Toward Empirically-Based Software
Visualization Languages

Sarah Douglas, Christopher Hundhausen
and Donna McKeown

CIS-TR-95-12
May 1995

Department of Computer and Information Science
University of Oregon

Toward Empirically-Based Software Visualization Languages

Sarah Douglas', Christopher Hundhausen', and Donna McKeown*
'Computer & Information Science Dept.
*Psychology Dept.
University of Oregon
Eugene, OR 97403
{douglas, chundhau } @cs.uoregon.edu, donna@dynamic.uoregon.edu

Abstract

Single-user saftware visualization (SV) systems purport to
empower people without expertise in graphics program-
ming to develop their own visualizations interactively,
and within minutes. Underlying any single-user SV sys-
tem is a visualization language onto which its users must
map the computations they would like to visualize with
the system. We hypothesize that the usability of such
systems turns on their ability to provide an underlying
visualization language that accords with the ways in
which their users conceptualize the computations 1o be
visualized. To explore the gquestion of how to design
visualization languages grounded in human conceptuali-
zation, we present an empirical study that made use of a
research method called visualization storyboarding to
investigate the human conceptualization of the bubble-
sort algorithm. Using an analytical framework based on
entities, attributes, and transformations, we derive a se-
mantic-level visualization language for bubblesort, in
terms of which all visualizations observed in our study
can be expressed. Qur empirically-based visualization
language provides a framework for predicting the us-
ability of the visualization language defined by Lens
[11,12}, a prototypical single-user SV system. We draw
from a follow-up usability study of Lens to substantiate
our predictions,

1 Introduction

Predicated on the intuitive idea that a mapping be-
tween an executing program and computer graphics can
give one insight into the program’s dynamic behavior,
computer-based software visualization (SV) systems pro-
vide techniques for facilitating four central activities in-
volving that mapping: its (1) design, (2) specification,
(3) observation, and (4) interactive exploration. Early SV
systems such as Balsa [2] and Tango [17] defined system
user models in which different actors performed those
activities. In the Balsa model, for example, client pro-
grammers—algorithmaticians and animators—were re-
sponsible for designing and specifying the algorithm-to-

graphics mapping, whereas the end users—script authors
and script viewers—actually observed the mappings (see
Figure 1). Although, in theory, the same person could
have assumed all four roles, in practice they were played
by different people, and at different times.

Algorithm Programmer
Animation e Interface
Environment

End Users
Script Authors
Script Viewers

Client Programme:
Algorithmaticians
Animators

Figure 1. Traditional SV system user model, as defined by
the Balsa system

That division of labor can be largely attributed to the
sharp difference in the levels of expertise that the Balsa
system demanded of client programmers and end users.
Because they needed 1o possess a detailed knowledge of a
low-level graphics system, client programmers required a
much higher level of expertise than end users, who re-
quired no knowledge whatsoever of either the program or
the techniques used to animate it, in order to work with
the Balsa system. Such a conceptual model, which en-
courages SV's central activities to be conducted by differ-
ent people, and at different points in time, has been the
dominant SV system paradigm for nearly a decade.

Motivated by a desire to bridge the gap between client
programmer and end user—ihat is, to empower those
without low-level graphics programming skills to rapidly
prototype their own visualizations—SV researchers have
begun to explore ways of realizing an alternative SV
meodel, in which SV's central activities can be undertaken
by the same person (see Figure 2). Recently, Mukherjea
and Stasko [11,12] developed the first system to adopt
such an alternative conceptual model. Their Lens system
defines an interactive environment into which an algo-
rithm written in C may be loaded. Using a combination

of dialog box fill-in and direct manipulation, Lens users
can interactively specify their own mapping between the
algorithm (which runs as a separate process under the
contrel of the dbx debugger) and graphics. At any point
in the process, users can choose (0 run the algorithm and
observe the visualization they have defined.

Interactive
Software
Visualization
Environment

Figure 2. The single user SV system user model

Notice that, from the perspective of the system user,
at least three activities are involved in the process of
visualization programming under the single-user SV

paradigm:

(1) the conceptualization of the computation and its
representation, both in terms of pseudocode or a
specific programming language, and in terms of
a mental visualization;

(2) the mapping of that conceplualization to the
visualization language defined by the system;
and

(3) the manipulation of the 8V system’s user inter-
face to program the visualization.

Thus, any single-user SV system must define a visualiza-
tion language onto which computations to be visualized
with the system must be mapped.

The central hypothesis of our work is that the usability
of computer-based SV systems—and, in particular, those
that assume the single user model—turns on their ability
o offer a visualization language that accords with the
ways in which humans conceptualize the computations to
be visualized with the systems. The goal of our research
is two-fold: (1) to explore methods for designing SV lan-
guages grounded in empirical studies; and (2) 1o substan-
tiate and refine our hypothesis by integrating empirically-
based SV languages into single-user SV systems and
conducting further empirical studies.

In this paper, we present our foray into (1). We begin,
in Section 2, by describing an empirical study that makes

use of a research technique called visualization story-
boarding to explore human conceptualization of the
bubblesort algorithm. In Section 3, we present an ana-
Iytical framework that allows us to formulate a semantic-
level visualization language for bubblesort based on cur
study. In Section 4, we demonstrate the utility of the
approach by showing how the language can be used to
evaluate the usability of SV systems, using a follow-up
study we conducted with the Lens software for supporting
evidence. Section 5 surveys related work. We conclude,
in Section 6, by identifying several directions for future
research.

2 An empirical study of the human concep-
tualization of bubblesort

In this section, we introduce a research method called
visualization storyboarding, and we describe an explora-
tory study that made use of the method to investigate the
ways in which humans visvalized the bubblesort algo-
rithm. See [5] for a more thorough treatment of the study.

2.1 Method: Visualization storyboarding

How does one empirically study human conceptuali-
zations of computer programs independently of com-
puter-based technology? We see at least two require-
ments for the medium employed by the empirical method.
First, the medium must be dynamic; that is, it must be
flexible enough to express the constantly-changing form
that human visualizaticns are likely to take on. Second,
since we are interested in allowing humans to express
their conceptualizations in the most natural way possible,
the medium sheuld be one with which humans are famil-
iar and comfortable; it should support, and not be an im-
pediment te, the expression of their ideas,

Based on the sloryboarding technique introduced by
the animation industry in the 1930s, visualization story-
boarding takes advantage of the familiarity and dyna-
mism of art supplies and human conversation to create a
situation in which humans can describe computer pro-
grams naturally. Two person teams are provided with a
full spectrum of colored construction paper, scissors, and
different colored pens; they are then asked to work to-
gether to describe a computer program to someone who
has never seen it. The resulting storyboard of the algo-
rithm's execution—a dynamic presentation consisting of
animated construction paper cut-ouls, drawings, conver-
sation, and gestures—is videotaped, becoming the em-
pirical data to be analyzed al a later time.

Visualizalion storyboarding applies two qualitative
research techniques—constructive interaction [10] and
conversational analysis [18}—to the situation of software

visualization design. By using two participants, con-
struclive interaction creales a situation of collaborative
problem solving in which each participant must inform
the other, in an explicit verbal and visual record, of
problems, causes, and solutions each has encountered.
To interpret participants’ interaction, we review the
videotapes of participant sessions using conversational
analysis techniques developed by Douglas [4].

2.2 Procedure

We videotaped three same-sex pairs of participants
(two consisting of women, one consisting of men) during
45 to 70 minute sessions. All participants were graduate
students in computer science at the University of Oregon,
and all reported that they understood the bubblesort al-
gorithm. Nonetheless, we provided participants with C
code for their reference (see Figure 3).

#include <stdio.h» I

main()

{
int n,i,3;
int temp;
int a[50]);

int count;

printf ("Input numher of elts in array\n®);
scanf{"%d",&n);

printf("Enter the elements\n*);
for (count=0; count<n; ++count)
scanf {"%d",ka[count]);

for (j=n=-2; j>»=0; --9)
for (i=0; i<=j; ++i)
if {a(i] > a[i+l])

{ temp = a(i);
ali) = a{is+1);
ali+l) = temp;

}

Figure 3, The C bubbiesort algorithm given to participants

After providing our pairs of participants with art
supplies, we presented them the following task: “If you
were to explain the bubble sort algorithm to someone who
had never seen it, how would you do it? Feel free to use
any of these resources (construction paper, scissors, etc.)
to assist you in your explanation.” If they decided to
design a visualization for a sample data set, we recom-
mended that they only step through a few of the iterations
for simplicity's sake.

2.3 Observations

All pairs of participants made extensive and intriguing
use of the art supplies with which we supplied them. In
fact, they all used the art supplies materials to create
homemade animations of bubblesort operating on a sam-

ple data set; they augmented their construction paper
animations extensively with their own gestures and
comments. Figures 4, 5, and 6 depict our participants’
storyboards. Note that, because they are static in nature,
these figures cannot do full justice to our participants’
dynamic presentations, which must be seen on videotape
to be appreciated. '

First Pass Second Pass
[10]sf20[4a] | 8 [10 {4 [0
[io]8f2o]4|
Le]w]20[4] v
I 8 l'ID |20 | 4 | Note: Patterns are

used here to
t th
| 8 | 10 I 2 i 4 | ;igggfighon:
C =red
(e [o[m]e] Gilexe
= green

Figure 4. The visualization trace created by the Number Pair
to demonstrate bubble sort

One pair, whom we shall call the Number Pair, used
numbers (e.g. 5, 4, 3) te indicate the magnitude of each
array element, and used color to illustrate significant
state changes (see Figure 4). They initially shaded all
elements in the array red to indicate that the elements
were unsorted. Each pass of the algorithm’s outer loop
was depicted as a column of rows. Successive horizontal
rows of array elements within a column corresponded to
successive passes of the algorithm’s inner loop. Within
each horizontal row, the two array elements compared
during that pass were shaded pink to indicate that they
had been compared. At the end of a pass of the algo-
rithm’s outer loop, the pair colored the element that had
reached its rightful place in the array green, and began a
new column for the next pass of the array’s outer loop.

Another pair, whom we shall call the Color Pair, used
color 1o indicate magnitude. The legend they constructed
(see the triangles at the top of Figure 5) defined a canoni-
cal (spectral) order for a five-element array. By illustrat-
ing the array after each successive pass of the array’'s
outer lcop, they demonstrated how the bubble sort
gradually placed an unsoried array into that order. Like
the first pair, this pair had built, by the end of the sort, &
history “array” of the sort; however, they depicted each
pass of the algorithm’s outer loop with row instead of a
column,

The third pair, whom we shall call the Football Pair,
also used color to denole magnitude (see Figure 6).

N E N
olors
EME W O~
= : [Black
I E N [=
s — [0S
ENDNDE O g
HEMDEO

re 5, The visualization trace created by the Color Pair to
demonstrate bubble sort

=1
‘e

However, color played only a secondary role in their
visualization, which drew extensively from concepts of
American football to depict various aspects of the algo-
rithm. Sorting elements were represented by football
players whose varying weights were represented by color,
as indicated by the legend. At the beginning of each pass
of the sort, the football was given to the first player in
line.

f\)‘

Goal

N
2 o
< ek

N

2

Figure 6, The visvalization trace created by the Football Pair
to demonstrate bubblesort

NN
N NN Ve
N NN N

The ball carrier and the player next in line symbolized
the two elements being compared at any given time. If
the current ball carrier weighed more than the next in
line, then the ball carrier knocked that player over,
thereby exchanging places with that player in the array.
If, however, the ball carrier weighed less than the next
player in line, the ball carrier fumbled the ball to the next

player, who then became the ball carrier. This process of
ball advancement continued until the ball carrier reached
the end of the line, whereupon a new pass of the sort
commenced.

3 Formulation of a semantic-level SV lan-
guage for bubblesort

In this section, we motivate an analytical framework
that provides a means for characterizing visualization
semantics, We then use the framework to derive a se-
mantic-level SV language, in terms of which all of the
bubblesort visualizations observed in our study can be
expressed.

3.1 Analytical framework

In deciphering the languages employed by our partici-
pants in their visualization storyboards, we find it useful
1o distinguish between two linguistic levels: lexical and
semantic. We use the lexical level to refer to the graphi-
cal vocabularies of their visualizations. In contrast, we
use the semantic level to refer to the meanings of ele-
ments in those graphical vocabularies.

At a lexical level, our participants’ visualization lan-
guages varied on three main fronts, First, they used
varying graphical entities. For example, the Number
Pair used numbers, the Color Pair used triangles and
squares, and the Football Pair used football players. Sec-
ond, the visualizations conveyed various kinds of infor-
mation by using different attributes of those entities. For
example, the Color Pair used color (o represent sorting
element magnitude; the Football Pair used the position of
a football to denote the two elements currently being
compared. Finally, the visualizations employed different
transformations among entities and attributes to convey
various kinds of information. For example the Number
Pair altered number square color to indicate comparison,
whereas the Football pair changed the location of the
football to indicate comparison.

Despite the lexical differences among our partici-
pants’ visualization languages, notice that they all en-
coded the bubblesort at a similar level of abstrac-
tion—one that conveys bubblesort’s overall functionality
in terms of a similar kernel of fundamental abstractions,
including sorting element, array of sorting elements,
comparison and exchange,

Given the three dimensions along which our partici-
pants’ visualization languages differed lexically, and
given that all of their visualizations portrayed bubble-
sort’s abstract functionality using a similar semantics, we
propose a framework for analyzing their visualizations
that characterizes them in terms of the (lexical level)

Semantics Number Pair Lexicon Color Pair Lexicon Football Pair Lexicon
Sorting element Square Square Stick Figure
Magnitude of element Number symbol Color Color (as weight)
Array of elements Contiguous row of squares Non-contiguous row of squares Contiguous row of figures
Inner loop pass history Rows of sorting elements — —_
Outer loop pass history || Columns of rows Rows of sorting elements Rows of sorting elements
Legend explicating or- — Triangles with color spectrum Column of color/player weight
dering on sott elements pairs

Table 1. Mappings between lexical entities and attributes of the human visualizations and their semantics

Semantics Number Pair Lexicon Color Pair Lexicon Football Pair Lexicon
DO outer loop Start new column of rows Create new row of squares | Create new row of football players
DO inner loop Creale new row of squares — —
a) Reference elements to be
compared Color elements pink — Location of football
b) Compare elements Intuitions about how player size re-
(same, <, >) — — lates to running, tackling, and fum-
bling
¢) Exchange elements Exchange numbers Exchange colors Ball carrier advances by tackling next

football player in line (thereby ex-
changing positions with that player)

d) Don't exchange elements —_

— Fumble football to next player in line

Terminate outer loop Color square in correct order
green — —
Terminate Sorting Ordering of natural numbers, | Color squares match leg- | Players ordered by weight

all squares green

end

Table 2. Mappings between lexical transformations of the human visualizations and their semantics

entities, attributes, and transformations by which they
represented bubblesort’'s (semantic level) abstract func-
tionality. As we shall see below, by using such a frame-
work, we uncover a strikingly similar semantics for the
visualization languages, allowing us to unify the lan-
guages at a semantic level.

3.2 Deriving a semantic-level SV language for
bubblesort

Table 1 summarizes the mappings between the lexical
entities and attributes created by each pair, and their un-
derlying semantics. For example, the Number Pair used
numbers in a row of contiguous squares to designate an
array. Notice that some semantic-level entities present in
a typical semantic-level pseudocode description of bub-
blesort, such as temporary storage and subscripts, were
not represented in our participants’ visualizations. Par-
ticipants perhaps believed that such entities would serve
to confound the abstract functionality that they were

striving to capture. Conversely, the color legend—used
by both the Color Pair and the Football Pair—cannot be
derived from the algorithm’s semantics. Instead, it is an
artifact of the visualization itself, most likely arising out
of a perceived need to explicate the ordering relationship
among graphical entities.

Table 2 summarizes the mapping between transfor-
mations crealed by each pair, and their underlying se-
mantics. For instance, the Number Pair used color to
indicate that two elements were being compared (the
elements turned pink), and to indicate a difference be-
tween sorted elemeats (which turned green) and unsorted
elements (red).

Derived directly from the analysis presented in Tables
1 and 2, the SV language presented in Table 3 unifies our
participants’ SV languages at a semantic level. While we
might have chosen to express that language using any
number of different formalisms, our analytical framework
lends itself naturally to expression in terms of abstract
data types {(ADTs), which capture the semantics

ADT Name Operations Semantics
Sorting_element | instantiate(magnitude) Create graphical appearance for element based on magnitude
compare_highlight() Graphically indicate a comparison involving this element
inorder_highlight() Graphically indicate that this element is now in its rightful place in
the sort array
mave(new=index) Move this element to location defined by new_index
Sort_array instantiate (array of integers) Create graphical appearance for sort array (facilitates data initiali-
2ation)
starr_outer_loop() Graphically indicate the beginning of a pass of the algorithm’s
outer loop
stars_inner_loop() Graphically indicate the beginning of a pass of the algorithm’s
inner loop
compare(elt!, elt2) Graphically indicate a comparison between elt] and elt2 by calling
on compare_highlight() operations of eltf and elr2
exchange(elt], elt2) Graphically indicate an exchange involving elr] and elf2 by calling
on the move(new_index) operations of elt! and elr2
no_exchange(eltl, elt2) Graphically indicate that there was no exchange involving elt] and
eli2
terminate_outer_loop(} Graphically indicate the end of a pass of the outer loop, possibly
callinE upon inorder_highlight
Legend instantiate(array of integers) Graphically explicate ordering on sort clements

Table 3. Semantic-level SV language for bubblesort in terms of ADTs

underlying our participants’ visualization languages, but
which intentionally hide the lexical details of their
graphical representation. Indeed, as we have seen, such
lexical details vary considerably depending on the people
doing the visualization.

In Figure 7, we use our ADT language in conjunction
with a procedural Pascal-like language to express all of
our participants’ visualizations as a common program.
Having provided, within our study, the lexical details of
how each operation manifests itself graphically, our par-
ticipants can thus be viewed as the implementors of the
ADTs used in that program,

4 Using semantic-level analysis to evaluate
existing single-user SV software

In this section, we demonstrate how the semantic-level
analysis introduced in the previous section can assist in
the evaluation of computer-based SV systems. Section 4.1
uses our framework to formulate hypotheses regarding
the usability of the bubblesort SV language provided by
Lens, a single-user SV system developed by Mukherjea
and Stasko [11,12]. In Section 4.2, we scrutinize our
hypotheses by drawing from an actual usability study we
conducted on Lens.

4.1 Analyzing the Lens SV language for bubble-
sort

Figure 8 presents the final frame of the bubblesort
visualization that one would typically define in Lens.
Array elements are depicted as sticks whose height corre-
sponds to magnitude. Two elements are flashed to indi-
cate a comparison, and smoothly change places to indi-
cate an exchange. An ascending row of sticks indicates
that the array has been sorted.

In Tables 4 and 5, we illustrate the manner in which
the semantic-level entities, attributes, and transforma-
tions identified in our empirical study map to the Lens
lexicon. As those tables indicate, the visualization lan-
guage defined by Lens accords quite well, at a semantic
level, with the visualization languages defined by our
participants; indeed, it provides support for depicling the
bubblesort in terms of a subset of the semantic-level ab-
stractions present in our semantic-level SV language.

Notice, however, that the Lens semantics does not
fully cover the semantics of the visualizations we encoun-
tered in our study. In particular, we can identify two
shoricomings. First, the Lens language supports no
means for maintaining a history of bubblesort's inner and
outer loops; instead, the array of sticks is initialized al the
beginning of the sort, and all passes of the sort are

VAR
a : ARRAY OF mrEéER;
le : lepand;
sa : sort_array;

i, 3, temp: INTEGER;

BEGIN (* Bubblesort *}
read data into a;
sa.instantiate(a);
la,instantiate(a)};
FOR j :=n - 2 TO 0 DO BEGIN

#a.staxt_ocuter _loop():

FOR i := 0 TO J DO BEGIN
sa.start_inner loop();
sa.compareii, i+1)

IF ali] » a[i+1) THEN BEGIN
sa.axchange(i, 1+1);
temp := a[i];
ali] := ali+1];
afi+l] := temp
END {* IF *}
ELSE
sa.no_exchange({l, i+l);
END (*inner FOR *)
END {* outer FOR *)
END; {* Bubblesort *)

Semantics Lens Lexicon

Initialize array magnitudes }| Create row of black sticks
{Done once per loop in

participant visualizations)

DO outer loop —

DO inner loop —

a) Reference elements ([Flash elements, or change fill
to be compared color

b) Compare elements —
(same, <, >)

€) Exchange elements [Exchange sticks

d) Don’t exchange _—
elements

Terminate outer loop —_

Terminate Sorting Sticks ordered by increasing

height or width

Figure 7. Expressing participants’ visualizations by annotat-
ing a procedural language with calls to the ADTs defined in
Table 3

performed on that same set of sticks. Here, it is impor-
tant to point out that the Lens interface does provide the
option of starting and stopping the visualization at any
point; thus, intermediate snapshots of the array can be
momentarily viewed, although they cannot be preserved
for later inspection. Second, the Lens language provides
no means for defining a legend for explicating the order-
ing on sorting elements.

Semantics Lens Lexicon
Sorting element Stick
| Magnitude of element Stick height or width
Amay of elements Non-contiguous row of sticks

Inner loop pass history —
QOuter loop pass history —
Legend explicating or- —
dering on sort elements

Table 4. Mappings between semantic-level entities and at-
tributes identified in our empirical study and the Lens lexicon

Table 5. Mappings from semantic-level pseudocode transfor-
mations to Lens visualization

Based our semantic-level analysis of the Lens 8V lan-
guage, we can make two hypotheses regarding its usabil-
ity:

Hypothesis I. Lens users will not have problems with
the semantics behind the lexical elements in terms of
which the abstract functionality of bubblesort can be de-
picted in Lens. Indeed, all of the semantic entities avail-
able in the Lens language are also in our semantic-level
SV language.

Hypothesis 2: Lens users will encounter two kinds of
usability problems with the Lens language stemming
from its failure to support two kinds of semantics present
in our semantic-level SV language: array history and
legends. Since the Lens language does not support the
former, we might expect Lens users to complain about an
inability to distinguish among intermediate passes of the
algorithm's loops. Since the Lens language does not
support the latter, we might expect Lens users to have
problems interpreting the target ordering of the array.

In the following section, we scrutinize these hypothe-
ses by considering a usability study we conducted on
Lens.

4.2 Using a follow-up usability study on Lens to
substantiate the hypotheses

Overview of study. Two pairs of students who par-
ticipated in the study presented in Section 2 went on to
program a visualization for bubblesort using Lens. Par-
ticipants were given a three page description of proce-

dural instructions for implementing a predefined visuali-
zation of bubblesort corresponding to the one described in
Section 4.1 (see Figure 8); we then asked them to use the
Lens software to program the visualization. As was the
case with our visualization storyboarding experiments,
both sessions were videotaped and later analyzed using
conversational analysis techniques developed by Douglas
[4]. See [8] for a more thorough treatment of the study.

NAGO

«

>

Fy

v

in_|
joax

-IlII

T e

Figure 8. The final frame of the standard bubblesort visuali-
zation in Lens

Observations relevant to Hypothesis 1. As hy-
pothesized, we observed that the overall usability of the
Lens language was quite good. By the time they had
watched the entire Lens visualization, both pairs of par-
ticipants clearly indicated that they grasped the mappings
between elements of the Lens lexicon and their underly-
ing semantics. Since there existed a good match be-
tween the underlying semantics of the Lens visualization,
and the semantics of the visualizations defined by our two
pairs of participants, the fact that the Lens visualization
used different lexical elements did not hinder our partici-
pants’ comprehension.

Observations relevant to Hypothesis 2. Participants
did not explicitly complain about the fact that the Lens
visvalization did not represent sort history, Thus, we
have no reason to believe that the failure of the Lens lan-
guage to provide a direct means for representing sort
history was the cause of a usability problem.

We did, however, document convincing evidence that
the lack of a legend in the Lens visualization caused a
usabilty problem. Indeed, both pairs of study participants

were initially confused about the mapping between ele-
ment magnitude and stick height in the Lens visualiza-
tion. As the visualization progressed, they eventually
came to understand that mapping. Nonetheless, our se-
mantic-level analysis suggests that, if the Lens language
had supported the definition of an order legend, partici-
pants might have grasped the visvalization more quickly.

5 Related work

The research described in this paper purports to use
empirical studies as a basis for SV language design and
evaluation. Two lines of related work have employed
empirical studies with humans within the context of
software visualization, while a third line of related work
has specifically addressed the problem of SV language
design. In this section, we briefly survey each of these.

5.1 Using empirical studies to evaluate SV sys-
tems

Pioneered at the Georgia Institute of Technology, the
first line of related work has focused on the problem of
empirically verifying the benefits of computer-based SV
systems in pedagogical settings [1,9,15]. Qur work dif-
fers fundamentally from this work both in the research
method (quantitative factors analysis versus qualitative
visualization storyboarding), and in the research goal
(evaluation of SV efficacy versus SV language design).

5.2 Using empirical studies to document human
visualizations

Ford [6] employs a research method similar to ours to
document human visualizations of computer programs.
In Ford’s study, 46 beginning computer science students,
assembled into two-, three-, and four-person teams, were
videotaped as they sketched visualizations for C++ code
fragmenis. Ford’s analysis of the 180 visualizations re-
sulting from the study revealed a wide range of alterna-
tive visualizations for the same code fragments; the
visualizations were classified using Cox and Roman’s [3]
abstraclion classification system.

In contrast to our study, Ford’s study considered the
visualization of general imperative and object-oriented
programming concepts—for example, variables, pointers,
loops, conditionals, arrays, and classes; visualization
conceplualization was not considered at the level of al-
gorithm semantics. Further, Ford made no attempt to
use the study results as a basis for an SV language. In-
stead, Ford’s interest has been in devising a set of em-
pirically-based visual program abstractions for aiding

programmer comprehension of conventional text-based
program views [7].

5.3 Language design

Drawing from an analysis of human pen-and-paper
descriptions, Radiya and Radiya [13] introduce a model
called HAL (Human approach to describing ALgorithms)
for graphically describing algorithms However, whereas
they were interested in using such descriplions as basis
for a visual programming language, we are interested in
applying our research to SV languages.

To design the Lens SV language, Mukherjea and
Stasko {11,12] studied visualizations of 42 algorithms
drawn from several problem domains, including sorting,
searching, graph theory, and graphics. Programmed by
over 25 people from 4 different institutions, all of the
visvalizations they studied had been implemented in
XTango [16], an animation toolkit based on Stasko's
path-transition paradigm [17]). It should be no surprise,
then, that the lanpuage they designed is a subset of the
XTango language. Mukherjea’s and Stasko’s approach
differs from ours in that it used visualizations already
programmed in a particular SV language as a basis for
design; we are interested in grounding SV languages in
visualizations described independently of compuler-based
technology and languages.

6 Conclusions and future work

In this paper, we have shown how visualization story-
boarding studies, together with a semantic-level analyti-
cal framework, can be used to derive an empirically-
based, semantic-level SV language for bubblesort. As we
have demonstrated, such a language can prove useful in
diagnosing language-based usability problems in existing
single-user SV software,

However, we suspect that our approach holds even
greater promise as a tool for computer-based SV system
design. We envision that semantic-level languages like
the one presented here could serve as a good starting
point for defining both the functionality and user inter-
face of highly-usable single-user SV systems. Future
research will need to confirm the approach’s potential as
a design tool by actually using SV languages derived us-
ing the approach as the basis for single-user, computer-
based SV software. To that end, we plan to complete us-
ability studies on a computer-based system that imple-
ments the bubblesort SV language presented in this paper
by the end of the year,

Aside from confirming the approach’s potential as a
design tool, we are interested in exploring several related
research questions that have been inspired by the research

presented in this paper. We conclude by identifying five
of these,

Studying a wider range of computations. How uni-
versal are the semantic primitives that we have identified
for the bubblesort visualization language? Do they exist
in the visualization languages of other sorling algo-
rithms? We suspect that visualization languages are
highly computation-dependent. We would like to con-
duct further empirical studies that focus on a wider range
of algorithms in order to explore both the range of visu-
alization languages thal are possible, and the extent to
which visualization languages can be generalized to
specific classes of computations.

Studying more complex computations, What affect
does the sophistication of a computation have on the se-
mantic-level visualization language in which it is visual-
ized? We initially chose to study the bubblesort algo-
rithm precisely because of its simplicity. Perhaps because
of that simplicity, we found that people visualize it at a
similar level of abstraction. We suspect that the more
sophisticated the algorithm, the wider the range of se-
mantic levels at which humans will choose to visualize it.
What analysis and design techniques could be used to
deal with visualization languages with varying semantic
levels?

Studying the relationship betweenr SV language
expressibility and SV language usability. The work
presented here considers the impact of SV language de-
sign on usability only in the small case of bubblesort. In
practice, SV system designers are interested in supporting
the definition of visualizations for a broad range of al-
gorithm classes. For example, the Lens system has been
used to define visualizations for sorting, searching,
graph, computational geometry, and even scientific
simulation algorithms [12]. How does the expressibility
of an SV language—that is, the range of computations
whose visualizations it can express—affect its usability?
Will a library of different SV languages—each suited to
specifying visualizations for a particular computation or
class of computations—prove more usable than a mono-
lithic SV lanpuage capable of expressing visualizations
for any possible computation?

Studying alternative SV language paradipms. All
of the participants in our visualization storyboarding ex-
periment chose to visualize the bubblesort algorithm by
identifying interesting events in the algorithm, and map-
ping those interesting evenls to corresponding graphical
transformations. Called visualization-by-annotation in
the SV literature [14], this specification paradigm is the
one most commonly supporied by computer-based SV
systems.

It is widely known, however, that visualization-by-
annotation is not the most appropriate method for ex-

pressing all possible computation-to-visnalization map-
pings. Can the empirical study and analysis technique
introduced here inform design in cases in which the
computation-to-visualization mapping employs an alter-
native SV mapping—for example, the declarative method
by which the traditional visualization for the Towers of
Hanoi algorithm is most elegantly expressed? If not,
what can we learn from visualization storyboarding
studies in such cases, and are there alternative analysis
techniques that can help us?

Incorporating gestures and speech into visualiza-
tion languages. Our analysis of the empirical study pre-
sented in Section 2 only considered our participants’ sto-
ryboards—the graphical traces of the bubblesort that they
created. Yet, as we stated in that section, participants
augmented their storyboards extensively with gestures
and speech, both of which contributed greatly to their
overall presentations,

Unfortunately, the videotapes of our participants’ ses-
sions, which were filmed using a single camera posi-
tioned above the participants, proved inadequate as a
means for coordinating participant gestures and speech
with transformations in their storyboards. By using a
second camera focused on the participants themselves,
however, we could capture their gestures and speech, and
consider their semantics in our analysis. We look for-
ward to exploring that possibility in future studies.

Acknowledgment

We gratefully acknowledge John Stasko and his col-
leagues for allowing us to use a prototype version of Lens
for our usability study.

References

[1] A. Badre, M. Beranek, J.M. Morris, and J.T. Stasko.
Assessing program visvalization systems as instructional
aids. Technical repont GIT-GVU-91-23, College of
Computing, Georgia Institute of Technology, Atlanta,
GA, 1991.

i2] Brown, M. Algorithm Animation. Cambridge, MA: The
MIT Press, 1987.

[31 K.C. Cox and G-C. Roman. Abstraction in algorithm
animation. In Proc. 1992 JEEE Workshop on Visual
Languages (Seattle, WA), pp. 18-23, 1992,

[4] S.A. Douglas. Conversational analysis and human-
computer interaction design. In P, Thomas (ed.) The
Social and Interactional Dimensions of Human-

10

151

(6]

|

(8]

[91

{10

[11]

12]

[13]

(14]

Computer Interfaces. Cambridge: Cambridge Univer-
sity Press, (in press).

S. Douglas, D. McKeown, and C. Hundhausen, Explor-
ing human visualization of algotithms. Technical report
CIS-TR-94-27, Department of Computer and Informa-
tion Science, University of Oregon, Eugene, 1993,

L. Ford. How programmers visualize programs, Re-
search report 271, Department of Computer Science,
University of Exeter, Exeter, U.K,, 1993,

L. Ford and D. Tallis. Interacting visual abstractions of
programs. In Proc, 1993 IEEE Workshop on Visual
Languages (Bergen, Norway), pp. 93-97, 1993.

C.D. Hundhausen. Exploring the potential for conver-
sational analysis in the evaluation of interactive algo-
rithm visualization systems, Unpublished technical re-
port available at http://www.cs.uoregon.edu/~chundhau,
1993,

AW, Lawrence, A.N. Badre, and J.T. Stasko, Empiri-
cally evaluating the use of animations to teach algo-
rithms. Technical report GIT-GVU-94-07, College of
Computing, Georgia Institute of Technology, Atlanta,
GA, 1994,

N. Miyake. Constructive interaction and the iterative
process of understanding. Cognitive Science 10, pp.
151-177, 1986,

8. Mukherjea and J.T. Stasko Applying algorithm ani-
mation techniques for program tracing, debugging, and
understanding. In Proc. I5th IEEE International Con-
Jerence on Software Engineering (Baltimore, MD), pp.
456-465, 1993.

5. Mukherjea and J.T. Stasko, Toward visval debug-
ging: Integrating algorithm animation capabilities within
a a source-level debugger. ACM Trans. on Computer-
Human Interaction 1({3), pp. 215-244, 1994,

A. Radiya and V. Radiya. A model of human approach
to describing algorithms using diagrams, In Proc. 1992
IEEE Workshop on Visual Languages (Seattle, WA),
pp. 261=263, 1992,

G-C. Roman and K.C. Cox. A taxonomy of program
visualization systems. IEEE Computer 26(12)
(December), pp. 11-24, 1993,

[15]

[16]

J.T. Stasko, A. Badre, and C. Lewis. Do algorithm ani-
mations assist learning? An empirical study and analy-
sis, In Proc. INTERCHI '93 Conference on Human
Factors in Computing Systems (Amsterdam, The Neth-
erlands), pp. 61-66, 1993,

J.T. Stasko. Animating algorithms with XTANGO.
SICACT News 23(2), pp. 67-71, 1992,

11

{171

(18]

J.T. Stasko. Tango: A framework and system for algo-
rithm animation. IEEE Computer 23 (September) pp.
27-39, 1990.

L. Suchman. Plans and situated actions: The problem
of human—machine communication, Cambridge: Cam-
bridge University Press, 1987.

