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Abstract. Performance Extrapolation is the process of evaluating the performance of a
parallel program in a target execution environment using performance information
obtained for the same program in a different execulion environment. Performance
extrapolaticn techniques are suited for rapid performance tuning of parallel programs,
particularly when the target environment is unavailable. This paper describes one such
technique that was developed for data-paraflel C4+ programs written in the pCi+
language. In pC++, the programmer can distribute a collection of objects to various
processors and can have methods invoked on those objects execute in parallel. Using
performance extrapolation in the development of pC++ applications allows tuning
decisions to be made in advance of detailed execution performance measurements. The
current pC++ language system includes T, an integrated environment for analyzing and
tuning the performance of pC++ programs, This paper presents speedy, a new addition to
T, that predicts the performance of pC++ programs on parallel machines using
extrapolation techniques. Speedy applies the existing instrumentation support of T 10
capiure high-level event traces of a n-thread pC++ program run on a uniprocessor machine
{made possible by pC++'s multithreaded runtime system) together with trace-driven
simulation to predict the performance of the program run on a target a-processor machine.
We describe how speedy works and how it is integrated into ‘T. We also show how speedy
can be used to evalvate and tune a pC++ program for a given target environment.

Keywords: performance prediction, extrapolation, object-parallel programming, trace-
driven simulation, performance debugging tools, and modeling.

1 Introduction

One of the foremost challenges for a parallel programmer is to achieve the best possible performance for an
application on a parallel machine. For this purpose, the process of performance debugging {the iterative application
of performance diagnosis [11] and tning) is applied as an integral constituent part of a parallel program development
methodology. Application of performance debugging in practice has invariably required the development of
performance tools based on the measurement and analysis of actual parallel program execution. Parallel performance

1 This research is supported by ARPA under Rome Labs contract AF 30602-92-C-0135 and Fort Huachuca contract
ARMY DABT63-94-C-0029. The research is also supported by a NSF National Young Investigator (NYT) award.
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environments [21] support performance debugging through program insrumentation, performance data analysis, and
results presentation tools, but have often lacked in the level of their integration with parallel programming systems.
However, recent efforts on developing portable high-level parallel language systems has motivated work in integrated
program analysis environments where performance debugging concerns are more closely coupled with the language'’s
use for program development [14,18]. Of particular interest is the incorporation of performance prediction support in
the programming environment for giving feedback to the user on algorithm implementation or to the compiler on
optimization strategies [6,7,15]. In most instances, however, there is a dependence on actal machine access for
performance debugging, restricting the parallel programmer to consider optimization issues only for physically
available machines. For parallel programs intended to be portable to a variety of parallel platforms, and scalable
across different machine and problem size configurations, undertaking performance debugging for all potential cases,
whether by empirical evaluation or prediction based on measurement, is usually not possible.

Ideally, an integrated program analysis environment for a parallel language system that provides support for
performance debugging would include a means to predict performance where only limited access (if any) to the target
system is given. The environment would measure only that performance data which is necessary from the execution
environment and use high-level analysis to evaluate different program aliernatives under different system
configuration scenarios. In this manner, the environment would enable performance-driven parallel program design
where algorithm choices could be considered early in the development process [25]. However, the user would
demand a level of detail from predicted performance analysis comparable to that provided by measurements, which
static prediction tools often cannot provide. Similarly, the user will be frustrated if the delay 1o generate predicted
resulis is significantly greater than that with measurement-based experiments (hopefully, it is much less), a problem
often faced by simulation systems that analyze program execution at too low a level. For example, the Proteus system
[3.4] and the Wisconsin Wind Tunnel [22] have considerably advanced the efficiency and effectiveness of dynamic
prediction techniques for architectural studies, but the overhead is prohibitively high 1o warrant their use for rapid and
interactive pesformance debugging.

In this paper, we describe a performance prediction technique that combines high-level modeling with dynamic
execution simulation to facilitate rapid performance debugging. The technique is one example of a general prediction
methodology called Performance Extrapolation that estimates the performance of a parallel program in a target
execution environment by using the performance data obtained from running the program in a different execution
environment. In [24], we demonstrated that performance extrapolation is a viable process for parallel program
performance debugging that can be applied effectively in situations where standard measurement techniques are
restrictive or costly. From a practical standpoint, performance extrapolation methods must address the problem of
how 1o achieve the comparative utility and accuracy of measurement-based analysis without incurring the expense of
detailed dynamic simulation, but at the same time retaining the flexibility and robustness of model-based prediction
techniques. However, with this even being the case, there remains the problem of how performance extrapolation can



be seemlessly integrated in a parallel language system, where it both leverages and complements the capabilities of
the program analysis framework,

We have integrated our performance extrapolation techniques into the T program analysis environment for pC++, a
data-parallel C++ language system. In Section 2, we describe the pC++ language and the features of T to show how
the environment can easily be extended to provide support for predicting the performance of pC++ programs on
parallel machines. The performance extrapolation approach to pC++ prediction is discussed in Section 3. In
Section 4, we show how the performance extrapolation techniques have been integrated into ‘T, in the form of the
speedy wol. Speedy has been used o evaluale and tune pC++ programs for different target environments and
Section 5 presents some results from these experiments. The paper concludes with a discussion on future work.

2 pC++ and TAU

In this section, we give a brief overview of T, (TAU, for Tuning and Analysis Utilities), a first prototype towards an
integrated, portable program and performance analysis environment for pC++. pC+-+ is a language extension to C++
designed to allow programmers to compose distributed data structures with parallel execution semantics. The basic
concept behind pC++ is the noticn of a distributed collection, which is a type of concurrent aggregate “container
class™.

More specifically, a collection is a structured set of objects which are distributed across the processing elements of the
computer in a manner designed to be consistent with HPF [13]). To accomplish this, pC++ provides a simple
mechanism to build collections of objects from a base element class. Member functions from this element class can be
applied to the entire collection (or a subset) in parallel. This mechanism provides the user with a clean interface to
data-parallel style operations by simply calling member functions of the base class. In addition, there is a mechanism
for encapsulating SPMD style computation in a thread-based computing model that is both efficient and completely
portable. To help the programmer build collections, the pC++ language includes a library of standard collection
classes that may be used directly or subclassed. This includes classes such as DistributedArray, DistributedMatrix,
DistributedVector, and DistributedGrid.

pC++ and its runtime system have been ported (o several shared memory and distributed memory parallel systems,
validating the system's goal of portability. The ports include the Kendall Square Research KSR-1, Intel Paragon,
TMC CM-5, IBM SP-1/ SP-2, Sequent Symmetry, SGI Challenge, Onyx, and PowerChallenge, BBN TC2000, Cray
T3D, Meiko CS-2, and homogencous clusters of UNIX workstations using PYM and MPI; work on porting pC-++ t0
the Convex SPP is in progress. pC++ also has multi-threading support for running applications in a quasi-parallet
mode cn UNIX workstations; supporied thread systems are Awesime [9], Pthreads, LWP, and the AT&T task library.
This enables the testing and pre-cvaluation of parallel pC++ applications in a familiar desktop environment. More
details about the pC++ language and runtime system can be found in [1,16].



T provides a collection of 100ls with user-friendly graphical interfaces to help a programmer analyze the performance
of pC++ programs. Elements of the T graphical interface represent objects of the pC++ programming model:
collections, classes, methods, and functions. These language-level objects appear in all ‘T tools. By plan, T was
designed and developed in concert with the pC++ language sysitem. It leverages pC-++ language technology,
especially in its use of the Sage++ toolkit [2] as an interface to the pC++ compiler for instrumentation and for
accessing properties of program objects. T is also integrated with the pC++ runtime system for profiling and tracing
support. Because pC++ is intended 1o be portable, the tools are built to be postable as well. C++ and C are used to
ensure portable and efficient implementation, and similar reasons led us to choese Tcl/Tk [20] for the graphical

interface.

The T tools are implemented as graphical Aypertools. While the tools are distinct, providing unique capabilities, they
can act in combination to provide enhanced functionality. If one tool needs a feature of another one, it sends a
message to the other tool requesting it (e.g., display the source code for a specific function). With this design
approach, the toolset can be easily extended. T can also be retargeted to other programming environmeuts, for
instance those based on Fortran, which the Sage++ toolkit supporis,

One important goal in T’s development was 10 make the toolset as user-friendly as possible. For this purpose, many
clements of the graphical user interface are analogous to links in hypertext systems: clicking on them brings up
windows which describe the element in more detail, This allows the user to explore properties of the application by
simply interacting with elements of most interest. The T tools also support the concept of global features. If a global
feature is invoked in any of the tools, il is automatically executed in all currently running tools. Examples of global
features include locating information about a particular function or a class acrass all the tools. For good measure, T

comes with a full hypertext help system.

Figure 1 shows the pC++ programming environment and the associated ‘T tools architecture. The pC++ compiler
frontend takes a user program and pC++ class library definitions (which provide predefined collection types) and
parses them into an abstract syntax tree (AST). All access to the AST is done via the Sage++ library, Through
command line switches, the user can choose to compile a program for profiling, racing, and breakpoint debugging. In
these cases, the instrumentor is invoked to do the necessary instrumentation in the AST. The pC++ backend
transforms the AST into plain C4+ with calls 10 the pC++ runtime system which supports both shared and distributed
memory platforms. This C++ source code is then compiled and linked by the C++ compiler on the target system, The
compilation and execution of pC++ programs can be controlled by cosy (COmpile manager Siatus displaY); see 1
Figure 6, bottom. This tool provides a high-level graphical inlerface for setting compilation and execution parameters
and selecting the parallel machine where a program will run.

The program and performance analysis environment is shown on the right side of Figure 1. They include the
integrated T tools, profiling and tracing support, and interfaces o stand-alone performance analysis tools developed
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FIGURE 1. pC++ Programming Environment and T Tools Architecture

partly by other groups [10,12,17,21]. The T toolset provides support both for accessing static information about the
program and for querying and analyzing dynamic data obtained from program execution.

2.1 Static Analysis Tools

One of the basic motivations behind using C++ as the base for a new parallel language is its proven support for
developing and maintaining complex and large applications. However, 0 apply the C++ language capabilities
effectively, users require support tools to manage and access source code at the level of programming abstractions.
This is even more important for pC++ because of its data-parallel programming abstractions and SPMD execution
paradigm.

Currently, T provides three tools to enable the user to quickly get an overview of a large pC++ program and to
navigate through it the global function and method browser fancy (File ANd Class displaY), the static callgraph
display cagey (CAIl Graph Extended displaY), and the class hierarchy display classy (CLLASS hiesarchY browser).
The tools are integrated with the dynamic analysis tools through the global features of ‘T, allowing the user to easily
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find execution information about language cbjects, For instance, to locate the corresponding dynamic results (after a
measurement has been made), the user only has to click on the object of interest {e.g., a function name in the
callgraph display).

2.2 Dynamic Analysis Tools

Dynamic program analysis tools allow the user to explore and analyze program execution behavior. This can be done
in three general ways. Profiling compuites statistical information to summarize program behavior, allowing the user to
find and focus quickly on the main bottlenecks of the parallel application. Tracing portrays the execution as a
sequence of abstract events that can be used to determine various properties of time-based behavior. Breakpoint
debugging allows a user to stop the program at selected points and query the contents of program state, For all
analysis modes, the most critical faclor for the user is how the high-level program semantics are related to the
measurement results. ‘T helps in presenting the results in terms of pC++ language objects and in supporting global
features that allow the user to locate the corresponding routine in the callgraph or source text by simply clicking on

the related measurement result or state objects.

T's dynamic tools currently include an execution profile data browser called racy (Routine and data ACcess profile
displaY), an event trace browser called easy (Event And State displaY), and a breakpoint debugger called breezy
(BReakpoint Executive Environment for visualiZation and data displaY). To generate the dynamic execution data for
these tools, profiling and tracing instrumentation and measurement support has been implemented in pC++.

A more detailed discussion of the T tools can be found in [5,16,18].

3 ExtraP - A Performance Extrapolation Tool for pC++

ExtraP is a performance extrapolation system for pC++ that has been integrated into ‘T in the form of speedy. This
section explains the modeling approach of extrapolation and the techniques used by ExtraP.

3.1 Performance Extrapolation

Performance extrapolation (Figure 2} is the process of obtaining the performance information PI; of a parallel
program for an execution environment E; and using PI; to predict the performance information PL,? (the superscript
p indicates a predicted quantity) of the same program in a different execution environment E,. The performance
information PI7 is then used to compute the predicted performance metrics of the program in E,, PM.?, This process
can be considered as a translation or extrapolation of PI; to PI,” using the knowledge about E; and its similarities 1o
and differences from E,.

As used above, an execution environment embodies the collection of compiler, runtime system, and architectural

features that interact to influence the performance of a parallel program. Notice also how performance information is
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FIGURE 2. Performance Extrapolation

differentiated from performance metric. A performance mefric is typically obtained by analyzing the static and
dynamic performance information about a parallel program’s execution. For example, the trace data obtained by
running a parallel program can be condensed to calculate the execution time of the program and other metrics.

3.2 A Performance Extrapolation Technique for pC++

We have developed a technique that extrapolates the performance of a n-thread pC++ program from a 1-processor
execution to a n-processor execution. In this technique, a n-thread pC++ program is executed on a single processor
using a non-preemptive threads package. Important high-level events including remote accesses and barriers are
recorded along with timestamps during the program run in a trace file. The instrumented runtime system is configured
such that these remote accesses are treated as taking place instantaneously and the threads are seen to be released
from a barrier as soon as the last thread enters it. Such a trace file captures the order of events in a pC++ program
along with the computation time between the events, but leaves the actual 1iming of the events for later extrapolation
analysis,

The events are then sorted on a per thread basis, adjusting their timestamps to reflect concurrent execution. This is
possible because the non-preemptive threads package switches the threads only at synchronization points and global
barriers are the only synchronization used by pC++ programs. This imposes a regular structure 1o the trace file where
each thread records events between the exit from a barrier and an entry into another without being affected by another
thread. The sorted trace files look as if they were obtained from a n-thread, n-processor run, except that they lack
certain features of a real parallel execution. For example, the timings for remote accesses and barriers are absent in
these trace files. A trace-driven simulation using these trace files attempts to model such features and predict the
evenis as they would have occurred in a real n-processor execution environment. The extrapolated trace files are then
used to obtain various performance metrics related 1o the pC+-+ program. The technique is depicted in Figure 3. For

more details refer to [23,24]. The next section explains the various models used for trace-driven simulation.
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FIGURE 3. A Performance Extrapolation Technique for pC++
3.3 Simulation Architecture and Models

The trace-driven simulation is the heart of the pC++ performance extrapolation. The simulation system consists of
three main components;

e Processor model
e Remote data access model

e Barrier model

The processor model uses a simple ratio of processer speeds to scale the computation time between events from the
measurement environment 1o the target environment. It is also responsible for choosing a policy for servicing remote
data references; when a request for data is submitted by a remote thread, a processor can service it in three different

ways:

No interrupt: In this case, no messages are handled during the time between events. Messages are processed
only when a thread waits for a barrier release or a remote data access reply.

Interrupt: In this case, an arrival of a message for a particular thread interrupts its computation. After the mes-
sage is processed, the thread resumes its computation.

Poll: The scaled computation time between evenis is split into smaller chunks, and at the end of each chunk,
the thread processes messages that have been received during that time.
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The remote data access model determines how a remote data access is translated into messages and how it is handled
by the various components in the system. During the simulation each remote access in the program is modelled as a
remote request for data from one thread to the thread that “owns” the data (pC++ follows the “owner computes”
model [8,13]). The owner thread services the request and returns the data to the requesting thread. This is equnivalent
to how the pCa++ system operates in distributed memory environments. Hence, messages are the natural
representation for the remote access protocol in the simulation. Figure 4 graphically depicts the how the remote data

Processor Model @ | message Processor Model

/- ™ —E==B | inessage receive queue /——-\
Thread Model Thread Model

@i @%@.@ ® @-'j@ i‘

Runtime Sys. | Network ~ Interconnect. . Network i Runtime Sys.
Interface Interface | Network |- Interface Interface
©) @

(@ remote reference made by thread; “get” message created in RSIM which models runtime overhead
(@ “get” message passed to NIM which models transfer to network (setup overhead and latency)
(@ “Bet” message passed to INM which models network delay; message delivered to receiving NIM
(@ NIM models transfer of *‘get™ message to runtime system message receive queue
(® RSIM models polling or interrupt driven message handling; “element” message created in RSIM
transfer of “element” message 10 RSIM of requesting thread modeled by NIM and INM
RSIM models message handling while waiting for a reply; “element” data passed to thread

FIGURE 4. Remote Data Access Model

accesses are processed in the simulation using messages. The remote data access model itself is composed of the
following subcomponents:

* muntime system model,
* petwork interface model and

* interconnect network model

Each of these models have various parameters that represent the characteristics of the remote data access model. For
example, the interconnect network model includes the latency, bandwidth of the target platform as its parameters. For
a complete list of parameters, refer to [23,24].

ExtraP uses a linear, master-slave barrier model to handle the barrier events. Thread 0 acts as the master thread while
all the other threads are slaves. Every slave thread entering a barrier sends a message to the master thread and waits
for a release message from the master thread to continue to the next data-parallel phase.The master thread waits for
messages from all the slaves and then sends release messages to all of them. For distributed memory systems, the
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pC++ runtime system must continue 1o service remote data access messages that arrive at a processor even when the
threads that run on that processor have reached the barrier, This is also true in the simulation, The parameters in the
barrier model can be controlled so that hardware barriers or barriers implemented through shared memory can be
easily represented. The linear barrier model delivers an upper bound on barrier synchronization times. We can easily
substitute other barrier algorithms {e.g. logarithmic) if a more accurate simulation of barrier operation is required.

All the three models described above and the three submodels of Remote Data Access model have a variety of
parameters that can be tuned to match a specific target environment. For example, Table 1 lists the parameters used in
the barrier model and their sample values, The next section explains how these paramelers can be set and the
extrapolation experiment carried out using ‘T. A new addition to ‘T called speedy interacts with ExtraP 10 perform the
necessary extrapolation experiments. This integration of ExtraP with ‘T is of paramount importance because ExtraP
is intended to be used as part of a program analysis environment (o provide a performance debugging methodology.
In [24] we showed how ExtraP can give good feedback about the performance of a pC++ program as the user
attempts to tune the code to different target environments.

TABLE 1. Parameters for the barrier model

Parameter Description

EntryTime Time for each thread 10 enter a barrier,

ExitTime Time for each thread to exit the barrier after it has been lowered. 5.0 psec

CheckTime Delay incurred by the master thread every time it checks if all the 2.0 psec
threads have reached the barrier.

ExitCheckTime Delay incurred by a slave thread every time it checks to see if the 2.0 psec
master has released the barrier,

ModelTime Time taken by the masier thread 1o start lowering the barrier after all | 10.0 psec

the slaves have reached the barrier.

BarrierByMsgs 1 - use actual messages for barrier synchronization. The message 1
transfer time will contribute 1o the barrier time,

0 - do not use actual messages for barrier synchronization.

BarrierMsgSize Size of a message used for barrier synchronization. 16

4 Integrating TAU and ExtraP

ExtraP is integrated with in two ways:

First, for generating the traces needed for the simulation, ExtraP uses the exiensive built-in event tracing system of
the pC++. The pC++ compiler has an integrated instrumentor module which allows the user to selectively insert trace
recording instructions in the application program. In addition, there are instrumented versions of the predefined pC++
class/collection library and the pC++ runtime system. The inserted event markers in the different modules of the
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system are assigned lo event classes (e.g., user, runtime, collections,..) which can be activated or deactivated
separately at runtime. Event tracing is fully operational on all parallel computer systems supported by pC++. This has
several advantages for an ExtraP user. The traces used for simulation can be analyzed with all the event trace
browsers supported by T (currently easy, Pablo [21], SIMPLE [17), and upshot [12]). As the ExtraP model is based
on the operational characteristics of pC++ event classes, the user can also generate semantically equivalent traces on
real parallel computer systems for comparing 1o or validating the extrapolation results. Finally, the users can use T's
integrated performance analysis tool, racy, to analyze their program execution and compare these 10 the simulated
results. For example, in Figure 5, racy displays performance results for the pC++ Poisson benchmark executed on a 8
processor SGI PowerChallenge. Racy measures and displays function execution time profiles (shown on the left) and
local/remote data access ratios {on the right).

L R
FRER R
S R e e R

. B e AR e |
DistVector{Vector> F

513 elements of size 2136 (1,1 MBIl
1-dimensional shape

Functan Legend

Distvecior::ParSinTransform
Processor_Main
Vector::ComplexFourierTransfarm
=4 vaclor:SinTransform
Veclor:allocData

bt Vocloraget
Vector:put

FIGURE 5. RACY Performance Analysis Display for Poisson Benchmark

Second, the actual extrapolation experiments can be controlled through a new T tool speedy (Speedup and Parallel
Execution Extrapolation DisplaY). Speedy is a graphical tool which has been incorporated into the U eavironment.
Pressing the speedy button in the TAU main control window (see Figure 6, top), brings up its main control panel (see
Figure 7). Here, the user can control the compilation of the specified pC++ object program, specify the parameters for
the extrapolation model and the experiment, execute the experiment, and finally view the experiment results. Speedy

—11-



Empli T

e
5

B e

R

=

£

S
S

i
e

e

R fg;»: IR

i i\xiﬁi‘i‘ip i

R e S e e
TR
P

'f'
Y k e
ﬁaﬁwmw,gak wﬁ\ f@"ﬁ%:aﬂ;*

s

=

R e
L5 -t-“\“-”“"*‘*r"'““;-?‘w o s ;\i§ m::m S e

‘}.mwwxm ok SR

i 2
A = ~; B e
S ghn- n—; &
K

e
SR TR
e
e

| ke g ‘ : : .
SR R 4 7 W{Eﬁ&f q A e et ”:‘
execitiog; /rmensror/ulcked/xe o3, maégﬂ e
e %o<o{<o\oaoaum<.‘%o%.~ ¥ R e R e T
i # TR PR TR R R R
§\§Delta 0.000000 i
:Topology 2

o;tommStar-tumee 10.000000 #
E =5 6) trc-awe-ms -poxx NUMPROC 32 -pexx_EVENTCLASS B+R+T14Tr+K -pexx TRACEFILE Bp
[ tre ;
“iElapsed tlme-1 430,810000

i===) /research/wicked/XtraP/bin/sund/trc2ert -1 sp3.6 ~o &p3.6. -5 6p3.6

iim==) /research/wicked/XtraP/bin/gund/XtraSim -1 8p3,6, -n -p spJ.E -8 sp3.6

{o»BarMer'Entr Time 0.000000

“:BarrierExitTime 0,C00000

iBarrierEhecleme 0.000000
= ar-rierModelTl.me 5 000000

FIGURE 6. TAU Main Control Window and COSY

uses cosy {see Figuse 6, bottom) for automatically performing the necessary compilation, execution, trace processing,
and extrapolation commands. Speedy also automatically keeps track of all parameters by storing them in experiment
description files and managing all necessary trace and experiment control files. By loading a former experiment
description file into speedy, the nser can re-execute the experiment or just reuse some of the parameter specifications.

In Figure 7, the user specified an experiment where the value of the parameter “Number of Processors” is stepping
through powers of two starting from one to thirty-two. After each iteration of the extrapolation, the execution time
graph is updated; a speedup graph can also be selected. The experiment and extrapolation model parameters can be
entered and viewed through the ExtraP parameter file viewer (see Figure 8), Numerical parameters can either be
entered directly into the input entry or manipulated through a slider bar and increment / decrement buttons.
Parameters with discrete values can be specified through a pull-down menu. In Figure 8, the viewer displays the
parameters associated with the modeling of the target processor of the target machine. Other modeling parameter
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FIGURE 7. SPEEDY Main Control Panel

groups can be displayed by hitting one of the buttons in the top of the viewer window. Besides the five parameter
groups described in Section 3.3, the group “General” allows to set parameters controlling the generation and post-
processing of the execution traces. Discrete parameter values (like ProcessMsgType in the picture) can be changed
through a pop-up menu, numerical values for parameters can either directly typed in or manipulated with the slider or

the increment buttons in the lower half of the screen.

5 Experiments

In this section, we will see how speedy can be used during the development cycle of pC++ programs. Speedy allows
the programmer to explore various design choices during the development process itself, In particular, we will show
how the efffects of various data distributions can be compared using speedy. Speedy also provides a framework in
which the user can study different parts of the program and their contributions to the performance of the program. In
this sense, speedy can be used a profile prediction tool for parallel programs. Speedy allows all of this to be done from
a worksiation environment without ever having to run the programs on target machines.
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Our experiments were done on a Sun workstation with a non-preemptive threads package called Awesime. The
simulation parameters were tuned (o maich a CM-5 machine [14,19,24].

Our first experiment is designed to show how various design choices can be made using speedy. We chose MatMul, a
simple matrix multiplication program written in pC++, where the two-dimensional data distributions can be changed
to improve the performance. We ran the experiments with two distributions: (BLOCK, BLOCK), where the matrix is
divided into blocks of equal size and each processor is assigned a block, and (BLOCK, WHOLE), where the rows of
the matrix are equally divided between the processors. The predicted resulis are shown in Figure 9, The stepwise
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FIGURE 9. Predicted results for MatMul
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behavior of (BLOCK, BLOCK) distribution arises from the fact that the distribution changes only when the number
of processors is a perfect square. So after 4 processors, the next improvement in performance will only be for 9
processors, and then for 16 and so on (however, the 9 processor case is not a sample point in our experiment). The
results also show that even with the stepwise behavior (BLOCK, BLOCK) starts winning after 16 processors. Such
crossover point infarmation is very useful for the programmer during the development process. Validation against the
actual CM-5 performance was accurate [24].

The goal of our next experiment is 10 show how speedy can be used to selectively study various portions of the
program. Such profile information is useful when the programmer wants to tune parts of the program for a particular
machine, We used Poisson as the test case. It is a fast poisson solver written in pC++ which uses FFT based sine
transforms together with a cyclic reduction algorithm to solve PDEs. We used speedy 1o selectively instrument the
code for the transforms and cyclic reduction. After extrapolating the performance to a CM-5 architecture, speedy
predicted the results shown in Figure 10. While the code for sine transforms scales up very well with a speedup of
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FIGURE 10. Predicted results for Poisson

28.69 for 32 processors, the speedup curve for cyclic reduction starts to flatten after 16 processors. A further study of
the trace files revealed that there are no remote accesses in the sine transform part of the poisson solver which
accounts for its near-linear speedup. In contrast, the number of remote accesses in cyclic reduction increases as the
number of processors thus affecting the performance badly. The overall speedup for poisson solver is predicted 1o be
in between that of sine transforms and cyclic reduction. This experiment tells us that 10 improve the performance of
Poisson, we must tune Cyclic reduction first because it is the bottleneck. Speedy can be used in this way to locate the
bottlenecks in a program. The performance behavior observed using speedy is consistent with actual results [16].
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6 Conclusion

The speedy and ExtraP tools are representative of the level of parallel performance evaluation support that is
expected to be available for high-level parallel language systems and to be integrated in program analysis
environments where a performance engineercd code development process is desired. The requirement for
performance prediction as part of this process, at least in pC+-+, is driven by the need 1o evaluate parallel codes that
are intended to be ported to different execution platforms. Furthermore, the integration aspects (e.g., of merging
ExtraP into T) are of key importance as the extrapolation techniques must leverage the sophisticated compiler,
runtime system, and tool infrastructure to make the application of performance prediction in parallel code
development feasible. Our future work will concentrate on making the ExtraP technology more robust with
additional models so that the different target system environments can be better represented. We also intend to extend
the capabilities of the speedy tool to provide more support for automated performance experimentation and to better
link the'T analysis and visualization 1ools to the performance data that ExtraP produces,

7 For more information...

Documentation, technical papers, and source code for pC++, Sage++, and ‘T are available via anonymous FTP from
ftp.extreme.indiana.edu in the directory ~ftp/pub/sage, or via the World Wide Web at the URLs

http://www.extreme.indiana.edu/sage and http://www.cs.uoregon.edu/paracomp/tau.
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