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Abstract

The multidrop communication model assumes that a message orig-
inated by a sender is sent along a path in a network and is communi-
cated to each site along that path. In the presence of several concur-
rent senders, we require that the transmission paths be vertex-disjoint.
The time analysis of such communication includes both start-up time
and drop-off time factors. We determine the minimum time required
to broadcast a message under this communication model in several
classes of graphs.
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1 Introduction

One of the basic information dissemination tasks in a communication network
is that of broadcasting: one site originates a message to be sent to all other
sites in the network. Depending on the technology of the network, different
models of information dissemination are used. The telephone model assumes
that only two sites connected by a direct link can communicate in a time
unit, precluding any other communication involving the two sites (although
other sites may communicate in the same manner concurrently). The line
communication model assumes a similar exclusive pair-wise communication
where communicating sites can be connected by a succession of adjacent
links, and no link is used in two simultaneous transmissions. In this paper,
we consider a multidrop version of this line communication model, wherein all
sites along the path followed by a message become informed of the message.

We model the topological aspects of a communication network by a sim-
ple, undirected graph, G = (V, E), in which vertices V correspond to network
sites and edges £ correspond to communication links between them. We
consider a multidrop communication model. Communication takes place in
rounds, where a round corresponds to a collection of vertex-disjoint paths in
the graph. In this model, a site initiates a call that communicates a message
to all sites on a path starting with the calling site. Several such calls can
occur in the same round if they do not interfere by using the same vertex (or
edge).

The time required by a multidrop call from one vertex to z other vertices
is s+dz, where s is the transmission start-up time and d is the message drop-
off rate. We simplify this expression to the form 1 + ¢z, where ¢ represents
the relative message drop-off rate, i.e, d/s. The time to complete a round
is the maximum time over all calls in that round. The time of a multidrop
broadcast scheme is the sum of durations of all rounds in the scheme. Thus,
it is equal to r + ct, where r is the number of rounds (called the start-up
term) and ¢ is the sum of maximum number of drop-offs in every round (ct
is called the drop-off term).

For a given network topology and broadcast originator, what is the min-
imum possible time for a multidrop broadcast? One limiting factor is the
eccentricity of the originating vertex in the corresponding graph. The eccen-
tricity of a vertex v in a graph G is the maximum distance from v to any
other vertex of G.



Lemma 1: In any graph G, the drop-off term from a vertex v with
eccentricity e is at least ce, under any multidrop broadcast scheme.

Proof: Vertices along at least one path of length e must be informed
sequentially, possibly over several rounds. =

Lemma 2: In any graph G, the drop-off term from a vertex v with
eccentricity e, for which there are at least two vertices at distance e from v,
is at least c¢(e + 1), under any multidrop broadcast scheme.

Proof: Vertices along at most one path of length e can be informed
sequentially. w

Lemma 3: If there exists a multidrop broadcast from a vertex v of
eccentricity e in time r + ce, then no minimum-time multidrop broadcast
from this vertex can involve more than r rounds.

Proof: It follows from Lemma 1 that any broadcast from v with v > r
rounds would require at least r’' + ce > r + ce time. =

Hromkovi¢ et al. [1, 2] initiated the formal study of multidrop broad-
casting. They adopt a simpler timing model whereby each call requires one
unit of time, regardless of the number of vertices along the path of a call.
This measure simply counts the number of rounds to complete a multidrop
broadcast. With this model of time cost, the existence of a Hamiltonian path
from a given source assures a broadcast requiring one time unit.

QCur model of time more closely approximates characteristics of the Mas-
Par xnetc communication process and wormhole routing in more general
networks. The relative drop-off rate ¢ is quite small on the MasPar proces-
sor, i.e., approximately .005 for 8-bit data transfers (cf. [3]). In wormhole
routing the relative drop-off rate varies with implementation and technology,
see Ni and McKinley [4].

For different values of the relative drop-off rate ¢ (as determined by net-
work technology), schemes with differing numbers of rounds may yield the
overall minimum time for the same network topology. Thus, we will have to
explore optimum r-round broadcast {minimum time over all 7-round broad-
casts) for several values of r. By Lemma 3, we need not consider schemes with
number of rounds greater than the minimum number of rounds necessary to
realize eccentricity in the drop-off term.

The goal of this paper is to extend research on the multidrop model
by using our more realistic timing model and exploring schemes leading to
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minimum-time broadcast in several classes of graphs. Specifically, we will
study multidrop broadcasting in complete graphs, paths, cycles, trees, and
grids.

2 Complete graph K,

In the case of the complete graph, the task of covering it by sets of disjoint
paths becomes an exercise in number theory when paths of different length
are considered. Therefore, for this topology only, we will assume that the
broadcasting process taking place in a complete graph with n vertices is
achieved by covering the graph with sets of paths of uniform length z. Since
the technology of a network often determines the parameter ¢, our initial
goal is to find values of = allowing most efficient broadcasting for a specific
value of ¢. To do this, we determine ranges of values of ¢ for which a given
value of z is optimal.

We will assume that the number of vertices n is large enough to be approx-
imated by =", where r & log, n is the number of rounds in a broadcast. The
time of an r-round broadcast is thus r(1 4+ c¢(z — 1)) = (log, n)(1 + c{z ~1)).
This time is to be compared with the time when z vertices are called in one
round, r(1 +¢z) = (log,,, n)(1+cz). It is the intersection of these two func-
tions of z that determines the optimum uniform length of a calling path for a
given value of network parameter c¢. This can be represented as the range of
values of ¢ for which the given calling path length is time-optimal. In other
words, given ¢, we want to find a value of # > 1 for which ¢; < ¢ € ¢z,
The lower limit of this interval, c., satisfies the equation

(log; n)(1 + cz(z — 1)) = (log41 n)(1 + cz2)

and thus

1—log,y @
CHi= .
l—z+zlog, .z

In Table 1 we show some representative values of c;.



z 2 3 4 6 8 12 22 38 63 100
c; || 1.41 | 0.55] 031 ] 0.15{ 0.01 | 0.05] 0.02| 001 | 0.005| 0.00275

Table 1: Length of the call paths and the corresponding optimal value of the
relative drop-off rate.

In the next three sections we will consider different subclasses of trees:
paths, binomial trees and complete binary trees. We will exploit the con-
straint on a multidrop broadcast imposed by the degree of the originator and
by the maximum degree in the tree.

Lemma 4: The minimum number of rounds required to complete a
multidrop broadcast in a tree is not less than the greater of:

1. the degree of the originating vertex;

2. one less than the maximum vertex degree in the tree.
Proof:

1. The vertex originating the broadcast constitutes a separator (or is a
leaf) of the tree; thus, it has to send messages into its subtrees in
different rounds.

2. Let v be a vertex of maximum degree A. If v is the originator, we
are done by part 1. Otherwise, in one round at most two neighbors of
v can be informed and informing the remaining neighbors requires at
least A — 2 additional rounds. =

3 Path P,

We now consider multidrop broadcasting in paths of n vertices, P,. There
are two cases to consider, one when the originator is an end-vertex and the
other when the originator is an interior vertex of the path.

If the originator is an end-vertex of the path, then one round of duration
1+ ¢(n—1) =1+ ce suffices. By Lemma 1, it is also the minimum time
broadcast.



When the originator is an interior vertex of the path, any broadcast re-
quires at least two rounds, by Lemma 4. The “obvious” broadcast involving
two calls from the originator, one in each direction, requires 2 + ¢(n — 1)
time units. This scheme is not optimal, however. A better broadcast scheme
would increase the degree of parallellism among calls. The following scheme
proves to be optimal. The originator calls its neighbor in the direction of a
furthest vertex. In the second round, the broadcast is completed with the
originator and its informed neighbor calling their respective subpaths., With
the exception of the originator being the middle vertex of Payyq, if the origi-
nator has eccentricity e then our scheme takes 1 + c+1+c(e —1) = 2+ ce.
Since any broadcast requires at least two rounds, this is a minimum time
broadcast, by Lemmas 1 and 4. For the exceptional originator above, a min-
imum time broadcast takes at least 2 + c¢(e 4+ 1) time, by Lemma 2. We can
state the above remarks as the following theorem.

Theorem 1: The minimum time for multidrop broadcast in a path of n
vertices is 1+¢(n—1) when the originator is one of the end-vertices of the path
and 2 + ce for the originator in the interior of the path (e is the eccentricity
of the originator), with one exception. When n is odd and the originator is
in the middle of the path, this minimum time is 2+ c(e +1) =2+ c[%] m

4 Binomial Trees

In trees other than paths, the number of rounds will increase with maximum
degree of a vertex, as each new branch implies the necessity of another round
of calls. In this section, we consider multidrop broadcasting in a binomial
tree. The binomial tree of rank 0 is the single vertex tree. The binomial tree
of rank ¢ > 0 is the rooted tree obtained from the binomial tree of rank i — 1
by addition of a principal subtree to the root vertex that is a (copy of) the
binomial tree of rank 7 — 1. As such, a rank 7 binomial tree has depth 7, has
2¢ vertices, and has ¢ principal subtrees from the root vertex, which are the
binomial trees of rank i - 1,...,0.

The binomial tree of rank i > 1, T, has two vertices of degree ¢ and two
vertices of degree ¢ — 1. These vertices induce a path P; in T;. These vertices
can be viewed as roots of four disjoint subtrees isomorphic to the binomial
tree of rank 7 — 2. This view allows us to determine the number of rounds



necessary to complete 2 minimum time multidrop broadcast in T;. We will
refer to the root of a binomial tree and the root of its largest subtree (the
two degree ¢ vertices) as broadcast centers of the tree.

By Lemma 4, a minimum time multidrop broadcast in the binomial tree
of rank 7 requires at least ¢ rounds, if the broadcast originates in a broadcast
center. The binomial tree T} is the minimum time broadcast tree with n = 2
vertices, in which 7 = logn rounds of length one calls suffice to complete a
broadcast from broadcast centers (see, for instance, [5]).

Consider a multidrop broadcast in the binomial tree of rank : = logn.
If the broadcast originates in a broadcast center, then in the first round the
other broadcast center is called. During each successive round, an informed
vertex calls the root of its largest uninformed subtree. By this scheme, the
time required by the broadcast is logn + clogn = logn + ce, since the
eccentricity of the root is e = log n. This is optimal by Lemmas 1, 3 and 4.

If the broadcast originates in the subtree rooted in a degree i — 1 vertex
(the root of the second largest subtree of a broadcast center, isomorphic to
T;_2) then the minimum time can be achieved by calling the other degree i—1
vertex in the first round, thereby informing all four vertices of high degrees.
In the subsequent i — 2 rounds, these four informed vertices broadcast the
message in the binomial trees of rank z — 2 of which they are roots, for a total
time of logn — 1 + ce, where e is the originator’s eccentricity. Again, this is
optimal by Lemmas 1, 3 and 4.

If the broadcast originator is not a broadcast center and is not in a subtree
rooted by a vertex of degree i — 1, then not all four of the high degree
vertices can be informed in the first round. Calling three of these vertices
in the first round by routing the call to the furthest degree i — 1 vertex,
v, allows broadcasting to be completed in logn — 1 rounds while requiring
logn — 1+ ¢(e + 1) time. This is the optimal among schemes with logn — 1
rounds. Indeed, every such scheme must inform vertex v in the first round,
requiring drop-off term ¢(e — ¢ 4 2); in the second round all degree i — 2
vertices must be informed, requiring drop-off term 2¢. Finally, the remaining
i — 3 rounds add a drop-off term of at least ¢(i —3), for a total drop-off term
of at least ¢(e +1).

An alternative scheme is for the originator to call the further broadcast
center in the first round. The subsequent rounds mimic the optimal broadcast
above with both broadcast centers informed. This requires at most logn+ce
time, where e is the eccentricity of the originator, and thus is an optimal
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log n-round scheme. It follows from Lemmas 1, 3 and 4 that one of these
schemes is always optimal: the former for ¢ < 1 and the latter for ¢ > 1.

Theorem 2: The minimum time for multidrop broadcast in a binomial
tree of rank 7 with n = 2 vertices, from any vertex of eccentricity e, is less
than logn 4+ ¢(e+1). If the broadcast originates in one of the two broadcast
centers of the tree, then the minimum time is logn + ce. If it begins in one
of the two subtrees of rank ¢ — 2, then the minimum time is (logn — 1) + ce.
For other vertices, the minimum time is (logn — 1) + c(e + 1) for ¢ < 1, and
logn+ceforc>1. =

5 Complete binary tree B,

Consider muitidrop broadcasting from the root of a complete binary tree
By, with & levels (i.e., n = 2% — 1 nodes). We will show that the minimum
number of rounds necessary to complete a broadcast is & and exhibit a simple
scheme for a minimum-time A-round broadcast.

Lemma 5: The minimum pumber of rounds necessary to complete a
multidrop broadcast from the root of By is h, for & > 1.

Proof: (by induction on 4) The inductive hypothesis is obviously true
for A = 2. Assume that, for a smallest number of levels A > 2, it is possible
to broadcast in By in fewer than A rounds. In any multidrop broadcast, the
root (and any other vertices) of one of the principal subtrees can only be
called in round 2 or later. Thus, a broadcast from the root of this subtree
would have to be completed in fewer than % — 1 rounds. This contradicts the
assumption of minimality of 2. =

Consider the following broadcast scheme (labeling the levels of By by
i =1,...,h). Assume that at the beginning of round z, 1 < ¢ < h, all
vertices on level ¢ — 1 are informed, and so is every other vertex on level .
These 2-! vertices make calls to half of the level i + 1 vertices, where calls
from level ¢ — 1 vertices drop-off the message to the uninformed vertices of
level :. This maintains the invariant. The calls in rounds 1 and h follow
from the above by the obvious constraints of the tree. By simple induction,
the scheme completes the broadcast in & rounds. The time required by this
scheme is {4 = A + ¢(2h — 2).



Theorem 3: The minimum time for multidrop broadcast in a complete
binary tree By, from its root is h + ¢(2h — 2), for b > 1.

Proof: We prove by induction on A that the above described scheme
is optimal. This is obvious for A = 2. Assume that the scheme defines a
minimum-time broadcast in B} and consider broadcasting from the root of
Bp41. The new level adds at least one round. A 2c¢ increment in the drop-off
term is required. The two edges from the root of Bjy; must be called in
different rounds prior to completing the broadcast in the second principal
subtree, called (at the earliest) in round 2. =

We now analyze the case of a general originator v at level 1 > 2. If
h = 2, the minimum time is clearly 1 + 2¢. Suppose b > 2. When 7 = 2,
a call to the root in the first round achieves the same time as an optimal
broadcasting from the root, h 4+ ¢(2h — 2), easily seen to be minimum. For
t > 2, the originator v calls a vertex at level 3 in the other principal subtree,
thereby emulating the results of two first rounds of broadcasting from the
root. This gives the total time (A — 1) + ¢(2h 4+ i — 4). To see that this time
is optimal, let w be the root of the principal subtree T,, to which v does
not belong. First notice that the number of rounds cannot be decreased:
otherwise broadcasting in T, from its root w could be completed in less than
h —1 rounds, contradicting Lemma 5. Next observe that the minimum drop-
off term is at least that of broadcasting in T\, from w, plus ¢z (the drop-off
term required to reach w), resulting in a total of c¢{2h 4 ¢ - 4).

Theorem 4: The minimum time for multidrop broadcast in a complete
binary tree By, for & > 2, is b + ¢(2kh — 2) from a vertex at level 2, and
(h—1)+c(2h+i—4) from a vertex at leveli > 3.

6 Cycle C,

We will now consider broadcasting in the cycle of n vertices, Cy,. In such a
cycle, the eccentricity of any vertexis e = | 3].

Since C, has a Hamiltonian path starting at any vertex, there exists a one-
round broadcast that takes 1 + ¢(rn — 1) time. However, we can increase the
degree of parallellism with a two-round broadcast. A call in the first round
to i vertices, 0 < 7 < n, leaves the necessity of a call to [I“—';_—ll'l vertices,



for the total time of at least 2 + ¢(z + [!"'—;'1-)-] ). This is minimized by ¢ = 1
and achieved by the following scheme. The originator calls a neighbor in
the first round, and the two informed vertices complete the broadcast by
calling approximately the same number of vertices in the second round. This
broadcast takes 2+c[%] time units. In a cycle with even number n of vertices,
§ = e. For a cycle with odd number n of vertices we have e + 1 = [5]. As
there are two vertices at distance e from any vertex, ¢(e - 1) is the minimum
drop-off term, by Lemma 2. By Lemma 1, we need not consider broadcast
schemes with more rounds. Hence, the optimal scheme is the better one of
the two above.

Theorem 5: The minimum time for multidrop broadcast in a cycle of n
vertices 1s
1+c(n—1), for c < l—ﬂl_"'i]'
2

2 +c[2], otherwise. m

7T Grid M,y

Consider the grid M,y, with p rows and ¢ columns. Since there is a Hamil-
tonian path starting at any vertex of the grid (except for the 3 x 3 case), the
corresponding broadcast in the grid requires 1 4+ c¢(pg — 1) time. Obviously,
pg — 1 is usually much greater than the eccentricity of any originating ver-
tex, which is of the order of p + q. We will consider three locations of the
originator: at a corner, along a side, and at an interior point of the grid.

Corner vertex originator

When the originator is a corner vertex, its eccentricityise=p+¢—2. A
two-round broadcast involving the calls along the first row of the grid and
then to all columns requires time 2 + ¢(p + ¢ — 2) = 2 + ce. Therefore, there
is no better two-round scheme (although there are other optimal two-round
broadcasts). By Lemma 3, we need not consider schemes with more rounds.
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Theorem 6: The minimum time for multidrop broadcast in a p x ¢ grid
from a corner vertex is

14+c(pg—1), fore<((p—1)(g~-1))
2+c(p+qg—2), otherwise. m

Side vertex originator

Next we consider the originator at a non-corner vertex on the side of the
grid. Without loss of generality we may assume that it is situated on the
side of length q. Let a denote the distance of the originator from the farthest
end of its row. Thus, the eccentricity of the originator ise=a+p—1 and
a2 (g—1)/2.

First we show an optimal three-round scheme. In the first two rounds
the originator’s row is informed following the optimal two-round broadcast
scheme in a path, described in Section 3. In the third round, all informed
vertices call their columns, in parallel. This scheme takes time 3 + ce, except
when the originator is in the middle of its row, in which case it takes time
3+c(e+1). Since, in the latter case, there are two vertices at distance e from
the originator, our scheme realizes the minimum time, by Lemma 2. Thus
our scheme is optimal among three-round schemes, and there is no need to
consider schemes with more than 3 rounds.

We now consider two-round schemes. The following scheme has a drop-
off term at most 50% greater than the theoretical lower bound of 2 4 ce. If
P < a, then in the first round the originator informs all vertices in its column
and in the neighboring column on the side of the farthest vertex. In the
second round all informed vertices call in parallel appropriate parts of their
rows (see Figure 1). The total time is 24 ¢(2p+ a —2), except when g is odd
and a = (¢ — 1)/2, in which case it is 2 + ¢(2p + a — 1).

If p > a, then in the first round the originator informs all vertices in
its column. In the second round, each informed vertex calls the appropriate
parts of its row and an adjacent row. The details of the call can be described
by defining cycles of length 2¢g formed by adjacent pairs of rows, starting
with the top most row. The informed vertices call their cycle segments in
the clockwise direction (see Figure 2) for the total time of 2+ ¢(p + 2a — 1).

If pis odd, the last row is not covered by a cycle and the calling scheme will
be somewhat different. During the first round, we extend the call to include
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another vertex in the last row. These two vertices inform the remaining
vertices of the last row in the second round, while other rows are informed
as before (see Figure 3). The total time in this case is 2 + ¢(p + 2a). The
worst-case ratio of the drop-off term to the theoretical minimum is reached
when p =2 a and equals 1.5 in this case. This comparison is made against the
lower bound that follows from Lemma 1, {; = 2 + ce.

The following argument yields a better lower bound value for the grid.
Suppose that in the first round the originator calls z — 1 vertices. In the
second round all informed vertices might participate as transmitters in the
completion of the broadcasting process. Let j —1 be the length of the longest
call in the second round. Then the total time is 24 ¢(¢ 4 7 — 2), which under
the constraint ¢j > pqg yields I = 2 + ¢(2,/pq — 2). While not guaranteed to
be tight, the lower bounds /; and l; are estimates of a minimum two-round
broadcast time in a p X ¢ grid. The problem of determining a tighter lower
bound on the minimum time two-round broadcast remains open, as is the
question whether a better two-round scheme exists in general.

Theorem T7: Let ¢;, for 1 = 1,2,3, be the minimum time for z-round
multidrop broadcast in a p x ¢ grid from a non-corner vertex on the side of
length q. Let a be the distance from the originator to the further corner of
its side. Then

t1 =1+ c(pg—1);

b < 2+c(2p+ta-l) ifp<ea

2= 2+4c(p+2a)  otherwise;
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t = 3+clatp) if the originator is in the middle of its side
7 1 3+cla+p—1) otherwisem

The above theorem supports the intuition that for very small values of ¢
one round is best, for intermediate values of ¢ two rounds are best and for
large values of ¢, three rounds lead to the shortest time.

Interior vertex originator

Finally, consider the originator in the interior of the grid. Without loss of
generality, assume that p < g, i.e., columns are not longer than rows. Let a
denote, as before, the distance of the originator from the farthest end of its
row and b the distance of the originator from the farthest end of its column;
hence, the eccentricity is e = a + b.

We start by showing an optimal four-round broadcast. First make two
rounds of length one calls to inform the three vertices with which the origi-
nator forms a square in the direction of a farthest vertex (at distance ¢) from
the originator. Each of the four informed vertices is a corner vertex of a sub-
grid with two-round minimum drop-off solutions (¢f. Theorem 6). The time
required by this scheme is 4 + ce for the originator with exactly one vertex
at distance e, it is 4 -+ ¢(e + 1) for the originator with exactly two vertices
at distance e, and it is 4 4 ¢(e + 2) for the originator with four vertices at
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distance e (the latter happens if and only if the originator is in the center
of an odd-by-odd grid). By Lemmas 1 and 2, in the first two cases the time
is optimal. The following Lemma indicates that the third case involves the
minimum drop-off term, as well. Thus, we need not consider schemes with
more than four rounds.

Lemma 5: The minimum drop-off term in an optimal multidrop broad-
cast from the middle vertex in a p x ¢ grid (p and ¢ odd) is e(e + 2) =
c(1+(p+49)/2).

Proof: Without loss of generality, the first call results in two informed
vertices, one at distance e and the other at distance e-+1 from two uninformed
vertices. By Lemma 2, these uninformed vertices cannot become informed
in less than c¢(e + 1) additional drop-off term, for the total drop-off term of
at least c{e + 2), as postulated. =

An efficient three-round broadcast is realized by a small modification to
the above scheme. Instead of informing the vertices of the square in two
one-call rounds, the originator calls all three other vertices in the first round.
The total timeis 34 c(e-+1), 3+ c(e+2) and 3+ c(e+3) in the three above
cases, respectively.
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We now turn attention to two-round schemes. Our calling scheme for
a side vertex originator can be modified according to the position of the
originator in the interior of the grid (see Figure 4). As before, it takes time
at most 2 + ¢(2p + a — 1). Now the lower bounds are 2 -+ ¢(2,/pq — 2) (as
before) and 2 + c{a + b). It can be shown that the drop-off term we achieve
is always at most 60% larger than that of the larger of these bounds.

== == e —
first round
- —
- N = —
second round
- —
[ | originator
- =
Figure 4

Theorem 8: Let {;, for i = 1,2,3,4, be the minimum time for i-round
multidrop broadcast from an interior vertex of a p x ¢ grid, with p < g. Then
tr =14 c(pg—1)
t2<2+c(2p+a-1)

J+ce<tz3 L3I +cle+) if the originator is neither in the
ty=4+ce middle of a row nor of a column,

3+cle+1)<t3<3+c(e+2) if the originator is in the middle of
ty=4+cle+1) a row (column) but not both,

3+cle+1)<ta<I+cle+3) if the originator is in the center of.
ty=4+c(e+2) the grid.

Note that, for some interior vertex positions of the originator, the ec-
centricity lower bound on the drop-off term can be achieved in three-round
broadcasts. This happens when a two-edge call in the first round results
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in three informed vertices that can complete two-round broadcasts in their
respective subareas of the grid in the remaining 2 + c{e — 2) time. This
time can be achieved when the originator vertex is not more than 1/3 in
from either side of the grid. (Note that in the limiting case of a side ver-

tex, the three-round broadcast has been shown to meet this lower bound in
Theorem 7.)

8 Conclusions

We have presented minimum-time, multidrop broadcast algorithms for com-
plete graphs, paths, cycles and binomial and binary trees. We estimated this
time for grids. In each case, we proposed a scheme working in optimal time
or corresponding to the given upper bound. Finding an optimal scheme for
an arbitrary originator in a grid remains an open problem.

In our model, we have required simultaneous calls to be vertex-disjoint.
This avoids the issue of what message is dropped-off when more than one call
passes through a vertex. In broadcasting, since all messages are the same, this
issue is moot as long as multiple reception does not cause an error. Adopting
a model only requiring edge-disjoint calls can have a significant impact on
the performance of a network. This is especially true in trees, where the
originator no longer would be a communication separator. Consider, for
instance, the star with n + 1 vertices, i.e., K;,. In our original model,
any broadcast from the center would require n rounds of length one calls.
However, allowing calls “crossing” at the center (i.e., not vertex-disjoint) the
broadcast can be completed in logn rounds with calls of length at most two.

A natural line of future research is to investigate optimal multidrop
broadcast schemes and their running time for other important architectures,
such as hypercubes, cube-connected cycles or tori. For example, for the d-
dimensional hypercube Hy, the standard broadcasting scheme involving d
rounds of length one calls in all dimensions, takes time d + ce, where e = d is
the eccentricity of any vertex. Thus, schemes of more than d rounds need not
be considered. A simple and efficient i-round multidrop broadcast (1 < i < d)
can be obtained as follows. Let dj,ds,...,d; be integers differing by at most
1, whose sum is d. Hy can be represented as the product Hy, x ... x Hy. In
the j-th round, for j < ¢, every informed vertex calls all vertices in its copy of
Hg, via a hamiltonian path. This scheme takes time i +¢(2% +... +2% —{). It
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is easy to show that the drop-off term is always at most twice the minimum
possible, and that it is minimum if ¢ divides d. If ¢ is sufficiently small, such
schemes with fewer rounds can be optimal.
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