Experience with the Super Monaco
Optimizing Compiler

Evan Tick, Bart C. Massey and Jim S. Larson

CIS-TR-95-07
March 1995

Abstract

“Super Monaco” is a shared-memory multiprocessor implementation of a flat concurrent logic
programming language. The system evolved {rom the earlier Monaco project, and retains, by-
and-large, the Monaco intermediate abstract machine. Over the past two years, the compiler and
runtime system were modified, incorporating a number of new features improving robustness,
flexibility, maintainability, and performance. The optimizing compiler, written in KL1, takes
high-level programs and produces intermediate code for the Monaco abstract machine. An
“assembler-assembler” converts a host machine description into a KL1 program which translates
Monaco intermediate code into target assembly code. There are currently two intermediate
code translators: ome for SGI MIPS-based hosts, and another for Sequent Symmetry 80386-
based multiprocessors.’ This paper discusses the compiler design and our experience building
it. A cost/benefit analysis of the compiler optimizations is given, with a comparison to similar
systems.
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1 Introduction

Monaco is a high-performance, shared-memory multiprocessor implementation of a subset of KL1,
a flat concurrent logic programming language [27]. “Super Monaco” is a second-generation imple-
mentation of this system, consisting of an evolved intermediate instruction set, a new assembler-
generator, and a new runtime system. It incorporates the lessons learned in the first design [33, 34]
and improves upon its predecessor with better memory utilization (via a 2-bit tag scheme, the use
of 32-bit words and garbage collection}, and several other runtime system innovations [21].

Three strategies were key to the Super Monaco design: 1) native code, rather than C code,
generation; 2) real parallel execution model, and 3) decision graph, rather than thread, generation.
QOur motivation was to produce a high-performance shared-memory multiprocessor implementation
from scratch, to retain full control over the translation, and to understand all the difficulties first-
hand. We wanted the resulting programs to execute in parallel to take advantage of the concurrent
semantic model. Finally, we subscribed to the efficiencies afforded by compiling procedures into
decision graphs, rather than breaking them up into threads to avoid latencies. This decision hinged
on our shared-memory target, and was motivated by earlier work by Crammond [5].

The compiler was designed with the philosophy of generaling a low-level abstract instruction
set for conversion into native code. We felt at the time that by modeling our abstract machine
instructions after RISC instructions, the final assembly would be more direct and introduce less
overhead than, for example, a WAM-like instruction set. Other load-store instruction sets for logic
programming languages exist (e.g., [12, 13, 14, 19, 26, 28, 37]), although they have been primarily
designed for specialized hardware. Some of these {and other systems, based on C code generation)
are described in Section 7. In hindsight, we discovered our strategy was too extreme, and we later
modified the instruction set as discussed in later sections.

In summary, Super Monaco shows uniprocessor and multiprocessor execution performance com-
petitive with systems implementing similar languages. Although for very small programs Super
Monaco performs 2.5 times slower than systems that compile into C, for larger programs the dif-
ferences average to zero. Super Monaco also functions as a testbed for experimentation both with
innovative static analyses (e.g., [22]) and runtime systems. Another motivation for developing the
compiler was to more accurately characterize the parallel execution behavior of concurrent logic
programs by avoiding inefficient emulation, a problem in former studies.

This paper is organized as follows. Section 2 gives an overview of the compiler. Section 3
introduces the assembler-assembler. Section 4 discusses the Monaco abstract machine instruction
set. Section 5 details key compilation phases. Section 6 gives a cost/benefit analysis of compiler
optimizations based on empirical benchmark evaluation. The literature is reviewed in Section 7.
Conclusions and drawn in Section 8.

2 Compiler Overview

The Super Monaco compiler translates programs written in a subset of KL1 [16] to Monaco inter-
mediate code. The compiler has been continually upgraded from its first release [34]. The most
significant additions, with respect to performance, have been type inferencing and improved code
generation of control flow. The compiler consists of about 2500 lines of “front-end” KL1 code which
translates source programs to an intermediate form with explicit decision graphs {18], and about
4500 lines of “back-end” KL1 code which compiles this intermediate form. The process by which a
Super Monaco executable is produced is described in Figure 1. A machine description written in a
special language is transformed into a template-based translator. The KL1-subset source program
is compiled to our intermediate form, which is then translated into native assembly code.

The kernel Super Monaco compiler is summarized in Figure 2. The pipeline follows a traditional
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Figure 2: Monaco Compiler Organization (Main Phases Shown)

organization, where the input is a source program and the output is an equivalent program in the
abstract machine instruction set. The front-end parses and flattens the program, does limited type
inference, and generates decision graphs using Kliger’s algorithm [18]. These graphs and trees are
fed to a code-generation phase which produces rudimentary abstract machine code, consuming an
arbitrary number of pseudo-registers. Type information is used to avoid type checking in some
cases. The code is then passed through an optimizer which builds a flow graph of basic blocks, and
performs memory allocation coalescence.

During common subexpression elimination analysis, type and dereferencing information is prop-
agated through the flow graph. At this point, macro-instructions are resolved, and redundant
computations are recognized and eliminated. Deadcode elimination is a minor pass not shown in the
figure. Register allocation is performed as the final flow-graph optimization. The cutput from the
register allocator is an abstract machine program instantiated with abstract register identifiers. A
series of minor phases (not shown) then perform jump-to-jump short circuiting, dead block removal,
branch removal, code flattening, peephole optimization, and register move chain squashing (in that
order). The final output is ready for translation to native code.

The number of registers consumed in the target program is limited by a compiler parameter
{so that the registers in the intermediate language can be mapped onto general-purpose machine



registers of the native-code target) but is otherwise machine-independent. This scheme leads to good
portability, while also allowing some experimentation, such as artificially restricting register usage
to measure performance impacts, or implementing “extra registers” using memory locations.

The intermediate code design was originally targeted toward RISC-based microprocessors, and
some vestiges of this decision remain in the compiler. For example, the assumption of a reasonably
large number of general-purpose registers (if fewer than about 16 registers are available, code quality
degrades substantially) requires the Sequent Symmetry implementation, with only four general-
purpose registers available, to implement all of its registers as an array in memory. The original
Monaco assumption that condition-codes are not available as the result of arithmetic and logical
computations led to implementation inefficiency on non-RISC architectures, because explicit logical
temporaries were generated and tested, consuming both extra registers and extra instructions. This
has been fixed by redesigning branch instructions. Overall, the quality of the generated code is high
(see Figures 4 and 9).

3 The Monaco Assembler-Assembler

The Monaco intermediate code is referred to, for historical reasons, as “Monaco assembly language.”
The translator from Monaco intermediate code to target assembly language is thus called mona, the
“Monaco assembler.” This program has existed in several incarnations: 1) A simple KL1 program
was written to translate Monaco intermediate code into 386 assembly code for the Sequent Symmetry.
This program suffered somewhat from speed problems, but its main defect was that a succession of
inexperienced KL1 programmers found it difficult to understand and maintain. 2) A table-driven
C program was written, which could generate either Symmetry or MIPS assembly language. This
program was faster than its predecessor, but proved equally difficult to understand and maintain.
3) A machine description language, known as monaa (“Monaco assembler-assembler”) was designed.
A monaa machine description is automatically translated into KL1 code, and combined with target-
independent KL1 code to produce a mona translator for a particular target architecture.

The monaa translator consists of about four hundred lines of awk code, together with a small
Bourne shell driver and some m4 macro definitions. The overall structure of the monaa language is
that of a simple template expander — no native-code peepholing or other optimizations are currently
done, although it is possible that this will change in the future (see Au-Yeung [2] for a formal language
description). For each mona instruction, one or more non-overlapping parameterized templates are
given, together with machine code produced in response to the match. Type information is attached
to both the formal and actual parameters to guide matching and expansion. In addition to instruction
templates, the monaa description provides information about register names and calling conventions,
as well as some standard templates for procedure prologues and epilogues, debugging information,
and the like. The generated native assembly code follows the C calling conventions for linking with
the runtime system, and allows for profiling and symbolic debugging of Monaco assembly code with
standard UNIX tools. The monaa description for the Sequent Symmetry is about 700 lines of monaa
code, expanding to about 1300 lines of KL1. The machine-independent KL1 code for mona comprises
about 3400 lines, including symbol-table management and basic housekeeping functionality.

Some of the monaa templates used for current targets are given in Figure 3. Note that the
templates of the 1386 implementation of the Monaco instructions (a) are somewhat larger than
those of the MIPS implementation (b). This is due in small degree to the two-address nature of 1386
instructions (as opposed to MIPS three-address instructions), but largely to the fact that the i386
Monaco registers are actually implemented using memory locations. The small number of general-
purpose registers available on the 1386 forced this implementation, and the Monaco registers thus
must be copied to and from real registers in each instruction.

The use of monaa has proved to have several advantages: 1) The specialized machine description
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Figure 3: Code Templates for monaa

daref(r(0),r(3)) label(13)
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Figure 4: Monaco Intermediate Code for append/3

language is reasonably easy for non-KL1-literate programmers to use and understand. The bulk of
the MIPS machine description was written and debugged in about a week, by an undergraduate
with no KL1 experience [2]; the entire MIPS port occupied three people for about a month. 2) The
reliance on standard UNIX utilities such as awk, the Bourne shell, sed, and m4 simplifies maintenance
of the monaa translator itself. 3) The isolation of machine dependencies facilitates future ports to
new architectures. 4) The production of KL1 code makes bootstrap and integrated versions of the
assembler straightforward. 5) The ease of modifications to the template has sped up the design and
testing cycle dramatically.

4 Monaco Abstract Machine

The Monaco instruction set presents an abstract machine at an intermediate level between source
program and target program (native machine code) semantics. The abstract machine consists of
a number of independent worker processes which execute a sequence of procedures and update a
shared memory area. Each worker has a set of abstract general-purpose registers which are used
as operands for Monaco instructions and for passing procedure arguments. Control flow within a
procedure is sequential with conditional branching to code labels. Figure 4 shows the Monaco code
produced by the compiler for append/3 (more details below).



4.1 Storage Model

The abstract machine memory consists of a single, shared address space. The implementation and
management of the space is beyond the scope of this paper (see Larson et al. [20]).

The shared memory area is divided into cells, each of which can contain a Monaco data ob-
ject, also called a term. The taxonomy of Monaco terms is illustrated in Figure 5. All objects are
represented as 32-bit words of memory aligned on four-byte address boundaries. This alignment
restriction allows the low-order two bits of pointers to be used as tag bits, without loss of pointer
range. The four tagged types are immediales, list pointers, boz pointers, and reference pointers. Im-
mediates are [urther subdivided into iniegers, eloms, and box headers. Integers have the distinction
of being tagged with zero bits, allowing some optimizations to be made in arithmetic code genera-
tion. On most architectures, the pointer types suffer no inefficiencies from tagging, since negative
offset addressing may be used to cancel the added tag. There is only one mutable object type —
the unbound vartable, represented as a null pointer with a reference pointer tag. When a variable is
bound, its value is changed to the binding value. The design rationale for the runtime data layout
is given in Larson et al. [21].

4.2 Instruction Set

Committed-choice languages [27] differ from Prolog in several ways, leading to abstract machine
definitions that differ from the WAM for efficiency reasons. First, committed-choice languages have
a process-based computation model that does not support backtracking. A computation consists
of reducing goals (fine-grain tasks or processes) until no unreduced goals remain, in which case the
computation succeeds. This implies that fast selection of a committing clause is paramount, as
engendered by decision-graph code generation [18]. Second, unification is constrained to be either
passive or active. Active unification is more costly than in Prolog, because locking is needed to ensure
atomic variable binding. Furthermore, to avoid creating circular structures and potential deadlock
during multiple unifications of shared variables, a binding protocol is needed. Third, there is a wide
gap in memory-usage efficiency between concurrent and sequential languages. Parallel Prolog can
exploit stacks because of the inherently sequential nature of their threads. In committed-choice
languages, without sophisticated compiler analysis (e.g., [22]), all goals are potentially concurrent.
Therefore, goal allocation is usually done on a heap. Also, data structures in logic programs are
dynamically created and modified, requiring heap storage, whereas in Prolog backtracking can nat-
urally reclaim portions of the heap. Overall, the required memory bandwidth of committed-choice
languages is significantly greater than that of sequential logic languages. Fourth, the process man-
agement of committed-choice languages, i.e., enqueueing, suspending, and resuming operations, is
frequent and expensive,

The instruction set consists of about sixty operations, summarized in Table 1. In the table,
Ry, Rs1, and R,2 denote source registers, R4 denotes a destination register, n denotes an integer
constant, and F/A is the name of an executable procedure. The instructions take constants or
registers as their arguments and return their results in registers. There is no explicit access to the
shared memory except through operations which access the fields of aggregates. The static machine
instruction counts given in Table 1 vary with the specific abstract instruction, and do nof include
any runtime system subroutine calls.

The operations are broadly categorized as: 1) Data constructors for each data type (constant,
list, struct, goal record, variable). 2) Data manipulators for accessing the fields of aggregates.
3) Arithmetic operations. 4) Predicates for testing the types of most objects and for arithmetic
comparisons. Predicates store the truth value of their result in a register. 5) Control instructions.
6) Interfaces to runtime system operations for assignment, unification, suspension, and scheduling.
7) Instructions for manipulating the suspension stack. The instructions take constants or registers



80388 | MIPS

Monaco Instruction instr! | instr! | Semantics

data constructors
alloc(Size, a) 17 18! allocate heap by Size cells
initgoalref(Ry, Off, Size, F /A, R4) 5 6 initialize a goal record
initlistref(Ry, Off, Ra, Ra1, Rd) 7 | initialize a list
initstructref( R, Off, Size, Ra ) 4 4 initialize a vector
initvarref( Ry, Off , R4) 5 6 initialize a variable
mkconst({const), Ra) 1 1 Ry:= const
mkstruct(Size, Ra) 17 18! R4 := ptr to vector of Size cells
nkgoal(Size, Proc, R4) 184 20! Ry := ptr to goal record

data manipulators
move(R,, 14) 2 1 Ry:= R,
deref(R,, Ry4) g g4 Ry := dereference of R,
car({R,, R4) 3 1 Ry := head of R,
cdr({R,, R4) 3 1 Ry := tail of R,
sref(R,,n, Rq) 3 1 Rq := value of n*® slot in vector R,
sset(R, n, Ry) 3 1 n* slot in vector Ry:= R,
saize(R,, Rd) 5 3 R4 := size of vector R,

arithmetic and predicates

iadd(R., 2, Ra) 3-6 1-2 integer arithmetic (isub, idiv, imod, imul)
iner(R,, Ra) 3 1 integer arithmetic {decr)
iand(R,1, R,2, R4) 3 1-2 bitwise arithmetic (ioz, ixor)
ineg(R,, Ra) 3 1-2 bitwise arithmetic inot)
ieq(R,1, R,2, Ra) 6 2 comparison (ige, igt, ile, ilt, ineq, eq, neq)
isatom(R,, R4) 5-9 2-7 type compare (isbound, isunbound, isint,

iglist, isnil, isref, isstruct, isimm)
isenpty(Ry) 5 4 suspension stack empty?

control

br(a, Label) 1 1 jump to Label
br(cond,R,, Label) 2 1 branch to Label (cond = n, p, z, nz)
br(cond, R,, Label) 2-8 2-5 branch to Label (cond = islist, isntlist,...)
br(eq({const}),R,, Label) 2-10 1-6 | if (R, = conast) then branch to Label (neq)
br(igt{{const}),R,, Label) 5 1 if (R, = const) then branch to Label (ige,...)
br{eq,f1,1, Rs2, L) 5 if (41 = R,2) then branch to L (neq)
br(igt,R.1, Rz, L) 8 5 if (Rs1 = R,2) then branch to L (ige,...)

Process ma.nagement

enqueue(ft,) 3° 4° push goal on ready queue

proceed 2 2 complete process

execute(F/A) 2 4 execute process F'fA

punify(R.;, R.2, Rd) 7° 6° passive unify

unify(R., R.a) 7° 6° active unify

push(R,) 4 9 push address onto suspension stack
suspend( F/A) 8 11 suspend process F/A

1 static template size.

Vincludes instructions for memory allocation subroutine.

° calls a runtime routine.
! loops.

Table 1: Super Monaco Abstract Instruction Set
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Figure 5: Monaco Object Taxonomy

as their arguments and return their results in registers.

A majority of the instructions are lightweight and can easily be translated into small sequences
of instructions on the host. Most predicate and arithmetic instructions fall into this category. At the
other extreme, some instructions are sufficiently complex that not much can be gained by translating
them into native code. These are implemented as calls to the runtime system. The middle ground is
covered by the data manipulators and constructors. We currently implement these in native code,
at some expense in code size, to minimize runtime system call frequency.

Each data constructor serves to batch up allocation requests into a large block, and then initialize
smaller sections of the block. Batching up the frequent allocation requests increased performance
on standard benchmarks (see Section 6). In addition, aggregates which are fully ground at compile
time are statically allocated in the text segment of the assembled code. This decreases execution
and compilation times. Note that variables reside outside of structures, which will facilitate future
optimizations concerning local memory reuse.

Unification is included in the last instruction category. Passive unification verifies the equality
of ground values. An attempt to passively unify a term containing uninstantiated variables will
result in suspension of the process until those variables become instantiated.? Active unification,
on the other hand, will bind variables to other variables or to values in order to ensure equality
of terms. As is customary in logic programming implementations, no “occurs check” is performed
during unification for efficiency reasons. Variables are bound through assignment operations or
active unification.

The instruction set was modeled after a reduced instruction set (RISC) architecture, on the
theory that such small instructions may be easily and efficiently translated to native RISC instruc-
tions with a simple assembler. This is the case for the MIPS port, where many Monaco instructions
translate to single MIPS instructions, as shown in Table 1. However, the Monaco instruction set has
been evolving toward more complex instructions, as frequent idioms are identified and coalesced.
There are several reasons for this trend: 1) Intermediate instructions at too low a level violate
abstraction barriers between the intermediate code and the machine-level data layout and runtime
system data structures. 2) As the amount of work per instruction gets larger, more machine-specific
optimizations can be made in the monaa code templates. 3) There is no reason to equalize the

2This is in contrast to systems such as JAM Parlog [6], which also verify the equality of terms in which unin-
stantiated variables are bound together. For example the program equaltest(X,X). will succeed with two unbound
arguments in Jam, whereas in Monaco, such a query will suspend, waiting for the arguments to be instantiated. The
differences in these semantics have implications on the efficient implementation of assignment and mode analysis,
hence our choice.



amount of work done per instruction or to standardize instruction formats, as there is with RISC
architectures. 4) If the native target is not a good match for the Monaco instruction set, a simple
template-expanding assembler will produce much better native code for a more complex instruction
than for a sequence of simple instructions. (This is in contrast to systems such as [13], a sophis-
ticated multi-level translation scheme which produces good code by intelligent generation of very
simple intermediate instructions.)

5 Compiler Internals

There are 11 phases in the compiler: 1) source input; 2) type analysis; 3) decision graph generation;
4) code generation; 5) basic block generation; 6) common subexpression elimination (CSE); 7) live
range analysis; 8) dead code elimination; 9) register allocation; 10) branch shorting, peepholing
and register chain shorting, and 11) assembly output. Type analysis is the only global analysis;
everything else is local to a procedure. In other words, basic blocks are produced on a per procedure
basis, and dataflow analyzed for CSE, live ranges, and register allocation.

In the following subsections, we give more details about the compilation process and the algo-
rithms used. Rather than giving formal specifications of the algorithms, our discussion is informal,
and discusses advantages and disadvantages of our approach. We follow this by empirical cost /benefit
analysis of the key optimizations in Section 6.

5.1 Type Inference by Abstract Interpretation

Type inference is performed by a “poor man’s” abstract interpreter. Types are derived for head
arguments only. For these, the domain of interest is: unbound, bound, bound-to-integer, bound-
to-atom, bound-to-list, bound-to-nil. unbound means that nothing is known about the argument’s
binding. bound means that the argument is guaranteed to be bound upon procedure invocation,
but that the type of the binding is unknown. Although the domain is simplistic (for example, type
propagation through the subterms of complex terms is not modeled) interpretation is fast, and some
valuable information is derived (see Section 6).

First the source program is converted into an abstract call graph implemented as a tableau.
Each tableau entry represents a procedure, holding the head arguments, their current (abstract)
substitutions, body calls and their current call substitutions, and a single queued abstract invocation.
Abstract substitutions for head arguments are kept as veciors of domain values throughout the
interpretation. A vector contains one substitution for each parent (caller). A vector is reduced into
a scalar substitution, via abstract unification, when setting up arguments for body calls. Abstract
unification is defined in the obvious way, for instance the vector [bound-to-atom,bound-to-integer]
reduces to bound.

Body call substitutions can be initialized to fixed domain values in certain cases. For example,
if a guard tests X>3, then for a body goal £(X) we know that X is bound-to-integer. This is the key
to type propagation.

The interpretation proceeds by enqueuing body calls in the callee’s tableau entry. If a previcus
call is already enqueued there, the two calls are merged. If an abstract reduction does not change
the head argument substitutions, then the tableau entry is marked “fixed.” A global fixed-point is
reached when all entries with enqueuned calls are fixed.

Our experience with this abstract interpreter has been positive. It took about three days to
implement, and consists of 1039 lines of KL1, only 27% of which is the interpreter (the rest is
for creating the initial tableau and annotating the source program with the resulting types). The
type information is used during code generation to strength-reduce the decision graphs, which are
described next. The design is extensible and future work will be focused on increasing its accuracy,



e.g., by including the domain element list-of-integer and the corresponding rules for creating initial
substitutions.

5.2 Decision Graph Generation

Decision graphs have been shown by Kliger [18] to be an effective means of rapidly determining
which clause within a procedure can commit. Furthermore, these graphs are space-linear in the
number of clauses. We use Kliger’s algorithm in our front-end: the formal algorithm is given in Tick
and Korsloot [35). For each procedure, a canonical normalized form is produced. The graph is then
generated; each node is a test (e.g., X > Y ~ 3), and edges are valuations of a test (yes/no or case
values). The leaves of the graph are clause bodies, where we lump fell operations with the body.
The backend will transform the graph into a sequence of triples suitable for optimization.

The key element of the decision graph generation algorithm is the computation of residuals,
which are clause sets that satisfy a guard (ask) test. Satisfaction requires proving implications
between clause constraints and the guard. In general, such proofs are difficult since the domain is
unspecified. Furthermore, since multiple residuals may be needed per graph node, this computation
is critical to front-end efficiency. Our solution to these concerns is to safely approximate the proofs
by table lockup.® For example, for integers k; and k2 such that k; > ko, the constraint X > ¥
implies the constraint X > ke. A set of these relations has been found to be quite effective in
allowing optimized graph generation. Complex inferences (such as transitivity) cannot be made.
However, we have not seen such complexity in typical programs.

A core {unction within the decision graph construction algerithm is indezing which chooses the
next test to generate (from the root downwards) from among a set of candidates. The indexer
schedules a test higher in the graph when more clauses “care” about the test, a purely syntactic
metric.? The heuristics of caring are quite complex [35]. The decision graph generator consists of
1253 lines of KL1 code, 40% of which defines the indexing heuristics. For experimentation purposes,
a naive decision graph generator was also implemented within Monaco, which schedules every gnard
seen in the program, without sharing tests. The implementation was very simple (149 lines of KL1
code), but performance is poor. These cost/performance tradeoffs are evaluated in Section 6.

Consider the check/8 procedure in the queens benchmark, listed in Figure 6. This example
illustrates some of the strengths and weaknesses of decision graph compilation. The first step of
processing is to create a normalized canonical form from the source program. This entails flattening
the head, pulling all complex terms out into guard “ask” unifications. Furthermore, integer type
checks are inserted in the guard for all variables involved in arithmetic expressions, e.g., integer (P),
integer(C), and integer(D) are included in clauses 2-4. The graph produced is shown in Figure
7.

The important points to note in the graph are the indexing choice of switching on the first
argument, and the placement of integer type checks for P, C, and D. Switching on the first argument is
in fact not optimal when considering call forwarding, i.e., shorting callers around operations (integer
checks in this case) that are known apriori from flow analysis [7]. Since we have not implemented
call forwarding in Super Monaco, this concern is not relevant and we would like the integer checks
as high in the graph as possible. One idea is to force the checks up by inserting additional integer
guards in the end-of-recursion case, although that is neither a satisfying nor automatic solution.

Another flaw in the decision graph is that the path to clause 2 (node 4) requires three arithmetic
inequalities. Ideally, node 3 should commit to clause 2. The problem lies in the power of our
inferencing mechanism computing residuals. A clause is not placed in the residual of a branch test
unless a guard in that clause implies the test (thus retaining space linearity). Actually, P—C =D

3The Aquarius Prolog compiler {37] simplifies formulae in a similar manner. Both Monaco and Aquarius use about
50 rules of comparable complexity {35].
1 Debray et al. present a decision tree generation scheme exploiting dynamic caring information.



check( X, C, _, NCs, Cs, L, S0, S1 ) :- X =[] |
append( NCs, Cs, Ps ),
queen{ Ps, [1, [CIL], S0, S1 ).
check( X, C, D, _, _, _, 80, 51 ) :-
X=[PI_], P-C=:=0D |
50 = 51,
check( X, ¢, D, _, _, -, SO, S1 ) :-
X=[PI_], C-P =:= D |
50 = 51.
check( X, C, D, NCs, Cs, L, S0, 81 } :-
X = [P|Pa], P-C =\= D, ¢=-P =\=D, D1 := D+1
check( Ps, C, D1, NCs, Cs, L, SO, S1 ).

Figure 6: Normalized Procedure check/8 from queens

switch(X,
[case([],commit(clause 1))
case('.’/2,
asgk(integer(P),
yes{ask(integer(C), 88
yes (ask(integer(D), (2}
yes(ask((C-P =\= D),
yes(ask((P-C =\= D},
yes{commit (clause 4))

no(ge(7)) 3
7:other(go(6)))),
no{commit{clause 3}),
6:other(
ask{((P-C =:= D),
yes(commit (clause 2}), (4)
no(go(8)),
8:other(ga(5))))})),
no(go(5)},
5:other(go(4)))),
no{go(4)),
4:other(go(3)))),
no(ge(3)),
3:other(go(2) )},
2:defaunlt(go(1))]

1:suspend

Figure 7: Stylized Decision Graph for check/8
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does imply C — P # D, but we have refrained from adding such inferencing smarts to the compiler.
Our inferences are purely table driven, and although we could insert many more table entries for
such ad hoc cases, a general prover would be best.

The decision graphs are generated without regard to type information, which is embedded in
the graph via variable annotations. During code generation the type information is used to avoid
test generation. In the full queens benchmarks evaluated in Section 6, check/8 arguments C and D
are inferred to be bound-to-integer, allowing nodes I and 2 to be removed. A final point: the rather
circuitous routes to suspension are entirely collapsed by dataflow analysis and jump-chain shorting
in subsequent phases of the compilation.

5.3 Code Generation

Code generation is driven by the decision graph grammar in a mechanical fashion. The strategy
employed is to keep code generation as simple and direct as possible, at the later expense of cleaning
up inefficient code sequences with dataflow analysis and other backend optimizations (Sections 5.4
and 5.5). The resulting code is somewhat naive concerning arithmetic expressions. Key to code
generation is a “one register, one value” invariant that facilitates all later phases, e.g., a register can
be defined only once within a procedure. Body generation follows the standard style (e.g., [16]) of
enqueueing all body goals but the first, which is executed immediately.

Subsequent dataflow analysis proceeds from the generated Monaco code, driven by a table
describing each instruction’s operand uses and definitions, as described in the next section. In
retrospect, we found that certain analyses, such as call forwarding [7], are best done on the decision
graph, not the generated code. Although dataflow information must be derived earlier to do this, it
is much easier to rearrange portions of the flow graph, with no concern for register bindings.

To illustrate our code generation techniques, Figure 8 shows a single clause procedure, its decision
graph (right side) annotating the initial code generated (left side). There are several interesting
points. Naive translation of the continuation linkage in the decision graph creates many branches:
there are 18 control instructions out of 29 total instructions! Of these, 2 branches are dead and
5 other unconditional branches are the target of a previous branch. One branch (to label 11) was
artificially placed in the body to split the code into smaller blocks, facilitating register allocation
(see Section 5.4). In all these cases, later branch squashing cleans up the flow (Section 5.5).

Note the code generated for ask tests. As was mentioned in the previous section, the code
generated must test if the operand is unbound and if so, push the operand on the suspension stack
and jump to the “other” continuation. Type information circumvents such code, e.g., if $PARAM(3)
was annotated bound-to-integer, then instructions 2-5 would not have been generated. For more
complex procedures, types and branch-chain squashing are not sufficient to get quality code. For
such cases, we need to derive common subexpressions using dataflow analysis, as is described next.

5.4 Common Subexpression and Dead Code Elimination

Dataflow analysis is fundamental to most of the compiler optimizations, to the point where the
preliminary code is particularly naive and requires flow analysis to clean it up. We took this approach
to keep the compiler modular, although it impacts compile time. The basis for flow analysis is the
construction of a flow graph of basic blocks from the preliminary code. A standard construction
algorithm [1] is used; both the usual branches and Monaco instructions such as execnte, proceed,
and suspend represent control transfers, and thus terminate blocks.

Note that the program is analyzed locally, i.e., on a procedure-by-procedure basis, to perform
common subexpression elimination (CSE). The flow graph for a procedure is topologically sorted, to
ensure that all ancestors of a child block are analyzed before the child is analyzed. Type information
is then collected and propagated from the root, taking the set intersection (as the least upper
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f(X, Y, Z2):-2>3]|£(Z, Y, X).

deref (SPARAM(3),$REG{4)), ask(
br(isint,$REG(4),4), integer( V3 ),
br(isbound, $REG{4),5), |
push($REG(4)}, |
br(a,2), |
4:deref ($PARAM(3) ,$REG(5)), yes(
br(igt(3),$REG(5),7), | ask(V3 > 3,
br(isbound,$REG(S),10), I |
push(3REG(5)), | |
br(a,3)}, | |
10:br(a,8), |
7:commit, [
nove (SPARAM(3) ,$REG(6)), |
move ($PARAM(2) ,$REG(7)), |
move ($PARAM(1) , $REG(8)), |
br(a,11), |
11:move ($REG(6) ,$OUTPARAM(1)), |
|
[
|
|
|
I
|
[

et —
(13
n
~

v3,
vz,
Vi
£( )

move ($REG(7) ,$0UTPARAM(2)),
move ($REG(B) , SOUTPARAM(3)),
execute(£/3),
br(a,9) *
8:br(a,3),
br(a,9),
:br(a,2),
:br(a,1),
tbr(a,2), no( go(2) ),
br(a,1), |
2:br{a,1), other( 2:go(1) } ),
1:suspend (£/3) 1:suspend( £/3 )

o( go(3) ),

— e —————

other( 3:go(2) ) ) ),

0w w

Figure 8: Simple Code Generation Example

bound) of information arriving to a child node from its ancestors. The information is essentially
an association list matching pseudo-registers and their abstract contents. For example, suppose we
know R3 = car(deref(R1)), and we encounter a Monaco instruction deref(R3,R4). We may then
derive the new information that R4 <- deref(car(deref(R1))).

Code within the blocks is rewritten on the fly during analysis to share common subexpressions.
The most common case of this is shorting moves, e.g., move(RE,R6E) followed by br(isint,R6,L),
will rewrite the latter to be br{isint,R5,L). Dead code elimination will then cancel the move.
Branch conditions are also propagated throughout the flow graph. We must be careful to distinguish
the taken condition from the not-taken condition. For example, entering some block in the graph,
we may know that integer(deref(car(deref(R1)))) must be true, by consideration of the flow
to that point. This allows branch shorting. For example, br(nz,R8,L), which branches if RS is
not zero, can be combined with flow information R8 <- isint(deref(car{deref(R1)))) and the
previous branch information, to derive that the branch is always taken. The branch will thus be
rewritten as an unconditional jump.

Deadcode elimination and register allocation require further flow graph analysis. Live-range
analysis [1] is performed on the graph, producing register liveness information for each basic block.
We chose to collect this information at block granularity rather than instruction granularity to reduce
compile time. Large clause bodies can have relatively large basic blocks, reducing the effectiveness
of this technique. For this reason we artificially split such blocks at each body goal. In general, this
heuristic is sufficient to retain accuracy, as discussed in Section 6.
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If a value is never used, then its live range will be empty. Hence, deadcode elimination is
performed by removing instructions containing values with empty live ranges. Given the previous
analysis, this phase is trivial. Next, we allocate registers for each procedure.’ The local allocation
method used is based on the liveness of the registers, and is performed on a basic-block granularity
to match live-range analysis. The most live name (i.e., the name live across the largest number of
basic blocks) is allocated first, and so on. The algorithm is non-backtracking, so lack of an available
register for the next most frequent name requires generation of spill code. The spill is allocated to
a vector local to the procedure.

The quality of such a naive scheme relies on the accuracy of flow analysis. Allocating on a block
basis can lead to frequent spill code, although this is alleviated by splitting the body along individual
goals. Still, a goal requiring the evaluation and loading of many actuals is the most likely to cause
spills. Spilling can be reduced by artificially splitting basic blocks (in the limit, into individual
instructions). Because we were targeting our initial experiments to an 80386 backend with so few
registers available to the program, it became hopeless to avoid frequent spilling. Instead we generate
memory accesses to a pseudo-register array. This array is small enough to easily fit in cache, yet
large enough to avoid spilling. For our MIPS port, 16 real registers are allocated (the other 16 are
reserved by MIPS convention or by the runtime system).

Our allocator averaged 7.3 registers for 37 benchmark procedures considered in Tick and Baner-
jee [34). Trivial procedures typically required 2-7 registers, whereas more complex procedures typi-
cally required 11-17 registers. Future work includes implementing an interprocedural register allo-
cator based on cooperation across procedure call boundaries.

Figure 9 shows the results of compiling the program £(a(b{c()))). The final code is the
product of all of the backend optimizations. Notably, CSE rewrites instructions 1-4 to moves, which
are later collapsed. The structref instructions are instantiated to sref instructions by the dataflow
analysis (as opposed to car and cdr instructions had they been list references). Instructions 5-8
are removed by jump chain collapsing. Instructions (*) are removed during a topological sort of the
flow graph.

5.5 Miscellaneous Optimizations

Final phases include shorting of jump chains, which leads to dead basic blocks that are removed. The
flow graph is then flattened, and a peephole optimizer filters the code stream. Finally, the register
move chains are shorted. Currently the peepholer is limited: its primary function is to attempt CSE
of spill sequences. This is inherent to the well-known problem of where to allocate registers: before
or after CSE. Since we allocate after, we cannot eliminate spill code redundancies. The peepholer
cannot make much headway here, and we plan to explore a split register allocator, as in GCC [30],
to better solve the problem.

Worthy of comment is the register move chain shorting algorithm. As mentioned in Section 5.3,
an invariant obeyed during code generation is that a pseudo-register cannot be redefined after it is
used. This rule simplifies dataflow analysis for CSE. Unfortunately, the Monaco abstract machine’s
calling convention is to pass arguments during a call through fixed registers. Thus the incoming
and outgoing arguments must share the same rea! registers, but not the same pseudo registers. We
introduce special pseudo-registers $PARAM and $OUTPARAM to solve this problem. An example of their
use is shown in the tail call in Figure 8. This technique allows the early code to obey the invariant,
and is cleaned up during register allocation, by considering $PARAM(k) = $OUTPARAM(L).

The trick has a drawback: it means that the basic block containing a tail recursive call will
usually have very poor register assignment. To fix this, after final flattening of the basic blocks,

5One of our current areas of research involves interprocedural register allocation utilizing sequentialization of
threads [22].
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deref{r{1),r(2))
br{eq{a/1),c(2),5)

br(a,2) (*)

6: deref(r(1),r(4)) (1)
structref(r(4),1,r{(5))
deraf(r(5},r{3))
br{eaq(b/1}),r(3),6)
br{a,3), (=)

6: deref(r(1),r(?7)) (2)
structref(r(7),1,r{8)) (3)
deref(r(8),r{9)) (4)
structref(r(9),1,r{10)) deref(r(0),r(1))
deref(r{10},r(6)) br(eq{a/1),r(1),3)
br{aq(c/1)),r(6),7) 1: br(isbound,r(1},2)
br(a,4) (») push(r(1))

7: proceed 2: suspend{(£f/1)

4: br{isbound,r{s),8) 3: sref(r(1),2,r(4))
push(r(8)) daref(r{4),r(2))
br{a,8) br(eq(b/1),r(2),5)

8: br(a,3) (E) 4: br(isbound,r(2),1)

3: br{isbound,r(3),9) push(zr(2))
push(r(3)) br{a,1)
br{a,9) 5: sref(r(2),2,r(5))

9: br(a,2) (6) deref(r{E),r(3))

2: br{isbound,r(2),10) br{eq{c/1),r(3),6)
push(r(2)) br{isbound,r(3),4)
bri{a,10) () push{(r(3))

10: br{a,1) (B) br{a,q)

i: suspend(f/1) 6: procaad

(a) before optimizations (b) after optimizations

Figure 9: Example of CSE and Backend Optimizations

each procedure is reversed and scanned, shorting its moves. We call the specific algorithm “tail
squashing” because it is most effective in tail call blocks.

6 Cost/Benefit Analysis

Super Monaco was evaluated for two suites of benchmarks executing on a Sequent Symmetry S81
with 16MHz Intel 80386 microprocessors. The first set, consisting of six small programs (e.g., [34]),
was used primarily for comparisons with results in the literature. The second set, containing six
larger programs, allowed a more realistic cost/benefit analysis of the compiler. Benchmark cubes
finds solutions to a combinatorial puzzle problem; semigroup computes a Brandt semigroup [32];
waltz implements Waltz’s line-drawing constraint satisfaction algorithm [32]; bestpath is a concurrent
algorithm for finding the shortest path in a graph [32]. wave, written by 1. Foster, computes an
iterative sum around a multidimensional torus; life, written by A. Goto, plays the game of life;
absearch is an alpha-beta-pruned minimax game tree search.

Table 2 compares the uniprocessor performance of SICStus Prolog (v2.1),¢ Jam Parlog (v1.5.9),
Strand (Buckingham release),” jc,® original Monaco, KLIC (uniprocessor v1.500), and Super Monaco

¢Natjve-code SICStus is not available for Symmetry.

7This release is rather old, we are attempting to procure a newer version.

® Measurements taken from Gudeman et al. [10], an earlier implementation of Janus, The latest version v113+r102
could not produce optimized code for the Symmetry, because of a documented GCC bug [11]. Without optimization,
performnance comparison is meaningless in this context. When we find a way around this bug we intend to update the
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{old) Super
benchmark | SICStus | Strand | Monaco | jc | Jam | KLIC | Monaco | SM:KLIC
hanoi(14) 4.6 5.8 44 1.2 5.6 0.6 2.3 3.83
nrev(1000) 21.0 34.3 1.2 | 3.9 382 5.9 11.9 2.02
pascal{200) 14.4 21.8 9.0 19.0 1.7 4.1 2.41
primes(5000) 20.2 38.7 128 62 39.5 44 9.3 2.1
queens(10) 106.0 25.4 434 (394 | 140.6 10.4 28.3 2.72
cubes(6) 113.9 151.4 15.5 38.0 2.45
semigroup 125.6 85.9 140.2 1.63
waltz B7.7 18.8 27.2 1.45
bestpath 193.8 80.2 0.41
wave(B,8) 11.6 74 0.64
life(20) 51.2 29.6 20.2 0.68
absearch 8.4 19.5 2.31

Table 2: Comparison of Uniprocessor Performance (Seconds, Symmetry)

(v1.0). All times are the best of several runs, using the sum of user- and system-level CPU times.
Because garbage collection (GC) is hidden within these systems, we cannot normalize the measure-
ments for GC effects. We believe it unlikely that GC could be more than 25% of measured time for
these benchmarks.

SICStus, given solely as a baseline, is measured only for the small benchmarks that are directly
translatable into Prolog. Some benchmarks were not measured on some systems, either because
of inaccessibility or system bugs. Super Monaco was found to outperform Strand and Jam in a
uniprocessor configuration by factors ranging from 1.6 to 4.0 (except for queens, for which Strand
performed remarkably), and to maintain such ratios for moderate numbers (1-16) of processors [34)].
In all cases, Super Monaco improves on the performance of the previous Monaco system by factors
of about two.

Because the jc measurements are incomplete and old, we focus our comparison on KLIC.?
Compared to KLIC, Super Monaco performance is especially good for the larger, more realistic
benchmarks, where the geometric mean slowdown is 1.0, i.e., dead even. Still, we show a geometric
mean slowdown of 2.5 for the small programs. How much of this is due to compiler-generated
inefficiencies, as opposed to runtime support, is unclear at this time. With over 50% of program
execution time in the runtime system, the compiler cannot be held responsible for more than the
remainder. Within this slice, we think that register allocation is the weakest link, especially on the
80386. Future performance evaluation on the SGI MIPS-based multiprocessor is needed.

Table 3 gives the multiprocessor execution times of Super Monaco. Times are for the longest
running processor from the beginning of the computation until termination. Some of these bench-
marks were executed for larger data than in Table 2. The superlinear behavior of bestpath is because
the algorithm is nondeterministic. absearch is inherently sequential and thus achieves only slowdown
on increasing numbers of processors. Disregarding the outliers, the geometric mean speedup on 16
processors for the small and large benchmarks was 12.7 and 10.6 respectively. These speedups are
comparable with Jam and the original Monaco, while absolute performance is superior (see Larson
el al. [21] for detailed measurements).

Table 4 gives the execution and compilation times for each of the five optimization levels of the

measurements presented here.
95ee Chikayama ¢t al. {4] for a an in-depth comparison between KLIC and jc.
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Processors

benchmark 1 2 4 8 12 16
hanoi(17) 19.38 | 10.15/1.9 | 5.16/3.8 | 2.62/7.4 | 1.78/10.9 | 1.36/14.3
nrev(1200) 1723 | 9.90/1.7 | 5.62/3.1| 3.37/5.1 | 242/7.1 | 1.97/8.7
pascal(400) 27.26 | 14.04/1.9 7.34/3.7 3.84/7.1 | 2.68/10.2 | 2.14/12.7
primes(9000) 24.20 13.20/1.8 7.10/3.4 4.11/5.9 3.01/ 8.0 2.43/10.0
queens(10) 26.79 | 13.86/1.9 | 7.02/3.8 | 3.57/7.5 | 241/11.1 | 1.85/14.5

cubes(6) 36.75 | 18.69/2.0 | 9.45/3.9 | 4.75/7.7 | 3.20/11.5 | 2.43/15.1
semigroup 140.14 | 71.62/2.0 | 38.81/3.6 | 21.24/6.6 | 16.26/ B.6 | 12.25/11.4
waltz 27.24 | 14.18/1.9 | 7.26/3.8 | 3.82/7.1 | 2.69/10.1 | 2.28/11.9
bestpath 80.17 | 35.02/2.3 | 18.43/4.4 | 10.96/7.3 | 6.25/12.8 | 5.84/13.7
wave(12,12} 46.25 26.76/1.7 13.80/3.4 7.52/6.2 5.37/ 8.6 | 4.57/10.1
life(20) 20.21 | 11.11/1.8 | 5.88/3.4 | 3.23/63 | 2.46/8.2 | 2.18/9.3
absearch 19.47 | 26.56/0.73 | 28.85/0.67 | 29.63/0.66 29.79/0.65 | 30.22/0.64

Table 3: Super Monaco Multiprocessor Performance (Seconds/Speedup, Symmetry)

compiler. Each optimization level builds upon optimizations in previous levels. Each benchmark
program was compiled and run five times and the minimum measurement was chosen. Programs were
compiled on a Sun MP4 (bootstrapping the compiler using PDSS [15]) and executed on a Symmetry.
For a given benchmark, for a given optimization level i (column), the percentage (T; —T;_1)/T;-1 is
given, representing the cost (if positive) or benefit (if negative) of the optimization over the previous
optimization.

The first point to note is that performance results for small programs do not reflect those of
larger, more complex programs. Usually the smaller benchmarks see much larger gains. Limiting
our comments to the larger programs, type inferencing was a disappointment: performance was
flat, though cost was negligible. Dataflow analysis cost 8% compilation and gained 7% execution.
Decision graph were a win-win proposition, having negative cost and postive gain.!? For example,
the -27% average compilation cost represents a gain in compilation efficiency, because the indexing
produces simpler decision graphs that in turn decrease backend processing. In contrast, saving
frontend compilation time by forgoing indexing costs 1.2% over naive graph generation.

Table 5 shows the compilation time broken down by function, for the highest optimization level.
Computing live ranges is most costly, followed by register allocation and input/output. Other func-
tions are relatively inexpensive. The main reason the global flow analysis algorithms are inefficient is
because we do not simplify the flow graph early enough. It would pay to invest in early simplification
(before CSE}. One must be careful, however, because certain basic block splits were purposely made
to improve register allocation. Another weakness in the compiler is seen in bestpath: there is an
87-clause procedure indexed on one (integer) argument. Unfortunately, a general decision graph is
constructed for this procedure, requiring 25% of compilation time, and generating large amounts of
code which consume additional compilation time during later phases. A single switch instruction is
finally created for this procedure in the peepholer, but far too late to save compilation time.

A final note about comparative systems’ compilation time: although no extensive measurements
were collected, we observed that Super Monaco compilation time lies between Jam and jc, and closer
to Jam. The Jam non-optimizing compiler (to byte code) is rather fast, whereas the jc compiler is

10This is not an entirely fair statement. For example the JAM Parlog compiler is significantly faster than Super
Monaco, at any optimization level, The main reason for this is JAM's lack of flow analysis and register allocation.
Decision graphs have negative cost in Super Monaco because they remove large chunks of code which then are not
processed by later optimizations — optimizations which JAM would not perform in any case.
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no dec. graph dec. graph dataflow type

benchmark opt. w/o index w/ index analysis inference
execution time (seconds/%, Symmetry)
hanoi 19.99 20.02/ 1.1% 19.99/ -1.0% 19.43/ -2.8% 19.38/-0.3%
nrev 25.93 | 25.95/ 0.0% | 21.97/-15.3% | 17.24/-21.5% | 17.23/-0.0%
pascal 46.82 | 43.63/-6.8% | 43.15/-1.1% | 28.54/-33.9% | 27.26/-4.4%
primes 39.92 | 35.92/-10.0% | 36.89/ 2.7% | 26.19/-31.7% | 24.20/-4.2%
queens 46.95 | 37.61/-19.9% | 3581/ -4.8% | 27.77/-22.5% | 26.79/-3.5%
cubes 66.27 | 50.44/-23.9% | 48.28/ -4.3% | 37.10/-23.2% | 36.75/-0.9%
mean -9.9% -4.0% -22.6% -2.2%
semigroup 144.79 | 144.88/ 0.0% | 143.31/ -1.1% | 140.10/ -2.2% | 140.14/ 0.0%
waltz 31.24 | 31.87/ 2.0% | 29.83/ -6.4% | 27.00/-9.5% | 27.24/ 0.9%
bestpath 112.34 | 110.98/ -1.2% | 84.47/-23.9% | 80.04/ -5.2% | 80.17/ 0.2%
wave 57.07 | 54.55/ -4.4% | 49.42/ -9.4% | 46.89/-5.1% | 46.25/-1.4%
life 22.23 21.88/ -1.6% 21.56/ -1.5% 20.21/ -6.3% 20.21/ 0.0%
absearch 24.87 | 26.39/-6.1% | 23.35/-11.5% | 20.47/-12.3% | 19.47/-4.9%
mean -1.9% -9.0% -6.8% -0.9%
compilation time (seconds/%, Sun MP4)

hanoi 2.95 3.04/31% | 2.75/-95% | 3.06/11.3% | 3.19/ 4.2%
nrev 2,21 2.15/ -2.7% 1.89/-12.1% 2.02/ 6.9% 1.90/-5.9%
pascal 12,56 | 11.05/-12.0% | 9.49/-14.1% 9.89/ 4.2% |  8.91/-9.9%
primes 4.00 | 3.83/-4.2% | 3.40/-11.2% 3.60/ 5.9% | 3.64/ 1.1%
queens 8.42 6.11/-27.4% 5.54/ -9.3% 5.69/ 2.7% 5.43/-4.6%
cubes 15.46 13.55/-12.4% 11.59/-14.5% 1247/ 7.6% 13.00/ 4.3%
mean -9.3% -11.8% 6.4% -1.8%
semigroup 29.68 | 23.79/-19.8% | 16.09/-32.4% | 17.77/10.4% | 18.30/ 3.0%
waltz 26.99 29,33/ 8.7% 25.23/-14.0% 26.68/ 5.7% 27.85/ 4.4%
bestpath 105.02 | 129.58/ 23.4% 63.39/-51.1% 67.70/ 6.8% 68.26/ 0.8%
wave 186.59 | 166.20/-10.9% | 100.28/-39.7% | 109.32/ 9.0% | 103.37/-5.4%
life 22,97 | 23.86/ 3.9% | 20.68/-13.3% | 22.44/8.5% | 22.96/ 2.3%
absearch 73.55 | 75.09/ 2.1% | 66.70/-11.2% 70.37/ 5.5% | 68.10/-3.2%
mean 1.2% -27.0% 7.7% 0.3%

Table 4: Cost/Benefit of Compiler Optimizations
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function semi | waltz | life | best | wave | search | rest | mean
program input 30| a0 24| 24| 1.0 19| 3.0 25
type analysis 3.2 48 42 1.7 2.2 3.5 5.2 3.5
decision graph 8.7 521 7.1 256 8.0 71| 7.5 9.9
code generation 2.8 29| 3.0 1.3 1.4 2.6 3.3 2.5
basic blocks 6.8 5.4 5.8 5.3 4.4 6.8 6.6 5.9
CSE 6.4 6.0 6.5 6.3 5.1 7.4 7.0 6.4
live ranges 31.4 30.1 | 34.1 | 30.0 | 35.2 32.3 | 30.9 32.0
dead code 2.6 32| 43| 1.2 5.7 4.5 2.2 3.4
register allocation 20.7 | 18.8 ; 20.7 | 14.3 | 204 21.5 | 17.6 204
shorting, peepholing 3.9 48| 46| 0.6 34 3.7 3.9 3.6
program output 106 | 149 | 7.2 | 114 4.3 8.6 | 12.8 10.0

Table 5: Percentage Compilation Time by Function (Full Optimizations, Sun MP4)

hamstrung by its internal C compilation.

7 Literature Review

Emulation-based real-parallel shared-memory implementations of committed-choice languages in-
clude Panda and JAM. Panda [25] was an experimental system at ICOT implementing a subset of
FGHC. and utilizing a WAM-like abstract machine instruction set [16]. Jim’s Abstract Machine
(JAM) [6] is a Parlog emulator including support for Or-Parallel execution of deep guards. These
systems neither use optimizing compilers nor produce native code.

Strand [9] is also emulation-based and real parallel, although mapped to an intermediate distributed-
memory model, allowing portability to alternative hosts. The language is flat Parlog with assign-
ment, similar to fully-moded FGHC [36]. The Strand compiler is a commereial product, and thus
detailed information is scarce. Strand has a performance advantage when exploiting assignment,
but also a potential disadvantage in the overheads incurred when mapping its distributed-memory
model onto a shared-memory host.

Further restricted from Strand is the original Janus language in which the programmer must
declare a single producer and consumer for a stream. Janus has since evolved to be almost identical
to Strand [11]. A Janus-to-C compiler jc has been developed for uniprocessors, which generates
C code {10]. je has several advantages over the Monaco compiler: 1) the backend C compiler can
do much better register allocation on the host measured in this paper (an 80386-based Symmetry);
2) the uniprocessor implementation of Janus allows optimizations such as suspension analysis [8]
that cannot be easily performed for the real-parallel implementation of Monaco; 3) jc has other
optimizations not found in Monaco, such as call forwarding [7].

Like jc, Kliger’s FCP compiler [17] is targeted to uniprocessors, although it is emulated. Monaco’s
decision-graph compilation method is borrowed from [18] — Monaco extends this locally with
dataflow analysis, whereas [17] extends this globally with abstract interpretation to derive pro-
cedure bodies optimized for different call sites. Over an extensive set of benchmarks, Kliger reports
speedups of 3.2 due to decision graphs over standard indexing, 1.2 due to his global optimizations,
and 5.2 due to 68000 native-code compilation [17]. These results encourage us that Monaco is
balanced in the sense of putting our effort where the highest payoffs occur.

KLIC [4, 24, 23] is a portable, multiprocessor implementation of KL1. Like je, KLIC compiles
into C. Because these systems do not produce an intermediate representation, we cannot contrast

18



them with the Super Monaco instruction set. KLIC, like jc, leverages high performance from the
backend C compiler. Multiprocessor KLIC (built on PVM) uses explicit task allocation and so it
was not appropriate to compare speedups with Super Monaco.

Recent work in logic program compilation for high performance that deserves mention is Mer-
cury [29) a strongly-typed logic programming language and implementation. The language is similar
to Prolog and by exploiting types it achieves execution speeds superior to Aquarius [37] and SIC-
Stus [3] Prolog. In Super Monaco we retained an untyped language, making comparison difficult.
Furthermore, because of our concurrent semantics, mode information would be less directly useful
than it is in Mercury, unless suspension analysis is performed.

Finally, we mention RISC-based microprocessor architectures for committed-choice languages:
Carmel (e.g., [12]), PIM/i [26], PIM/p [19], and UNIRED-II {28]. These implementations are akin
to Monaco, however, they are experiments in specialized hardware, not compilation technology.

8 Conclusions

We have presented the Super Monaco compiler, a shared-memory implementation of flat committed-
choice languages. In the spirit of Van Roy {37] and Taylor [31], the key design decision was to move
from a WAM-based to a lower level intermediate instruction set. This demanded the construction of
an optimizing compiler based on local dataflow analysis. Our system is unique in that, 1) it translates
concurrent programs onto a parallel execution model; 2) it produces intermediate code targeted for
high-performance on RISC hosts; 3) its backend generates native code, and 4) it forms a foundation
for global optimizations that can then be accurately measured within a streamlined system. We have
presented empirical measurements characterizing the execution profile of the system, demonstrating
the utility of the optimizations, and indicating areas for future gains.

The Super Monaco compiler measured in this paper has a few handicaps compared to other
implementations. Critically, register allocation, which takes 20% of compilation time, is pointless
on Symmetry, where we emulate the register set anyway. Systems exploiting C compilation get far
better register performance here. Furthermore, over 50% of program execution time is spent in our
runtime system [21], which could benefit from further tuning. Thus compiler optimizations can at
best carve out slices from half the pie.

Nevertheless, Super Monaco shows parallel execution performance competitive with similar par-
allel systems. It can exhibit slower uniprocessor execution than uniprocessor-based systems that
compile into C, but this loss of performance can be more than made up by exploiting parallelism.
We noticed that larger programs performed similarly on KLIC and Super Monaco, indicating to
us that sophisticated C code generation may lose its utility as procedures and programs grow in
size. We plan to test this hypothesis for jc. If it is true there as well, we believe that the the best
approach is to keep the Super Monaco compiler simple (e.g., forgo call forwarding}, but improve core
functionality, such as register allocation. We expect that on RISC machines the speed differential
between native-code and C-code compilers will decrease because of a more level playing field, i.e.,
sufficient number of general-purpose registers.
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