
in concurrent logic languages, other than the research described in this paper, is by Foster
and Winsborough [17]. Foster and Winsborough’s paper [17] deals mainly with the ways to
use information about single-threaded structures. They provide only a sketch of a collecting
semantics for Strand programs [15] in which a program state is associated with a record of
the program components that operated on it. The analysis details are in an unpublished,
unfinished draft [16], and hence it is premature to compare their scheme with ours. In a
recent private communication [41], one of the authors agrees that our approach is signifi-
cantly different from theirs and the fact that their paper is unfinished makes it impossible
for us to provide a direct comparison.

3 Overview of Proposed Static Analysis

The reference counting schemes previously reviewed have the main deficiency of excess
runtime overheads. We are not aware of any successful (efficient) implementation of general
reference counting for a parallel language. Binary reference counting, for instance MRB,
adds runtime overheads to the abstract machine instruction set in which it is implemented.
In this section, we propose a static analysis method based on an abstraction of transition
system semantics to detect threadedness in flat committed-choice logic programs and use
this information to generate reuse instructions. Suspension analysis of concurrent logic
programs due to Codish ef al. [8] is also based on an abstraction of transition system
semantics.

There are four distinct ways in which a variable can be used for sharing information
in concurrent logic programs. They are: Single producer-Single consumer (SS), Single
producer-Multiple consumer (SM), Multiple producers-Single consumer (MS), and Multiple
producers-Multiple consumer (MM). Since a variable may be bound at most once in logic
languages, the notion of multiple producers implies that there are several potential producers
but only one succeeds in write-mode unification. In a successful committed-choice program,



all other potential producers perform read-mode unification. Ueda and Morita [40] define
the class of moded FGHC programs to be those in which there are no competing producers.
In legal moded FGHC programs, MS and MM variables do not exist. Strand is a similar
language, with tell unification replaced by assignment only [15). Saraswat [32] proposed a
related language, Janus, which allows only S variables, each appearing only twice: as an
“asker” and “teller,” explicitly annotated by the programmer.

The purpose of our analysis is to determine which type of communication, S or M2 ap-
plies to each of the program variables. This information is used by the compiler to generate
reuse instructions (see Section 5.1). The algorithm is safe for non-moded programs, but
little reuse will be detected in programs where multiple producers and consumers abound.
Some form of garbage collection will still be needed for programs with multiple producers
and multiple consumers. We do not advocate our approach as an alternative to garbage
collection but rather as supplementing garbage collection by identifying single-threaded
structures at compile-time and reusing them. As our experiments show, in addition to
reclaiming memory as efficiently as the MRB dynamic scheme, our method results in sav-
ings in execution time as well for programs with functional predicates. Since most (not
all) programming paradigms can be implemented in moded programs, we expect accurate
information to be produced from our simplified analysis, for a large class of programs.

Structures appearing in the head and ask part of a clause denote incoming data, since
computation will suspend until the input arguments are sufficiently instantiated.* Thus if
such an incoming structure is determined to be reusable, an attempt could be made to use
its storage when constructing a structure in the body. Consider the following clause:

p(X,S,Y) - §=4(L,C,R), X <C : Y =4(N,C, R) | (X, L, N).

If the second argument in the head, S (which must be a structure (L, C, R)), may be reused,
it would be best to reuse it when constructing the structure ¢(N,C, R). This is known as
instant or local reuse. However, if no immediate use existed in the clause, the reclaimed
storage could be stored away for future use (say, added to a free list). This is known as
deferred reuse. Maintaining ordered free lists based on structure size, and using them in a
LIFO manner, can result in more efficient program execution. Deferred reuse is equivalent
to the collect operations defined in the context of MRB.

In the following presentation, data objects that have a single producer and single con-
sumer are referred to as single-threaded and all other data objects are referred to as mui-
tiple threaded. We assume structure-copying implementations. Qur analysis detects single-
threaded structures at compile-time. These structures can be reused at runtime if the
top-level components are nonvariables. The presence of uninstantiated variable(s) in the
top-level of a structure renders the structure unsuitable for reuse (when variables are al-
located inside structures) even if the structure is single-threaded. The reason is that a
producer of the unbound variable may bind its value after the enclosing structure has been
reused!

*We collapse SM, MS and MM into M in the analysis.

*A more formal explanation of semantics of flat concurrent logic programming languages can be found
in Section 4.1.




We also assume that structure sharing analysis has been done, and that the results of
the analysis are available. We envision structure sharing analysis similar to that proposed
by King [24, 25], a research topic orthogonal to that of this paper. If sharing information
is not available, then we can make worst-case assumptions about sharing and perform the
analysis. This may produce fewer useful results.

3.1 Multiple Threadedness of Structures and Components

Compile-time detection of single-threaded data structures necessarily involves some rep-
resentation issues and we now discuss these issues relevant to propagating threadedness
information safely and precisely. Representation of compound structures has a direct bear-
ing on how the threadedness of a structure affects the threadedness of its components (and
vice versa) and raises the following three questions.

e Is a substructure of a multiple-threaded structure multiple threaded?

¢ Does a structure always become multiple threaded if one of its substructures is multiple
threaded?

e How does the threadedness of a subterm of a structure affect another subterm of the
same structure?

If a structure is multiple threaded, it means that there are (potentially) several con-
sumers accessing the structure. Each consumer may access any substructure, implying
that each substructure may also have multiple consumers. Thus multiple threadedness of a
structure implies the multiple threadedness of its components.

Multiple threadedness of a component of a structure, however, does not always mean
that the structure becomes multiple threaded. Suppose a structure is built in the body of a
clause and it contains a head variable which is multiple threaded. A head variable is simply
a reference to an incoming argument which has already been created. Only a poinier to
that actual parameter resides in the structure built in the body. Because the variable is not
created inside the current structure, the reuse of the structure does not affect the contents
of the multiple-threaded component. Therefore the structure does not become multiple
threaded.

Now suppose a structure is built in the tell part of the guard and it contains at least one
variable Z local to the clause (i.e., the variable Z does not appear in the head, or the ask part,
or in the RHS of a tell equation of the form X = f(...) where X is a variable that appears in
the head or the ask part) and that variable Z is multiple threaded. If the implementation
allocates variables inside structures, then a reuse of the structure will reclaim the space
allocated for the multiple-threaded variable and is therefore unsafe. In this case, we have
to make the structure multiple threaded. If the implementation creates variables outside
structures (the structure arguments are linked to the variables by pointers), then multiple
threadedness of a component would never make the structure multiple threaded.

TFor the analysis presented in this paper, we assume that variables are never created
within a structure. Qur abstract domain exploits this by being expressive enough to repre-



sent that the top level of a structure may be single threaded and at the same time any of
its substructures may be multiple threaded.

The answer to the third question depends on the sharing of the components of the
structures. If two subterms of a structure share, then multiple threadedness of one may
make the other multiple threaded.

4 Abstract Interpretation

In an abstract interpretation framework for a language, it is customary to define a core se-
mantics for the language leaving certain domains and functions unspecified. These domains
and functions are instantiated by an interpretation. A standard interpretation defines the
standard semantics of the languages and an abstract interpretation abstracts some property
of interest. The abstract and the standard interpretations are related by a pair of adjoint
functions, known as the abstraction and concretization functions. We first provide an op-
erational semantics for the language Flat Concurrent Prolog, I'CP(:), and then define our
abstract interpretation method for reuse analysis. The proposed technique is also applicable
to Flat Guarded Horn Clause (FGHC), Strand, and similar languages [36].

4.1 Operational Semantics for FCP(:)

The following operational semantics is a minor variation of the standard transition system
semantics for concurrent logic programs and is derived from [36]. The knowledgeable reader
may wish to skip to the next sub-section.

A computation state is a tuple (G, 8} consisting of a goal G (a sequence of atoms), a
current substitution #, and a renaming index i. The index is used in renaming the variables
of a clause (PVar for program variables) apart from the variables of the goal. Function
rename : PVar x N’ — Var subscripts the program variables with a renaming index® and
rename™! : Var — PVar removes the subscript. Function rename can be homomorphically
extended to rename : Clause x N' — Clause. The initial state (G,e ) consists of the initial
goal G, the empty substitution ¢, and an initial renaming index.

Definition: Computation

A computation of a goal ¢ with respect to a program P is a finite or infinite
sequence of states Sg,...5;,...such that Sp is the initial state and each S;4; €
t(S;) where t is a transition function from S to P(S) (defined below). ()

A state S is a terminal state when no transition rule is applicable to it. The state
(true,@)is a terminal state that denotes successful computation and (fail, # } denotes finitely
failed computation. I no transition is applicable to a state § = {A;,...,4,,80) (n > 1)
where A; # fail, 1 < j < n, then the state is dead-locked. We define the meaning of a
program P as the set of all computations of a goal G with respect to P,

Definition: Transition Rules

*Throughout this paper, we do not show renaming indices in the formalism, to simplify the presentation.



o (AtyeroyAjyeny Any8) " (A, Aoy, Ajgr, Brye ., B, 008"
if 3 a clause C s.t. rename(C,i) = H :- Ask : Tell | B,..., By and
try(A;0, H, Ask, Tell) = ¢'.

o (A1,...,4;...,4,,08) L (fail, 8} if for some j, and for all (renamed)
clauses H :~ Ask: Tell| By,..., By, try(A;8, H, Ask, Tell) = fail.

0

Function try is defined in terms of match which tests if the selected atom from a goal
matches the head of the selected clause without binding any of the goal variables.

Definition:
match(A;, H) =
fail if mgu(A;, H) = fail
é if @ is the most general substitution s.t. A; = H#
suspend otherwise a
Definition:
try(A;, H, Ask,Tell) =

fof if match(A;, H) =10 A test(Ask@) = success A mgu(Tellf) = ¢’

fail if match(A;, H) = fail v (maich(A;,H) =0 A test(Askf) = fail) v
(match(A;, H) = 8 A test(Ask#) = success A mgu(Tellf) = fail)

suspend otherwise g

The definition of test(Ask#) can be found in Shaprio [36]. This sufficiently summa-
rizes the operational semantics of flat concurrent logic languages to define our abstract
interpretation scheme.

4.2 Syntactic Assumptions

Without loss of generality, the following syntactic constraints are placed on logic programs
to facilitate the analysis. These constraints can be satisfied by simple transformations at
compile-time. The rationale behind the constraints (especially 2 and 3) is to ensure that
Ask and Tell equations are in a solved form [27]. These conditions facilitate reasoning about
structures that are definitely created at commit time (see Section 4.6). Similar syntactic
assumptions are fairly standard in the analysis of sequential logic programs.

1. Head arguments are distinct variables. This restriction simply moves (to the ask part
of the guard) the matching of head arguments with the goal arguments.

2. Equations of the ask part may be of two forms:

e X =Y, where the variables X and Y must also appear in the head.

e X = f{...) where variable X must appear in the head,

10



The left-hand-side variables may occur exactly once in the ask part.®
3. Equations of the tell part may be of two forms:

e X = Y, where the variables X and Y must also appear in the head or the ask
part of the guard.”

e X=f(.)
The left-hand-side variables may occur exactly once in the tell part.

4. All program variables have been renamed such that no variable occurs in more than
one clause. This is because, when we define the abstraction function, we will merge
information about various incarnations (renamed versions) of the same variable,

5. Arguments of procedure calls are variables. A goal such as p(X, f(Z}) can be replaced
by a pair of goals p(X, Y) and Y = f(Z) where Y is a new variable not occurring in
the clause and the unification goal Y = f(Z) can be moved into the tell part of the
guard. Unification equations of the form ¥ = f{...) may appear in the tell part but
not in the body. The reason for this transformation is to make explicit the structure
creation operation and to simplify the abstraction of head-goal matching.

4.3 Abstract Domain

In the standard semantics, computation is defined as a (finite or infinite) sequence of states
where two successive states are related by the tramsition function. Hence, the standard
domain of interpretation is P(Computation). We are interested in determining the set of
program variables that will be bound only to single-threaded data structures in any compu-
tation. In our abstract domain a variable can take values from the complete lattice L+ L2+
...+ L* where L is the two-point lattice whose least element is 5 (Single Producer/Single Con-
sumer) and the top is M (Single Producer/Multiple Consumers). Integer k& > 1 is the maxi-
mum arity of any functor in the program. Thus, our abstract domain AbEnvis a finite func-
tion of type PVar — {5, M,(5,5),(5, M ),{(5,5,5),(5,5, M),{(S,M,S},(S,M,M),...}.
Note that the partial ordering on AbEnvis the usual point-wise ordering and the least upper
bound of a set R of AbFnvis defined as follows.

Definition: | |R = f€ AbEnv st.Vx e PVar f(z)=|{y|f e R A y= f(z)}
O

QOur abstraction function o will map a set of computations to AbEnv. PFunction o« is
defined in terms of two other functions, o’ and a”. Function o’ maps a state to AbEnv and
o" maps a computation (which is a sequence of states) to AbEnv. We need an auxiliary
predicate mulli_occurs( Var, State) which is true whenever the variable Var occurs more
than once in state State (counting each occurrence of a variable in each atom in the state).
Procedure subterm(i, X') returns the set of subterms bound to the i** argument of X.

®l.ocal variables are rather a nusiance in our analysis so we remove them from the ask guards with
rewriting rules. .
"This is enforced to simplify the exposition of the abstract unification algorithm.
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Definition: o : State — AbEnv
a(R) = {Z—~ M if Z € { rename™'(X) | multi_occurs(X, R) }
Z=(8T,....Ta) if Z €{ rename~"(X) | ~multi_occurs(X, R) A
M 3Y st Y € subterm(i, X9)
T = A multi_occurs(Y, R)
S otherwise
}}

Q

From the above definition, a multiple threaded variable is denoted as M. A single
threaded variable is denoted as (S,T3,...,Tn), for » > 0 and T; € {S,M}. T;is the
threadedness of the i** component of any term bound to the variable, where n is the
maximum arity of all such terms. Note that threadedness of subterms can only be S or M
because this domain does not contain information deeper than the top level of the term.
For simplification, if » = 0 or if T; = S for all ¢, then the value is denoted as S. For example,
consider the following tell unification: X; = 1(X3, X3) where X, is S, X3is M, and X; is
known to be single threaded. Then the threadedness of X; is denoted as (5,5, M). If X,
is known to be multiple threaded then its threadedness is simply M.

A variable X (representing some data structure) is assumed to be multiple threaded if it
appears more than once in the current state. This has an inherent inaccuracy, as illustrated
in the following example. Consider the query “ 7— p” for the clause:

pi—true : X = f(a) | ¢(X), r(X).

Let the initial state be So = {{p}, {} ). The state resulting from reducing the goal p with
respect to the above clause is:

51 = ({e(f(@)), 7(f(a))}, 6 = {X — f(a)}).

The subterms f(a) of the literals ¢ and r represent the current binding of the variable X
shared by the literals ¢ and r. Hence, in this case, X really is multiple threaded.
On the other hand, consider what happens if the goal p is reduced with respect to the
following clause:
pi-true : X = f(a),Y = f(e) | ¢(X), r(Y).

We obtain the state

Sz = ({¢(f(a)),r(f(a))}, 8 = {X — f(a),Y = f(a)}).

It is clear that neither X nor ¥ are multiple threaded; however, the subterms f(a) of the
literals ¢ and r represent the current binding of the variable X and appear more than once
in the state. Thus X (and Y') would be labeled multiple threaded.

Essentially, there is not enough information in the states §; and S to distinguish
between them and hence we safely approximate X to be multiple threaded in both states.
Ideally a differentiation should be made concerning shared and copied versions of terms:
in S1, f(a) is shared, whereas in S, there are two distinct copies of the structure f(a);
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one is created because of the equation X = f(a) and another because of the equation
Y = f(e). TFor the purposes of threadedness analysis, we can tag all occurrences of structures
in a program with unique tags. This will remove the imprecision caused by treating two
occurrences of the structure f(a) (in the second example) as the same.

Different (renamed) versions of the same variable may occur in a state but we merge
their threadedness. We consider a variable to be multiple threaded in a state if any one of
its renamed versions is multiple threaded. It is straightforward to extend the definition of
o' from State — AbEnv to Computation — AbEnv , since a computation is just a sequence
of states. In the following definition, 5§ € Comp denotes each state § in the computation
sequence Comp (by a slight abuse of notation).

Definition: o : Computation — AbEnv

o' (Comp) = |_| a'(S)
S€Camp a

The abstraction function a and the concretization function 4 can now be defined as follows.

Definition: a : P(Computation) — AbEnv
aCompSet)= || o"(C)

CeCompSet
a
Definition: =y : AbEnv — P(Computation)
7(X) = {C | "(C) C X}
a

In the following sub-sections, we describe the abstract interpretation algorithm in detail.
The algorithm consists of (i) abstract reduction which includes initialization of the abstract
environment of a clause (Section 4.4), head-goal matching and guard execution {Section
4.6), (ii) local fixpoint computation and abstract success environment computation {Section
4.5), and (iii) global fixpoint computation in the standard fashion (e.g., (12, 4]). In the
future, it may be interesting to rephrase our simple abstract domain in terms of Marriott
and Sondergaard’s Prop domain [28], in order to give a more intuitive declarative meaning
of abstract operations.

4.4 Initialization

The initial abstraction of the threadedness of variables is based on the number of occurrences
of a variable (and the variables it shares with) in the head and the body. The general rule
is that all occurrences of the same variable in the head and the guards (both ask and tell)
are counted as a single occurrence and each occurrence of a variable in the body is counted
individually. Initially, variables are assigned threadedness independent of the terms they
may be bound to by ask and tell unifications. Thus A secondary refinement due to these
guards is performed during threadedness propagation (Section 4.5).

If a variable occurs two or fewer times, it is initialized to S. If a variable occurs more
than twice, it is initialized to M implying that variables that occur only in the guard (Ask
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or Tell part) are initialized to §. The variables that occur only in the guard will inherit
their threadedness from other structures with which they are matched/unified.

There is one exception to the previous rules. A variable occurring in the head, Tell
guard, and body is initialized to M. This is necessary because the guard produces a value
which is exported through the head and shared by a body goal. In most practical programs,
the exported variable will be shared by another (external) goal, thus it is multiple threaded.

The following example illustrates the computation of an initial approximation for the
body occurrences.

f(XI,X'g,Xs, '5) S Xl <Xy :X3= t(Xl), Xs = a, Xg=3 I
p(X11X4): (I(Xl,X2,X3,X4), T(XS)-

Variable X is initialized to M since it occurs three times — once in the head/guard and
twice in the body of the clause. Variable X3 is initialized to § because it occurs once
in the head/guard and once in the body. Similarly, X3 and X, are §. X; occurs in the
head, Tell guard, and body, so it is M. Xg occurs only once (head and guard), so it is
§. We refer to the initial environment of the clause, obtained with the above rules, as
AbEnvigy = {X1~ M, Xo= 8§, Xa— 5, Xy— S5, Xs— M, X¢g— S}.

We use AbEnuv!,;, to mean the initial environment of clause i. Function init: clause —
AbEnv returns the initial abstract environment for a clause using the above rules. As an
example of sharing, consider the following:

p(X1, X2, X3) - true : true | q(X1,X2), r(Xa).

Without considering sharing, the number of occurrences of X3 and X5 are each two. Suppose
we are given information that X3 and X3 may share. Considering this sharing information,
we count three occurrences of each. Thus we initialize each to M.

4.5 Threadedness Propagation

Propagation of information across procedure calls involves modeling the reduction of a goal
into a set of goals by head matching, including the successful execution of the guards and
the interleaved execution of body goals. The overall mechanism is summarized in Figure 3,
which is described in the following sub-sections. Given a goal Goal, a caller’s environment
AbEnve.y, and a clause C we abstract the reduction process by first computing the initial
environment AbEnv;,;; of C, and then by safely approximating the effects of head-goal
matching, Ask testing, and Tell unifications.

Definition: AbsRed: Atom x Clause x AbEnv — AbEnv
AbsRed(Goal, C, AbEnv,ey) =

let H:-A:T|B = rename(C) (1)
AbEnvini = iit(H - A:T | B) (2)
E = Match(Goal, H, AbEnv.y U AbEnv.-m-t) (3)
B = Punify(A, E) (4)
£ = Aunify(T, E") (5)
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Goal Head
AbEnvmu AbEﬂﬂ,‘nit
E! AbEnvgucc
AbsRed
Foll OneSucc
Goal
AbEnv.i; AbEnveey
Body
Figure 3: Abstract Interpretation Mechanism
in
rename ™~ (restrict(E™, Vars(H, A, T, B))) (6)
o

The variables of the clause C' are consistently renamed (1) to avoid capturing the goal
variables. The initial environment AbEnv;,;; of the renamed clause is computed with the
init function discussed in Section 4.4. Match approximates head-goal matching in the
environment of the goal and the initial environment of the renamed clause (3). Punify
abstracts the effect of Ask goals of the guard (4), and Aunify abstracts the effect of Tell
unification goals (5). Functions Match, Punify, and Aunify are defined in Section 4.6. We
restrict the resulting environment E* to the variables of the renamed clause, and then
apply the inverse of the renaming function (6). This gives us the abstract environment
AbEnvenyyy for the variables of clause C on reducing goal g with respect to clause C.

The success environment of a user-defined goal Goal is obtained, in function Suce, by
taking the lub (least upper bound) of success environments of all the matching clauses
(3 below). Although the nondeterminism in committed choice languages is the don’t-care
type, at compile time we do not know which clause will commit, and hence take the lub.
The program P (an implicit parameter to Succ) is analyzed by calculating AbEnuvg,. =
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Suce( Query, AbEnvIY), where Queryis the top-level procedure invocation and AbEnv?l5Y
is the initial environment for the query variables.

Definition: Succ: Atom x AbEny — AbEnyv

Suce( Goal, AbEnv ) =

let {p1,p2,...,px} be the clauses whose heads match Goal and
{b1,b2,...,b;} be their respective bodies

AbEnv‘gn,,.y = AbsRed(Goal, Pis AbEnveay) (1)
AbEnv,,;, = Erit(b, AbLnv, ., ) (2)

in .
|_| {OneSucc( Goal, p;, AbEnv oy, AbEnv )} (3)

i=1
O
The function OneSucc is similar to AbsRed, with two exceptions. First, we use the exit
environment of a clause instead of its initial environment. Second, after simulating the head
unifications, the result is restricted to the variables of the calling environment (4 below)
and not to the variables of clause €' whose head matched Goal.

Definition: OneSucc: Atom x Clause x AbEnv X AbEnv — AbEnv
OneSucc(Goal, C, AbEnv 411, AbENY 4it) =

let (C',AbEnv.;y) = rename((C, AbEnv.;)) (1)
H:-A:T|B = (2)
E = Aunify({Goal = H}, AbEnv, U AbEnv ) (3)

in
restrict(E, Vars(AbEnv ) (4)
(|

In concurrent logic programs, body goals may execute in any order and their execution
may also be interleaved. Codognet et al. [10], and Codish et al. [9, 8] describe cases for
which it is sufficient to consider any one particular schedule of body goals during analysis,
as opposed to all schedules. In our analysis, however, we do need to consider interleavings,
as the following example shows.

= p(X), 9(X).
p(X) = .| r(X).
oX) = .| a(X), b(X).

Consider two of many possible interleavings (each is a sequence of resolvents): {(p, g), (p, a,b),
(p,0),(r,b), (&)} and {(p,9),(7,9), (q),(a,b),(a)}. In the first schedule procedure & cannot
reuse X because it executes concurrently with p and b. In the second schedule, procedure
a can safely reuse X. Thus it is certainly safe to consider all schedules, which we do as
follows.
We safely approximate this by iterating the computation of abstract exit environment

(given the abstract entry environment) until the exit and the entry environmenis are the
same. This function is performed in Ezit, as follows.
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Definition: FEwxit: Body X AbEnv — AbEnv
Exit( Body, AbEnv niry) =

let AbEnv.; = Ezitlter(Body, AbEnv,.,4ry)
in if (AbEnVensry = AbEnv,g;) then

AbDENY riry
else

Erit( Body, AbEnv,.) o
Definition: FEwxitRter: Body x AbEnv — AbEnv
Ezitlter{ Body, AbEnvg) =
if empty(Body) then

AbEnuvg

else let Body = {li,ls,...,1} a

in |_’ Suce(l;, AbEnv,)

=1

The collection of all interleavings was also done by Codognet et al. [10], although
applied to another application. In that framework, a similar, but different, local fixed-point
calculation was used. Since the functions AbsRed, Ezit, Succ, Match, Punify, and Aunify
are monotonic and the domain L is finite, the least fixed point exists by Kleene’s fixed-point
theorem [37].

Reiterating (Section 1), we are primarily interested in the local reuse application, not
in developing a new framework. Codognet’s application of suspension analysis raises a
more critical question. If suspension information were known to the reuse analysis, data
dependencies among body goals could be determined, and a more accurate estimation of
threadedness could be obtained. We believe that the two applications could be pipelined:
our local fixed-point calculation could be medified to accept a partial ordering of body goals
produced by the suspension analysis. Alternatively, an attempt could be made to join the
two applications within a more complex domain, to save analysis time with respect to the
pipeline. These are topics of future research.

4.6 Abstracting Head—-Goal Matching, Ask Tests and Tell Unifications
Head-Goal Matching

Function Match(Goal, Head, AbEnv) is now defined. Since we are dealing with canonical-
form programs, head matching involves variable-variable unification only. We first unify the
head H and the goal G obtaining an idempotent substitution # = {X; — ¥7,..., X, — ¥;;}
such that 80 = G. Next the threadedness is propagated by repeating the following rules
until there is no change in the abstract environment. For each X; — ¥; € .8

o if {X;— M} C AbEnv, then there is no change in AbEnv: the formal parameter
remains multiple threaded.

®Recall that X; is the formal parameter and ¥; is the actual parameter. At this point, the formal
parameter has been assigned an abstract value via initialization only {Section 4.4).
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o if {X;— S, Y;— M } C AbEnv, then update AbEnv with X; — M. For each Z that
may share with X;, update AbEnv with Z — M.

o if {X;— 8, ¥; = (5,T,...,T})} C AbEnv, for n > 0, then update AbEnv with X; —
(S,T1,...,Tn). For each Z that may share with X;, update AbEnv with Z — (S5,...).

Ask Goals

The testing of Ask goals is simulated by function Punify. Recall that ask equations do not
bind goal variables; they can at most bind the variables of the clause being matched with
the current goal. Function Punify(Ask, AbEnv) is discussed below. A unification equation
in the ask part can be in one of two forms (recall the constraints of Section 4.2):

¢ X = Y in which both X and Y must also appear in the head. This goal simply tests
for equality without creating any bindings and hence Punify ignores such ask goals.

goal does not create a binding for X in the actual execution. If the term Y is a
head variable or contains only head variables, then subterms of ¥ cannot be bound
to subterms of X but can merely be checked for equality. Hence the threadedness of
X and Y are not affected.

If the term Y contains local variables, then there are a few cases to consider. Recall
that each of local variables in Y could only have been initialized (Section 4.4) to either
Sor M.

— if X is M then all local variables in ¥ become M.

— if X is § then no change is made.

- if X is (5,..., T}, ...}, there are two possibilities. If T} is S then no change. If T}
is M, then all local variables in ¥ become M.

Tell Unifications

Function Aunify approximates the effect of tell unifications. We assume that tell unification
equations are in solved form, i.e., the LHS variables occur exactly once in the tell part
(Section 4.2). Furthermore, in each equation of the form X = Y (where X and Y are
variables) both X and Y must appear in the head or the ask part of the guard.® We
propagate the threadedness by repeating the following rules until there is no change in the
abstract environment. First we consider tell unifications of the form X =Y.

1. For each equation X = Y such that {X — M,Y — ($,7,...,T,)} € AbEnv for
n 2 0, update AbEnv with ¥ — M. Whenever Y is updated, for each Z that may
share with Y, update AbEnv with Z — M. We are simply propagating the multiple
threadedness of X to its components and their aliases.

®This requirement is enforced by normalization and serves only to simplify the exposition of the abstract
unification algorithm.
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The symmetric case of {X — (S,...),Y — M} are treated similarly. Abstraction of a
tell unification equation thus involves propagating the lub of the abstractions of the
two arguments.

2. For each equation X = Y such that either {X — M,Y — M} C AbEnvor {X —
S,Y — S} C AbEnuv, there is no change in AbEnuv.

3. For each equation X =Y such that {X — S,Y — (5,T,...,T,,}} C AbEnv, update
AbEnv with X — (S5,T1,...,7,,). Whenever X is updated, for each Z that may
share with X, update AbEnv with Z — (§,T,...,T»). The symmetric case of {X —
(8, Tyy..yTn ), Y =+ §} is treated similarly.

4. For each equation X = Y such that {X ~ (5,T1,...Tn ), Y — (S,Uy,...,Us)} C
AbEnv, for n > m > 0, update AbEnv with X — «, where

a={(S,THulty,.,TaU Uy U1,y -0y Un)

Whenever X is updated, for each Z that may share with X, update AbEnv with
Z +— a. The case of n < m is treated similarly.

Next we consider tell unifications of the form X = f(...Y...). For the purposes of
exposition, this case is handled by collapsing it into the previous case. The right-hand-side
can be represented, for the purposes of this unification, by a tuple (S, 71, ..., T}, ..., T}, } where
n is the arity of structure f. Assuming Y is the i** component of f, then if Y is S or M,
then T; is assigned S or M respectively. I ¥ is (S,U;,Us,...,Ur), we collapse this value
into § if all U; for j < k are §. Otherwise, if any U; is M, then the value for Y is collapsed
into M. Once we summarize the right-hand side of the tell unification in this manner, we
apply the previous propagation rules.

The following example illustrates how tell unification equations effect propagation of
threadedness: {X; = f(X2,X3), X2 = X4} and X; and X3 are shared. Assume that
initially X is (5,5,5), Xpis S5, X3is §, and X, is M. Since X is M, X3 becomes M, and
then because X3 is the first argument of a structure assigned to X, X1 becomes (S, M, S).
Now X3 and X3 share, so X3 becomes M. Since Xj is the second argument of a structure
that is assigned to X1, X1 is updated to (S, M, M).

4.7 A Quick Example

In this section we illustrate the analysis for the quicksort program as listed in Figure 4,
which is in flattened canonical form. Tirst, the initial abstract substitution is computed for
each program variable in each clause. All program variables are initialized to S and there are
no aliases. Let us assume that the input abstract environment is {Z; = 5, Z; = S} in the
query “ 7- gsort(Zy1, Z2).” On completing the analysis, we obtain abstract substitutions for
all program variables. In other words, we have identified which of the incoming arguments
are of types S and M. In this example, it is determined that all 7 potential applications of
reuse are safe: variables L1 and L2 in gsort/2, X1 and X2 in append/3, and List1, List2 and
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gsort(L1, Sortedi) :- split(Listt, P3, 83, L3) :-

L1 =11 : Listl = [] :

Sortedl = [J | sa=[0,L3=10]|
true. true.

qgsort{L2, Sorted2) :- split(List2, P4, S4, L4) :-

L2 = [Pivot|Rest] : List2 = [X|Xs), X =< P4 :

Large = [Pivot|LS] | S4 = [X|Rest] |
split(Rest, Pivot, S, L), split(Xs, P4, Rest, L4).
gsort(S, SS), split(List3, P5, S5, LB) :-
gsort(L, LS), List3 = [X3|Xs3], X3 =< P5 :
append(SS, Large, Sorted2). L5 = [X3]|Rest] |

split(Xs3, PB, S5, Rest).
append(X1, Y1, Z1) :-

X1 =0 :
Y1 =21 |
true,
append(X2, Y2, 22) :-
X2 = [HIT] :
22 = [HITemp] |

append(T, Y2, Temp).

Figure 4: QuickSort Program in FCP(:)

List3 in split/4. A compiler can generate the appropriate reuse instructions (see Section
5.1) after generating the code for inspecting the head arguments.

Figure 5 illustrates the gain in precision afforded by the depth-one domain. In the body
of funny_qsort/2, gen/1 generates a list and rev/2 reverses a list. The original list, sorted list,
and reversed list are packaged together in f/3. Structure f/3 can be reused in funny_use/2
because the output variable Out is given the abstract domain value (S, M, M, S) rather M
which would result from a depth-zero scheme.

To illustrate one imprecision of our scheme, consider the query “ ?- funny_gsort(_, f(_, S,
T')),” which does not output the initial list of consecutive integers, LO. Variable L0 is given
the abstract value M during initialization, precluding its reuse in gsort/2. The problem
is that initialization is performed local to the clause without regard for how the clause is
invoked. We chose to avoid complicating initialization rather than optimizing such cases.

Another imprecision arises from abstracting together all functors bound to a variable.
Greater accuracy could come from tracking each functor with its own threadedness.

4.8 Comments

The presence of uninstantiated variable(s) in the top-level of a structure renders the struc-
ture unsuitable for reuse, even if the structure is single threaded. The reason is because a
producer of the unbound variable may bind its value afier the enclosing structure has been
reused. This might result in an erroneous unification failure.
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7~ funny_qsort(A,B),
funny_use(B,C).

funny_qsort(LO, Out) :- true ;
out = £(LO,L1,L2) |
gen(L0),
gqsort(Lo,L1),
rev(L1,L2).

funny_use(0ld, New) :-
0ld = £(D,E,F) :
New = £(F,D,E) |
true.

Figure 5: Modified QuickSort Program in FCP(:)

This problem is avoided by always allocating variable cells cutside of structures and
placing only pointers, to the variable cells, inside structures. While this permits reuse, it
introduces extra dereference operations and may also increase memory consumption. These
tradeoffs have been quantitatively analyzed by Foster and Winsborough [17].

The algorithm was presented specifically for flat concurrent logic programs. Any effort
to extend the algorithm to more expressive languages will likely require modification of
the rules for assigning and propagating threadedness, but not the overall control. For
example, concurrent constraint logic programs will require that Ask guards be considered
for calculating variable instances because their immediate reduction before commit is no
longer guaranteed. Because such modifications will likely make the analysis less accurate,
we cannot comment about the practicality of extending the algorithm.

5 Experimental Results

In this section we review two alternative committed-choice language instruction-set exten-
sions for exploiting reuse information. The extensions are from the Strand abstract machine
and the PDSS emulator. These extensions are similar, and deserve some explanation to put
our empirical performance measurements in context. A performance comparison between
our method and MRB is presented. The main purpose of this analysis is to illustrate that
our analysis technique in fact works! Of course, further research is needed to present a full
characterization of the utility of the scheme for real benchmarks.

5.1 Reuse Instruction Sets

Foster and Winsborough [17] describe a reuse instruction set for the Strand abstract ma-
chine. The extension includes:
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e test_list_r(L,H,T) — If a register L references a list structure, then place a refer-
ence to the list in reuse register R, and place references, to the head and tail, in H and
T, respectively.

e assign_list_r(L) — Place a reference to the list structure, referenced by reuse
register R, into register L, and let the structure pointer point to the head of the list.

e reuse_list_tail_r(L) — Place a reference to the list structure, referenced by reuse
register R, into register L, and let the structure pointer point to the tail of the list.
Here we avoid the write mode unification of the head cell.

The reuse instructions use an implicit operand, the reuse register R, or a set of reuse registers.
The reuse register is effectively a fast “iree list” of currently reusable structures. This
method is an efficient way of managing reusable dead structures for deferred reuse.

In contrast, the PDSS system [20] implements a reuse instruction set, designed around
the MRB method, for the KL1 abstract machine. Deferred reuse is based on the collect
operation which places reusable structures in free lists. When a new structure is required,
it may be allocated from the free list. PDSS also includes instructions for instant reuse.
The extensions for instant reuse include:

¢ put_reused_func(Rvect,0ldVect,Atom) — Set the Rvect to point to the same lo-
cation as Oldvect, set the name of functor to Atom.

e put_reused_list(Rlist,01dList) — Set Rlist to point to the same location as
pointed by 01dList.

Instant reuse is more efficient than deferred reuse since the intermediate move onto
the free list is avoided. However, recall from Section 4.8 that a runtime variable check
is needed for each structure argument. In our empirical experiments with reuse analysis,
presented in the next section, the PDSS system was used. Since PDSS allocates unbound
variables outside of structures, variable checks are not needed, so our comparison is fair.
It is an open research question as to the performance tradeoff between allocating variables
inside structures and doing this check, or allocating variables outside structures and thereby
incurring additional dereferencing,.

5.2 Performance

Measurements were made with the PDSS emulator running on a Sun SparcStation I. Six
small benchmark programs were analyzed: append, insert, primes, qsort, pascal, and tri-
angle. Insert constructs a binary tree of integers. Prime uses the Sieve of Eratosthenes
to generate prime numbers. Qsort is the standard quicksort algorithm previously shown.
Pascal generates the 32" row of Pascal’s Triangle. Triangle solves the triangle puzzle of
size 15. For each benchmark, three compiled versions were generated:

Naive — A version with no collect nor reuse instructions. This program is used as a basis
for comparison.
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Heap Usage (Words) Execution Time (sec)
Program Naive | Dynamic | Static || Naive | Dynamic | Static [ % Savet
insert 1,500,000 6,314 6,314 52.2 53.6 50.5 5.6
append 5,000,000 6,202 6,202 111.0 114.3 | 106.5 6.7
prime 323,786 12,128 | 12,158 11.1 11.3 10.5 7.0
qsort 8,000,000 61,725 | 61,725 234.0 237.5 | 221.7 6.7
pascal 167,070 127,072 | 147,270 12.1 12.9 12.3 4.7
triangle 543,809 539,523 — 60.5 63.8 — —

1 (Static — Dynamic)/Dynamic

Table 1: Heap Usage and Execution Time: Comparison of No Optimization, Dynamic, and
Static Analysis

Dynamic — A version with collect instructions as generated by the existing PDSS com-
piler.

Static — A version with instant reuse instructions appropriately used and no collect op-
erations are used.

Note that the Naive and Static systems still have MRB management overheads associated
with individual instructions that make bindings, potentially requiring modifying the MRB.

Both static and dynamic methods can be used together in a hybrid scheme. However,
in this study we wish to compare the effectiveness of reuse with that of the MRB scheme,
and therefore we do not present results concerning the hybrid. The heap usage patterns
in the benchmarks are presented in Table 1. The measurements in Table 1 reflect the
behavior we expected from the benchmarks. The benchmarks illustrate classes of full,
partial, and no-reuse programs. Insert, append, prime and gsort extensively use stream-
based single producer/single consumer communication. Qur algorithm predicted potential
for full instant reuse, as confirmed in the table. In these benchmarks the heap memory
requirements of the static and dynamic versions are nearly identical. This demonstrates
that it is possible to achieve as much efficiency as collect in benchmarks where a large
number of single-threaded structures are constructed.

In pascal, where only 50% ((167,070—147,270)/(167,070~ 127, 072)) of single-threaded
structures were statically determined, the heap requirements of the static version are only
slightly higher than that of the dynamic version. In triangle, the board structure is multiple
threaded. The collect operations almost never succeed in reclaiming memory and the
memory requirements of the dynamic and naive versions of the program are nearly the
same. Since reuse is not possible, we did not generate a static version of the program.

The memory requirements of the naive versions of the benchmarks can be several times
higher than the static and dynamic versions. The extent of memory reuse is highly program
dependent however. These measurements are meant only to illustrate how our algorithm
can exploit reuse when conditions are ripe. To further illustrate the effectiveness of static
analysis, the execution times of the benchmarks are also presented in Table 1. By compil-
ing reuse into the program, the execution speed is consistently better than that obtained
through the MRB optimization. By implementing reuse more efficiently (than in PDSS),
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the savings may be even higher. The results are biased against the static system which
still pays the overhead of MRB manipulation within abstract machine instructions that
make bindings. Thus the savings appear lower than what could be achieved in a completely
MRB-free system. Note that in PDSS, even after stop-and-copy garbage collection, the
naive version of a benchmark runs as fast as, if not faster than, the dynamic version. This
lends support to our claim that in the absence of special hardware to implement MRB, a
good garbage collector is important. To improve the combination of reference counting and
a good garbage collector, memory reuse is necessary.

In programs with a preponderance of multiple-consumer communication, the collect
operations simply add runtime overhead without reclaiming memory. In such a case, the
program performs better if the collect operations are simply removed. This is evident in
triangle, for instance, where our analysis determined that there is no scope for reuse. The
naive version outperforms the version with collect operations.

In programs where the majority of the structures have single consumers, collect oper-
ations are avoided wherever instant reuse is possible. This reduces the overhead of free-list
management. The static version is 6-7% faster than the dynamic version in insert, append,
prime, and qsort, where 100% instant reuse was possible. Even in pascal, where instant
reuse was only 50% as memory-efficient as collect, the static version was 4.7% faster.

6 Summary and Conclusions

We have introduced a new compile-time analysis method for determining single-thread-
edness of data structures in concurrent logic programs. The analysis is formulated in the
framework of an abstract interpreter for FCP(:). The information produced is the “thread-
edness” of each logical variable: either single or multiple threaded, referring to the number
of consumer processes associated with the variable. To avoid over-conservative approxima-
tion, the analysis imposes simple syntactic constraints that can easily be achieved at compile
time without loss of generality. Sharing information is required to ensure correctness of the
analysis, and its use is integrated into the threadedness propagation algorithm.

Empirical results indicate that the analysis enables local memory reuse that is compa-
rable to the multiple reference bit (MRB) scheme [7] in terms of amount of memory saved.
The proposed method is not suggested as an alternative to GC, but as a supplement to GC.
The improvements in execution speed of (4.7%-7.0%) in the examples we tested provide
evidence to this claim. The modest savings in execution speed is due to the overheads
of MRB which we did not completely remove due to the complexity of the KL1 run-time
system.

It would be interesting to explore more complex reuse schemes. In recent work on reuse
of arrays in functional programs, Sastry et al. [33] propose a powerset domain of variables
for gathering liveness information of the program variables. Chase et al. [6] use more
complex domains for structure shape analysis. Another idea is to maintain information
about the threadedness sub-structures up to a certain depth. Depth-k abstractions of Sato
and Tamaki [34] may be useful in this regard.

Another research direction worth exploring is the integration of sharing analysis and
threadedness analysis. Using a partial order for reducing body literals (based on, say,
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suspension analysis), instead of all possible interleavings considered in this paper, is also a
promising avenue.
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