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Abstract

This prospectus describes research in the field of software engineering to simplify programming
of parallel computers. It focuses specifically on performance diagnosis, the process of finding and
explaining sources of inefficiency in parallel programs. Considerable research already has been done
to simplify performance diagmosis, but with mixed success. Two elements are missing from existing
research:

1.There is no general theory of how expert programmers do performance diagnosis. As a result,
itis difficult for researchers to compare existing work or fit their work to programmers. It is difficult
for programmers to locate products of existing research that meet their needs.

2. There is no automated, adaptable software to help programmers do performance diagnosis. Ex-
isting software is cither antomated but limited to very specific circumstances, or is general but not
is antomated for most tasks.

The research described here addresses both of these issues. The research will develop and vali-
date a theory of performance diagnosis, based on general models on diagnostic problem-solving, It
will design and evaluate a computer program (called Poirot) that employs the theory 1o automatical-
ly, adaptably support performance diagnosis.
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1.0 Introduction

The research outlined here is in the field of software engineering. Research in software engi-
neering is similar to research in manufacturing engineering, in that it studies and tries to
improve production processes -- the processes that produce computer software. My research
has focused on software for distributed [10], [12], [13] and parallel [17] computer systems.
Both parallel and distributed computer systems consist of multiple computers (and computer
programs) that cooperate to some end. In distributed systems, the computers cooperate over
long distances and with great autonomy. In parallel systems, the computers (called processors
in this context) cooperate closely, generally executing different parts of a single program.

One reason to solve a problem with multiple processors, rather than a single processor, is to
get high performance. The performance of a computer system is the speed with which it
returns answers, and the efficiency with which it uses computer resources such as computing
time and storage space. This research is motivated by an application that demands particularly
high performance from computers, namely computational science. Scientists in several fields
have identified “grand challenge” problems, whose solution depends in part on improvements
in computing performance [27]. Parallel computers and software are being intensively studied
as a way to get the necessary performance. In scientific parallel programs, which have severe
performance requirements, “performance bugs” -- programming mistakes that make a pro-
gram slow or inefficient -- attract a good deal of attention. Consequently, the job of the paral-
lel programmer includes performance debugging - finding and repairing performance bugs.

This paper describes research to understand and improve the process of performance debug-
ging in parallel scientific programs. The research focuses specifically on the problem of locat-
ing and explaining performance bugs, which I call performance diagnosis. Expert parallel
programmers often improve program performance enormously by running their programs
experimentally on a parallel computer, then interpreting the results of these experiments to
suggest changes to the program [9], [14]. Researchers in parallel computing have developed
integrated suites of computer programs (called performance diagnosis systems in this paper)
to collect and analyze performance data from performance experiments. However, perfor-
mance diagnosis systems are not extensively used. Many obstacles prevent performance diag-
nosis systems from escaping research into practice [23], [28]. Two obstacles in particular
motivate my current work:

1. Lack of theoretical justification. Researchers lack a theory of what methods work, and why.
There is no formal way to describe or compare how expert programmers solve their perfor-
mance diagnosis problems in particular contexts. There is no standard theory for under-
standing diagnosis system features and fitting them to the programmer’s particular needs.
As a result, researchers cannot easily compare and evaluate the systems they produce, and
many potential users do not find systems that are applicable to their performance diagnosis
problems.



2. Conflict between automation and adaptability. Performance diagnosis systems are not eas-
ily adaptable to new requirements. Highly automated systems, while providing consider-
able help to the programmer, are hard to change, hard to extend, and hard to combine with
other systems [1]. As a resuit, programmers must do considerable work (re)programming
systems, or converting data between systems, if existing automated systems do not fit their
requirements. In fact, programmers generally ignore systems that do not fit their needs
exactly. Instead, they collect and analyze data manually [28], or construct custom systems
for their own projects [8].

Both of the obstacles above, I believe, could be mitigated by a formal theory of performance
diagnosis processes. Such a theory should be able to describe how programmers solve prob-
lems, and how diagnosis systems help or hinder them. The theory could be used by research-
ers to systematically compare and evaluate performance diagnosis systems. In addition, the
theory could be used to create automated performance diagnosis systems that are adaptable to
particular requirements.

The research discussed here will make two contributions to the fields of software engineering
and parallel computing. First, it will develop and evaluate a formal theory of parallel perfor-
mance diagnosis, by applying models of diagnosis developed in the field of artificial intelli-
gence. Second, it will develop and evaluate a novel diagnosis system that is both automated
and adaptable. This will be a first step toward more usable, effective diagnosis systems.

1.1 Problem definition.

I first present a hypothetical example of scientific programming on a parallel computer. This
will allow me to clearly define the research problem, and to give the reader enough informa-
tion about parallel programming to understand issues that arise later. The programmer in the
example must write a program that correctly and efficiently simulates an interconnected sys-
tem of brain cells (a neural ner) behaving according to some scientific theory. Large neural
nets must be simulated over many different experimental conditions, so the programmer turns
to a parallel computer. To translate the scientific theory into a parallel program, the program-
mer must make numerous decisions. In the neural net example, for instance, the programmer
must decide:

» How should the state of the neural net be represented as numbers?

* How should the neural net be divided up for simulation by processors?

* What protocol should processors follow to obtain sirnulation work?

Performance diagnosis guides the programmer to bad decisions made during programming.
By finding and explaining the chief performance problems of the program, the programmer
determines which decisions had the worst performance effects, and how those effects might

be repaired. As an example of performance diagnosis, suppose that the programmer is study-
ing the performance of the neural net program. The programmer runs the program, and finds



that processors are idle much of the time. The programmer forms a hypothesis: there is a load
imbalance. Some processors have more simulation work than others, so some processors are
wasting time waiting for the overloaded processors to finish. This does not tell the program-
mer which decision should be changed, however. The programmer hypothesizes that the load
imbalance is caused by the protocol that processors follow to obtain simulation work. This
hypothesis implicates a particular decision -- the choice of work distribution protocol -- and
thus constitutes a useful diagnosis if it can be confirmed. The programmer changes the proto-
col and observes significantly improved load balance, confirming the hypothesis.

Given this example, I now (re)define some terms. During performance diagnosis, the pro-
grammer decided which performance data to collect, which features to judge significant,
which hypotheses to pursue, and what confirmation to seek. I define a performance diagnosis
method to be the policies used to make such decisions. In these terms, a performance diagno-
sis system is a suite of programs that automatically supports some diagnosis method. The
research problem is to define a theory of performance diagnosis methods, and to use that the-
ory to create more automated, adaptable performance diagnosis systems.

1.2 Research approach and thesis statement.

To develop a theory of performance diagnosis, I have turned to problem-solving models from
the field of artificial intelligence. Specifically, I have turned to the model of heuristic classifi-
cation [5]. The first claim of the research is that a theory based on heuristic classification can
effectively explain existing performance diagnosis systems and the way they are used.The
theory has been used to characterize published case studies of performance diagnosis, provid-
ing initial validation of this claim.

Work in artificial intelligence has also focused on techniques to create adaptable, effective
problem-solving systems {4], [22]. I have synthesized and extended several of these tech-
niques in the design of a novel performance diagnosis system called Poirot. Poirot will
encode, in a computer-interpretable form, the theory of performance diagnosis that this
research develops. This will allow Poirot to automate many aspects of performance diagnosis,
while remaining adaptable to changes in parallel computer, program, or programmer. I have
initially validated this claim, by showing how Poirot could rationally reconstruct or reproduce
a set of existing performance diagnosis systems.

The thesis statement below summarizes the research approach:

A classification model of problem-solving is a sound basis for a theory of performance diagnosis,
and for an automated, adaptable performance diagnosis system.

This paper describes current results, remaining work, and future work in support of this thesis.
Section 2 presents current results and remaining work on the theory of performance diagnosis.
Section 3 does the same for the diagnosis system, Poirot. Section 4 discusses future work on
both of these topics.



2.0 A theory of performance diagnosis

To attack the first obstacle to performance diagnosis systems, lack of theoretical justification,
this research develops a “knowledge-level” theory of performance diagnosis [26]. A knowl-
edge-level theory of performance diagnosis must answer the question, “What knowledge does
a programmer use to choose actions to meet performance diagnosis goals?” The theory here
breaks the question down into two parts: (1) What methods do expert programmers use? (2)
How can we rationalize the programmer’s choice of methods? I have reconstructed or
“reverse engineered”’ some answers to these questions from a survey of research papers on
performance diagnosis systems, and from the case studies that appeared in those papers. The
goal was to find methods and rationale that cut across a substantial number of diagnosis sys-
tems. Each performance diagnosis system was viewed as a collection of methods for system
for heuristic classification. Similarities among systems were analyzed to identify general
methods, and differences among systems were studied to extract rationale.

The result of the survey is a rationalized taxonomy of performance diagnosis systems, a sys-
tematic description of what methods performance diagnosis systems use, and why they use
them. This section explains how heuristic classification was used to generate this performance
diagnosis theory, summarizes the theory, and identifies remaining work to validate the theory.

2.1 Heuristic classification in performance diagnosis

Heuristic classification is a way to solve problems by matching them to previously stored
solutions. Clancey [5] identified heuristic classification as a critical process in many expert
systems, computer programs that solve knowledge-intensive problems. Figure 1 depicts heu-
ristic classification applied to performance diagnosis. Heuristic classification solves problems
by looking up a solution in an exhaustive solution space. In the central step of heuristic classi-
fication, heuristic match, the problem solver matches the problem at hand (the case) to a
stored solution in the solution space, based on the cases’s essential aspects or features. For
diagnosis, the solution space is the set of all hiypotheses that could explain observed perfor-
mance. The features of the case are extracted from raw information (data) by a process called
abstraction. The solution selected by heuristic match is refined to fit additional features of the
case. Abstraction, heuristic match, and refinement do not need to occur in any fixed order. The
way the three processes are ordered or combined constitutes the strategy of the problem-
solver.

One can see the basic elements of the heuristic classification model -- heuristic match, abstrac-
tion, refinement, and strategy in the example scenario of section 1.1. In that scenario, the pro-
grammer hewristically matched the essential features of the program’s behavior to a well-
known class of performance problem (load imbalance) that could explain those features. The
features were abstracted from the run space of the neural net program, the space of perfor-
mance data from all possible program runs. Abstraction involved computing summary data
(such as total idle time) from a typical run. The generic hypothesis, load imbalance, was



refined into a more detailed explanation of the program’s behavior (the poor work distribution
protocol). The programmer’s strategy was to perform abstraction, arrive at an initial hypothe-
ses, refine that hypothesis, and then do diagnosis to confirm that hypothesis.

FIGURE 1, Heuristic classification in performance diagnosis.
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2.2 Theory summary.

Table 1 lists a set of performance diagnosis systems that were re-examined as heuristic classi-
fication systems. Tables 2 through 5 summarize the methods identified for each element of
heuristic classification. The most interesting point simply that many methods are shared
across systems. A relatively large sample of performance diagnosis systems produces rela-
tively few methods, if one examines how performance diagnosis systems do heuristic classifi-
cation, as opposed to how they and their supporting software are implemented.

TABLE 1. Performance diagnosis systems surveyed.

System Paper | System Paper
AIMS [33] Paragraph [15]
ATExpert [19] PPP (Parallel Performance Predicates) [6]
ChaosMon [20] PTOPP (8]
IPS-2 [24] Quarnz (2}
MTOOL [14] SPT [31]
Paradyne (Performance Consultant) [18]

The survey attempted to discover the rationale for diagnosis systems, the design goals that
why explain why a diagnosis system adopts a particular method. As an example, I note that
the goals on which systems disagreed most were precision, accuracy, and cost. In performance
diagnosis, precise performance data allow one to more exactly and quickly check hypotheses.



However, data can be too precise; collecting data alters the behavior of the program being
diagnosed, so excessive data collection leads to inaccurate results. Excessive precision can
also impose large costs and turnaround times for data analysis and presentation, which may
slow the diagnosis process overall. The part of heuristic classification most affected by these
considerations was abstraction, particularly abstraction of time from runs. Systems whose
designers were intolerant of cost and inaccuracy used time-summarized measures of program
performance, while systems concerned with precision provided displays exhibiting behavior
across time. A middle ground was provided by systems such as ChaosMon and AIMS. Those
systems summarized behavior over time except when a hypothesis was matched in heuristic
match; those systems would then enable collection of data for temporally distributed displays

TABLE 2, Hypothesis spaces.

Heuristic Match
What is the hypothesis (solution) space?

What is the fault taxonomy?

- Programming modelfarchitecture-determined faults (ATExpert, MTOOL, PPP, Paradyne, Paragraph,
PTOPP, Quartz, SPT)

- Algorithm-specific faults (ChaosMon, Quartz, PPP)
- Not specified/Unclear (IPS-2)

‘What is the component structure?
- Invocation structure (AIMS, ATExpert, IPS-2, MTOOL, Paradyne, PTOPP, Quartz, SPT)
- Process/thread structure (AIMS, IPS-2, MTOOL, PPP, Paradyne, Paragraph, Quartz)
- Phases (ATMS, ChaosMon, IPS-2, Paragraph)

‘TABLE 3. Methods of hypothesis retrieval.
Heuristic Match
How are features used 1o retrieve the most significant hypothesis?
- Direct measurement (all).
- Perturbation (PTOPP, SPT).
- Conflict detection (ATExpert, MTOOL).

TABLE 4. Methods of abstraction.

Abstraction
How are features abstracted from individual runs?
- Profiles (ATExpert, IPS-2, MTOOL, PPP, Paradyne, PTOPP, Quartz)
- Time histograms (AIMS, ChaosMon, IPS-2, Paradyne, Paragraph)
- Trace displays (AIMS, ChaosMon, IPS-2, Paragraph)
How are features abstracted across runs?
- Speedup profiles (MTOOL, PPP, PTOPP)
- Response metrics (PTOPP, SPT)

The survey also shed some light on the lack of adaptability of performance diagnosis systems,
by analysis of the sources of knowledge in those systems. For example, consider the solution
space required by heuristic classification. How can it be practically enurmerated for perfor-



mance diagnosis, when, in principle, every performance bug in every possible parallel pro-
gram must be covered? The surveyed diagnosis systems solve this problem by restricting their
hypothesis spaces. In particular, most systems deal only with types of performance problems
that are characteristic of a particular programming language and parallel computer architec-
ture. Only a few systems attempt to systematically support program-specific hypotheses, and
only ChaosMon and PPP support custom or user-defined hypotheses. This observation
explains the lack of adaptability of many diagnosis systems -- in order to have a small hypoth-
esis space, they commit to a limited target computer and language.

TABLE 5. Methods of refinement.

Refinement
How are hypotheses explained by program behavior at the appropriate level of system description?
- Source analysis (AIMS, ATExpert, IPS-2, MTOOL, PTOPP, Quartz, SPT)
- Syncrhonized trace analysis (AIMS, Paragraph)
- Linked explanations {AIMS, ATExpert, ChaosMon, Paradyn, Paragraph)

TABLE 6. Characterizing strategies.

Jrategy

To what extent is diagnosis data-driven (vs. hypothesis-driven)?
- Data-driven (ATExpert, IPS-2, PPP, PTOPP, Paragraph, Quartz)
- Phased (MTOOL, SPT)
- Predicate (AIMS, ChaosMon)
- Hypothesis-driven (Paradyne)

To what extent is diagnosis performed onling (vs. offling)?
- Offline (AIMS, IPS-2, Paragraph)
- Online abstraction, offline match (ATExpert, MTOOL, PPP, PTOPP, Quartz, SPT)
- Online predicate (AIMS)
- Online (ChaosMon, Paradyne)

2.3 Remaining work

The theory provides novel framework for characterizing and comparing performance diagno-
sis systems, and systematically organizes the knowledge that performance diagnosis systems

use. However, the theory is based on case studies reported by performance diagnosis research-
ers, rather than directly by scientific programmers. These case studies may not accurately rep-
resent scientific programming problems. I am currently seeking additional case studies from
developers of scientific applications [21]. Also, the theory developed so far is insufficiently

formal to make testable predictions about performance diagnosis processes. My approach to
formalizing and validating the theory is to build it into a computational model -- the Poirot

diagnosis system -- and demonstrate that the model can competently solve performance diag-
nosis problems. The next section describes Poirot and the work intended for it.




3.0 Poirot: an architecture for performance diagnosis

In this section, drawn partially from [17], I sketch Poirot, a performance diagnosis system
based on the theory discussed above. Poirot is designed to overcome the second obstacle to
acceptance of diagnosis systems: their poor combination of automation and adaptability.
Existing performance diagnosis systems go to one of two extremes (Figure 2). Integrated sys-
tems aim for high automation by committing to a particular performance diagnosis method,
and to programs for performance data collection, analysis, and presentation (fools) that are
specialized for that method. However, as discussed in section 2.2, the method and tools are
unlikely to be effective outside of a natrow range of parallel computers, programs, and pro-
grammers; integrated diagnosis systems are therefore not adaptable. In reaction, some
researchers have developed toolkits, which supply a general set of tools, and a programming
system for combining tools [25], [30]. However, toolkits sacrifice automation; the program-
mer must decide on a performance diagnosis method and write additional programs to carry it
out.

FIGURE 2, Integrated and toolkit performance diagnosis systems.
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Poirot offers a third alternative (Figure 3). The programmer using Poirot neither accepts a
canned method, as in integrated systems, nor builds a custom method from scratch, as in tool-
kits. Instead, the programmer defines policies, which are interpreted by Poirot’s problem-
solver to choose a performance diagnosis method. The programmer also helps Poirot use
whatever tools are available, by extending Poirot’s environment interface. This section
explains how Poirot works, presents evidence of its feasibility, and identifies additional work
to implement and evaluate it.

3.1 Overview of Poirot

Poirot is an extension and redesign of the Glitter system [11]. It consists of a problem solver,
and an environment interface. The problem-solver selects and carries out performance diagno-
sis actions. It is guided by a formal encoding of the theory of performance diagnosis, which
supplies multiple performance diagnosis methods and their rationale. The problem-solver



does not, however, interact with tools directly. Instead, it performs abstract diagnosis actions
that are translated into commands by the environment interface.

FIGURE 3. Overview of Poirot.
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The problem solver is the most novel component of Poirot. It is a knowledge-based system;
which means that it is structured around a program called the engine, which carries out
instructions in a knowledge base. The knowledge base is divided into two parts, the method
catalog and the control knowledge. The method catalog encodes methods from the theory of
performance diagnosis. The control knowledge encodes the rationale of these methods, along
with the programmer’s preferences for method selection.

The method catalog is an indexed library of performance diagnosis techniques. Each method
in the catalog is effectively a small program that accomplishes a particular performance diag-
nosis task.The task is called the method’s goal. Each method has a body that gives a list of
diagnosis actions for accomplishing its goal. The actions in a method body fall into two types:

1. An action can start some subtask required to accomplish the method’s goal (post a sub-
goal).

2. An action can send a command via Poirot’s environment interface (apply a transforma-
tion). This is how Poirot can carry out low-level actions (called rransformations) such as
program instrumentation on behalf of the user. In some cases, applying a transformation
will simply ask the user to supply some information or to take some action.

The engine of Poirot chooses and executes methods. The programmer supplies an initial diag-
nosis goal, which represents some diagnosis task to perform. The engine then retrieves meth-
ods indexed to that goal, selecting among alternative methods based on the control
knowledge. The engine carries out the actions of the method’s body in sequence. If actions
post subgoals, the engine chooses one of the subgoals (again using control knowledge),
retrieves methods indexed to that subgoal, and repeats the cycle. The engine halts when all
goals have been accomplished. It interrupts the cycle when it cannot proceed due to a gap in
the knowledge base or environment interface. In such cases, the programmer fills the gap, by
supplying missing information or by performing some diagnosis action manually.

Diagnosis actions send commands to tools via the environment interface. The environment
interface consists of a set of transformations that represent primitive diagnosis actions, and a



database that represents stored performance data and program versions. The purpose of the
environment interface is to support adaptable diagnosis, by separating diagnosis methods
from the software that support those methods. It specifies transformations in terms of their
effects on the high-level database. Methods can thus apply transformations and track their
effects without knowing what commands are sent to tools, or how data and programs are
stored in files. As a result, general methods can be adapted unchanged to new tools. One can
reuse knowledge about what steps to take in performance diagnosis in contexts where how
those steps are taken differs significantly.

3.2 An example

I briefly illustrate the operation of Poirot on an example. The programmer in the example is
looking for performance problems in the neural net simulation program, which is called nnet.
The programmer has added information on available tools to the environment interface, and
specified the control knowledge as a set of rules for selecting goals and methods (Figure 4).
Rule 1 selects the overall method for performance diagnosis, an implementation of heuristic
classification called “‘Establish-Refine” [3]. The Establish-Refine method has two subgoals,
establish (establish a hypothesis) and refine (refine a hypothesis). Establishing a hypothesis
means finding evidence for the hypothesis; in terms of heuristic classification, this means
doing abstraction and heuristic match to check whether the hypothesis is valid for the pro-
gram. Refining a hypothesis, as in the heuristic classification model, means generating the
possible explanations for that hypothesis. Each explanation generated is itself a hypothesis,
which is then processed in its turn by the Establish-Refine method.

FIGURE 4. Control knowledge for neural net example,

1. Use "Establish-Refine"” method for diagnose goals

2. Key hypotheses have the form "Unknown fault in subroutine C", where C is one of (nnet, init, pats, train,
acls, wis).

3. Use "Speedup” method to establish key hypotheses

4. Add measurements to previously planned experiments rather than create new experiments.

5. Plan all experiments concemning key hypotheses before running any such experiments.

Figure 5 shows a trace of the goals and methods processed during the initial part of a diagno-
sis session. In Figure 5, goals are boldface, the methods proposed for a goal are indented
below the goal, and the subgoals posted by a method are indented below the method. An
asterix marks methods chosen and goals solved during the scenario. The programmer initiates
diagnosis by manually posting a goal diagnose(h0), where h0 is a hypothesis stating “There is
an unspecified performance problem in the main program (nnet)”. The engine selects “Estab-
lish-Refine”, which posts its subgoals. The establish subgoal is processed first; the engine
retrieves two methods, “Speedup” and “TotalTime”. Each method represents a way to gather
evidence for performance problems in nnet; measure its run time with increasing numbers of
processors, or simply measure its run time for comparison to the programmer’s expectations.
Rule 3 causes the engine to select the *Speedup” method. That method sets up an experiment
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to measure the speedup of the program as a whole. The experiment does not run, however.
Rule 5 defers the experiment until the goal refine(h0) has been processed. This goal leads to
the posting of diagnose goals for the subprograms init, pats, and train, initiating Estab-
lish-Refine three more times (not shown). The effect is to add the three subprograms to the
speedup experiment. Finally, the experiment runs and the results are presented to the user.

FIGURE 5. Goal-Method-Subgoal trace of example.

diagnose(hO="fault=unspecified, component=nnet"} *
Establish-Refine *
establish(h0) *
Speedup *
plan_speedup(h0) *
CreateSpeedup *
apply(createSpeedup(h0)) *
apply(instrumentTime{component(h()))
run_speedup(hi)
assess_speedup(h0)
TotalTime
refine(h0)
RefineFault
RefineComponent *
apply(findParts(component(h0))) *
diagnose{fault=unspecified, component=init)
diagnose{fault=unspecified, component=pat s)
diagnose(fault=unspecificd,component=train)

The preceding scenario illustrates two features of Poirot. First, Poirot can potentially make the
diagnosis process highly automated. Even if the programmer carried out all the steps corre-
sponding to transformations, Poirot still helps organize the diagnosis process; the goal/sub-
goal structure serves a form of “to-do™ list, while the database keeps track of performance data
and their functions in the diagnosis process. If most transformations have automated imple-
mentations, then Poirot can perform works autonomously, guided only by the conirol knowl-
edge.In addition, Poirot achieves automation adaptably. The programmer can change Poirot’s
diagnosis method relatively easily, by changing control rules. Poirot separates methods from
the tools via the environment interface, so most of the methods in the example scenario could
be adapted to other tools by changing only the innards of the transformations.

3.3 Feasibility

The previous section showed that Poirot can diagnose performance automatically and adapt-
ably. However, there are some practical obstacles. To support diagnosis in diverse contexts,
numerous methods and control strategies must be encoded in the knowledge base, and numer-
ous tools and file formats must be linked to the environment interface. I claim that Poirot can,
in fact, be made practical, by reusing knowledge across multiple contexts. To demonstrate
this, one can assess how Poirot could rationally reconstruct several published performance
diagnosis systems. In rational reconstruction, one shows how Poirot can formally encode a
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system, mimic the problem-solving of that system on a well-defined external interface, and
produce comparable results. If Poirot can rationally reconstruct diverse systems without
wholesale changes to the knowledge base and environment interface, this suggests that it may
be made practical. One could develop a single, core version of Poirot, that a programmer
could incrementally modify for a particular set of requirements.

Table 7 summarizes the changes a programmer would have to make to Poirot to implement
three performance diagnosis systems that appeared in section 2.2, The table assurnes a version
of Poirot that could automatically perform the scenario of section 3.2. To summarize, the sys-
tem Paradyne implements exactly the Establish-Refine method of diagnosis, with refinement
to several kinds of program components and phases. Both Paradyne and ChaosMon establish
hypotheses on-line, during a run of the program, they differ only in that ChaosMon is continu-
ally attempting to establish all hypotheses in the hypothesis space, while Paradyne establishes
only selected hypotheses. PTOPP differs significantly from these two systems, but still reuses
the “Establish-Refine” and “Time Profile” methods from the example scenario.

TABLE 7. Reconstruction of three diagnosis systems.

Paradyne ChaosMon PTOPP

Add method for establish that Add method for establish goals | Add method for establish that
evaluaies hypotheses on-line. that evaluates hypotheses on- uses perturbation. Add transfor-
Add transformations to collect line. Add transformations to col- | mations for PTOPP’s perturba-
and interpret on-line time histo- | lect and interpret on-line metric | tions.

grams. histograms. Add methods for refine that
Add methods for refine that Add a method for refine that refine hypotheses to loops.
refine hypotheses 1o processes, queries the user for application- | 44 control rules for initial
synchronization objects, and specific hypotheses and adds establish with time profiles.
phases. them to the database. High-scoring loops become key
Add control rules for depth-first | Add control rules for exhaustive | hypotheses as in example sce-
search, on-line establish, Para- | search, on-line establish. nario.

dyne “hinis”.

The results of these cursory reconstructions are encouraging. There is substantial sharing and
reuse of knowledge among the method catalogs of the three reconstructed systems. There is
also some reuse of environment interface components and control rules among the three sys-
tems. Most of the effort in reconstructing the three systems is confined to the control knowl-
edge and the environment interface. A core knowledge base and environment interface might
therefore suffice to make Poirot practically adaptable in diverse contexts.

3.4 Summary and remaining work.

Poirot’s is a novel diagnosis system, although it is grounded in previous work in parallel pro-
cessing and artificial intelligence. Poirot will be developed into a working program, to vali-
date its design and the theory of performance diagnosis that underlies it. This validation will
take place in two phases. In phase 1, Poirot will be used to diagnose multiple test programs for



two different platforms (parallel computers and programming languages). The test programs
will have known performance bugs on the two platforms; the task of Poirot will be to find
these bugs. Poirot will operate as an advisor, suggesting diagnosis actions to the experimenter,
who will carry out the suggested actions and report results. Durmg phase 1, Poirot will be
evaluated on two dimensions:

1. Competence. How useful is the guidance Poirot provides to the experimenter? How much
control knowledge must be added to find performance bugs autonomously?

2. Cost. How much knowledge must be added to Poirot to get competence on a new platform,
given that Poirot has achieved competence on a previous platform?

In phase 2, the experiments of phase 1 will be repeated, but Poirot will now interact directly
with data collection and analysis tools. In this phase, Poirot will be judged on slightly differ-
ent criteria:

1. Cost. How much must be added to the environment interface of Poirot to link it to a plat-
form? How much of the interface must be changed when Poirot is moved to a new system?

2. Automation. How many manual steps can Poirot replace, given a particular environment
interface? How does Poirot’s time-to-solution and error rate compare with manual opera-
tion?

High competence and automation in these experiments will demonstrate the validity of the
theory of performance diagnosis Poirot embaodies. If that competence and automation can be
obtained at a reasonable cost, this will demonstrate Poirot’s practical adaptability and validate
its design.

4,0 Conclusions and Future Work

This research is developing a novel, knowledge-level theory of expert performance diagnosis.
It will validate that theory both by further examination of case studies, and by direct testing of
Poirot, a computational model. Poirot is also a performance diagnosis system, constructed on
novel principles. The research will evaluate the ability of Poirot to competently and cost-
effectively automate performance diagnosis in contexts more diverse than existing perfor-
mance diagnosis systems.

The anticipated results have obvious limits that future work should target. There are at least
two points on which the theory of performance diagnosis outlined here fails. Such failures do
not render the theory valueless: it is incomplete, but it is sufficiently detailed and explicit that
one can say how it is incomplete. The first failure concerns clustering of components. In
Clancey’s original framework, the hypothesis space is pre-enumerated both in the sense that it
is entirely determined before reasoning begins, and in the sense that it is not case-specific.
Neither statement is true for performance diagnosis. In one case study, for example [14], a
programmer notes that certain subprograms are sufficiently alike in structure and behavior,
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that the most time-intensive member of the set can be diagnosed, and the others assumed to
operate similarly. This represents a clustering of the solution space, lumping multiple hypoth-
eses into a single hypothesis based on the facts of the specific case. As such, it does not fit the
model of heuristic classification that underlies the present theory.

In addition, many diagnoses concluded in case studies appear difficult to anticipate and store
in advance, as required by the theory. For example, in another case study [32], the program-
mer identifies unexpected delays in a sequence of program events. The key word is “unex-
pected” -- the programmer has expectations of how the sequence of events should play out,
and those expectations are specific to the case (program). With the exception of ChaosMon,
none of the surveyed systems provide systematic support for detecting violations of case-spe-
cific expectations of behavior, and even the facilities of ChaosMon provide limited support for
checking sequences of events. Performance diagnosis research may have to recapitulate diag-
nosis research in Al, and turn increasingly to “first principles” models of structure and behav-
ior [7].

Future research will extend the theory of performance diagnosis to fill these gaps. Future work
is also needed to extend the theory beyond performance bugs in parallel systems to similar
bugs in distributed systems [16], and to validate the theory by direct observational studies of
working programmers. With such a theory in hand, researchers may be able to close the gap
between current performance diagnosis systems and their potential users.
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