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Abstract. Performance Extrapolation is the process of evaluating the performance of a
parallel program in a target execution environment using performance information
obtained for the same program in a different execution environment. Performance
extrapolation techniques are suited for rapid performance tuning of parailel programs,
particularly when the target environment is unavailable. This paper describes one such
technique that was developed for data-parallel C++ programs written in the pC++
language. The technique uses high-level event tracing of a n-thread pC++ program run on
a uniprocessor machine together with trace-driven simulation to predict the performance
of the program run on an n-processor machine. Our results show that even with high-level
events, performance extrapolation techniques are effective in isolating critical factors
affecting a program’s performance and for evaluating the influence of architectural and
system parameters.
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1 Introduction

One of the foremost challenges for a parallel programmer is to achieve the best possible performance for an
application on a parallel machine. The most common motivation for developing high-performing programs is that
parailel machines are expensive resources that must be utilized to their maximum potential to justify their costs.
However, the process of performance debugging (the iterative application of performance diagnosis [11] and tuning)
invariably requires access to the target parallel platform, since the majority of the parallel performance tools are based
on the measurement and analysis of actual program execution. As a consequence, during performance debugging, a
parallel system is typically running less than optimal codes, often with the additional overhead of execution
monitoring. The dependence on actual machine access for performance debugging also restricts the parallel
programmer to consider optimization issues only for physically available machines. For parallel programs intended to
be portable to a variety of parallel platforms, and scalable across different machine and problem size configurations,
undertaking performance debugging for all potential cases is usvally not possible.

The ideal way to address issues of machine access and efficiency of use is to provide the user with a performance
evaluation environment that would require only limited access (if any) to the target system for effective performance
debugging to take place. The environment would measure only what performance data was necessary from the
execution environment and use high-level analysis to evaluate different program alternatives under different system
configuration scenarios. In this manner, the environment would enable performance-driven parallel program design
where algorithm choices could be considered early in the development process [21]. Two main performance
evaluation directions have been pursued to approximate this ideal situation. Static performance prediction techniques
use statistical performance models of a program which are evaluated analytically or through simulation. The models

t This research is supported by ARPA under Rome Labs contract AF 30602-92-C-0135 and Fort Huachuca contract
ARMY DABT63-94-C-0029. The research is also supported by a NSF National Young Investigator (NYI) award.




can represent different levels of execution detail and can include parameters and components that allow alternative
problem and system test cases to be studied. Some parameters may be detived from performance measurements. The
work by [5,7,15] are representative of such static prediction approaches. Although it is possible to achieve
surprisingly accurate estimates of global performance statistics (e.g. total execution time), the problems that arise in
static performance prediction concern the inability to account for the performance effects of dynamic program
behavior.

The alternative to static analysis is dynamic performance prediction based on trace-driven or direct execution
simulation, where the architectural features of the target system and their interplay with the dynamic program
execution can be more accurately represented. Although the work on the Proteus system [3,4] and the Wisconsin
Wind Tunnel [19] has considerably advanced the efficiency and effectiveness of these dynamic techniques for
architectural studies, the overheads are prohibitively high to warrant their use for rapid and interactive performance
debugging,

In this paper, we describe a performance prediction technique that combines high-level modeling with dynamic
execution simulaticn to facilitate rapid performance debugging. The technique is one example of a general prediction
methodology called Performance Extrapolation that estimates the performance of a parallel program in a target
execution environment by using the performance data obtained from running the program in a different execution
environment. Qur goal is to demonstrate that performance extrapolation is a viable process for parallel program
performance debugging that can be applied effectively in situations where standard measurement technigues are
restrictive or costly. From a practical standpoint, this implies that performance extrapolation methods must address
the problem of how to achieve the comparative utility and accuracy of measurement-based analysis without incurring
the expense of detailed dynamic simulation, but at the same time retaining the flexibility and robustness of model-
based prediction techniques. Section 2 describes the basic concept of performance extrapolation. Section 3 presents
the performance extrapolation tool, ExtraP, that we have developed for data-parallel C++ programs writien in the
pC++ language. The experimental results of applying ExtraP to pC++ benchmark codes are discussed in Section 4.
Section 5 describes how the performance extrapolation technique employed in ExtraP can be used in other
environments. The paper concludes with a section on future work.

2 Performance Extrapolation

We believe that performance extrapolation is a concept that has not been explicitly identified or directly studied in the
past. Hence, we begin with some definitions.

An execution environment is a collection of compiler, runtime system, and architectural features that interact to
influence the performance of a parailel program. A complete execution environment would include the following
important factors.

1. Architecture: Interconnection network topology, memory hierarchy, number of processors, and CPU archi-
tecture.

2. Compiler: Optimization strategies, calling conventions, storage management policies, and source code
transformation algorithms.

3. Runtime system: Message passing conventions, data distribution policies, thread management, and schedul-
ing policies.

It is also useful to consider the features of the input problem as part of the execution environment, since factors like
problem size and distribution of the input values can influence performance behavier considerably.

The performance of a parallel program should always be specified with respect to a particular execution environment.
An execution environment provides a reference framework for interpreting a program’s performance on a single run
as well as comparing the performance of different versions of the same program. A given program can also be
evaluated under different execution environments and the environment best suited 1o that program chosen.

We define a performance metric as a measure of the quality of a parallel program. Total execution time is one of the
most commonly used performance metrics for a parallel program. Other metrics like resource utilization and
computation / communication ratio are also used often to evaluate parallel programs. Performance metrics are




important because they assist the user during performance debugging to identify performance bottlenecks and
investigate how to resolve them. Because performance metrics are derived artifacts of program execution, they
should be always specified with respect to an execution environment.

Performance metrics are obtained by analyzing the static and dynamic performance information about a parallel
program’s execution. Trace data obtained by running a parallel program is an example of performance information
from which the execution time of the program and other metrics can be calculated. In some cases, the performance
metric is trivially derived from the performance information. Sometimes more detailed analysis of the performance
information is required. Because performance information depends on a measurement of a program’s execution, it,
too, must be associated with a particular execution environment.

The importance of execution environment is evident in the definition of performance extrapolation. Performance
extrapolation is the process of obtaining the performance information P/; of a parallel program for an execution
environment E; and using P/} to predict the performance information PI,” (the superscript p indicates a predicted
quantity) of the same program in a different execution environment E;. The performance information PI, is then
used to compute the predicted performance metrics of the program in E;, PM,’. This process can be considered as a
translation or extrapolation of P/} to PI,” using the knowledge about E; and its similarities to and differences from
E,. Figure | portrays the performance extrapolation process. PM; and PM; represent the performance metrics
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FIGURE 1. Performance Extrapolation

derived from measured performance information, PI; and PI,, in the environments E; and E,, respectively, and PM,"
represents the predicted performance metrics derived from P17,

In principle, performance can be extrapolated across various execution environment paramelers: number of
processors, processor types, data distributions, different interconnect network topologies, processor mappings, etc.
However, there are several problems that can arise during extrapolation that could affect the validity of the
performance metrics produced. For instance, the analysis to derive a performance metric must often take into account
the uncertainty in performance information and its effect on the accuracy of the metric. The work on perturbation
analysis [14] is an example of how performance measurement intrusion issues can be addressed during post-mortem
program trace analysis. Sometimes problems of performance information accuracy can be dealt with by deriving
performance metrics in vivo of a system, as in direct execution simulation [6,18)]. However, one of the most difficult
problems involves non-deterministic program behavior between two execution environments. The performance
extrapolation methodology makes the implicit assumption that the measured performance information in one
execution environment is useful to predict the performance information in another environment. The major benefit of
extrapolation js that measurements do not have to be made in the target execution environment to derive various
performance metrics under different environment parameters. But this could also be a major shortcoming. In applying
performance extrapolation, one must be aware of situations where the performance information in the measured




environment may be too incomplete or the program behavior may be too unpredictable to guide the extrapolation
process.

3 A Performance Extrapolation Technique for pC++

We have developed a performance extrapolation technique that allows performance information and metrics to be
predicted for data-parallel programs written in the pC++ language [1,8,9,16]. In particular, we investigated the
problem of exirapolating from a 1-processor execution of a n-thread parallel program to a n-processor execution for
an environment where certain architectural and systern parameters are configurable.

In general, our approach is to execute a n-thread pC++ program on a single processor using a non-preemptive threads
package. Important high-level events are recorded during the program run in a trace file. The events are then sorted on
a per thread basis, adjusting their timestamps to reflect concurrent execution. The resulting set of trace files look as if
they were obtained from a n-thread, n-processor run, except that they lack certain features of a real parallel execution.
A trace-driven simulation using these trace files attempts (o model those features and predict the events as they would
have occurred in a real n-processor execution environment. The extrapolated trace files are then used to obtain
various performance metrics related to the pC++ program. The technique, depicted in Figure 2, is explained in detail
in the following sections.
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FIGURE 2. A Performance Extrapolation Technique for pC++




3.1 pC++: The Language, Compiler, and Runtime System

pC++ is a language extension to C++ that supports an object-parallel execution model [1,8,9]. Under this model, a
collection of objects can be distributed across a set of threads, in much the same way as arrays are distributed in HPF
{2,12]. The objects which make up the collection are called the efements of the collection. The collection inherits
certain member functions of its elements, so that when such a member function is called, it is called for every element
in the collection. This parallel method invocation for collections of elements is the main source of parallelism in
pC++.

The compiler accomplishes a parallel method invocation by generating code so that each thread calls the method for
all its local elements. At the end of each parallel method invocation, the threads are synchronized by a global barrier.
In addition, when a thread wants to access an element which it does not own, it generates a remote element request to
be serviced by the thread that owns the element. The runtime system provides facilities for creating the threads,
synchronizing the threads using a barrier and for accessing remote elements [1].

One of the important things to notice about pC++ is that currently it does not provide protected accesses to remote
elements. Though this will change in the future, we must point out that this particular characteristic of pC++ has
made our extrapolation technique simpler. Even though unprotected remote element accesses can lead to race
conditions, in this paper we are considering only programs which do not have that problem. This issue is discussed
further in Section 5.

3.2 Instrumentation and Trace Translation

For the purposes of our performance extrapolation work, we modified the pC++ runtime system so that all n threads
of a parallel program are executed on a single processor (in a virtual parallel manner) using a non-preemptive threads
package [10]. The elements of a collection are allocated in a global space accessible by all the threads. When a thread
requires access to a remote element, it gets it directly from the global space. Thus, under this runtime system, remote
accesses are indistinguishable from local accesses (in terms of timing characteristics) and thread switches happen
only at barrier entry and exit points.

Since the only interactions between threads in the pC++ programming model occur during barrier synchronizations
and remote element accesses, the runtime system was instrumented to record all such interactions. The result of a I-
processor performance measurement is a trace file which contains barrier entry, barrier exit, and remote access events
from all the threads in the pC++ program. These high-level events form the basis for the extrapolation and the time
between the events reflect the computation times of the threads.

The trace translation algorithm takes in the trace file produced by the n-thread, 1-processor run of a pC++ program
and creates n trace files each containing events from one thread. The timestamps are adjusted to reflect the ideal
parallel execution of the threads’ computation on a n-processor machine. This is accomplished by retaining the time
between two consecutive events for a thread and by enforcing the semantics of the barrier synchronization events. For
example, if e; and e, are two consecutive events from the same thread with timestamps #; and f,, and if e;’s
timestamp was adjusted to time ¢;’, then e;’s timestamp will be adjusted to t,-¢;+¢;". This kind of adjustment is done
only for non-synchronization events. For synchronization events, the timestamps are adjusted so as to preserve barrier
behavior. For example, the translated timestamp of a barrier exit event from a thread, T;, will be set to the timestamp
of the barrier entry event from the last thread that entered that barrier, T;,,,. Notice that the trace translation algorithm
relies on the fact that the threads are scheduled only at synchronization boundaries (i.e., the threads are not preempted
until they encounter the barrier). That is the reason why a non-preemptive threads package must be used for the n-
thread, |-processor run. The trace translation algorithm is easily modified to handle the overhead for recording the
events, flushing the event buffer, and switching the threads.

The translated trace files capture the program execution times between events under the assumptions of instant
remote accesses, instant barrier synchronization (threads exit a barrier as soon as the last thread comes in), and
unperturbed thread computation. Although these assumptions are idealized, the claim that we make is that pC++
performance extrapolation can now be done for an n-processor execution by using the high-level events in the traces
to drive simulations where models attempt to capture the execution realities of these performance factors (i.e., cost of




remote accesses, synchronization overheads, processor performance) in the target environment. Because of the data-
parallel pC++ execution model (and the assumptions that we make about pC++ programs, see Section 5), the high-
level event sequence for each thread between the 1-processor execution and the predicted n-processor execution is
deterministic, and extrapolation requires only the simulation of target system behavior for remote data access and
barrier synchronization.

3.3 Simulation Architecture and Models

The trace-driven simulation is the heart of the pC++ performance exirapolation. The simulation system consists of
three main components:

® Processor model
*Remote data access model
» Barrier model

These components correspond to the three main types of information captured by the trace files: computation time
between events, remote collection element accesses, and data-parallel synchronization barriers. Each component has
several parameters that can be chosen to refiect the environment for which the prediction is to be done. Composed
together, the components form a high-level model of the target system. Indeed, the simulation architecture was
designed in an object-oriented manner such that the components (and their sub-components) interact through time-
based objects (e.g., messages). The importance of this design approach is that we can easily chose the model type
and level of functional analysis for each component, and flexibly substitute models to trade off issues of efficiency,
accuracy, and detail in the simulation, depending on the performance debugging needs at the time. The simulation
components for pC++ extrapolation that we have implemented are explained in detail in the following sections.

3.3.1 Processor Model

As mentioned earlier, the main characteristic of any performance extrapolation technique is that it reuses information
from one platform. In our case, it is the computation time between events on each thread and the event sequence
recorded in the trace files that are reused. However, the computation times are clearly dependent on the processor
performance. If the performance of the target system’s processor is different from the measured machine, the
difference must be addressed during extrapolation. For pC++ extrapolation, we use a simple ratio of processor speeds
to scale the compuiation time between events appropriately for the target machine. Such a ratio can be easily obtained
by measuring the MFLOPS (or other processor performance) ratings of the target machine and the machine on which
the experiments are performed. For example, the experiments desctibed in this paper were all performed on a sun4
machine with a MFLOPS rating of 1.1360, as determined by a simple floating point benchmark. On a CM-5, the
(scalar) MFLOPS rating was computed as 2.7645. So a ratio of 1.1360/2.7645 = 0.41 would be used during
sitnulation for extrapolating the performance from a sund4 platform to a CM-5 platform,

In addition to processor speed scaling, the processor model represents certain operational aspects of the pC++
runtime system. One important aspect is the policy about how remote data accesses are serviced and what message
handling functions are performed for the chosen policy. The following remote data access policies are currently
supported:

No interrupt: In this case, no messages are handled during the time between events. Messages are processed
only when a thread waits for a barrier release or a remote data access reply.

Interrupt: In this case, an arrival of a message for a particular thread interrupts its computation. After the mes-
sage is processed, the thread resumes its computation.

Poll: The scaled computation time between events is split into smaller chunks, and at the end of each chunk,
the thread processes messages that have been received during that time.

The runtime system also determines how threads are assigned to processors, affecting issues of data locality and
processor sharing, The results reported below reflect the current pC+ + runtime system which allocates each thread to
a separate processor (hence, our focus on n-processor extrapolation) and targets either a shared memory or distributed




memory system architecture. However, an advantage of extrapolation is that we can approximate other runtime
system behaviors, as long as the per-thread event sequence is unmodified. We have implemented a processor model
(with an approximaied runtime system) that supports multithreading on processors and shared memory clustering
between processors. This has allowed us to explore the performance effects of these changes that are now being
implemented for the pC++ system.

3.3.2 Remote Data Access Model

The simulation models each remote access in the program as a remote request for data from one thread to the thread
that “owns” the data (pC++ follows the “owner computes” model [9,12}). The owner thread services the request and
returns the data to the requesting thread. This is equivalent to how the pC++ system operates in distributed memory
environments. Hence, messages are the natural representation for the remote access protocol in the simulation.
Figure 3 graphically depicts the how the remote data accesses are processed in the simulation using messages. During
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FIGURE 3. Remote Data Access Model

this processing, various performance characteristics of a distributed memory, message passing environment are
modeled, as described in the figure. To simulate the performance of remote accesses in a shared memory system, the
same protocol structure is used, but the parameters of the component sub-models (e.g., the network interface model
and the interconnection network model) are changed to reflect shared memory data transfer. Because we are
simulating performance at a high-level, we feel that this general approach is appropriate. Again, the simulation
architecture allows a more specific and detailed shared memory model to be substituted if it is necessary to increase
simulation realism and accuracy. Also, representing remote accesses generically by messages allows us to easily
accommodate a multi-clustered system with shared memory access within a cluster and message passing between
clusters.

The remote data access model includes parameters to represent: communication start-up overheads, communication
bandwidth, message types and sizes, message construction overhead, network topology, and network contention.
Aside from the operational aspects of the sub-models, the remote access performance estimates produced in the
pC++ extrapolation are mostly analytical; a full description of the performance equations is given in [20]. However,
modeling contention requires time-based state analysis. That is, the contention models we developed include
parameters based on the intensity of concurrent use of shared system resources (e.g., the interconnection network)




during the simulation. Except for concurrent access to message receive queues, we did not simulate the low-level
contention behavior directly (e.g., the allocation of network links to contending messages). Instead the contention
models were analytical expressions of remote access delay involving the contention factors calculated from the
simulation state. More detailed simulation of contention would severely impact the speed of performance
extrapolation.

3.3.3 Barrier Model

The current barrier model is based on a linear, master-slave barrier synchronization algorithm. Thread 0 acts as the
master thread while all the other threads are slaves. Every slave thread entering a barrier sends a message to the
master thread and waits for a release message from the master thread to continue to the next data-parallel phase.The
master thread waits for messages from all the slaves and then sends release messages to all of them. For distributed
memory systems, the pC++ runtime system must continue to service remote data access messages that arrive at a
processor even when the threads that run on that processor have reached the barrier. This is also true in the simulation.

The barrier medel has several parameters that can be adjusted to match the actual barrier implementation on the target
machine. Table 1 lists these parameters and briefly describes their operation. Hardware barriers or barriers

Parameter Description Example

EntryTime Time for each thread to enter a barrier. 5.0 psec

ExitTime Time for each thread to come out of the barrier after it has been low- | 5.0 usec
ered.

CheckTime Delay incurred by the master thread every time it checks if all the 2.0 psec

threads have reached the barrier.

ExitCheckTime Delay incurred by a slave thread every time it checks to see if the 2.0 usec
master has released the barrier.

ModelTime Time taken by the master thread to start lowering the barrier after all | 10.0 psec
the slaves have reached the barrier.

BarrierByMsgs 1 - use actual messages for barrier synchronization. The message 1
transfer time will contribute to the barrier time,

0 - do not use actual messages for barrier synchronization.

BarrierMsgSize Size of a message used for barrier synchronization, 128

TABLE 1. Parameters for the Barrier Model

implemented through shared memory are easily represented. The linear barrier model delivers an upper bound on
barrier synchronization times. We can easily substitute other barrier algorithms (e.g. logarithmic) if a more accurate
simulation of barrier operation is required.

4 Experimental Results

To evaluate the concept of performance extrapolation and, in particular, the efficacy of the ExtraP tool, we performed
several extrapolation experiments on codes in the pC++ benchmark suite. These codes represent a wide range of
execution behaviors, reflecting different degrees of computation and communication; Table 2 briefly describes the
benchmarks used. Our goal in these experiments was two-fold. First, we wanted to establish that the extrapolation
methodology could be applied in an actual parallel programming context where performance debugging is an




Benchmark name Description
—— _—
Embar NAS “embarrassingly parallel” benchmark
Cyclic Cyclic reduction computation
Sparse NAS random sparse conjugate gradient benchmark
Grid Poisson equation on a two dimensional grid
Mgrid NAS multigrid solver benchmark
Poisson Fast Poisson solver I
Sort Bitonic sort module

TABLE 2. pC++ Benchmark Codes used for Extrapolation Studies

important component [16]. Second, we wanted to verify that modifying simulation parameters of interest resulted in
observable and expected effects in extrapolated benchmark performance behavior.

Although ExtraP provides an ability to do performance debugging of portable pC++ programs, to apply
extrapolation confidently in a specific execution environment, we must be able to represent the target system
appropriately in the simulation and to validate extrapolated performance against measured results. We implemented a
matrix multiplication code in pC++ and ran it on the Thinking Machines CM-5 for different numbers of processors
and data distributions to demonstrate how effectively ExtraP can approximate actual execution characteristics.

4.1 pC++ Extrapolation Studies

The large number of simulation parameters available in the models described above makes it possible to perform a
broad range of extrapolation experiments. For our experiments, we created several parameter sets, each varying a
particular parameter across some range; for example, one parameter set varied the network bandwidth parameter
ByteTransferTime from 0.2 psec (5 Mbytes/second) to 0.005 psec (200 Mbytes/second). For the most part, the
experimental parameters reflected a distributed memory target system. We ran all benchmark codes for each
parameter set for 1, 2, 4, 8, 16, and 32 processors.

Initially, to observe processor scaling effects, we selected a single parameter combination and ran Extra® on all
benchmarks and processor numbers. The results are shown in Figure 4. The curves clearly show the range of
performance found in the pC++ benchmark suite and the speedup values are representative of what we have
observed in different real environments. Although we were not attempting to validate the extrapolation results for a
particular target environment in these experiments, the parameter values selected portray a distributed memory
platform with modest communication link bandwidth (20 Mbytes/second), but relatively high communication
overheads and synchronization costs. Embar is expected to deliver linear speedup on almost all platforms, and it does
s0 here. Cyclic and Poisson show reasonable speedup improvement, but the other codes are mote severely affected by
the costs of communication or synchronization barriers.

In particular, we notice that for Grid and Mgrid speedup levels off after four processors, a result that was different
from what we have observed on several shared memory parallel platforms [1], where speedups greater than 14 for 32
processors are achieved. This is not too surprising, given that we used a distributed memory parameter set. However,
we were curious about the cause. We selected the Grid benchmark for further study; the performance results are
shown in Figure 5. One obvious difference between a shared memory and distributed memory system is the
bandwidth for remote data access. We changed the parameters set to reflect 200 Mbytes/second communication, an
approximation of the performance for remote data accesses in shared memory machines. This improved the time
performance somewhat, but speedup performance was still only half of the shared memory case. From trace statistics,
it was clear that barrier synchronization time was insignificant in Grid, so the lack of speedup must be attributed to
communication start-up overhead, or so we thought. We extrapolated to an ideal execution environment where all
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synchronization and communication costs were null. This produced close lo the desired result, but trace statistics
indicated that Grid does not have enough barriers (only 650) to make us concerned about synchronization overhead,
and has sufficient computation that better speedup should be seen without resorting to ideal conditions, even in a

distributed memory system.

Further inspection of the trace files revealed the real problem. Our original trace measurements used high-level
information from the pC++ compiler to determine the size of remote element transfers -- a measurement abstraction
that saves having to record this information in the trace. However, when generating calls to the runtime system during
an optimization pass, the compiler determines if it can request part instead of the whole collection element, saving
unnecessary data transfer. In Grid, the actual size of the remote data transferred is 2 and 128 bytes. Using high-level
compiler information, our trace measurement associates the size of the grid collection element (231456 bytes) to each
remote access. When we used the actual size in the simulation with the original parameter values, we achieved results
comparable to the high-bandwidth test. By reducing the high communication start-up overheads, the speedup

performance was further improved.




The important point of this exercise is that all of the experiments were done with the simulation system and single
processor trace measurements. We were able to test easily the performance outcome of changes in the execution
environment and observe the benefits of compiler optimizations. We are also able to see the effects of data
distribution. For all Grid and Mgrid curves, we notice the odd behavior of no performance improvement from 4 to 8
processors. This is an artifact of the blocking distribution used for the two dimensional parallel grid data structures in
pC++ where a grid of size Px P is distributed in a (BLOCK, BLOCK) fashion to N processors such that each
processor gets — grid elements. Notice that if N is not a perfect square, some processors will not get any elements
at all. That is thﬁeason why there is no performance improvement from 4 to 8 processors; 4 of the processors are
sitting idle. Its appearance in the simulation results is rudimentary validation that extrapolation is able to capture
important program execution characteristics.

Our second experiment was designed to observe the effects of extrapolating processor speed. For all benchmarks, we
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tested processor scalability with three MipsRatio parameter values: 2.0, 1.0, and 0.5. The value 1.0 indicates that the
computation times measured in the 1-processor execution are unchanged in the simulation, 2.0 indicates a 2x




slowdown in computation, and 0.5 indicates a 2x speed increase. The expected slowdown and speedup performance
effects were clearly seen in all benchmark extrapolation results, but different speedup behaviors arose depending on
the effect of changes in the ratio of computation to communication. The Embar curves in graph (i) of Figure 6
highlight the increase in execution times for MipsRatio = 2.0 and the decrease for MipsRatio = 0.5. Cyclic and
Sort speedup curves shown in graphs (ii) and (iii) of Figure 6, show little effect of varying MipsRatio. One would not
expect this to be true, however, for codes with a major communication constituent. The influence of changing
computation/communication ratio can clearly be seen in the Mgrid speedup curves, graph (iv) of Figure 6, whereas
the performance effect of a growing communication bottleneck in Poisson is not significant until 32 processors.

To further explore the Mgrid results, we looked at the effect of MipsRatio on performance when communication
parameter values are changed. Figure7 plots the execution times for MipsRatio = {1.0,0.25} and
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FIGURE 7. Effect of MipsRatio and CommStartupTime on Mgrid

CommStartupTime = {5.0, 100.0, 200.0} psec. The interesting performance behavior to note is the change in the
number of processors delivering minimum execution time: 16 processors for MipsRatio = 1.0 and 4 processors
for MipsRatio = 0.25 | The obvious reason is the earlier influence of communication overhead when
MipsRatio = 0.25 . The ability to extrapolate tarpet system parameters such as processor speed and communication
start-up and to see such performance effects is important when “what if” questions are posed, especially about
systems that do not physically exist.

The last experiment with the benchmarks that we report here (see [20] for more results) demonstrate ExtraP’s ability
to simulate different runtime system policies for servicing remote data accesses. Two policies are supported in the
actual pC++ system: polling and interrupt. The choice of which policy to implement is usually based on whether the
target machine environment supports message interrupts (e.g., active messages on the CM-5). However, we might be
interested in the performance benefits of an interrupt policy versus a polling policy. For that matter, we might want to
know how much of a performance improvement interrupt and polling policies give over just servicing remote
requests while waiting for remote replies, at barriers, or at the end of compute phases. Also, if a polling policy must
be used, a port of pC++ requires the choice of polling interval. An optimal choice of the polling interval is certainly
system and likely problem specific. All of these questions can be explored with extrapolation.

Figure 8 shows the execution time curves for the Cyclic and the Grid benchmarks when the remote data access
policies are changed. (It should be kept in mind that the complete set of parameter values affect simulation results.
Important parameters to keep in mind here are and CommStartupTime = 100.0} In
both graphs, the “No interrupt/poll” curve performs the worst, as expected, but only by a maximum of 10% for all
processors, in the case of Grid; in Cyclic the performance is significantly worse, but improves with larger numbers of
processors. Hence, we can see from the extrapolation that program execution characteristics do affect the
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FIGURE 8. Effects of Remote Data Request Service Policy

performance benefit of implementing an interrupt or a polling policy. What about the choice of interrupt versus
polling, or the choice of polling interval? We might think that an interrupt policy would always perform best because
remote data accesses would not be delayed by computation on the remote processor. In fact, we observe this result in
the Grid graph. However, for Cyclic, it is interesting to see that a polling policy wins out for larger numbers of
processors, even when the polling interval is as small as 100 psec. Larger polling times perform better for Cyclic
which might indicate that frequent interactions between the threads are enough to service remote element requests
without the overhead of more frequent polling. The extrapolation process allows us to again observe the potential
performance effects of changes in the target execution environment, this time at the runtime system level, and to
possibly use that information to make application-specific runtime system optimizations.

4.2 Validation

For performance extrapolation to be an effective technique for performance debugging, it must be able to produce
results that closely match the performance behavior found in aclual target systems. In the case of pC++, there are
many target systems, as the language is intended to be portable. In extrapolating to any particular one, or even to a
hypothetical system, the key is to capture as best as possible the characteristics of the execution environment in the
parameters used for extrapolation. The validity of the extrapolation results can then be evaluated in how accurately
the predicted performance phenomena is representative of the real environment and can be applied to bottleneck
analysis, algorithm design decisions, and program tuning. To validate ExtraP, we took a simple matrix multiplication
program written in pC++ and performed processor scaling experiments for different matrix distribution choices,
extrapolating the performance to a CM-5 execution environment. The results are described below.

Matmul is a snmple pC++ program which multiplies two N x N matrixes A and B; B is given in transposed form.
Both A and B are distributed in the same way. The first row of B7 is broadcast to all the rows of a lemporary matrix
T. A pointwise multiplication of A and T is then performed and the result is placed in another temporary matrix §. A
right to left global summation (reducuon) in each row of .§ produces the first column of the result matrix A » B. This
process is repeated for all the rows of BT, Though Matmu! is a naive matrix multiplication program, it serves to
illustrate the usefulness of the extrapolation technique.

The program was run with nine different combinations of two-dimensional data distributions for the matrices, as
determined by the per dimension distribution attributes available under the pC++ compiler: Block, Cyclic, and
Whole. The trace files were generated on a Sun 4 machine and then extrapolated using simulation parameters to
match the CM-5. The predicted execution times from ExtraP and the actual results from CM-5 are shown in Figure 9.
Some of the important parameters used for extrapolation are shown in Table 3. The processor speed ratio was
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obtained by measuring the scalar MFLOPS of the CM-5 (2.7645) and the Sun 4 (1.1360) machine. The other
parameters were obtained from [13,17].
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FIGURE 9. Results from Matmul program

Parameter Value

BarrierModelTime 5.0 psec

CommStartupTime 10.0 psec

ByteTransferTime 0.118 psec (8.5 Mbytes/second)
MipsRatio 0.41

TABLE 3. Parameters used for Matching CM-5 Characteristics

The extrapolation clearly brings out the effect of data distribution on the execution time of MatMul. In addition to
matching the general shape of the actual curves, the predicted curves also reasonably match the relative ranking of the
different distributions. The extrapolation picks out the same best choice as the measurement for all number of
processors except 32, in which case the execution time of the predicted best choice in the actual machine is within 3%
of the optimum. This demonstrates that extrapolation can capture the relative performance ordering of algorithm
design choices and, thus, can be used to make optimization decisions during the performance tuning process.

Concerning actual execution times, the predicted values differ somewhat from the measured values. Although they
are not excessive, certain errors are expected, considering the fact that a high-level simulation has been performed to
achieve these results. Our opinion is that the shape and relative positioning of the curves is more important. The
trade-off in accuracy, of course, can be found in the utility and speed of extrapolation. The ability of extrapolation to
predict the results very quickly without compromising the relative ordering of various design choices makes it very

attractive in a rapid prototyping environment.

5 Applicability to other Platforms

The extrapolation technique described here assumes that certain conditions hold during simulation. In particular, the
order of a thread’s measured events (i.e., remote element request, barrier synchronization) are assurned to be




unaffected by the remote data actions of other threads; hence, the reuse of thread traces. This assumption can be
warranted by the actual execution environment or enforced in the simulation. For instance, pC++ execution
semantics were initially based on an owners compute data-parallel model, wherein only the thread that “owns” an
element is able to modify its value. In addition to local computation, a thread then needs only to service read-only
requests for remole elements from other threads. As a result, a thread’s execution path (and, thus, the sequence of
thread events) cannot be affected by the order or the time of inter-thread interactions (via remote element requests or
barrier synchronizations), albeit its timing certainly can. In other language systems where such a “deterministic”
execution model applies, the extrapolation techniques can be equally well applied.

The more intriguing issue is the application of extrapolation techniques to execution environments where the thread
execution can be affected by inter-thread interactions. There are two general cases to consider, First is the case where
the possibility exists in the target system that a thread’s execution can be altered due to the effects and timing of
interactions with other threads, but that this can be guaranteed to never occur in a program’s execution in any
environment. As an example, the corrent pC++ language system does allow remote element write operations, but
programs can easily be written that do not use remote writes (as is the case in our benchmarks) or that do not lead to
timing-dependent execution behavior as a result of it. As a matter of fact, the modification to ExtraP to support
remote element writes in this case is trivial. The second case is where thread event reordering can occur due to
changes in the target execution environment. The principal question here concerns whether enough information is
known about program execution behavior and enough measured performance data is available for the extrapolation to
accurately determine when and which execution reorderings occur. The counter question is whether the extrapolated
execution, under the assumption of no reordering of events, can ever occur in the target system. In certain cases, it
may be possible to achieve a middle ground whereby the extrapolation is considered a “controlled execution” in the
target environment based on the data ordering and synchronization constraints of an actual n-processor measured
execution.

6 Future Work and Conclusions

Performance extrapolation uses performance information from one execution environment to predict the performance
in another target environment. We have described a particular performance extrapolation technique that uses the
execution time and events from a n-thread, 1-processor run to predict the execution time of a n-thread, n-processor
run of the same program. Our experience suggests that performance extrapolation is a viable technique to be use in a
performance debugging system, particularly for language environments, like that of pC++, where simple, restricted
execution semantics make programs more amenable to performance prediction. Two important results of our research
are that access to actual target platforms are not always required for accurate performance evaluation of parallel
programs, and that low-level system simulations are not the only alternative required for detailed performance
prediction. Performance extrapolation based on high-level events, like implemented in ExtraP, can support both
diagnosis and tuning in a performance debugging system.

This work can be extended in a several ways. The simulation can be extended to handle multithreaded processors
(i.e., the scheduling of more than one thread on a processor). This will extrapolate the performance from a n-thread,
1-processor run to a n-thread, m-processor run, where m<n. We are currently modifying ExtraP to support
multithreading. Another direction is to apply this work to other language systems, like HPE. The focus of our present
work is to integrate the ExtraP tool into the pC++ program analysis environment.
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